/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved. // Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // @Authors // Zhang Ying, zhangying913@gmail.com // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors as is and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifdef DOUBLE_SUPPORT #ifdef cl_amd_fp64 #pragma OPENCL EXTENSION cl_amd_fp64:enable #elif defined (cl_khr_fp64) #pragma OPENCL EXTENSION cl_khr_fp64:enable #endif #define CT double #else #define CT float #endif #define INTER_BITS 5 #define INTER_TAB_SIZE (1 << INTER_BITS) #define INTER_SCALE 1.f/INTER_TAB_SIZE #define AB_BITS max(10, (int)INTER_BITS) #define AB_SCALE (1 << AB_BITS) #define INTER_REMAP_COEF_BITS 15 #define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS) #define ROUND_DELTA (1 << (AB_BITS - INTER_BITS - 1)) #define noconvert #ifndef ST #define ST T #endif #if cn != 3 #define loadpix(addr) *(__global const T*)(addr) #define storepix(val, addr) *(__global T*)(addr) = val #define scalar scalar_ #define pixsize (int)sizeof(T) #else #define loadpix(addr) vload3(0, (__global const T1*)(addr)) #define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr)) #ifdef INTER_NEAREST #define scalar (T)(scalar_.x, scalar_.y, scalar_.z) #else #define scalar (WT)(scalar_.x, scalar_.y, scalar_.z) #endif #define pixsize ((int)sizeof(T1)*3) #endif #ifdef INTER_NEAREST __kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __constant CT * M, ST scalar_) { int dx = get_global_id(0); int dy0 = get_global_id(1) * rowsPerWI; if (dx < dst_cols) { int round_delta = (AB_SCALE >> 1); int X0_ = rint(M[0] * dx * AB_SCALE); int Y0_ = rint(M[3] * dx * AB_SCALE); int dst_index = mad24(dy0, dst_step, mad24(dx, pixsize, dst_offset)); for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy, dst_index += dst_step) { int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + round_delta; int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + round_delta; short sx = convert_short_sat(X0 >> AB_BITS); short sy = convert_short_sat(Y0 >> AB_BITS); if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) { int src_index = mad24(sy, src_step, mad24(sx, pixsize, src_offset)); storepix(loadpix(srcptr + src_index), dstptr + dst_index); } else storepix(scalar, dstptr + dst_index); } } } #elif defined INTER_LINEAR __constant float coeffs[64] = { 1.000000f, 0.000000f, 0.968750f, 0.031250f, 0.937500f, 0.062500f, 0.906250f, 0.093750f, 0.875000f, 0.125000f, 0.843750f, 0.156250f, 0.812500f, 0.187500f, 0.781250f, 0.218750f, 0.750000f, 0.250000f, 0.718750f, 0.281250f, 0.687500f, 0.312500f, 0.656250f, 0.343750f, 0.625000f, 0.375000f, 0.593750f, 0.406250f, 0.562500f, 0.437500f, 0.531250f, 0.468750f, 0.500000f, 0.500000f, 0.468750f, 0.531250f, 0.437500f, 0.562500f, 0.406250f, 0.593750f, 0.375000f, 0.625000f, 0.343750f, 0.656250f, 0.312500f, 0.687500f, 0.281250f, 0.718750f, 0.250000f, 0.750000f, 0.218750f, 0.781250f, 0.187500f, 0.812500f, 0.156250f, 0.843750f, 0.125000f, 0.875000f, 0.093750f, 0.906250f, 0.062500f, 0.937500f, 0.031250f, 0.968750f }; __kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __constant CT * M, ST scalar_) { int dx = get_global_id(0); int dy0 = get_global_id(1) * rowsPerWI; if (dx < dst_cols) { int tmp = dx << AB_BITS; int X0_ = rint(M[0] * tmp); int Y0_ = rint(M[3] * tmp); for (int dy = dy0, dy1 = min(dst_rows, dy0 + rowsPerWI); dy < dy1; ++dy) { int X0 = X0_ + rint(fma(M[1], dy, M[2]) * AB_SCALE) + ROUND_DELTA; int Y0 = Y0_ + rint(fma(M[4], dy, M[5]) * AB_SCALE) + ROUND_DELTA; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); short sx = convert_short_sat(X0 >> INTER_BITS), sy = convert_short_sat(Y0 >> INTER_BITS); short ax = convert_short(X0 & (INTER_TAB_SIZE-1)), ay = convert_short(Y0 & (INTER_TAB_SIZE-1)); #if defined AMD_DEVICE || depth > 4 WT v0 = scalar, v1 = scalar, v2 = scalar, v3 = scalar; if (sx >= 0 && sx < src_cols) { if (sy >= 0 && sy < src_rows) v0 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx, pixsize, src_offset)))); if (sy+1 >= 0 && sy+1 < src_rows) v2 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx, pixsize, src_offset)))); } if (sx+1 >= 0 && sx+1 < src_cols) { if (sy >= 0 && sy < src_rows) v1 = convertToWT(loadpix(srcptr + mad24(sy, src_step, mad24(sx+1, pixsize, src_offset)))); if (sy+1 >= 0 && sy+1 < src_rows) v3 = convertToWT(loadpix(srcptr + mad24(sy+1, src_step, mad24(sx+1, pixsize, src_offset)))); } float taby = 1.f/INTER_TAB_SIZE*ay; float tabx = 1.f/INTER_TAB_SIZE*ax; int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset)); #if depth <= 4 int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE ); int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE ); int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE ); WT val = mad24(v0, itab0, mad24(v1, itab1, mad24(v2, itab2, v3 * itab3))); storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index); #else float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby; WT val = fma(tabx2, fma(v0, taby2, v2 * taby), tabx * fma(v1, taby2, v3 * taby)); storepix(convertToT(val), dstptr + dst_index); #endif #else // INTEL_DEVICE __constant float * coeffs_y = coeffs + (ay << 1), * coeffs_x = coeffs + (ax << 1); int src_index0 = mad24(sy, src_step, mad24(sx, pixsize, src_offset)), src_index; int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset)); WT sum = (WT)(0), xsum; #pragma unroll for (int y = 0; y < 2; y++) { src_index = mad24(y, src_step, src_index0); if (sy + y >= 0 && sy + y < src_rows) { xsum = (WT)(0); if (sx >= 0 && sx + 2 < src_cols) { #if depth == 0 && cn == 1 uchar2 value = vload2(0, srcptr + src_index); xsum = dot(convert_float2(value), (float2)(coeffs_x[0], coeffs_x[1])); #else #pragma unroll for (int x = 0; x < 2; x++) xsum = fma(convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))), coeffs_x[x], xsum); #endif } else { #pragma unroll for (int x = 0; x < 2; x++) xsum = fma(sx + x >= 0 && sx + x < src_cols ? convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))) : scalar, coeffs_x[x], xsum); } sum = fma(xsum, coeffs_y[y], sum); } else sum = fma(scalar, coeffs_y[y], sum); } storepix(convertToT(sum), dstptr + dst_index); #endif } } } #elif defined INTER_CUBIC #ifdef AMD_DEVICE inline void interpolateCubic( float x, float* coeffs ) { const float A = -0.75f; coeffs[0] = fma(fma(fma(A, (x + 1.f), - 5.0f*A), (x + 1.f), 8.0f*A), x + 1.f, - 4.0f*A); coeffs[1] = fma(fma(A + 2.f, x, - (A + 3.f)), x*x, 1.f); coeffs[2] = fma(fma(A + 2.f, 1.f - x, - (A + 3.f)), (1.f - x)*(1.f - x), 1.f); coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2]; } #else __constant float coeffs[128] = { 0.000000f, 1.000000f, 0.000000f, 0.000000f, -0.021996f, 0.997841f, 0.024864f, -0.000710f, -0.041199f, 0.991516f, 0.052429f, -0.002747f, -0.057747f, 0.981255f, 0.082466f, -0.005974f, -0.071777f, 0.967285f, 0.114746f, -0.010254f, -0.083427f, 0.949837f, 0.149040f, -0.015450f, -0.092834f, 0.929138f, 0.185120f, -0.021423f, -0.100136f, 0.905418f, 0.222755f, -0.028038f, -0.105469f, 0.878906f, 0.261719f, -0.035156f, -0.108971f, 0.849831f, 0.301781f, -0.042641f, -0.110779f, 0.818420f, 0.342712f, -0.050354f, -0.111031f, 0.784904f, 0.384285f, -0.058159f, -0.109863f, 0.749512f, 0.426270f, -0.065918f, -0.107414f, 0.712471f, 0.468437f, -0.073494f, -0.103821f, 0.674011f, 0.510559f, -0.080750f, -0.099220f, 0.634361f, 0.552406f, -0.087547f, -0.093750f, 0.593750f, 0.593750f, -0.093750f, -0.087547f, 0.552406f, 0.634361f, -0.099220f, -0.080750f, 0.510559f, 0.674011f, -0.103821f, -0.073494f, 0.468437f, 0.712471f, -0.107414f, -0.065918f, 0.426270f, 0.749512f, -0.109863f, -0.058159f, 0.384285f, 0.784904f, -0.111031f, -0.050354f, 0.342712f, 0.818420f, -0.110779f, -0.042641f, 0.301781f, 0.849831f, -0.108971f, -0.035156f, 0.261719f, 0.878906f, -0.105469f, -0.028038f, 0.222755f, 0.905418f, -0.100136f, -0.021423f, 0.185120f, 0.929138f, -0.092834f, -0.015450f, 0.149040f, 0.949837f, -0.083427f, -0.010254f, 0.114746f, 0.967285f, -0.071777f, -0.005974f, 0.082466f, 0.981255f, -0.057747f, -0.002747f, 0.052429f, 0.991516f, -0.041199f, -0.000710f, 0.024864f, 0.997841f, -0.021996f }; #endif __kernel void warpAffine(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols, __global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols, __constant CT * M, ST scalar_) { int dx = get_global_id(0); int dy = get_global_id(1); if (dx < dst_cols && dy < dst_rows) { int tmp = (dx << AB_BITS); int X0 = rint(M[0] * tmp) + rint(fma(M[1], dy, M[2]) * AB_SCALE) + ROUND_DELTA; int Y0 = rint(M[3] * tmp) + rint(fma(M[4], dy, M[5]) * AB_SCALE) + ROUND_DELTA; X0 = X0 >> (AB_BITS - INTER_BITS); Y0 = Y0 >> (AB_BITS - INTER_BITS); int sx = (short)(X0 >> INTER_BITS) - 1, sy = (short)(Y0 >> INTER_BITS) - 1; int ay = (short)(Y0 & (INTER_TAB_SIZE - 1)), ax = (short)(X0 & (INTER_TAB_SIZE - 1)); #ifdef AMD_DEVICE WT v[16]; #pragma unroll for (int y = 0; y < 4; y++) { if (sy+y >= 0 && sy+y < src_rows) { #pragma unroll for (int x = 0; x < 4; x++) v[mad24(y, 4, x)] = sx+x >= 0 && sx+x < src_cols ? convertToWT(loadpix(srcptr + mad24(sy+y, src_step, mad24(sx+x, pixsize, src_offset)))) : scalar; } else { #pragma unroll for (int x = 0; x < 4; x++) v[mad24(y, 4, x)] = scalar; } } float tab1y[4], tab1x[4]; float ayy = INTER_SCALE * ay; float axx = INTER_SCALE * ax; interpolateCubic(ayy, tab1y); interpolateCubic(axx, tab1x); int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset)); WT sum = (WT)(0); #if depth <= 4 int itab[16]; #pragma unroll for (int i = 0; i < 16; i++) itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE); #pragma unroll for (int i = 0; i < 16; i++) sum = mad24(v[i], itab[i], sum); storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index); #else #pragma unroll for (int i = 0; i < 16; i++) sum = fma(v[i], tab1y[(i>>2)] * tab1x[(i&3)], sum); storepix(convertToT( sum ), dstptr + dst_index); #endif #else // INTEL_DEVICE __constant float * coeffs_y = coeffs + (ay << 2), * coeffs_x = coeffs + (ax << 2); int src_index0 = mad24(sy, src_step, mad24(sx, pixsize, src_offset)), src_index; int dst_index = mad24(dy, dst_step, mad24(dx, pixsize, dst_offset)); WT sum = (WT)(0), xsum; #pragma unroll for (int y = 0; y < 4; y++) { src_index = mad24(y, src_step, src_index0); if (sy + y >= 0 && sy + y < src_rows) { xsum = (WT)(0); if (sx >= 0 && sx + 4 < src_cols) { #if depth == 0 && cn == 1 uchar4 value = vload4(0, srcptr + src_index); xsum = dot(convert_float4(value), (float4)(coeffs_x[0], coeffs_x[1], coeffs_x[2], coeffs_x[3])); #else #pragma unroll for (int x = 0; x < 4; x++) xsum = fma(convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))), coeffs_x[x], xsum); #endif } else { #pragma unroll for (int x = 0; x < 4; x++) xsum = fma(sx + x >= 0 && sx + x < src_cols ? convertToWT(loadpix(srcptr + mad24(x, pixsize, src_index))) : scalar, coeffs_x[x], xsum); } sum = fma(xsum, coeffs_y[y], sum); } else sum = fma(scalar, coeffs_y[y], sum); } storepix(convertToT(sum), dstptr + dst_index); #endif } } #endif