/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "precomp.hpp" using namespace cv; using namespace cv::cuda; #if !defined HAVE_CUDA || defined(CUDA_DISABLER) Ptr cv::cuda::createBackgroundSubtractorMOG(int, int, double, double) { throw_no_cuda(); return Ptr(); } #else namespace cv { namespace cuda { namespace device { namespace mog { void mog_gpu(PtrStepSzb frame, int cn, PtrStepSzb fgmask, PtrStepSzf weight, PtrStepSzf sortKey, PtrStepSzb mean, PtrStepSzb var, int nmixtures, float varThreshold, float learningRate, float backgroundRatio, float noiseSigma, cudaStream_t stream); void getBackgroundImage_gpu(int cn, PtrStepSzf weight, PtrStepSzb mean, PtrStepSzb dst, int nmixtures, float backgroundRatio, cudaStream_t stream); } }}} namespace { const int defaultNMixtures = 5; const int defaultHistory = 200; const float defaultBackgroundRatio = 0.7f; const float defaultVarThreshold = 2.5f * 2.5f; const float defaultNoiseSigma = 30.0f * 0.5f; const float defaultInitialWeight = 0.05f; class MOGImpl : public cuda::BackgroundSubtractorMOG { public: MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma); void apply(InputArray image, OutputArray fgmask, double learningRate=-1); void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream); void getBackgroundImage(OutputArray backgroundImage) const; void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const; int getHistory() const { return history_; } void setHistory(int nframes) { history_ = nframes; } int getNMixtures() const { return nmixtures_; } void setNMixtures(int nmix) { nmixtures_ = nmix; } double getBackgroundRatio() const { return backgroundRatio_; } void setBackgroundRatio(double backgroundRatio) { backgroundRatio_ = (float) backgroundRatio; } double getNoiseSigma() const { return noiseSigma_; } void setNoiseSigma(double noiseSigma) { noiseSigma_ = (float) noiseSigma; } private: //! re-initiaization method void initialize(Size frameSize, int frameType); int history_; int nmixtures_; float backgroundRatio_; float noiseSigma_; float varThreshold_; Size frameSize_; int frameType_; int nframes_; GpuMat weight_; GpuMat sortKey_; GpuMat mean_; GpuMat var_; }; MOGImpl::MOGImpl(int history, int nmixtures, double backgroundRatio, double noiseSigma) : frameSize_(0, 0), frameType_(0), nframes_(0) { history_ = history > 0 ? history : defaultHistory; nmixtures_ = std::min(nmixtures > 0 ? nmixtures : defaultNMixtures, 8); backgroundRatio_ = backgroundRatio > 0 ? (float) backgroundRatio : defaultBackgroundRatio; noiseSigma_ = noiseSigma > 0 ? (float) noiseSigma : defaultNoiseSigma; varThreshold_ = defaultVarThreshold; } void MOGImpl::apply(InputArray image, OutputArray fgmask, double learningRate) { apply(image, fgmask, learningRate, Stream::Null()); } void MOGImpl::apply(InputArray _frame, OutputArray _fgmask, double learningRate, Stream& stream) { using namespace cv::cuda::device::mog; GpuMat frame = _frame.getGpuMat(); CV_Assert( frame.depth() == CV_8U ); int ch = frame.channels(); int work_ch = ch; if (nframes_ == 0 || learningRate >= 1.0 || frame.size() != frameSize_ || work_ch != mean_.channels()) initialize(frame.size(), frame.type()); _fgmask.create(frameSize_, CV_8UC1); GpuMat fgmask = _fgmask.getGpuMat(); ++nframes_; learningRate = learningRate >= 0 && nframes_ > 1 ? learningRate : 1.0 / std::min(nframes_, history_); CV_Assert( learningRate >= 0 ); mog_gpu(frame, ch, fgmask, weight_, sortKey_, mean_, var_, nmixtures_, varThreshold_, (float) learningRate, backgroundRatio_, noiseSigma_, StreamAccessor::getStream(stream)); } void MOGImpl::getBackgroundImage(OutputArray backgroundImage) const { getBackgroundImage(backgroundImage, Stream::Null()); } void MOGImpl::getBackgroundImage(OutputArray _backgroundImage, Stream& stream) const { using namespace cv::cuda::device::mog; _backgroundImage.create(frameSize_, frameType_); GpuMat backgroundImage = _backgroundImage.getGpuMat(); getBackgroundImage_gpu(backgroundImage.channels(), weight_, mean_, backgroundImage, nmixtures_, backgroundRatio_, StreamAccessor::getStream(stream)); } void MOGImpl::initialize(Size frameSize, int frameType) { CV_Assert( frameType == CV_8UC1 || frameType == CV_8UC3 || frameType == CV_8UC4 ); frameSize_ = frameSize; frameType_ = frameType; int ch = CV_MAT_CN(frameType); int work_ch = ch; // for each gaussian mixture of each pixel bg model we store // the mixture sort key (w/sum_of_variances), the mixture weight (w), // the mean (nchannels values) and // the diagonal covariance matrix (another nchannels values) weight_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); sortKey_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC1); mean_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); var_.create(frameSize.height * nmixtures_, frameSize_.width, CV_32FC(work_ch)); weight_.setTo(cv::Scalar::all(0)); sortKey_.setTo(cv::Scalar::all(0)); mean_.setTo(cv::Scalar::all(0)); var_.setTo(cv::Scalar::all(0)); nframes_ = 0; } } Ptr cv::cuda::createBackgroundSubtractorMOG(int history, int nmixtures, double backgroundRatio, double noiseSigma) { return makePtr(history, nmixtures, backgroundRatio, noiseSigma); } #endif