/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_ml.h" static inline double log_ratio( double val ) { const double eps = 1e-5; val = MAX( val, eps ); val = MIN( val, 1. - eps ); return log( val/(1. - val) ); } CvBoostParams::CvBoostParams() { boost_type = CvBoost::REAL; weak_count = 100; weight_trim_rate = 0.95; cv_folds = 0; max_depth = 1; } CvBoostParams::CvBoostParams( int _boost_type, int _weak_count, double _weight_trim_rate, int _max_depth, bool _use_surrogates, const float* _priors ) { boost_type = _boost_type; weak_count = _weak_count; weight_trim_rate = _weight_trim_rate; split_criteria = CvBoost::DEFAULT; cv_folds = 0; max_depth = _max_depth; use_surrogates = _use_surrogates; priors = _priors; } ///////////////////////////////// CvBoostTree /////////////////////////////////// CvBoostTree::CvBoostTree() { ensemble = 0; } CvBoostTree::~CvBoostTree() { clear(); } void CvBoostTree::clear() { CvDTree::clear(); ensemble = 0; } bool CvBoostTree::train( CvDTreeTrainData* _train_data, const CvMat* _subsample_idx, CvBoost* _ensemble ) { clear(); ensemble = _ensemble; data = _train_data; data->shared = true; return do_train( _subsample_idx ); } bool CvBoostTree::train( const CvMat*, int, const CvMat*, const CvMat*, const CvMat*, const CvMat*, const CvMat*, CvDTreeParams ) { assert(0); return false; } bool CvBoostTree::train( CvDTreeTrainData*, const CvMat* ) { assert(0); return false; } void CvBoostTree::scale( double scale ) { CvDTreeNode* node = root; // traverse the tree and scale all the node values for(;;) { CvDTreeNode* parent; for(;;) { node->value *= scale; if( !node->left ) break; node = node->left; } for( parent = node->parent; parent && parent->right == node; node = parent, parent = parent->parent ) ; if( !parent ) break; node = parent->right; } } void CvBoostTree::try_split_node( CvDTreeNode* node ) { CvDTree::try_split_node( node ); if( !node->left ) { // if the node has not been split, // store the responses for the corresponding training samples double* weak_eval = ensemble->get_weak_response()->data.db; int* labels = data->get_labels( node ); int i, count = node->sample_count; double value = node->value; for( i = 0; i < count; i++ ) weak_eval[labels[i]] = value; } } double CvBoostTree::calc_node_dir( CvDTreeNode* node ) { char* dir = (char*)data->direction->data.ptr; const double* weights = ensemble->get_subtree_weights()->data.db; int i, n = node->sample_count, vi = node->split->var_idx; double L, R; assert( !node->split->inversed ); if( data->get_var_type(vi) >= 0 ) // split on categorical var { const int* cat_labels = data->get_cat_var_data( node, vi ); const int* subset = node->split->subset; double sum = 0, sum_abs = 0; for( i = 0; i < n; i++ ) { int idx = cat_labels[i]; double w = weights[i]; int d = idx >= 0 ? CV_DTREE_CAT_DIR(idx,subset) : 0; sum += d*w; sum_abs += (d & 1)*w; dir[i] = (char)d; } R = (sum_abs + sum) * 0.5; L = (sum_abs - sum) * 0.5; } else // split on ordered var { const CvPair32s32f* sorted = data->get_ord_var_data(node,vi); int split_point = node->split->ord.split_point; int n1 = node->get_num_valid(vi); assert( 0 <= split_point && split_point < n1-1 ); L = R = 0; for( i = 0; i <= split_point; i++ ) { int idx = sorted[i].i; double w = weights[idx]; dir[idx] = (char)-1; L += w; } for( ; i < n1; i++ ) { int idx = sorted[i].i; double w = weights[idx]; dir[idx] = (char)1; R += w; } for( ; i < n; i++ ) dir[sorted[i].i] = (char)0; } node->maxlr = MAX( L, R ); return node->split->quality/(L + R); } CvDTreeSplit* CvBoostTree::find_split_ord_class( CvDTreeNode* node, int vi ) { const float epsilon = FLT_EPSILON*2; const CvPair32s32f* sorted = data->get_ord_var_data(node, vi); const int* responses = data->get_class_labels(node); const double* weights = ensemble->get_subtree_weights()->data.db; int n = node->sample_count; int n1 = node->get_num_valid(vi); const double* rcw0 = weights + n; double lcw[2] = {0,0}, rcw[2]; int i, best_i = -1; double best_val = 0; int boost_type = ensemble->get_params().boost_type; int split_criteria = ensemble->get_params().split_criteria; rcw[0] = rcw0[0]; rcw[1] = rcw0[1]; for( i = n1; i < n; i++ ) { int idx = sorted[i].i; double w = weights[idx]; rcw[responses[idx]] -= w; } if( split_criteria != CvBoost::GINI && split_criteria != CvBoost::MISCLASS ) split_criteria = boost_type == CvBoost::DISCRETE ? CvBoost::MISCLASS : CvBoost::GINI; if( split_criteria == CvBoost::GINI ) { double L = 0, R = rcw[0] + rcw[1]; double lsum2 = 0, rsum2 = rcw[0]*rcw[0] + rcw[1]*rcw[1]; for( i = 0; i < n1 - 1; i++ ) { int idx = sorted[i].i; double w = weights[idx], w2 = w*w; double lv, rv; idx = responses[idx]; L += w; R -= w; lv = lcw[idx]; rv = rcw[idx]; lsum2 += 2*lv*w + w2; rsum2 -= 2*rv*w - w2; lcw[idx] = lv + w; rcw[idx] = rv - w; if( sorted[i].val + epsilon < sorted[i+1].val ) { double val = (lsum2*R + rsum2*L)/(L*R); if( best_val < val ) { best_val = val; best_i = i; } } } } else { for( i = 0; i < n1 - 1; i++ ) { int idx = sorted[i].i; double w = weights[idx]; idx = responses[idx]; lcw[idx] += w; rcw[idx] -= w; if( sorted[i].val + epsilon < sorted[i+1].val ) { double val = lcw[0] + rcw[1], val2 = lcw[1] + rcw[0]; val = MAX(val, val2); if( best_val < val ) { best_val = val; best_i = i; } } } } return best_i >= 0 ? data->new_split_ord( vi, (sorted[best_i].val + sorted[best_i+1].val)*0.5f, best_i, 0, (float)best_val ) : 0; } #define CV_CMP_NUM_PTR(a,b) (*(a) < *(b)) static CV_IMPLEMENT_QSORT_EX( icvSortDblPtr, double*, CV_CMP_NUM_PTR, int ) CvDTreeSplit* CvBoostTree::find_split_cat_class( CvDTreeNode* node, int vi ) { CvDTreeSplit* split; const int* cat_labels = data->get_cat_var_data(node, vi); const int* responses = data->get_class_labels(node); int ci = data->get_var_type(vi); int n = node->sample_count; int mi = data->cat_count->data.i[ci]; double lcw[2]={0,0}, rcw[2]={0,0}; double* cjk = (double*)cvStackAlloc(2*(mi+1)*sizeof(cjk[0]))+2; const double* weights = ensemble->get_subtree_weights()->data.db; double** dbl_ptr = (double**)cvStackAlloc( mi*sizeof(dbl_ptr[0]) ); int i, j, k, idx; double L = 0, R; double best_val = 0; int best_subset = -1, subset_i; int boost_type = ensemble->get_params().boost_type; int split_criteria = ensemble->get_params().split_criteria; // init array of counters: // c_{jk} - number of samples that have vi-th input variable = j and response = k. for( j = -1; j < mi; j++ ) cjk[j*2] = cjk[j*2+1] = 0; for( i = 0; i < n; i++ ) { double w = weights[i]; j = cat_labels[i]; k = responses[i]; cjk[j*2 + k] += w; } for( j = 0; j < mi; j++ ) { rcw[0] += cjk[j*2]; rcw[1] += cjk[j*2+1]; dbl_ptr[j] = cjk + j*2 + 1; } R = rcw[0] + rcw[1]; if( split_criteria != CvBoost::GINI && split_criteria != CvBoost::MISCLASS ) split_criteria = boost_type == CvBoost::DISCRETE ? CvBoost::MISCLASS : CvBoost::GINI; // sort rows of c_jk by increasing c_j,1 // (i.e. by the weight of samples in j-th category that belong to class 1) icvSortDblPtr( dbl_ptr, mi, 0 ); for( subset_i = 0; subset_i < mi-1; subset_i++ ) { idx = (int)(dbl_ptr[subset_i] - cjk)/2; const double* crow = cjk + idx*2; double w0 = crow[0], w1 = crow[1]; double weight = w0 + w1; if( weight < FLT_EPSILON ) continue; lcw[0] += w0; rcw[0] -= w0; lcw[1] += w1; rcw[1] -= w1; if( split_criteria == CvBoost::GINI ) { double lsum2 = lcw[0]*lcw[0] + lcw[1]*lcw[1]; double rsum2 = rcw[0]*rcw[0] + rcw[1]*rcw[1]; L += weight; R -= weight; if( L > FLT_EPSILON && R > FLT_EPSILON ) { double val = (lsum2*R + rsum2*L)/(L*R); if( best_val < val ) { best_val = val; best_subset = subset_i; } } } else { double val = lcw[0] + rcw[1]; double val2 = lcw[1] + rcw[0]; val = MAX(val, val2); if( best_val < val ) { best_val = val; best_subset = subset_i; } } } if( best_subset < 0 ) return 0; split = data->new_split_cat( vi, (float)best_val ); for( i = 0; i <= best_subset; i++ ) { idx = (int)(dbl_ptr[i] - cjk) >> 1; split->subset[idx >> 5] |= 1 << (idx & 31); } return split; } CvDTreeSplit* CvBoostTree::find_split_ord_reg( CvDTreeNode* node, int vi ) { const float epsilon = FLT_EPSILON*2; const CvPair32s32f* sorted = data->get_ord_var_data(node, vi); const float* responses = data->get_ord_responses(node); const double* weights = ensemble->get_subtree_weights()->data.db; int n = node->sample_count; int n1 = node->get_num_valid(vi); int i, best_i = -1; double best_val = 0, lsum = 0, rsum = node->value*n; double L = 0, R = weights[n]; // compensate for missing values for( i = n1; i < n; i++ ) { int idx = sorted[i].i; double w = weights[idx]; rsum -= responses[idx]*w; R -= w; } // find the optimal split for( i = 0; i < n1 - 1; i++ ) { int idx = sorted[i].i; double w = weights[idx]; double t = responses[idx]*w; L += w; R -= w; lsum += t; rsum -= t; if( sorted[i].val + epsilon < sorted[i+1].val ) { double val = (lsum*lsum*R + rsum*rsum*L)/(L*R); if( best_val < val ) { best_val = val; best_i = i; } } } return best_i >= 0 ? data->new_split_ord( vi, (sorted[best_i].val + sorted[best_i+1].val)*0.5f, best_i, 0, (float)best_val ) : 0; } CvDTreeSplit* CvBoostTree::find_split_cat_reg( CvDTreeNode* node, int vi ) { CvDTreeSplit* split; const int* cat_labels = data->get_cat_var_data(node, vi); const float* responses = data->get_ord_responses(node); const double* weights = ensemble->get_subtree_weights()->data.db; int ci = data->get_var_type(vi); int n = node->sample_count; int mi = data->cat_count->data.i[ci]; double* sum = (double*)cvStackAlloc( (mi+1)*sizeof(sum[0]) ) + 1; double* counts = (double*)cvStackAlloc( (mi+1)*sizeof(counts[0]) ) + 1; double** sum_ptr = (double**)cvStackAlloc( mi*sizeof(sum_ptr[0]) ); double L = 0, R = 0, best_val = 0, lsum = 0, rsum = 0; int i, best_subset = -1, subset_i; for( i = -1; i < mi; i++ ) sum[i] = counts[i] = 0; // calculate sum response and weight of each category of the input var for( i = 0; i < n; i++ ) { int idx = cat_labels[i]; double w = weights[i]; double s = sum[idx] + responses[i]*w; double nc = counts[idx] + w; sum[idx] = s; counts[idx] = nc; } // calculate average response in each category for( i = 0; i < mi; i++ ) { R += counts[i]; rsum += sum[i]; sum[i] /= counts[i]; sum_ptr[i] = sum + i; } icvSortDblPtr( sum_ptr, mi, 0 ); // revert back to unnormalized sums // (there should be a very little loss in accuracy) for( i = 0; i < mi; i++ ) sum[i] *= counts[i]; for( subset_i = 0; subset_i < mi-1; subset_i++ ) { int idx = (int)(sum_ptr[subset_i] - sum); double ni = counts[idx]; if( ni > FLT_EPSILON ) { double s = sum[idx]; lsum += s; L += ni; rsum -= s; R -= ni; if( L > FLT_EPSILON && R > FLT_EPSILON ) { double val = (lsum*lsum*R + rsum*rsum*L)/(L*R); if( best_val < val ) { best_val = val; best_subset = subset_i; } } } } if( best_subset < 0 ) return 0; split = data->new_split_cat( vi, (float)best_val ); for( i = 0; i <= best_subset; i++ ) { int idx = (int)(sum_ptr[i] - sum); split->subset[idx >> 5] |= 1 << (idx & 31); } return split; } CvDTreeSplit* CvBoostTree::find_surrogate_split_ord( CvDTreeNode* node, int vi ) { const float epsilon = FLT_EPSILON*2; const CvPair32s32f* sorted = data->get_ord_var_data(node, vi); const double* weights = ensemble->get_subtree_weights()->data.db; const char* dir = (char*)data->direction->data.ptr; int n1 = node->get_num_valid(vi); // LL - number of samples that both the primary and the surrogate splits send to the left // LR - ... primary split sends to the left and the surrogate split sends to the right // RL - ... primary split sends to the right and the surrogate split sends to the left // RR - ... both send to the right int i, best_i = -1, best_inversed = 0; double best_val; double LL = 0, RL = 0, LR, RR; double worst_val = node->maxlr; double sum = 0, sum_abs = 0; best_val = worst_val; for( i = 0; i < n1; i++ ) { int idx = sorted[i].i; double w = weights[idx]; int d = dir[idx]; sum += d*w; sum_abs += (d & 1)*w; } // sum_abs = R + L; sum = R - L RR = (sum_abs + sum)*0.5; LR = (sum_abs - sum)*0.5; // initially all the samples are sent to the right by the surrogate split, // LR of them are sent to the left by primary split, and RR - to the right. // now iteratively compute LL, LR, RL and RR for every possible surrogate split value. for( i = 0; i < n1 - 1; i++ ) { int idx = sorted[i].i; double w = weights[idx]; int d = dir[idx]; if( d < 0 ) { LL += w; LR -= w; if( LL + RR > best_val && sorted[i].val + epsilon < sorted[i+1].val ) { best_val = LL + RR; best_i = i; best_inversed = 0; } } else if( d > 0 ) { RL += w; RR -= w; if( RL + LR > best_val && sorted[i].val + epsilon < sorted[i+1].val ) { best_val = RL + LR; best_i = i; best_inversed = 1; } } } return best_i >= 0 && best_val > node->maxlr ? data->new_split_ord( vi, (sorted[best_i].val + sorted[best_i+1].val)*0.5f, best_i, best_inversed, (float)best_val ) : 0; } CvDTreeSplit* CvBoostTree::find_surrogate_split_cat( CvDTreeNode* node, int vi ) { const int* cat_labels = data->get_cat_var_data(node, vi); const char* dir = (char*)data->direction->data.ptr; const double* weights = ensemble->get_subtree_weights()->data.db; int n = node->sample_count; // LL - number of samples that both the primary and the surrogate splits send to the left // LR - ... primary split sends to the left and the surrogate split sends to the right // RL - ... primary split sends to the right and the surrogate split sends to the left // RR - ... both send to the right CvDTreeSplit* split = data->new_split_cat( vi, 0 ); int i, mi = data->cat_count->data.i[data->get_var_type(vi)]; double best_val = 0; double* lc = (double*)cvStackAlloc( (mi+1)*2*sizeof(lc[0]) ) + 1; double* rc = lc + mi + 1; for( i = -1; i < mi; i++ ) lc[i] = rc[i] = 0; // 1. for each category calculate the weight of samples // sent to the left (lc) and to the right (rc) by the primary split for( i = 0; i < n; i++ ) { int idx = cat_labels[i]; double w = weights[i]; int d = dir[i]; double sum = lc[idx] + d*w; double sum_abs = rc[idx] + (d & 1)*w; lc[idx] = sum; rc[idx] = sum_abs; } for( i = 0; i < mi; i++ ) { double sum = lc[i]; double sum_abs = rc[i]; lc[i] = (sum_abs - sum) * 0.5; rc[i] = (sum_abs + sum) * 0.5; } // 2. now form the split. // in each category send all the samples to the same direction as majority for( i = 0; i < mi; i++ ) { double lval = lc[i], rval = rc[i]; if( lval > rval ) { split->subset[i >> 5] |= 1 << (i & 31); best_val += lval; } else best_val += rval; } split->quality = (float)best_val; if( split->quality <= node->maxlr ) cvSetRemoveByPtr( data->split_heap, split ), split = 0; return split; } void CvBoostTree::calc_node_value( CvDTreeNode* node ) { int i, count = node->sample_count; const double* weights = ensemble->get_weights()->data.db; const int* labels = data->get_labels(node); double* subtree_weights = ensemble->get_subtree_weights()->data.db; double rcw[2] = {0,0}; int boost_type = ensemble->get_params().boost_type; //const double* priors = data->priors->data.db; if( data->is_classifier ) { const int* responses = data->get_class_labels(node); for( i = 0; i < count; i++ ) { int idx = labels[i]; double w = weights[idx]/*priors[responses[i]]*/; rcw[responses[i]] += w; subtree_weights[i] = w; } node->class_idx = rcw[1] > rcw[0]; if( boost_type == CvBoost::DISCRETE ) { // ignore cat_map for responses, and use {-1,1}, // as the whole ensemble response is computes as sign(sum_i(weak_response_i) node->value = node->class_idx*2 - 1; } else { double p = rcw[1]/(rcw[0] + rcw[1]); assert( boost_type == CvBoost::REAL ); // store log-ratio of the probability node->value = 0.5*log_ratio(p); } } else { // in case of regression tree: // * node value is 1/n*sum_i(Y_i), where Y_i is i-th response, // n is the number of samples in the node. // * node risk is the sum of squared errors: sum_i((Y_i - )^2) double sum = 0, sum2 = 0, iw; const float* values = data->get_ord_responses(node); for( i = 0; i < count; i++ ) { int idx = labels[i]; double w = weights[idx]/*priors[values[i] > 0]*/; double t = values[i]; rcw[0] += w; subtree_weights[i] = w; sum += t*w; sum2 += t*t*w; } iw = 1./rcw[0]; node->value = sum*iw; node->node_risk = sum2 - (sum*iw)*sum; // renormalize the risk, as in try_split_node the unweighted formula // sqrt(risk)/n is used, rather than sqrt(risk)/sum(weights_i) node->node_risk *= count*iw*count*iw; } // store summary weights subtree_weights[count] = rcw[0]; subtree_weights[count+1] = rcw[1]; } void CvBoostTree::read( CvFileStorage* fs, CvFileNode* fnode, CvBoost* _ensemble, CvDTreeTrainData* _data ) { CvDTree::read( fs, fnode, _data ); ensemble = _ensemble; } void CvBoostTree::read( CvFileStorage*, CvFileNode* ) { assert(0); } void CvBoostTree::read( CvFileStorage* _fs, CvFileNode* _node, CvDTreeTrainData* _data ) { CvDTree::read( _fs, _node, _data ); } /////////////////////////////////// CvBoost ///////////////////////////////////// CvBoost::CvBoost() { data = 0; weak = 0; default_model_name = "my_boost_tree"; orig_response = sum_response = weak_eval = subsample_mask = weights = subtree_weights = 0; clear(); } void CvBoost::prune( CvSlice slice ) { if( weak ) { CvSeqReader reader; int i, count = cvSliceLength( slice, weak ); cvStartReadSeq( weak, &reader ); cvSetSeqReaderPos( &reader, slice.start_index ); for( i = 0; i < count; i++ ) { CvBoostTree* w; CV_READ_SEQ_ELEM( w, reader ); delete w; } cvSeqRemoveSlice( weak, slice ); } } void CvBoost::clear() { if( weak ) { prune( CV_WHOLE_SEQ ); cvReleaseMemStorage( &weak->storage ); } if( data ) delete data; weak = 0; data = 0; cvReleaseMat( &orig_response ); cvReleaseMat( &sum_response ); cvReleaseMat( &weak_eval ); cvReleaseMat( &subsample_mask ); cvReleaseMat( &weights ); have_subsample = false; } CvBoost::~CvBoost() { clear(); } CvBoost::CvBoost( const CvMat* _train_data, int _tflag, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, const CvMat* _var_type, const CvMat* _missing_mask, CvBoostParams _params ) { weak = 0; data = 0; default_model_name = "my_boost_tree"; orig_response = sum_response = weak_eval = subsample_mask = weights = 0; train( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, _params ); } bool CvBoost::set_params( const CvBoostParams& _params ) { bool ok = false; CV_FUNCNAME( "CvBoost::set_params" ); __BEGIN__; params = _params; if( params.boost_type != DISCRETE && params.boost_type != REAL && params.boost_type != LOGIT && params.boost_type != GENTLE ) CV_ERROR( CV_StsBadArg, "Unknown/unsupported boosting type" ); params.weak_count = MAX( params.weak_count, 1 ); params.weight_trim_rate = MAX( params.weight_trim_rate, 0. ); params.weight_trim_rate = MIN( params.weight_trim_rate, 1. ); if( params.weight_trim_rate < FLT_EPSILON ) params.weight_trim_rate = 1.f; if( params.boost_type == DISCRETE && params.split_criteria != GINI && params.split_criteria != MISCLASS ) params.split_criteria = MISCLASS; if( params.boost_type == REAL && params.split_criteria != GINI && params.split_criteria != MISCLASS ) params.split_criteria = GINI; if( (params.boost_type == LOGIT || params.boost_type == GENTLE) && params.split_criteria != SQERR ) params.split_criteria = SQERR; ok = true; __END__; return ok; } bool CvBoost::train( const CvMat* _train_data, int _tflag, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, const CvMat* _var_type, const CvMat* _missing_mask, CvBoostParams _params, bool _update ) { bool ok = false; CvMemStorage* storage = 0; CV_FUNCNAME( "CvBoost::train" ); __BEGIN__; int i; set_params( _params ); if( !_update || !data ) { clear(); data = new CvDTreeTrainData( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, _params, true, true ); if( data->get_num_classes() != 2 ) CV_ERROR( CV_StsNotImplemented, "Boosted trees can only be used for 2-class classification." ); CV_CALL( storage = cvCreateMemStorage() ); weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage ); storage = 0; } else { data->set_data( _train_data, _tflag, _responses, _var_idx, _sample_idx, _var_type, _missing_mask, _params, true, true, true ); } update_weights( 0 ); for( i = 0; i < params.weak_count; i++ ) { CvBoostTree* tree = new CvBoostTree; if( !tree->train( data, subsample_mask, this ) ) { delete tree; continue; } //cvCheckArr( get_weak_response()); cvSeqPush( weak, &tree ); update_weights( tree ); trim_weights(); } data->is_classifier = true; ok = true; __END__; return ok; } void CvBoost::update_weights( CvBoostTree* tree ) { CV_FUNCNAME( "CvBoost::update_weights" ); __BEGIN__; int i, count = data->sample_count; double sumw = 0.; if( !tree ) // before training the first tree, initialize weights and other parameters { const int* class_labels = data->get_class_labels(data->data_root); // in case of logitboost and gentle adaboost each weak tree is a regression tree, // so we need to convert class labels to floating-point values float* responses = data->get_ord_responses(data->data_root); int* labels = data->get_labels(data->data_root); double w0 = 1./count; double p[2] = { 1, 1 }; cvReleaseMat( &orig_response ); cvReleaseMat( &sum_response ); cvReleaseMat( &weak_eval ); cvReleaseMat( &subsample_mask ); cvReleaseMat( &weights ); CV_CALL( orig_response = cvCreateMat( 1, count, CV_32S )); CV_CALL( weak_eval = cvCreateMat( 1, count, CV_64F )); CV_CALL( subsample_mask = cvCreateMat( 1, count, CV_8U )); CV_CALL( weights = cvCreateMat( 1, count, CV_64F )); CV_CALL( subtree_weights = cvCreateMat( 1, count + 2, CV_64F )); if( data->have_priors ) { // compute weight scale for each class from their prior probabilities int c1 = 0; for( i = 0; i < count; i++ ) c1 += class_labels[i]; p[0] = data->priors->data.db[0]*(c1 < count ? 1./(count - c1) : 0.); p[1] = data->priors->data.db[1]*(c1 > 0 ? 1./c1 : 0.); p[0] /= p[0] + p[1]; p[1] = 1. - p[0]; } for( i = 0; i < count; i++ ) { // save original categorical responses {0,1}, convert them to {-1,1} orig_response->data.i[i] = class_labels[i]*2 - 1; // make all the samples active at start. // later, in trim_weights() deactivate/reactive again some, if need subsample_mask->data.ptr[i] = (uchar)1; // make all the initial weights the same. weights->data.db[i] = w0*p[class_labels[i]]; // set the labels to find (from within weak tree learning proc) // the particular sample weight, and where to store the response. labels[i] = i; } if( params.boost_type == LOGIT ) { CV_CALL( sum_response = cvCreateMat( 1, count, CV_64F )); for( i = 0; i < count; i++ ) { sum_response->data.db[i] = 0; responses[i] = orig_response->data.i[i] > 0 ? 2.f : -2.f; } // in case of logitboost each weak tree is a regression tree. // the target function values are recalculated for each of the trees data->is_classifier = false; } else if( params.boost_type == GENTLE ) { for( i = 0; i < count; i++ ) responses[i] = (float)orig_response->data.i[i]; data->is_classifier = false; } } else { // at this moment, for all the samples that participated in the training of the most // recent weak classifier we know the responses. For other samples we need to compute them if( have_subsample ) { float* values = (float*)(data->buf->data.ptr + data->buf->step); uchar* missing = data->buf->data.ptr + data->buf->step*2; CvMat _sample, _mask; // invert the subsample mask cvXorS( subsample_mask, cvScalar(1.), subsample_mask ); data->get_vectors( subsample_mask, values, missing, 0 ); //data->get_vectors( 0, values, missing, 0 ); _sample = cvMat( 1, data->var_count, CV_32F ); _mask = cvMat( 1, data->var_count, CV_8U ); // run tree through all the non-processed samples for( i = 0; i < count; i++ ) if( subsample_mask->data.ptr[i] ) { _sample.data.fl = values; _mask.data.ptr = missing; values += _sample.cols; missing += _mask.cols; weak_eval->data.db[i] = tree->predict( &_sample, &_mask, true )->value; } } // now update weights and other parameters for each type of boosting if( params.boost_type == DISCRETE ) { // Discrete AdaBoost: // weak_eval[i] (=f(x_i)) is in {-1,1} // err = sum(w_i*(f(x_i) != y_i))/sum(w_i) // C = log((1-err)/err) // w_i *= exp(C*(f(x_i) != y_i)) double C, err = 0.; double scale[] = { 1., 0. }; for( i = 0; i < count; i++ ) { double w = weights->data.db[i]; sumw += w; err += w*(weak_eval->data.db[i] != orig_response->data.i[i]); } if( sumw != 0 ) err /= sumw; C = err = -log_ratio( err ); scale[1] = exp(err); sumw = 0; for( i = 0; i < count; i++ ) { double w = weights->data.db[i]* scale[weak_eval->data.db[i] != orig_response->data.i[i]]; sumw += w; weights->data.db[i] = w; } tree->scale( C ); } else if( params.boost_type == REAL ) { // Real AdaBoost: // weak_eval[i] = f(x_i) = 0.5*log(p(x_i)/(1-p(x_i))), p(x_i)=P(y=1|x_i) // w_i *= exp(-y_i*f(x_i)) for( i = 0; i < count; i++ ) weak_eval->data.db[i] *= -orig_response->data.i[i]; cvExp( weak_eval, weak_eval ); for( i = 0; i < count; i++ ) { double w = weights->data.db[i]*weak_eval->data.db[i]; sumw += w; weights->data.db[i] = w; } } else if( params.boost_type == LOGIT ) { // LogitBoost: // weak_eval[i] = f(x_i) in [-z_max,z_max] // sum_response = F(x_i). // F(x_i) += 0.5*f(x_i) // p(x_i) = exp(F(x_i))/(exp(F(x_i)) + exp(-F(x_i))=1/(1+exp(-2*F(x_i))) // reuse weak_eval: weak_eval[i] <- p(x_i) // w_i = p(x_i)*1(1 - p(x_i)) // z_i = ((y_i+1)/2 - p(x_i))/(p(x_i)*(1 - p(x_i))) // store z_i to the data->data_root as the new target responses const double lb_weight_thresh = FLT_EPSILON; const double lb_z_max = 10.; float* responses = data->get_ord_responses(data->data_root); /*if( weak->total == 7 ) putchar('*');*/ for( i = 0; i < count; i++ ) { double s = sum_response->data.db[i] + 0.5*weak_eval->data.db[i]; sum_response->data.db[i] = s; weak_eval->data.db[i] = -2*s; } cvExp( weak_eval, weak_eval ); for( i = 0; i < count; i++ ) { double p = 1./(1. + weak_eval->data.db[i]); double w = p*(1 - p), z; w = MAX( w, lb_weight_thresh ); weights->data.db[i] = w; sumw += w; if( orig_response->data.i[i] > 0 ) { z = 1./p; responses[i] = (float)MIN(z, lb_z_max); } else { z = 1./(1-p); responses[i] = (float)-MIN(z, lb_z_max); } } } else { // Gentle AdaBoost: // weak_eval[i] = f(x_i) in [-1,1] // w_i *= exp(-y_i*f(x_i)) assert( params.boost_type == GENTLE ); for( i = 0; i < count; i++ ) weak_eval->data.db[i] *= -orig_response->data.i[i]; cvExp( weak_eval, weak_eval ); for( i = 0; i < count; i++ ) { double w = weights->data.db[i] * weak_eval->data.db[i]; weights->data.db[i] = w; sumw += w; } } } // renormalize weights if( sumw > FLT_EPSILON ) { sumw = 1./sumw; for( i = 0; i < count; ++i ) weights->data.db[i] *= sumw; } __END__; } static CV_IMPLEMENT_QSORT_EX( icvSort_64f, double, CV_LT, int ) void CvBoost::trim_weights() { CV_FUNCNAME( "CvBoost::trim_weights" ); __BEGIN__; int i, count = data->sample_count, nz_count = 0; double sum, threshold; if( params.weight_trim_rate <= 0. || params.weight_trim_rate >= 1. ) EXIT; // use weak_eval as temporary buffer for sorted weights cvCopy( weights, weak_eval ); icvSort_64f( weak_eval->data.db, count, 0 ); // as weight trimming occurs immediately after updating the weights, // where they are renormalized, we assume that the weight sum = 1. sum = 1. - params.weight_trim_rate; for( i = 0; i < count; i++ ) { double w = weak_eval->data.db[i]; if( sum > w ) break; sum -= w; } threshold = i < count ? weak_eval->data.db[i] : DBL_MAX; for( i = 0; i < count; i++ ) { double w = weights->data.db[i]; int f = w > threshold; subsample_mask->data.ptr[i] = (uchar)f; nz_count += f; } have_subsample = nz_count < count; __END__; } float CvBoost::predict( const CvMat* _sample, const CvMat* _missing, CvMat* weak_responses, CvSlice slice, bool raw_mode ) const { float* buf = 0; bool allocated = false; float value = -FLT_MAX; CV_FUNCNAME( "CvBoost::predict" ); __BEGIN__; int i, weak_count, var_count; CvMat sample, missing; CvSeqReader reader; double sum = 0; int cls_idx; int wstep = 0; const int* vtype; const int* cmap; const int* cofs; if( !weak ) CV_ERROR( CV_StsError, "The boosted tree ensemble has not been trained yet" ); if( !CV_IS_MAT(_sample) || CV_MAT_TYPE(_sample->type) != CV_32FC1 || _sample->cols != 1 && _sample->rows != 1 || _sample->cols + _sample->rows - 1 != data->var_all && !raw_mode || _sample->cols + _sample->rows - 1 != data->var_count && raw_mode ) CV_ERROR( CV_StsBadArg, "the input sample must be 1d floating-point vector with the same " "number of elements as the total number of variables used for training" ); if( _missing ) { if( !CV_IS_MAT(_missing) || !CV_IS_MASK_ARR(_missing) || !CV_ARE_SIZES_EQ(_missing, _sample) ) CV_ERROR( CV_StsBadArg, "the missing data mask must be 8-bit vector of the same size as input sample" ); } weak_count = cvSliceLength( slice, weak ); if( weak_count >= weak->total ) { weak_count = weak->total; slice.start_index = 0; } if( weak_responses ) { if( !CV_IS_MAT(weak_responses) || CV_MAT_TYPE(weak_responses->type) != CV_32FC1 || weak_responses->cols != 1 && weak_responses->rows != 1 || weak_responses->cols + weak_responses->rows - 1 != weak_count ) CV_ERROR( CV_StsBadArg, "The output matrix of weak classifier responses must be valid " "floating-point vector of the same number of components as the length of input slice" ); wstep = CV_IS_MAT_CONT(weak_responses->type) ? 1 : weak_responses->step/sizeof(float); } var_count = data->var_count; vtype = data->var_type->data.i; cmap = data->cat_map->data.i; cofs = data->cat_ofs->data.i; // if need, preprocess the input vector if( !raw_mode && (data->cat_var_count > 0 || data->var_idx) ) { int bufsize; int step, mstep = 0; const float* src_sample; const uchar* src_mask = 0; float* dst_sample; uchar* dst_mask; const int* vidx = data->var_idx && !raw_mode ? data->var_idx->data.i : 0; bool have_mask = _missing != 0; bufsize = var_count*(sizeof(float) + sizeof(uchar)); if( bufsize <= CV_MAX_LOCAL_SIZE ) buf = (float*)cvStackAlloc( bufsize ); else { CV_CALL( buf = (float*)cvAlloc( bufsize )); allocated = true; } dst_sample = buf; dst_mask = (uchar*)(buf + var_count); src_sample = _sample->data.fl; step = CV_IS_MAT_CONT(_sample->type) ? 1 : _sample->step/sizeof(src_sample[0]); if( _missing ) { src_mask = _missing->data.ptr; mstep = CV_IS_MAT_CONT(_missing->type) ? 1 : _missing->step; } for( i = 0; i < var_count; i++ ) { int idx = vidx ? vidx[i] : i; float val = src_sample[idx*step]; int ci = vtype[i]; uchar m = src_mask ? src_mask[i] : (uchar)0; if( ci >= 0 ) { int a = cofs[ci], b = cofs[ci+1], c = a; int ival = cvRound(val); if( ival != val ) CV_ERROR( CV_StsBadArg, "one of input categorical variable is not an integer" ); while( a < b ) { c = (a + b) >> 1; if( ival < cmap[c] ) b = c; else if( ival > cmap[c] ) a = c+1; else break; } if( c < 0 || ival != cmap[c] ) { m = 1; have_mask = true; } else { val = (float)(c - cofs[ci]); } } dst_sample[i] = val; dst_mask[i] = m; } sample = cvMat( 1, var_count, CV_32F, dst_sample ); _sample = &sample; if( have_mask ) { missing = cvMat( 1, var_count, CV_8UC1, dst_mask ); _missing = &missing; } } cvStartReadSeq( weak, &reader ); cvSetSeqReaderPos( &reader, slice.start_index ); for( i = 0; i < weak_count; i++ ) { CvBoostTree* wtree; double val; CV_READ_SEQ_ELEM( wtree, reader ); val = wtree->predict( _sample, _missing, true )->value; if( weak_responses ) weak_responses->data.fl[i*wstep] = (float)val; sum += val; } cls_idx = sum >= 0; if( raw_mode ) value = (float)cls_idx; else value = (float)cmap[cofs[vtype[var_count]] + cls_idx]; __END__; if( allocated ) cvFree( &buf ); return value; } void CvBoost::write_params( CvFileStorage* fs ) { CV_FUNCNAME( "CvBoost::write_params" ); __BEGIN__; const char* boost_type_str = params.boost_type == DISCRETE ? "DiscreteAdaboost" : params.boost_type == REAL ? "RealAdaboost" : params.boost_type == LOGIT ? "LogitBoost" : params.boost_type == GENTLE ? "GentleAdaboost" : 0; const char* split_crit_str = params.split_criteria == DEFAULT ? "Default" : params.split_criteria == GINI ? "Gini" : params.boost_type == MISCLASS ? "Misclassification" : params.boost_type == SQERR ? "SquaredErr" : 0; if( boost_type_str ) cvWriteString( fs, "boosting_type", boost_type_str ); else cvWriteInt( fs, "boosting_type", params.boost_type ); if( split_crit_str ) cvWriteString( fs, "splitting_criteria", split_crit_str ); else cvWriteInt( fs, "splitting_criteria", params.split_criteria ); cvWriteInt( fs, "ntrees", params.weak_count ); cvWriteReal( fs, "weight_trimming_rate", params.weight_trim_rate ); data->write_params( fs ); __END__; } void CvBoost::read_params( CvFileStorage* fs, CvFileNode* fnode ) { CV_FUNCNAME( "CvBoost::read_params" ); __BEGIN__; CvFileNode* temp; if( !fnode || !CV_NODE_IS_MAP(fnode->tag) ) return; data = new CvDTreeTrainData(); CV_CALL( data->read_params(fs, fnode)); data->shared = true; params.max_depth = data->params.max_depth; params.min_sample_count = data->params.min_sample_count; params.max_categories = data->params.max_categories; params.priors = data->params.priors; params.regression_accuracy = data->params.regression_accuracy; params.use_surrogates = data->params.use_surrogates; temp = cvGetFileNodeByName( fs, fnode, "boosting_type" ); if( !temp ) return; if( temp && CV_NODE_IS_STRING(temp->tag) ) { const char* boost_type_str = cvReadString( temp, "" ); params.boost_type = strcmp( boost_type_str, "DiscreteAdaboost" ) == 0 ? DISCRETE : strcmp( boost_type_str, "RealAdaboost" ) == 0 ? REAL : strcmp( boost_type_str, "LogitBoost" ) == 0 ? LOGIT : strcmp( boost_type_str, "GentleAdaboost" ) == 0 ? GENTLE : -1; } else params.boost_type = cvReadInt( temp, -1 ); if( params.boost_type < DISCRETE || params.boost_type > GENTLE ) CV_ERROR( CV_StsBadArg, "Unknown boosting type" ); temp = cvGetFileNodeByName( fs, fnode, "splitting_criteria" ); if( temp && CV_NODE_IS_STRING(temp->tag) ) { const char* split_crit_str = cvReadString( temp, "" ); params.split_criteria = strcmp( split_crit_str, "Default" ) == 0 ? DEFAULT : strcmp( split_crit_str, "Gini" ) == 0 ? GINI : strcmp( split_crit_str, "Misclassification" ) == 0 ? MISCLASS : strcmp( split_crit_str, "SquaredErr" ) == 0 ? SQERR : -1; } else params.split_criteria = cvReadInt( temp, -1 ); if( params.split_criteria < DEFAULT || params.boost_type > SQERR ) CV_ERROR( CV_StsBadArg, "Unknown boosting type" ); params.weak_count = cvReadIntByName( fs, fnode, "ntrees" ); params.weight_trim_rate = cvReadRealByName( fs, fnode, "weight_trimming_rate", 0. ); __END__; } void CvBoost::read( CvFileStorage* fs, CvFileNode* node ) { CV_FUNCNAME( "CvRTrees::read" ); __BEGIN__; CvSeqReader reader; CvFileNode* trees_fnode; CvMemStorage* storage; int i, ntrees; clear(); read_params( fs, node ); if( !data ) EXIT; trees_fnode = cvGetFileNodeByName( fs, node, "trees" ); if( !trees_fnode || !CV_NODE_IS_SEQ(trees_fnode->tag) ) CV_ERROR( CV_StsParseError, " tag is missing" ); cvStartReadSeq( trees_fnode->data.seq, &reader ); ntrees = trees_fnode->data.seq->total; if( ntrees != params.weak_count ) CV_ERROR( CV_StsUnmatchedSizes, "The number of trees stored does not match tag value" ); CV_CALL( storage = cvCreateMemStorage() ); weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage ); for( i = 0; i < ntrees; i++ ) { CvBoostTree* tree = new CvBoostTree(); CV_CALL(tree->read( fs, (CvFileNode*)reader.ptr, this, data )); CV_NEXT_SEQ_ELEM( reader.seq->elem_size, reader ); cvSeqPush( weak, &tree ); } __END__; } void CvBoost::write( CvFileStorage* fs, const char* name ) { CV_FUNCNAME( "CvBoost::write" ); __BEGIN__; CvSeqReader reader; int i; cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_BOOSTING ); if( !weak ) CV_ERROR( CV_StsBadArg, "The classifier has not been trained yet" ); write_params( fs ); cvStartWriteStruct( fs, "trees", CV_NODE_SEQ ); cvStartReadSeq( weak, &reader ); for( i = 0; i < weak->total; i++ ) { CvBoostTree* tree; CV_READ_SEQ_ELEM( tree, reader ); cvStartWriteStruct( fs, 0, CV_NODE_MAP ); tree->write( fs ); cvEndWriteStruct( fs ); } cvEndWriteStruct( fs ); cvEndWriteStruct( fs ); __END__; } CvMat* CvBoost::get_weights() { return weights; } CvMat* CvBoost::get_subtree_weights() { return subtree_weights; } CvMat* CvBoost::get_weak_response() { return weak_eval; } const CvBoostParams& CvBoost::get_params() const { return params; } CvSeq* CvBoost::get_weak_predictors() { return weak; } /* End of file. */