//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the X86MCCodeEmitter class. // //===----------------------------------------------------------------------===// #include "MCTargetDesc/X86MCTargetDesc.h" #include "MCTargetDesc/X86BaseInfo.h" #include "MCTargetDesc/X86FixupKinds.h" #include "llvm/MC/MCCodeEmitter.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSubtargetInfo.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; #define DEBUG_TYPE "mccodeemitter" namespace { class X86MCCodeEmitter : public MCCodeEmitter { X86MCCodeEmitter(const X86MCCodeEmitter &) = delete; void operator=(const X86MCCodeEmitter &) = delete; const MCInstrInfo &MCII; MCContext &Ctx; public: X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx) : MCII(mcii), Ctx(ctx) { } ~X86MCCodeEmitter() override {} bool is64BitMode(const MCSubtargetInfo &STI) const { return STI.getFeatureBits()[X86::Mode64Bit]; } bool is32BitMode(const MCSubtargetInfo &STI) const { return STI.getFeatureBits()[X86::Mode32Bit]; } bool is16BitMode(const MCSubtargetInfo &STI) const { return STI.getFeatureBits()[X86::Mode16Bit]; } /// Is16BitMemOperand - Return true if the specified instruction has /// a 16-bit memory operand. Op specifies the operand # of the memoperand. bool Is16BitMemOperand(const MCInst &MI, unsigned Op, const MCSubtargetInfo &STI) const { const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp); if (is16BitMode(STI) && BaseReg.getReg() == 0 && Disp.isImm() && Disp.getImm() < 0x10000) return true; if ((BaseReg.getReg() != 0 && X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) || (IndexReg.getReg() != 0 && X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg()))) return true; return false; } unsigned GetX86RegNum(const MCOperand &MO) const { return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7; } // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range // 0-7 and the difference between the 2 groups is given by the REX prefix. // In the VEX prefix, registers are seen sequencially from 0-15 and encoded // in 1's complement form, example: // // ModRM field => XMM9 => 1 // VEX.VVVV => XMM9 => ~9 // // See table 4-35 of Intel AVX Programming Reference for details. unsigned char getVEXRegisterEncoding(const MCInst &MI, unsigned OpNum) const { unsigned SrcReg = MI.getOperand(OpNum).getReg(); unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum)); if (X86II::isX86_64ExtendedReg(SrcReg)) SrcRegNum |= 8; // The registers represented through VEX_VVVV should // be encoded in 1's complement form. return (~SrcRegNum) & 0xf; } unsigned char getWriteMaskRegisterEncoding(const MCInst &MI, unsigned OpNum) const { assert(X86::K0 != MI.getOperand(OpNum).getReg() && "Invalid mask register as write-mask!"); unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum)); return MaskRegNum; } void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { OS << (char)C; ++CurByte; } void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, raw_ostream &OS) const { // Output the constant in little endian byte order. for (unsigned i = 0; i != Size; ++i) { EmitByte(Val & 255, CurByte, OS); Val >>= 8; } } void EmitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize, MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl &Fixups, int ImmOffset = 0) const; inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) { assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); return RM | (RegOpcode << 3) | (Mod << 6); } void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, unsigned &CurByte, raw_ostream &OS) const { EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); } void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, unsigned &CurByte, raw_ostream &OS) const { // SIB byte is in the same format as the ModRMByte. EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); } void EmitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const; void encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const override; void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, const MCInst &MI, const MCInstrDesc &Desc, raw_ostream &OS) const; void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand, const MCInst &MI, raw_ostream &OS) const; void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, const MCInst &MI, const MCInstrDesc &Desc, const MCSubtargetInfo &STI, raw_ostream &OS) const; }; } // end anonymous namespace MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, const MCRegisterInfo &MRI, MCContext &Ctx) { return new X86MCCodeEmitter(MCII, Ctx); } /// isDisp8 - Return true if this signed displacement fits in a 8-bit /// sign-extended field. static bool isDisp8(int Value) { return Value == (signed char)Value; } /// isCDisp8 - Return true if this signed displacement fits in a 8-bit /// compressed dispacement field. static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) { assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) && "Compressed 8-bit displacement is only valid for EVEX inst."); unsigned CD8_Scale = (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift; if (CD8_Scale == 0) { CValue = Value; return isDisp8(Value); } unsigned Mask = CD8_Scale - 1; assert((CD8_Scale & Mask) == 0 && "Invalid memory object size."); if (Value & Mask) // Unaligned offset return false; Value /= (int)CD8_Scale; bool Ret = (Value == (signed char)Value); if (Ret) CValue = Value; return Ret; } /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate /// in an instruction with the specified TSFlags. static MCFixupKind getImmFixupKind(uint64_t TSFlags) { unsigned Size = X86II::getSizeOfImm(TSFlags); bool isPCRel = X86II::isImmPCRel(TSFlags); if (X86II::isImmSigned(TSFlags)) { switch (Size) { default: llvm_unreachable("Unsupported signed fixup size!"); case 4: return MCFixupKind(X86::reloc_signed_4byte); } } return MCFixup::getKindForSize(Size, isPCRel); } /// Is32BitMemOperand - Return true if the specified instruction has /// a 32-bit memory operand. Op specifies the operand # of the memoperand. static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) { const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); if ((BaseReg.getReg() != 0 && X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || (IndexReg.getReg() != 0 && X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) return true; return false; } /// Is64BitMemOperand - Return true if the specified instruction has /// a 64-bit memory operand. Op specifies the operand # of the memoperand. #ifndef NDEBUG static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) { const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg); const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); if ((BaseReg.getReg() != 0 && X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) || (IndexReg.getReg() != 0 && X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg()))) return true; return false; } #endif /// StartsWithGlobalOffsetTable - Check if this expression starts with /// _GLOBAL_OFFSET_TABLE_ and if it is of the form /// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start /// of a binary expression. enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff }; static GlobalOffsetTableExprKind StartsWithGlobalOffsetTable(const MCExpr *Expr) { const MCExpr *RHS = nullptr; if (Expr->getKind() == MCExpr::Binary) { const MCBinaryExpr *BE = static_cast(Expr); Expr = BE->getLHS(); RHS = BE->getRHS(); } if (Expr->getKind() != MCExpr::SymbolRef) return GOT_None; const MCSymbolRefExpr *Ref = static_cast(Expr); const MCSymbol &S = Ref->getSymbol(); if (S.getName() != "_GLOBAL_OFFSET_TABLE_") return GOT_None; if (RHS && RHS->getKind() == MCExpr::SymbolRef) return GOT_SymDiff; return GOT_Normal; } static bool HasSecRelSymbolRef(const MCExpr *Expr) { if (Expr->getKind() == MCExpr::SymbolRef) { const MCSymbolRefExpr *Ref = static_cast(Expr); return Ref->getKind() == MCSymbolRefExpr::VK_SECREL; } return false; } void X86MCCodeEmitter:: EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size, MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl &Fixups, int ImmOffset) const { const MCExpr *Expr = nullptr; if (DispOp.isImm()) { // If this is a simple integer displacement that doesn't require a // relocation, emit it now. if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 && FixupKind != FK_PCRel_4) { EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); return; } Expr = MCConstantExpr::create(DispOp.getImm(), Ctx); } else { Expr = DispOp.getExpr(); } // If we have an immoffset, add it to the expression. if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 || FixupKind == MCFixupKind(X86::reloc_signed_4byte))) { GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr); if (Kind != GOT_None) { assert(ImmOffset == 0); if (Size == 8) { FixupKind = MCFixupKind(X86::reloc_global_offset_table8); } else { assert(Size == 4); FixupKind = MCFixupKind(X86::reloc_global_offset_table); } if (Kind == GOT_Normal) ImmOffset = CurByte; } else if (Expr->getKind() == MCExpr::SymbolRef) { if (HasSecRelSymbolRef(Expr)) { FixupKind = MCFixupKind(FK_SecRel_4); } } else if (Expr->getKind() == MCExpr::Binary) { const MCBinaryExpr *Bin = static_cast(Expr); if (HasSecRelSymbolRef(Bin->getLHS()) || HasSecRelSymbolRef(Bin->getRHS())) { FixupKind = MCFixupKind(FK_SecRel_4); } } } // If the fixup is pc-relative, we need to bias the value to be relative to // the start of the field, not the end of the field. if (FixupKind == FK_PCRel_4 || FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) ImmOffset -= 4; if (FixupKind == FK_PCRel_2) ImmOffset -= 2; if (FixupKind == FK_PCRel_1) ImmOffset -= 1; if (ImmOffset) Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx), Ctx); // Emit a symbolic constant as a fixup and 4 zeros. Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc)); EmitConstant(0, Size, CurByte, OS); } void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField, uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const{ const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp); const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg); const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt); const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); unsigned BaseReg = Base.getReg(); bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX; // Handle %rip relative addressing. if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode"); assert(IndexReg.getReg() == 0 && "Invalid rip-relative address"); EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); unsigned FixupKind = X86::reloc_riprel_4byte; // movq loads are handled with a special relocation form which allows the // linker to eliminate some loads for GOT references which end up in the // same linkage unit. if (MI.getOpcode() == X86::MOV64rm) FixupKind = X86::reloc_riprel_4byte_movq_load; // rip-relative addressing is actually relative to the *next* instruction. // Since an immediate can follow the mod/rm byte for an instruction, this // means that we need to bias the immediate field of the instruction with // the size of the immediate field. If we have this case, add it into the // expression to emit. int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS, Fixups, -ImmSize); return; } unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; // 16-bit addressing forms of the ModR/M byte have a different encoding for // the R/M field and are far more limited in which registers can be used. if (Is16BitMemOperand(MI, Op, STI)) { if (BaseReg) { // For 32-bit addressing, the row and column values in Table 2-2 are // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with // some special cases. And GetX86RegNum reflects that numbering. // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A, // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order, // while values 0-3 indicate the allowed combinations (base+index) of // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI. // // R16Table[] is a lookup from the normal RegNo, to the row values from // Table 2-1 for 16-bit addressing modes. Where zero means disallowed. static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 }; unsigned RMfield = R16Table[BaseRegNo]; assert(RMfield && "invalid 16-bit base register"); if (IndexReg.getReg()) { unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)]; assert(IndexReg16 && "invalid 16-bit index register"); // We must have one of SI/DI (4,5), and one of BP/BX (6,7). assert(((IndexReg16 ^ RMfield) & 2) && "invalid 16-bit base/index register combination"); assert(Scale.getImm() == 1 && "invalid scale for 16-bit memory reference"); // Allow base/index to appear in either order (although GAS doesn't). if (IndexReg16 & 2) RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1); else RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1); } if (Disp.isImm() && isDisp8(Disp.getImm())) { if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) { // There is no displacement; just the register. EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS); return; } // Use the [REG]+disp8 form, including for [BP] which cannot be encoded. EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS); EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); return; } // This is the [REG]+disp16 case. EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS); } else { // There is no BaseReg; this is the plain [disp16] case. EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS); } // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases. EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups); return; } // Determine whether a SIB byte is needed. // If no BaseReg, issue a RIP relative instruction only if the MCE can // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table // 2-7) and absolute references. if (// The SIB byte must be used if there is an index register. IndexReg.getReg() == 0 && // The SIB byte must be used if the base is ESP/RSP/R12, all of which // encode to an R/M value of 4, which indicates that a SIB byte is // present. BaseRegNo != N86::ESP && // If there is no base register and we're in 64-bit mode, we need a SIB // byte to emit an addr that is just 'disp32' (the non-RIP relative form). (!is64BitMode(STI) || BaseReg != 0)) { if (BaseReg == 0) { // [disp32] in X86-32 mode EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups); return; } // If the base is not EBP/ESP and there is no displacement, use simple // indirect register encoding, this handles addresses like [EAX]. The // encoding for [EBP] with no displacement means [disp32] so we handle it // by emitting a displacement of 0 below. if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); return; } // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. if (Disp.isImm()) { if (!HasEVEX && isDisp8(Disp.getImm())) { EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); return; } // Try EVEX compressed 8-bit displacement first; if failed, fall back to // 32-bit displacement. int CDisp8 = 0; if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) { EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, CDisp8 - Disp.getImm()); return; } } // Otherwise, emit the most general non-SIB encoding: [REG+disp32] EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, Fixups); return; } // We need a SIB byte, so start by outputting the ModR/M byte first assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); bool ForceDisp32 = false; bool ForceDisp8 = false; int CDisp8 = 0; int ImmOffset = 0; if (BaseReg == 0) { // If there is no base register, we emit the special case SIB byte with // MOD=0, BASE=5, to JUST get the index, scale, and displacement. EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); ForceDisp32 = true; } else if (!Disp.isImm()) { // Emit the normal disp32 encoding. EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); ForceDisp32 = true; } else if (Disp.getImm() == 0 && // Base reg can't be anything that ends up with '5' as the base // reg, it is the magic [*] nomenclature that indicates no base. BaseRegNo != N86::EBP) { // Emit no displacement ModR/M byte EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); } else if (!HasEVEX && isDisp8(Disp.getImm())) { // Emit the disp8 encoding. EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) { // Emit the disp8 encoding. EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP ImmOffset = CDisp8 - Disp.getImm(); } else { // Emit the normal disp32 encoding. EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); } // Calculate what the SS field value should be... static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 }; unsigned SS = SSTable[Scale.getImm()]; if (BaseReg == 0) { // Handle the SIB byte for the case where there is no base, see Intel // Manual 2A, table 2-7. The displacement has already been output. unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = GetX86RegNum(IndexReg); else // Examples: [ESP+1*+4] or [scaled idx]+disp32 (MOD=0,BASE=5) IndexRegNo = 4; EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); } else { unsigned IndexRegNo; if (IndexReg.getReg()) IndexRegNo = GetX86RegNum(IndexReg); else IndexRegNo = 4; // For example [ESP+1*+4] EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); } // Do we need to output a displacement? if (ForceDisp8) EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset); else if (ForceDisp32 || Disp.getImm() != 0) EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, Fixups); } /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix /// called VEX. void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, const MCInst &MI, const MCInstrDesc &Desc, raw_ostream &OS) const { assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX."); uint64_t Encoding = TSFlags & X86II::EncodingMask; bool HasEVEX_K = TSFlags & X86II::EVEX_K; bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3; bool HasMemOp4 = TSFlags & X86II::MemOp4; bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; // VEX_R: opcode externsion equivalent to REX.R in // 1's complement (inverted) form // // 1: Same as REX_R=0 (must be 1 in 32-bit mode) // 0: Same as REX_R=1 (64 bit mode only) // unsigned char VEX_R = 0x1; unsigned char EVEX_R2 = 0x1; // VEX_X: equivalent to REX.X, only used when a // register is used for index in SIB Byte. // // 1: Same as REX.X=0 (must be 1 in 32-bit mode) // 0: Same as REX.X=1 (64-bit mode only) unsigned char VEX_X = 0x1; // VEX_B: // // 1: Same as REX_B=0 (ignored in 32-bit mode) // 0: Same as REX_B=1 (64 bit mode only) // unsigned char VEX_B = 0x1; // VEX_W: opcode specific (use like REX.W, or used for // opcode extension, or ignored, depending on the opcode byte) unsigned char VEX_W = 0; // VEX_5M (VEX m-mmmmm field): // // 0b00000: Reserved for future use // 0b00001: implied 0F leading opcode // 0b00010: implied 0F 38 leading opcode bytes // 0b00011: implied 0F 3A leading opcode bytes // 0b00100-0b11111: Reserved for future use // 0b01000: XOP map select - 08h instructions with imm byte // 0b01001: XOP map select - 09h instructions with no imm byte // 0b01010: XOP map select - 0Ah instructions with imm dword unsigned char VEX_5M = 0; // VEX_4V (VEX vvvv field): a register specifier // (in 1's complement form) or 1111 if unused. unsigned char VEX_4V = 0xf; unsigned char EVEX_V2 = 0x1; // VEX_L (Vector Length): // // 0: scalar or 128-bit vector // 1: 256-bit vector // unsigned char VEX_L = 0; unsigned char EVEX_L2 = 0; // VEX_PP: opcode extension providing equivalent // functionality of a SIMD prefix // // 0b00: None // 0b01: 66 // 0b10: F3 // 0b11: F2 // unsigned char VEX_PP = 0; // EVEX_U unsigned char EVEX_U = 1; // Always '1' so far // EVEX_z unsigned char EVEX_z = 0; // EVEX_b unsigned char EVEX_b = 0; // EVEX_rc unsigned char EVEX_rc = 0; // EVEX_aaa unsigned char EVEX_aaa = 0; bool EncodeRC = false; if (TSFlags & X86II::VEX_W) VEX_W = 1; if (TSFlags & X86II::VEX_L) VEX_L = 1; if (TSFlags & X86II::EVEX_L2) EVEX_L2 = 1; if (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) EVEX_z = 1; if ((TSFlags & X86II::EVEX_B)) EVEX_b = 1; switch (TSFlags & X86II::OpPrefixMask) { default: break; // VEX_PP already correct case X86II::PD: VEX_PP = 0x1; break; // 66 case X86II::XS: VEX_PP = 0x2; break; // F3 case X86II::XD: VEX_PP = 0x3; break; // F2 } switch (TSFlags & X86II::OpMapMask) { default: llvm_unreachable("Invalid prefix!"); case X86II::TB: VEX_5M = 0x1; break; // 0F case X86II::T8: VEX_5M = 0x2; break; // 0F 38 case X86II::TA: VEX_5M = 0x3; break; // 0F 3A case X86II::XOP8: VEX_5M = 0x8; break; case X86II::XOP9: VEX_5M = 0x9; break; case X86II::XOPA: VEX_5M = 0xA; break; } // Classify VEX_B, VEX_4V, VEX_R, VEX_X unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = X86II::getOperandBias(Desc); switch (TSFlags & X86II::FormMask) { default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!"); case X86II::RawFrm: break; case X86II::MRMDestMem: { // MRMDestMem instructions forms: // MemAddr, src1(ModR/M) // MemAddr, src1(VEX_4V), src2(ModR/M) // MemAddr, src1(ModR/M), imm8 // if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand + X86::AddrBaseReg).getReg())) VEX_B = 0x0; if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand + X86::AddrIndexReg).getReg())) VEX_X = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(MemOperand + X86::AddrIndexReg).getReg())) EVEX_V2 = 0x0; CurOp += X86::AddrNumOperands; if (HasEVEX_K) EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); if (HasVEX_4V) { VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_V2 = 0x0; CurOp++; } const MCOperand &MO = MI.getOperand(CurOp); if (MO.isReg()) { if (X86II::isX86_64ExtendedReg(MO.getReg())) VEX_R = 0x0; if (X86II::is32ExtendedReg(MO.getReg())) EVEX_R2 = 0x0; } break; } case X86II::MRMSrcMem: // MRMSrcMem instructions forms: // src1(ModR/M), MemAddr // src1(ModR/M), src2(VEX_4V), MemAddr // src1(ModR/M), MemAddr, imm8 // src1(ModR/M), MemAddr, src2(VEX_I8IMM) // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_R2 = 0x0; CurOp++; if (HasEVEX_K) EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); if (HasVEX_4V) { VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_V2 = 0x0; CurOp++; } if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) VEX_B = 0x0; if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) VEX_X = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(MemOperand + X86::AddrIndexReg).getReg())) EVEX_V2 = 0x0; if (HasVEX_4VOp3) // Instruction format for 4VOp3: // src1(ModR/M), MemAddr, src3(VEX_4V) // CurOp points to start of the MemoryOperand, // it skips TIED_TO operands if exist, then increments past src1. // CurOp + X86::AddrNumOperands will point to src3. VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands); break; case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { // MRM[0-9]m instructions forms: // MemAddr // src1(VEX_4V), MemAddr if (HasVEX_4V) { VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_V2 = 0x0; CurOp++; } if (HasEVEX_K) EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrBaseReg).getReg())) VEX_B = 0x0; if (X86II::isX86_64ExtendedReg( MI.getOperand(MemOperand+X86::AddrIndexReg).getReg())) VEX_X = 0x0; break; } case X86II::MRMSrcReg: // MRMSrcReg instructions forms: // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) // dst(ModR/M), src1(ModR/M) // dst(ModR/M), src1(ModR/M), imm8 // // FMA4: // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM) // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M), if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_R2 = 0x0; CurOp++; if (HasEVEX_K) EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); if (HasVEX_4V) { VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_V2 = 0x0; CurOp++; } if (HasMemOp4) // Skip second register source (encoded in I8IMM) CurOp++; if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_X = 0x0; CurOp++; if (HasVEX_4VOp3) VEX_4V = getVEXRegisterEncoding(MI, CurOp++); if (EVEX_b) { if (HasEVEX_RC) { unsigned RcOperand = NumOps-1; assert(RcOperand >= CurOp); EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3; } EncodeRC = true; } break; case X86II::MRMDestReg: // MRMDestReg instructions forms: // dst(ModR/M), src(ModR/M) // dst(ModR/M), src(ModR/M), imm8 // dst(ModR/M), src1(VEX_4V), src2(ModR/M) if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_X = 0x0; CurOp++; if (HasEVEX_K) EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); if (HasVEX_4V) { VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_V2 = 0x0; CurOp++; } if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_R = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_R2 = 0x0; if (EVEX_b) EncodeRC = true; break; case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: // MRM0r-MRM7r instructions forms: // dst(VEX_4V), src(ModR/M), imm8 if (HasVEX_4V) { VEX_4V = getVEXRegisterEncoding(MI, CurOp); if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) EVEX_V2 = 0x0; CurOp++; } if (HasEVEX_K) EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++); if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_B = 0x0; if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg())) VEX_X = 0x0; break; } if (Encoding == X86II::VEX || Encoding == X86II::XOP) { // VEX opcode prefix can have 2 or 3 bytes // // 3 bytes: // +-----+ +--------------+ +-------------------+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ // 2 bytes: // +-----+ +-------------------+ // | C5h | | R | vvvv | L | pp | // +-----+ +-------------------+ // // XOP uses a similar prefix: // +-----+ +--------------+ +-------------------+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp | // +-----+ +--------------+ +-------------------+ unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); // Can we use the 2 byte VEX prefix? if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { EmitByte(0xC5, CurByte, OS); EmitByte(LastByte | (VEX_R << 7), CurByte, OS); return; } // 3 byte VEX prefix EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS); EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS); EmitByte(LastByte | (VEX_W << 7), CurByte, OS); } else { assert(Encoding == X86II::EVEX && "unknown encoding!"); // EVEX opcode prefix can have 4 bytes // // +-----+ +--------------+ +-------------------+ +------------------------+ // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa | // +-----+ +--------------+ +-------------------+ +------------------------+ assert((VEX_5M & 0x3) == VEX_5M && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!"); VEX_5M &= 0x3; EmitByte(0x62, CurByte, OS); EmitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) | VEX_5M, CurByte, OS); EmitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, CurByte, OS); if (EncodeRC) EmitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) | EVEX_aaa, CurByte, OS); else EmitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) | EVEX_aaa, CurByte, OS); } } /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand /// size, and 3) use of X86-64 extended registers. static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, const MCInstrDesc &Desc) { unsigned REX = 0; bool UsesHighByteReg = false; if (TSFlags & X86II::REX_W) REX |= 1 << 3; // set REX.W if (MI.getNumOperands() == 0) return REX; unsigned NumOps = MI.getNumOperands(); // FIXME: MCInst should explicitize the two-addrness. bool isTwoAddr = NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. unsigned i = isTwoAddr ? 1 : 0; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH) UsesHighByteReg = true; if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue; // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything // that returns non-zero. REX |= 0x40; // REX fixed encoding prefix break; } switch (TSFlags & X86II::FormMask) { case X86II::MRMSrcReg: if (MI.getOperand(0).isReg() && X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) REX |= 1 << 2; // set REX.R i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << 0; // set REX.B } break; case X86II::MRMSrcMem: { if (MI.getOperand(0).isReg() && X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) REX |= 1 << 2; // set REX.R unsigned Bit = 0; i = isTwoAddr ? 2 : 1; for (; i != NumOps; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (X86II::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1) Bit++; } } break; } case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: case X86II::MRMDestMem: { unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); i = isTwoAddr ? 1 : 0; if (NumOps > e && MI.getOperand(e).isReg() && X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg())) REX |= 1 << 2; // set REX.R unsigned Bit = 0; for (; i != e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg()) { if (X86II::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1) Bit++; } } break; } default: if (MI.getOperand(0).isReg() && X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) REX |= 1 << 0; // set REX.B i = isTwoAddr ? 2 : 1; for (unsigned e = NumOps; i != e; ++i) { const MCOperand &MO = MI.getOperand(i); if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) REX |= 1 << 2; // set REX.R } break; } if (REX && UsesHighByteReg) report_fatal_error("Cannot encode high byte register in REX-prefixed instruction"); return REX; } /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand, const MCInst &MI, raw_ostream &OS) const { // Check for explicit segment override on memory operand. switch (MI.getOperand(SegOperand).getReg()) { default: llvm_unreachable("Unknown segment register!"); case 0: break; case X86::CS: EmitByte(0x2E, CurByte, OS); break; case X86::SS: EmitByte(0x36, CurByte, OS); break; case X86::DS: EmitByte(0x3E, CurByte, OS); break; case X86::ES: EmitByte(0x26, CurByte, OS); break; case X86::FS: EmitByte(0x64, CurByte, OS); break; case X86::GS: EmitByte(0x65, CurByte, OS); break; } } /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode. /// /// MemOperand is the operand # of the start of a memory operand if present. If /// Not present, it is -1. void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, const MCInst &MI, const MCInstrDesc &Desc, const MCSubtargetInfo &STI, raw_ostream &OS) const { // Emit the operand size opcode prefix as needed. if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32 : X86II::OpSize16)) EmitByte(0x66, CurByte, OS); // Emit the LOCK opcode prefix. if (TSFlags & X86II::LOCK) EmitByte(0xF0, CurByte, OS); switch (TSFlags & X86II::OpPrefixMask) { case X86II::PD: // 66 EmitByte(0x66, CurByte, OS); break; case X86II::XS: // F3 EmitByte(0xF3, CurByte, OS); break; case X86II::XD: // F2 EmitByte(0xF2, CurByte, OS); break; } // Handle REX prefix. // FIXME: Can this come before F2 etc to simplify emission? if (is64BitMode(STI)) { if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) EmitByte(0x40 | REX, CurByte, OS); } // 0x0F escape code must be emitted just before the opcode. switch (TSFlags & X86II::OpMapMask) { case X86II::TB: // Two-byte opcode map case X86II::T8: // 0F 38 case X86II::TA: // 0F 3A EmitByte(0x0F, CurByte, OS); break; } switch (TSFlags & X86II::OpMapMask) { case X86II::T8: // 0F 38 EmitByte(0x38, CurByte, OS); break; case X86II::TA: // 0F 3A EmitByte(0x3A, CurByte, OS); break; } } void X86MCCodeEmitter:: encodeInstruction(const MCInst &MI, raw_ostream &OS, SmallVectorImpl &Fixups, const MCSubtargetInfo &STI) const { unsigned Opcode = MI.getOpcode(); const MCInstrDesc &Desc = MCII.get(Opcode); uint64_t TSFlags = Desc.TSFlags; // Pseudo instructions don't get encoded. if ((TSFlags & X86II::FormMask) == X86II::Pseudo) return; unsigned NumOps = Desc.getNumOperands(); unsigned CurOp = X86II::getOperandBias(Desc); // Keep track of the current byte being emitted. unsigned CurByte = 0; // Encoding type for this instruction. uint64_t Encoding = TSFlags & X86II::EncodingMask; // It uses the VEX.VVVV field? bool HasVEX_4V = TSFlags & X86II::VEX_4V; bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3; bool HasMemOp4 = TSFlags & X86II::MemOp4; const unsigned MemOp4_I8IMMOperand = 2; // It uses the EVEX.aaa field? bool HasEVEX_K = TSFlags & X86II::EVEX_K; bool HasEVEX_RC = TSFlags & X86II::EVEX_RC; // Determine where the memory operand starts, if present. int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode); if (MemoryOperand != -1) MemoryOperand += CurOp; // Emit segment override opcode prefix as needed. if (MemoryOperand >= 0) EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg, MI, OS); // Emit the repeat opcode prefix as needed. if (TSFlags & X86II::REP) EmitByte(0xF3, CurByte, OS); // Emit the address size opcode prefix as needed. bool need_address_override; uint64_t AdSize = TSFlags & X86II::AdSizeMask; if ((is16BitMode(STI) && AdSize == X86II::AdSize32) || (is32BitMode(STI) && AdSize == X86II::AdSize16) || (is64BitMode(STI) && AdSize == X86II::AdSize32)) { need_address_override = true; } else if (MemoryOperand < 0) { need_address_override = false; } else if (is64BitMode(STI)) { assert(!Is16BitMemOperand(MI, MemoryOperand, STI)); need_address_override = Is32BitMemOperand(MI, MemoryOperand); } else if (is32BitMode(STI)) { assert(!Is64BitMemOperand(MI, MemoryOperand)); need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI); } else { assert(is16BitMode(STI)); assert(!Is64BitMemOperand(MI, MemoryOperand)); need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI); } if (need_address_override) EmitByte(0x67, CurByte, OS); if (Encoding == 0) EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS); else EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); if (TSFlags & X86II::Has3DNow0F0FOpcode) BaseOpcode = 0x0F; // Weird 3DNow! encoding. unsigned SrcRegNum = 0; switch (TSFlags & X86II::FormMask) { default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!"); case X86II::Pseudo: llvm_unreachable("Pseudo instruction shouldn't be emitted"); case X86II::RawFrmDstSrc: { unsigned siReg = MI.getOperand(1).getReg(); assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) || (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) || (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) && "SI and DI register sizes do not match"); // Emit segment override opcode prefix as needed (not for %ds). if (MI.getOperand(2).getReg() != X86::DS) EmitSegmentOverridePrefix(CurByte, 2, MI, OS); // Emit AdSize prefix as needed. if ((!is32BitMode(STI) && siReg == X86::ESI) || (is32BitMode(STI) && siReg == X86::SI)) EmitByte(0x67, CurByte, OS); CurOp += 3; // Consume operands. EmitByte(BaseOpcode, CurByte, OS); break; } case X86II::RawFrmSrc: { unsigned siReg = MI.getOperand(0).getReg(); // Emit segment override opcode prefix as needed (not for %ds). if (MI.getOperand(1).getReg() != X86::DS) EmitSegmentOverridePrefix(CurByte, 1, MI, OS); // Emit AdSize prefix as needed. if ((!is32BitMode(STI) && siReg == X86::ESI) || (is32BitMode(STI) && siReg == X86::SI)) EmitByte(0x67, CurByte, OS); CurOp += 2; // Consume operands. EmitByte(BaseOpcode, CurByte, OS); break; } case X86II::RawFrmDst: { unsigned siReg = MI.getOperand(0).getReg(); // Emit AdSize prefix as needed. if ((!is32BitMode(STI) && siReg == X86::EDI) || (is32BitMode(STI) && siReg == X86::DI)) EmitByte(0x67, CurByte, OS); ++CurOp; // Consume operand. EmitByte(BaseOpcode, CurByte, OS); break; } case X86II::RawFrm: EmitByte(BaseOpcode, CurByte, OS); break; case X86II::RawFrmMemOffs: // Emit segment override opcode prefix as needed. EmitSegmentOverridePrefix(CurByte, 1, MI, OS); EmitByte(BaseOpcode, CurByte, OS); EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), CurByte, OS, Fixups); ++CurOp; // skip segment operand break; case X86II::RawFrmImm8: EmitByte(BaseOpcode, CurByte, OS); EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), CurByte, OS, Fixups); EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); break; case X86II::RawFrmImm16: EmitByte(BaseOpcode, CurByte, OS); EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), CurByte, OS, Fixups); EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups); break; case X86II::AddRegFrm: EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); break; case X86II::MRMDestReg: EmitByte(BaseOpcode, CurByte, OS); SrcRegNum = CurOp + 1; if (HasEVEX_K) // Skip writemask SrcRegNum++; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; EmitRegModRMByte(MI.getOperand(CurOp), GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS); CurOp = SrcRegNum + 1; break; case X86II::MRMDestMem: EmitByte(BaseOpcode, CurByte, OS); SrcRegNum = CurOp + X86::AddrNumOperands; if (HasEVEX_K) // Skip writemask SrcRegNum++; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; EmitMemModRMByte(MI, CurOp, GetX86RegNum(MI.getOperand(SrcRegNum)), TSFlags, CurByte, OS, Fixups, STI); CurOp = SrcRegNum + 1; break; case X86II::MRMSrcReg: EmitByte(BaseOpcode, CurByte, OS); SrcRegNum = CurOp + 1; if (HasEVEX_K) // Skip writemask SrcRegNum++; if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) ++SrcRegNum; if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM) ++SrcRegNum; EmitRegModRMByte(MI.getOperand(SrcRegNum), GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); // 2 operands skipped with HasMemOp4, compensate accordingly CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1; if (HasVEX_4VOp3) ++CurOp; // do not count the rounding control operand if (HasEVEX_RC) NumOps--; break; case X86II::MRMSrcMem: { int AddrOperands = X86::AddrNumOperands; unsigned FirstMemOp = CurOp+1; if (HasEVEX_K) { // Skip writemask ++AddrOperands; ++FirstMemOp; } if (HasVEX_4V) { ++AddrOperands; ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV). } if (HasMemOp4) // Skip second register source (encoded in I8IMM) ++FirstMemOp; EmitByte(BaseOpcode, CurByte, OS); EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), TSFlags, CurByte, OS, Fixups, STI); CurOp += AddrOperands + 1; if (HasVEX_4VOp3) ++CurOp; break; } case X86II::MRMXr: case X86II::MRM0r: case X86II::MRM1r: case X86II::MRM2r: case X86II::MRM3r: case X86II::MRM4r: case X86II::MRM5r: case X86II::MRM6r: case X86II::MRM7r: { if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; if (HasEVEX_K) // Skip writemask ++CurOp; EmitByte(BaseOpcode, CurByte, OS); uint64_t Form = TSFlags & X86II::FormMask; EmitRegModRMByte(MI.getOperand(CurOp++), (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r, CurByte, OS); break; } case X86II::MRMXm: case X86II::MRM0m: case X86II::MRM1m: case X86II::MRM2m: case X86II::MRM3m: case X86II::MRM4m: case X86II::MRM5m: case X86II::MRM6m: case X86II::MRM7m: { if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). ++CurOp; if (HasEVEX_K) // Skip writemask ++CurOp; EmitByte(BaseOpcode, CurByte, OS); uint64_t Form = TSFlags & X86II::FormMask; EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m, TSFlags, CurByte, OS, Fixups, STI); CurOp += X86::AddrNumOperands; break; } case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2: case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5: case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8: case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB: case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE: case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1: case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4: case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7: case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA: case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD: case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0: case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3: case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6: case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9: case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC: case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF: case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2: case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5: case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8: case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB: case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE: case X86II::MRM_FF: EmitByte(BaseOpcode, CurByte, OS); uint64_t Form = TSFlags & X86II::FormMask; EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS); break; } // If there is a remaining operand, it must be a trailing immediate. Emit it // according to the right size for the instruction. Some instructions // (SSE4a extrq and insertq) have two trailing immediates. while (CurOp != NumOps && NumOps - CurOp <= 2) { // The last source register of a 4 operand instruction in AVX is encoded // in bits[7:4] of a immediate byte. if (TSFlags & X86II::VEX_I8IMM) { const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand : CurOp); ++CurOp; unsigned RegNum = GetX86RegNum(MO) << 4; if (X86II::isX86_64ExtendedReg(MO.getReg())) RegNum |= 1 << 7; // If there is an additional 5th operand it must be an immediate, which // is encoded in bits[3:0] if (CurOp != NumOps) { const MCOperand &MIMM = MI.getOperand(CurOp++); if (MIMM.isImm()) { unsigned Val = MIMM.getImm(); assert(Val < 16 && "Immediate operand value out of range"); RegNum |= Val; } } EmitImmediate(MCOperand::createImm(RegNum), MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups); } else { EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), CurByte, OS, Fixups); } } if (TSFlags & X86II::Has3DNow0F0FOpcode) EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS); #ifndef NDEBUG // FIXME: Verify. if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { errs() << "Cannot encode all operands of: "; MI.dump(); errs() << '\n'; abort(); } #endif }