/* * Author : Stephen Smalley, */ /* * Updated: Trusted Computer Solutions, Inc. * * Support for enhanced MLS infrastructure. * * Updated: Frank Mayer * and Karl MacMillan * * Added conditional policy language extensions * * Updated: Red Hat, Inc. James Morris * * Fine-grained netlink support * IPv6 support * Code cleanup * * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. * Copyright (C) 2003 - 2004 Tresys Technology, LLC * Copyright (C) 2003 - 2004 Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* FLASK */ /* * Implementation of the security services. */ /* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */ #define REASON_BUF_SIZE 2048 #define EXPR_BUF_SIZE 1024 #define STACK_LEN 32 #include #include #include #include #include #include #include #include #include #include #include #include "debug.h" #include "private.h" #include "context.h" #include "av_permissions.h" #include "dso.h" #include "mls.h" #define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0) #define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0) static int selinux_enforcing = 1; static sidtab_t mysidtab, *sidtab = &mysidtab; static policydb_t mypolicydb, *policydb = &mypolicydb; /* Used by sepol_compute_av_reason_buffer() to keep track of entries */ static int reason_buf_used; static int reason_buf_len; /* Stack services for RPN to infix conversion. */ static char **stack; static int stack_len; static int next_stack_entry; static void push(char *expr_ptr) { if (next_stack_entry >= stack_len) { char **new_stack = stack; int new_stack_len; if (stack_len == 0) new_stack_len = STACK_LEN; else new_stack_len = stack_len * 2; new_stack = realloc(stack, new_stack_len * sizeof(*stack)); if (!new_stack) { ERR(NULL, "unable to allocate stack space"); return; } stack_len = new_stack_len; stack = new_stack; } stack[next_stack_entry] = expr_ptr; next_stack_entry++; } static char *pop(void) { next_stack_entry--; if (next_stack_entry < 0) { next_stack_entry = 0; ERR(NULL, "pop called with no stack entries"); return NULL; } return stack[next_stack_entry]; } /* End Stack services */ int hidden sepol_set_sidtab(sidtab_t * s) { sidtab = s; return 0; } int hidden sepol_set_policydb(policydb_t * p) { policydb = p; return 0; } int sepol_set_policydb_from_file(FILE * fp) { struct policy_file pf; policy_file_init(&pf); pf.fp = fp; pf.type = PF_USE_STDIO; if (mypolicydb.policy_type) policydb_destroy(&mypolicydb); if (policydb_init(&mypolicydb)) { ERR(NULL, "Out of memory!"); return -1; } if (policydb_read(&mypolicydb, &pf, 0)) { policydb_destroy(&mypolicydb); ERR(NULL, "can't read binary policy: %s", strerror(errno)); return -1; } policydb = &mypolicydb; return sepol_sidtab_init(sidtab); } /* * The largest sequence number that has been used when * providing an access decision to the access vector cache. * The sequence number only changes when a policy change * occurs. */ static uint32_t latest_granting = 0; /* * cat_expr_buf adds a string to an expression buffer and handles * realloc's if buffer is too small. The array of expression text * buffer pointers and its counter are globally defined here as * constraint_expr_eval_reason() sets them up and cat_expr_buf * updates the e_buf pointer. */ static int expr_counter; static char **expr_list; static int expr_buf_used; static int expr_buf_len; static void cat_expr_buf(char *e_buf, const char *string) { int len, new_buf_len; char *p, *new_buf = e_buf; while (1) { p = e_buf + expr_buf_used; len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string); if (len < 0 || len >= expr_buf_len - expr_buf_used) { new_buf_len = expr_buf_len + EXPR_BUF_SIZE; new_buf = realloc(e_buf, new_buf_len); if (!new_buf) { ERR(NULL, "failed to realloc expr buffer"); return; } /* Update new ptr in expr list and locally + new len */ expr_list[expr_counter] = new_buf; e_buf = new_buf; expr_buf_len = new_buf_len; } else { expr_buf_used += len; return; } } } /* * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES, * then for 'types' only, read the types_names->types list as it will * contain a list of types and attributes that were defined in the * policy source. * For user and role plus types (for policy vers < * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list. */ static void get_name_list(constraint_expr_t *e, int type, const char *src, const char *op, int failed) { ebitmap_t *types; int rc = 0; unsigned int i; char tmp_buf[128]; int counter = 0; if (policydb->policy_type == POLICY_KERN && policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES && type == CEXPR_TYPE) types = &e->type_names->types; else types = &e->names; /* Find out how many entries */ for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) { rc = ebitmap_get_bit(types, i); if (rc == 0) continue; else counter++; } snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op); cat_expr_buf(expr_list[expr_counter], tmp_buf); if (counter == 0) cat_expr_buf(expr_list[expr_counter], " "); if (counter > 1) cat_expr_buf(expr_list[expr_counter], " {"); if (counter >= 1) { for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) { rc = ebitmap_get_bit(types, i); if (rc == 0) continue; /* Collect entries */ switch (type) { case CEXPR_USER: snprintf(tmp_buf, sizeof(tmp_buf), " %s", policydb->p_user_val_to_name[i]); break; case CEXPR_ROLE: snprintf(tmp_buf, sizeof(tmp_buf), " %s", policydb->p_role_val_to_name[i]); break; case CEXPR_TYPE: snprintf(tmp_buf, sizeof(tmp_buf), " %s", policydb->p_type_val_to_name[i]); break; } cat_expr_buf(expr_list[expr_counter], tmp_buf); } } if (counter > 1) cat_expr_buf(expr_list[expr_counter], " }"); if (failed) cat_expr_buf(expr_list[expr_counter], " -Fail-) "); else cat_expr_buf(expr_list[expr_counter], ") "); return; } static void msgcat(const char *src, const char *tgt, const char *op, int failed) { char tmp_buf[128]; if (failed) snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ", src, op, tgt); else snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ", src, op, tgt); cat_expr_buf(expr_list[expr_counter], tmp_buf); } /* Returns a buffer with class, statement type and permissions */ static char *get_class_info(sepol_security_class_t tclass, constraint_node_t *constraint, context_struct_t *xcontext) { constraint_expr_t *e; int mls, state_num; /* Find if MLS statement or not */ mls = 0; for (e = constraint->expr; e; e = e->next) { if (e->attr >= CEXPR_L1L2) { mls = 1; break; } } /* Determine statement type */ const char *statements[] = { "constrain ", /* 0 */ "mlsconstrain ", /* 1 */ "validatetrans ", /* 2 */ "mlsvalidatetrans ", /* 3 */ 0 }; if (xcontext == NULL) state_num = mls + 0; else state_num = mls + 2; int class_buf_len = 0; int new_class_buf_len; int len, buf_used; char *class_buf = NULL, *p; char *new_class_buf = NULL; while (1) { new_class_buf_len = class_buf_len + EXPR_BUF_SIZE; new_class_buf = realloc(class_buf, new_class_buf_len); if (!new_class_buf) return NULL; class_buf_len = new_class_buf_len; class_buf = new_class_buf; buf_used = 0; p = class_buf; /* Add statement type */ len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]); if (len < 0 || len >= class_buf_len - buf_used) continue; /* Add class entry */ p += len; buf_used += len; len = snprintf(p, class_buf_len - buf_used, "%s ", policydb->p_class_val_to_name[tclass - 1]); if (len < 0 || len >= class_buf_len - buf_used) continue; /* Add permission entries (validatetrans does not have perms) */ p += len; buf_used += len; if (state_num < 2) { len = snprintf(p, class_buf_len - buf_used, "{%s } (", sepol_av_to_string(policydb, tclass, constraint->permissions)); } else { len = snprintf(p, class_buf_len - buf_used, "("); } if (len < 0 || len >= class_buf_len - buf_used) continue; break; } return class_buf; } /* * Modified version of constraint_expr_eval that will process each * constraint as before but adds the information to text buffers that * will hold various components. The expression will be in RPN format, * therefore there is a stack based RPN to infix converter to produce * the final readable constraint. * * Return the boolean value of a constraint expression * when it is applied to the specified source and target * security contexts. * * xcontext is a special beast... It is used by the validatetrans rules * only. For these rules, scontext is the context before the transition, * tcontext is the context after the transition, and xcontext is the * context of the process performing the transition. All other callers * of constraint_expr_eval_reason should pass in NULL for xcontext. * * This function will also build a buffer as the constraint is processed * for analysis. If this option is not required, then: * 'tclass' should be '0' and r_buf MUST be NULL. */ static int constraint_expr_eval_reason(context_struct_t *scontext, context_struct_t *tcontext, context_struct_t *xcontext, sepol_security_class_t tclass, constraint_node_t *constraint, char **r_buf, unsigned int flags) { uint32_t val1, val2; context_struct_t *c; role_datum_t *r1, *r2; mls_level_t *l1, *l2; constraint_expr_t *e; int s[CEXPR_MAXDEPTH]; int sp = -1; char tmp_buf[128]; /* * Define the s_t_x_num values that make up r1, t2 etc. in text strings * Set 1 = source, 2 = target, 3 = xcontext for validatetrans */ #define SOURCE 1 #define TARGET 2 #define XTARGET 3 int s_t_x_num = SOURCE; /* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */ int u_r_t = 0; char *src = NULL; char *tgt = NULL; int rc = 0, x; char *class_buf = NULL; /* * The array of expression answer buffer pointers and counter. */ char **answer_list = NULL; int answer_counter = 0; class_buf = get_class_info(tclass, constraint, xcontext); if (!class_buf) { ERR(NULL, "failed to allocate class buffer"); return -ENOMEM; } /* Original function but with buffer support */ int expr_list_len = 0; expr_counter = 0; expr_list = NULL; for (e = constraint->expr; e; e = e->next) { /* Allocate a stack to hold expression buffer entries */ if (expr_counter >= expr_list_len) { char **new_expr_list = expr_list; int new_expr_list_len; if (expr_list_len == 0) new_expr_list_len = STACK_LEN; else new_expr_list_len = expr_list_len * 2; new_expr_list = realloc(expr_list, new_expr_list_len * sizeof(*expr_list)); if (!new_expr_list) { ERR(NULL, "failed to allocate expr buffer stack"); rc = -ENOMEM; goto out; } expr_list_len = new_expr_list_len; expr_list = new_expr_list; } /* * malloc a buffer to store each expression text component. If * buffer is too small cat_expr_buf() will realloc extra space. */ expr_buf_len = EXPR_BUF_SIZE; expr_list[expr_counter] = malloc(expr_buf_len); if (!expr_list[expr_counter]) { ERR(NULL, "failed to allocate expr buffer"); rc = -ENOMEM; goto out; } expr_buf_used = 0; /* Now process each expression of the constraint */ switch (e->expr_type) { case CEXPR_NOT: BUG_ON(sp < 0); s[sp] = !s[sp]; cat_expr_buf(expr_list[expr_counter], "not"); break; case CEXPR_AND: BUG_ON(sp < 1); sp--; s[sp] &= s[sp + 1]; cat_expr_buf(expr_list[expr_counter], "and"); break; case CEXPR_OR: BUG_ON(sp < 1); sp--; s[sp] |= s[sp + 1]; cat_expr_buf(expr_list[expr_counter], "or"); break; case CEXPR_ATTR: if (sp == (CEXPR_MAXDEPTH - 1)) goto out; switch (e->attr) { case CEXPR_USER: val1 = scontext->user; val2 = tcontext->user; free(src); src = strdup("u1"); free(tgt); tgt = strdup("u2"); break; case CEXPR_TYPE: val1 = scontext->type; val2 = tcontext->type; free(src); src = strdup("t1"); free(tgt); tgt = strdup("t2"); break; case CEXPR_ROLE: val1 = scontext->role; val2 = tcontext->role; r1 = policydb->role_val_to_struct[val1 - 1]; r2 = policydb->role_val_to_struct[val2 - 1]; free(src); src = strdup("r1"); free(tgt); tgt = strdup("r2"); switch (e->op) { case CEXPR_DOM: s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1); msgcat(src, tgt, "dom", s[sp] == 0); expr_counter++; continue; case CEXPR_DOMBY: s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1); msgcat(src, tgt, "domby", s[sp] == 0); expr_counter++; continue; case CEXPR_INCOMP: s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1) && !ebitmap_get_bit(&r2->dominates, val1 - 1)); msgcat(src, tgt, "incomp", s[sp] == 0); expr_counter++; continue; default: break; } break; case CEXPR_L1L2: l1 = &(scontext->range.level[0]); l2 = &(tcontext->range.level[0]); free(src); src = strdup("l1"); free(tgt); tgt = strdup("l2"); goto mls_ops; case CEXPR_L1H2: l1 = &(scontext->range.level[0]); l2 = &(tcontext->range.level[1]); free(src); src = strdup("l1"); free(tgt); tgt = strdup("h2"); goto mls_ops; case CEXPR_H1L2: l1 = &(scontext->range.level[1]); l2 = &(tcontext->range.level[0]); free(src); src = strdup("h1"); free(tgt); tgt = strdup("l2"); goto mls_ops; case CEXPR_H1H2: l1 = &(scontext->range.level[1]); l2 = &(tcontext->range.level[1]); free(src); src = strdup("h1"); free(tgt); tgt = strdup("h2"); goto mls_ops; case CEXPR_L1H1: l1 = &(scontext->range.level[0]); l2 = &(scontext->range.level[1]); free(src); src = strdup("l1"); free(tgt); tgt = strdup("h1"); goto mls_ops; case CEXPR_L2H2: l1 = &(tcontext->range.level[0]); l2 = &(tcontext->range.level[1]); free(src); src = strdup("l2"); free(tgt); tgt = strdup("h2"); mls_ops: switch (e->op) { case CEXPR_EQ: s[++sp] = mls_level_eq(l1, l2); msgcat(src, tgt, "eq", s[sp] == 0); expr_counter++; continue; case CEXPR_NEQ: s[++sp] = !mls_level_eq(l1, l2); msgcat(src, tgt, "!=", s[sp] == 0); expr_counter++; continue; case CEXPR_DOM: s[++sp] = mls_level_dom(l1, l2); msgcat(src, tgt, "dom", s[sp] == 0); expr_counter++; continue; case CEXPR_DOMBY: s[++sp] = mls_level_dom(l2, l1); msgcat(src, tgt, "domby", s[sp] == 0); expr_counter++; continue; case CEXPR_INCOMP: s[++sp] = mls_level_incomp(l2, l1); msgcat(src, tgt, "incomp", s[sp] == 0); expr_counter++; continue; default: BUG(); goto out; } break; default: BUG(); goto out; } switch (e->op) { case CEXPR_EQ: s[++sp] = (val1 == val2); msgcat(src, tgt, "==", s[sp] == 0); break; case CEXPR_NEQ: s[++sp] = (val1 != val2); msgcat(src, tgt, "!=", s[sp] == 0); break; default: BUG(); goto out; } break; case CEXPR_NAMES: if (sp == (CEXPR_MAXDEPTH - 1)) goto out; s_t_x_num = SOURCE; c = scontext; if (e->attr & CEXPR_TARGET) { s_t_x_num = TARGET; c = tcontext; } else if (e->attr & CEXPR_XTARGET) { s_t_x_num = XTARGET; c = xcontext; } if (!c) { BUG(); goto out; } if (e->attr & CEXPR_USER) { u_r_t = CEXPR_USER; val1 = c->user; snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num); free(src); src = strdup(tmp_buf); } else if (e->attr & CEXPR_ROLE) { u_r_t = CEXPR_ROLE; val1 = c->role; snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num); free(src); src = strdup(tmp_buf); } else if (e->attr & CEXPR_TYPE) { u_r_t = CEXPR_TYPE; val1 = c->type; snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num); free(src); src = strdup(tmp_buf); } else { BUG(); goto out; } switch (e->op) { case CEXPR_EQ: s[++sp] = ebitmap_get_bit(&e->names, val1 - 1); get_name_list(e, u_r_t, src, "==", s[sp] == 0); break; case CEXPR_NEQ: s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1); get_name_list(e, u_r_t, src, "!=", s[sp] == 0); break; default: BUG(); goto out; } break; default: BUG(); goto out; } expr_counter++; } /* * At this point each expression of the constraint is in * expr_list[n+1] and in RPN format. Now convert to 'infix' */ /* * Save expr count but zero expr_counter to detect if * 'BUG(); goto out;' was called as we need to release any used * expr_list malloc's. Normally they are released by the RPN to * infix code. */ int expr_count = expr_counter; expr_counter = 0; /* * Generate the same number of answer buffer entries as expression * buffers (as there will never be more). */ answer_list = malloc(expr_count * sizeof(*answer_list)); if (!answer_list) { ERR(NULL, "failed to allocate answer stack"); rc = -ENOMEM; goto out; } /* The pop operands */ char *a; char *b; int a_len, b_len; /* Convert constraint from RPN to infix notation. */ for (x = 0; x != expr_count; x++) { if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x], "or", 2) == 0) { b = pop(); b_len = strlen(b); a = pop(); a_len = strlen(a); /* get a buffer to hold the answer */ answer_list[answer_counter] = malloc(a_len + b_len + 8); if (!answer_list[answer_counter]) { ERR(NULL, "failed to allocate answer buffer"); rc = -ENOMEM; goto out; } memset(answer_list[answer_counter], '\0', a_len + b_len + 8); sprintf(answer_list[answer_counter], "%s %s %s", a, expr_list[x], b); push(answer_list[answer_counter++]); free(a); free(b); free(expr_list[x]); } else if (strncmp(expr_list[x], "not", 3) == 0) { b = pop(); b_len = strlen(b); answer_list[answer_counter] = malloc(b_len + 8); if (!answer_list[answer_counter]) { ERR(NULL, "failed to allocate answer buffer"); rc = -ENOMEM; goto out; } memset(answer_list[answer_counter], '\0', b_len + 8); if (strncmp(b, "not", 3) == 0) sprintf(answer_list[answer_counter], "%s (%s)", expr_list[x], b); else sprintf(answer_list[answer_counter], "%s%s", expr_list[x], b); push(answer_list[answer_counter++]); free(b); free(expr_list[x]); } else { push(expr_list[x]); } } /* Get the final answer from tos and build constraint text */ a = pop(); /* validatetrans / constraint calculation: rc = 0 is denied, rc = 1 is granted */ sprintf(tmp_buf, "%s %s\n", xcontext ? "Validatetrans" : "Constraint", s[0] ? "GRANTED" : "DENIED"); int len, new_buf_len; char *p, **new_buf = r_buf; /* * These contain the constraint components that are added to the * callers reason buffer. */ const char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 }; /* * This will add the constraints to the callers reason buffer (who is * responsible for freeing the memory). It will handle any realloc's * should the buffer be too short. * The reason_buf_used and reason_buf_len counters are defined * globally as multiple constraints can be in the buffer. */ if (r_buf && ((s[0] == 0) || ((s[0] == 1 && (flags & SHOW_GRANTED) == SHOW_GRANTED)))) { for (x = 0; buffers[x] != NULL; x++) { while (1) { p = *r_buf + reason_buf_used; len = snprintf(p, reason_buf_len - reason_buf_used, "%s", buffers[x]); if (len < 0 || len >= reason_buf_len - reason_buf_used) { new_buf_len = reason_buf_len + REASON_BUF_SIZE; *new_buf = realloc(*r_buf, new_buf_len); if (!new_buf) { ERR(NULL, "failed to realloc reason buffer"); goto out1; } **r_buf = **new_buf; reason_buf_len = new_buf_len; continue; } else { reason_buf_used += len; break; } } } } out1: rc = s[0]; free(a); out: free(class_buf); free(src); free(tgt); if (expr_counter) { for (x = 0; expr_list[x] != NULL; x++) free(expr_list[x]); } free(answer_list); free(expr_list); return rc; } /* * Compute access vectors based on a context structure pair for * the permissions in a particular class. */ static int context_struct_compute_av(context_struct_t * scontext, context_struct_t * tcontext, sepol_security_class_t tclass, sepol_access_vector_t requested, struct sepol_av_decision *avd, unsigned int *reason, char **r_buf, unsigned int flags) { constraint_node_t *constraint; struct role_allow *ra; avtab_key_t avkey; class_datum_t *tclass_datum; avtab_ptr_t node; ebitmap_t *sattr, *tattr; ebitmap_node_t *snode, *tnode; unsigned int i, j; if (!tclass || tclass > policydb->p_classes.nprim) { ERR(NULL, "unrecognized class %d", tclass); return -EINVAL; } tclass_datum = policydb->class_val_to_struct[tclass - 1]; /* * Initialize the access vectors to the default values. */ avd->allowed = 0; avd->decided = 0xffffffff; avd->auditallow = 0; avd->auditdeny = 0xffffffff; avd->seqno = latest_granting; *reason = 0; /* * If a specific type enforcement rule was defined for * this permission check, then use it. */ avkey.target_class = tclass; avkey.specified = AVTAB_AV; sattr = &policydb->type_attr_map[scontext->type - 1]; tattr = &policydb->type_attr_map[tcontext->type - 1]; ebitmap_for_each_bit(sattr, snode, i) { if (!ebitmap_node_get_bit(snode, i)) continue; ebitmap_for_each_bit(tattr, tnode, j) { if (!ebitmap_node_get_bit(tnode, j)) continue; avkey.source_type = i + 1; avkey.target_type = j + 1; for (node = avtab_search_node(&policydb->te_avtab, &avkey); node != NULL; node = avtab_search_node_next(node, avkey.specified)) { if (node->key.specified == AVTAB_ALLOWED) avd->allowed |= node->datum.data; else if (node->key.specified == AVTAB_AUDITALLOW) avd->auditallow |= node->datum.data; else if (node->key.specified == AVTAB_AUDITDENY) avd->auditdeny &= node->datum.data; } /* Check conditional av table for additional permissions */ cond_compute_av(&policydb->te_cond_avtab, &avkey, avd); } } if (requested & ~avd->allowed) { *reason |= SEPOL_COMPUTEAV_TE; requested &= avd->allowed; } /* * Remove any permissions prohibited by a constraint (this includes * the MLS policy). */ constraint = tclass_datum->constraints; while (constraint) { if ((constraint->permissions & (avd->allowed)) && !constraint_expr_eval_reason(scontext, tcontext, NULL, tclass, constraint, r_buf, flags)) { avd->allowed = (avd->allowed) & ~(constraint->permissions); } constraint = constraint->next; } if (requested & ~avd->allowed) { *reason |= SEPOL_COMPUTEAV_CONS; requested &= avd->allowed; } /* * If checking process transition permission and the * role is changing, then check the (current_role, new_role) * pair. */ if (tclass == SECCLASS_PROCESS && (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) && scontext->role != tcontext->role) { for (ra = policydb->role_allow; ra; ra = ra->next) { if (scontext->role == ra->role && tcontext->role == ra->new_role) break; } if (!ra) avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION | PROCESS__DYNTRANSITION); } if (requested & ~avd->allowed) { *reason |= SEPOL_COMPUTEAV_RBAC; requested &= avd->allowed; } return 0; } int hidden sepol_validate_transition(sepol_security_id_t oldsid, sepol_security_id_t newsid, sepol_security_id_t tasksid, sepol_security_class_t tclass) { context_struct_t *ocontext; context_struct_t *ncontext; context_struct_t *tcontext; class_datum_t *tclass_datum; constraint_node_t *constraint; if (!tclass || tclass > policydb->p_classes.nprim) { ERR(NULL, "unrecognized class %d", tclass); return -EINVAL; } tclass_datum = policydb->class_val_to_struct[tclass - 1]; ocontext = sepol_sidtab_search(sidtab, oldsid); if (!ocontext) { ERR(NULL, "unrecognized SID %d", oldsid); return -EINVAL; } ncontext = sepol_sidtab_search(sidtab, newsid); if (!ncontext) { ERR(NULL, "unrecognized SID %d", newsid); return -EINVAL; } tcontext = sepol_sidtab_search(sidtab, tasksid); if (!tcontext) { ERR(NULL, "unrecognized SID %d", tasksid); return -EINVAL; } constraint = tclass_datum->validatetrans; while (constraint) { if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext, 0, constraint, NULL, 0)) { return -EPERM; } constraint = constraint->next; } return 0; } /* * sepol_validate_transition_reason_buffer - the reason buffer is realloc'd * in the constraint_expr_eval_reason() function. */ int hidden sepol_validate_transition_reason_buffer(sepol_security_id_t oldsid, sepol_security_id_t newsid, sepol_security_id_t tasksid, sepol_security_class_t tclass, char **reason_buf, unsigned int flags) { context_struct_t *ocontext; context_struct_t *ncontext; context_struct_t *tcontext; class_datum_t *tclass_datum; constraint_node_t *constraint; if (!tclass || tclass > policydb->p_classes.nprim) { ERR(NULL, "unrecognized class %d", tclass); return -EINVAL; } tclass_datum = policydb->class_val_to_struct[tclass - 1]; ocontext = sepol_sidtab_search(sidtab, oldsid); if (!ocontext) { ERR(NULL, "unrecognized SID %d", oldsid); return -EINVAL; } ncontext = sepol_sidtab_search(sidtab, newsid); if (!ncontext) { ERR(NULL, "unrecognized SID %d", newsid); return -EINVAL; } tcontext = sepol_sidtab_search(sidtab, tasksid); if (!tcontext) { ERR(NULL, "unrecognized SID %d", tasksid); return -EINVAL; } /* * Set the buffer to NULL as mls/validatetrans may not be processed. * If a buffer is required, then the routines in * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE * chunks (as it gets called for each mls/validatetrans processed). * We just make sure these start from zero. */ *reason_buf = NULL; reason_buf_used = 0; reason_buf_len = 0; constraint = tclass_datum->validatetrans; while (constraint) { if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext, tclass, constraint, reason_buf, flags)) { return -EPERM; } constraint = constraint->next; } return 0; } int hidden sepol_compute_av_reason(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, sepol_access_vector_t requested, struct sepol_av_decision *avd, unsigned int *reason) { context_struct_t *scontext = 0, *tcontext = 0; int rc = 0; scontext = sepol_sidtab_search(sidtab, ssid); if (!scontext) { ERR(NULL, "unrecognized SID %d", ssid); rc = -EINVAL; goto out; } tcontext = sepol_sidtab_search(sidtab, tsid); if (!tcontext) { ERR(NULL, "unrecognized SID %d", tsid); rc = -EINVAL; goto out; } rc = context_struct_compute_av(scontext, tcontext, tclass, requested, avd, reason, NULL, 0); out: return rc; } /* * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd * in the constraint_expr_eval_reason() function. */ int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, sepol_access_vector_t requested, struct sepol_av_decision *avd, unsigned int *reason, char **reason_buf, unsigned int flags) { context_struct_t *scontext = 0, *tcontext = 0; int rc = 0; scontext = sepol_sidtab_search(sidtab, ssid); if (!scontext) { ERR(NULL, "unrecognized SID %d", ssid); rc = -EINVAL; goto out; } tcontext = sepol_sidtab_search(sidtab, tsid); if (!tcontext) { ERR(NULL, "unrecognized SID %d", tsid); rc = -EINVAL; goto out; } /* * Set the buffer to NULL as constraints may not be processed. * If a buffer is required, then the routines in * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE * chunks (as it gets called for each constraint processed). * We just make sure these start from zero. */ *reason_buf = NULL; reason_buf_used = 0; reason_buf_len = 0; rc = context_struct_compute_av(scontext, tcontext, tclass, requested, avd, reason, reason_buf, flags); out: return rc; } int hidden sepol_compute_av(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, sepol_access_vector_t requested, struct sepol_av_decision *avd) { unsigned int reason = 0; return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd, &reason); } /* * Return a class ID associated with the class string specified by * class_name. */ int hidden sepol_string_to_security_class(const char *class_name, sepol_security_class_t *tclass) { char *class = NULL; sepol_security_class_t id; for (id = 1;; id++) { class = policydb->p_class_val_to_name[id - 1]; if (class == NULL) { ERR(NULL, "could not convert %s to class id", class_name); return STATUS_ERR; } if ((strcmp(class, class_name)) == 0) { *tclass = id; return STATUS_SUCCESS; } } } /* * Return access vector bit associated with the class ID and permission * string. */ int hidden sepol_string_to_av_perm(sepol_security_class_t tclass, const char *perm_name, sepol_access_vector_t *av) { class_datum_t *tclass_datum; perm_datum_t *perm_datum; if (!tclass || tclass > policydb->p_classes.nprim) { ERR(NULL, "unrecognized class %d", tclass); return -EINVAL; } tclass_datum = policydb->class_val_to_struct[tclass - 1]; /* Check for unique perms then the common ones (if any) */ perm_datum = (perm_datum_t *) hashtab_search(tclass_datum->permissions.table, (hashtab_key_t)perm_name); if (perm_datum != NULL) { *av = 0x1 << (perm_datum->s.value - 1); return STATUS_SUCCESS; } if (tclass_datum->comdatum == NULL) goto out; perm_datum = (perm_datum_t *) hashtab_search(tclass_datum->comdatum->permissions.table, (hashtab_key_t)perm_name); if (perm_datum != NULL) { *av = 0x1 << (perm_datum->s.value - 1); return STATUS_SUCCESS; } out: ERR(NULL, "could not convert %s to av bit", perm_name); return STATUS_ERR; } /* * Write the security context string representation of * the context associated with `sid' into a dynamically * allocated string of the correct size. Set `*scontext' * to point to this string and set `*scontext_len' to * the length of the string. */ int hidden sepol_sid_to_context(sepol_security_id_t sid, sepol_security_context_t * scontext, size_t * scontext_len) { context_struct_t *context; int rc = 0; context = sepol_sidtab_search(sidtab, sid); if (!context) { ERR(NULL, "unrecognized SID %d", sid); rc = -EINVAL; goto out; } rc = context_to_string(NULL, policydb, context, scontext, scontext_len); out: return rc; } /* * Return a SID associated with the security context that * has the string representation specified by `scontext'. */ int hidden sepol_context_to_sid(const sepol_security_context_t scontext, size_t scontext_len, sepol_security_id_t * sid) { context_struct_t *context = NULL; /* First, create the context */ if (context_from_string(NULL, policydb, &context, scontext, scontext_len) < 0) goto err; /* Obtain the new sid */ if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0)) goto err; context_destroy(context); free(context); return STATUS_SUCCESS; err: if (context) { context_destroy(context); free(context); } ERR(NULL, "could not convert %s to sid", scontext); return STATUS_ERR; } static inline int compute_sid_handle_invalid_context(context_struct_t * scontext, context_struct_t * tcontext, sepol_security_class_t tclass, context_struct_t * newcontext) { if (selinux_enforcing) { return -EACCES; } else { sepol_security_context_t s, t, n; size_t slen, tlen, nlen; context_to_string(NULL, policydb, scontext, &s, &slen); context_to_string(NULL, policydb, tcontext, &t, &tlen); context_to_string(NULL, policydb, newcontext, &n, &nlen); ERR(NULL, "invalid context %s for " "scontext=%s tcontext=%s tclass=%s", n, s, t, policydb->p_class_val_to_name[tclass - 1]); free(s); free(t); free(n); return 0; } } static int sepol_compute_sid(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, uint32_t specified, sepol_security_id_t * out_sid) { context_struct_t *scontext = 0, *tcontext = 0, newcontext; struct role_trans *roletr = 0; avtab_key_t avkey; avtab_datum_t *avdatum; avtab_ptr_t node; int rc = 0; scontext = sepol_sidtab_search(sidtab, ssid); if (!scontext) { ERR(NULL, "unrecognized SID %d", ssid); rc = -EINVAL; goto out; } tcontext = sepol_sidtab_search(sidtab, tsid); if (!tcontext) { ERR(NULL, "unrecognized SID %d", tsid); rc = -EINVAL; goto out; } context_init(&newcontext); /* Set the user identity. */ switch (specified) { case AVTAB_TRANSITION: case AVTAB_CHANGE: /* Use the process user identity. */ newcontext.user = scontext->user; break; case AVTAB_MEMBER: /* Use the related object owner. */ newcontext.user = tcontext->user; break; } /* Set the role and type to default values. */ switch (tclass) { case SECCLASS_PROCESS: /* Use the current role and type of process. */ newcontext.role = scontext->role; newcontext.type = scontext->type; break; default: /* Use the well-defined object role. */ newcontext.role = OBJECT_R_VAL; /* Use the type of the related object. */ newcontext.type = tcontext->type; } /* Look for a type transition/member/change rule. */ avkey.source_type = scontext->type; avkey.target_type = tcontext->type; avkey.target_class = tclass; avkey.specified = specified; avdatum = avtab_search(&policydb->te_avtab, &avkey); /* If no permanent rule, also check for enabled conditional rules */ if (!avdatum) { node = avtab_search_node(&policydb->te_cond_avtab, &avkey); for (; node != NULL; node = avtab_search_node_next(node, specified)) { if (node->key.specified & AVTAB_ENABLED) { avdatum = &node->datum; break; } } } if (avdatum) { /* Use the type from the type transition/member/change rule. */ newcontext.type = avdatum->data; } /* Check for class-specific changes. */ switch (tclass) { case SECCLASS_PROCESS: if (specified & AVTAB_TRANSITION) { /* Look for a role transition rule. */ for (roletr = policydb->role_tr; roletr; roletr = roletr->next) { if (roletr->role == scontext->role && roletr->type == tcontext->type) { /* Use the role transition rule. */ newcontext.role = roletr->new_role; break; } } } break; default: break; } /* Set the MLS attributes. This is done last because it may allocate memory. */ rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified, &newcontext); if (rc) goto out; /* Check the validity of the context. */ if (!policydb_context_isvalid(policydb, &newcontext)) { rc = compute_sid_handle_invalid_context(scontext, tcontext, tclass, &newcontext); if (rc) goto out; } /* Obtain the sid for the context. */ rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid); out: context_destroy(&newcontext); return rc; } /* * Compute a SID to use for labeling a new object in the * class `tclass' based on a SID pair. */ int hidden sepol_transition_sid(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, sepol_security_id_t * out_sid) { return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid); } /* * Compute a SID to use when selecting a member of a * polyinstantiated object of class `tclass' based on * a SID pair. */ int hidden sepol_member_sid(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, sepol_security_id_t * out_sid) { return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid); } /* * Compute a SID to use for relabeling an object in the * class `tclass' based on a SID pair. */ int hidden sepol_change_sid(sepol_security_id_t ssid, sepol_security_id_t tsid, sepol_security_class_t tclass, sepol_security_id_t * out_sid) { return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid); } /* * Verify that each permission that is defined under the * existing policy is still defined with the same value * in the new policy. */ static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p) { hashtab_t h; perm_datum_t *perdatum, *perdatum2; h = (hashtab_t) p; perdatum = (perm_datum_t *) datum; perdatum2 = (perm_datum_t *) hashtab_search(h, key); if (!perdatum2) { ERR(NULL, "permission %s disappeared", key); return -1; } if (perdatum->s.value != perdatum2->s.value) { ERR(NULL, "the value of permissions %s changed", key); return -1; } return 0; } /* * Verify that each class that is defined under the * existing policy is still defined with the same * attributes in the new policy. */ static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p) { policydb_t *newp; class_datum_t *cladatum, *cladatum2; newp = (policydb_t *) p; cladatum = (class_datum_t *) datum; cladatum2 = (class_datum_t *) hashtab_search(newp->p_classes.table, key); if (!cladatum2) { ERR(NULL, "class %s disappeared", key); return -1; } if (cladatum->s.value != cladatum2->s.value) { ERR(NULL, "the value of class %s changed", key); return -1; } if ((cladatum->comdatum && !cladatum2->comdatum) || (!cladatum->comdatum && cladatum2->comdatum)) { ERR(NULL, "the inherits clause for the access " "vector definition for class %s changed", key); return -1; } if (cladatum->comdatum) { if (hashtab_map (cladatum->comdatum->permissions.table, validate_perm, cladatum2->comdatum->permissions.table)) { ERR(NULL, " in the access vector definition " "for class %s\n", key); return -1; } } if (hashtab_map(cladatum->permissions.table, validate_perm, cladatum2->permissions.table)) { ERR(NULL, " in access vector definition for class %s", key); return -1; } return 0; } /* Clone the SID into the new SID table. */ static int clone_sid(sepol_security_id_t sid, context_struct_t * context, void *arg) { sidtab_t *s = arg; return sepol_sidtab_insert(s, sid, context); } static inline int convert_context_handle_invalid_context(context_struct_t * context) { if (selinux_enforcing) { return -EINVAL; } else { sepol_security_context_t s; size_t len; context_to_string(NULL, policydb, context, &s, &len); ERR(NULL, "context %s is invalid", s); free(s); return 0; } } typedef struct { policydb_t *oldp; policydb_t *newp; } convert_context_args_t; /* * Convert the values in the security context * structure `c' from the values specified * in the policy `p->oldp' to the values specified * in the policy `p->newp'. Verify that the * context is valid under the new policy. */ static int convert_context(sepol_security_id_t key __attribute__ ((unused)), context_struct_t * c, void *p) { convert_context_args_t *args; context_struct_t oldc; role_datum_t *role; type_datum_t *typdatum; user_datum_t *usrdatum; sepol_security_context_t s; size_t len; int rc = -EINVAL; args = (convert_context_args_t *) p; if (context_cpy(&oldc, c)) return -ENOMEM; /* Convert the user. */ usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table, args->oldp-> p_user_val_to_name[c->user - 1]); if (!usrdatum) { goto bad; } c->user = usrdatum->s.value; /* Convert the role. */ role = (role_datum_t *) hashtab_search(args->newp->p_roles.table, args->oldp-> p_role_val_to_name[c->role - 1]); if (!role) { goto bad; } c->role = role->s.value; /* Convert the type. */ typdatum = (type_datum_t *) hashtab_search(args->newp->p_types.table, args->oldp->p_type_val_to_name[c->type - 1]); if (!typdatum) { goto bad; } c->type = typdatum->s.value; rc = mls_convert_context(args->oldp, args->newp, c); if (rc) goto bad; /* Check the validity of the new context. */ if (!policydb_context_isvalid(args->newp, c)) { rc = convert_context_handle_invalid_context(&oldc); if (rc) goto bad; } context_destroy(&oldc); return 0; bad: context_to_string(NULL, policydb, &oldc, &s, &len); context_destroy(&oldc); ERR(NULL, "invalidating context %s", s); free(s); return rc; } /* Reading from a policy "file". */ int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes) { size_t nread; switch (fp->type) { case PF_USE_STDIO: nread = fread(buf, bytes, 1, fp->fp); if (nread != 1) return -1; break; case PF_USE_MEMORY: if (bytes > fp->len) return -1; memcpy(buf, fp->data, bytes); fp->data += bytes; fp->len -= bytes; break; default: return -1; } return 0; } size_t hidden put_entry(const void *ptr, size_t size, size_t n, struct policy_file *fp) { size_t bytes = size * n; switch (fp->type) { case PF_USE_STDIO: return fwrite(ptr, size, n, fp->fp); case PF_USE_MEMORY: if (bytes > fp->len) { errno = ENOSPC; return 0; } memcpy(fp->data, ptr, bytes); fp->data += bytes; fp->len -= bytes; return n; case PF_LEN: fp->len += bytes; return n; default: return 0; } return 0; } /* * Read a new set of configuration data from * a policy database binary representation file. * * Verify that each class that is defined under the * existing policy is still defined with the same * attributes in the new policy. * * Convert the context structures in the SID table to the * new representation and verify that all entries * in the SID table are valid under the new policy. * * Change the active policy database to use the new * configuration data. * * Reset the access vector cache. */ int hidden sepol_load_policy(void *data, size_t len) { policydb_t oldpolicydb, newpolicydb; sidtab_t oldsidtab, newsidtab; convert_context_args_t args; int rc = 0; struct policy_file file, *fp; policy_file_init(&file); file.type = PF_USE_MEMORY; file.data = data; file.len = len; fp = &file; if (policydb_init(&newpolicydb)) return -ENOMEM; if (policydb_read(&newpolicydb, fp, 1)) { policydb_destroy(&mypolicydb); return -EINVAL; } sepol_sidtab_init(&newsidtab); /* Verify that the existing classes did not change. */ if (hashtab_map (policydb->p_classes.table, validate_class, &newpolicydb)) { ERR(NULL, "the definition of an existing class changed"); rc = -EINVAL; goto err; } /* Clone the SID table. */ sepol_sidtab_shutdown(sidtab); if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) { rc = -ENOMEM; goto err; } /* Convert the internal representations of contexts in the new SID table and remove invalid SIDs. */ args.oldp = policydb; args.newp = &newpolicydb; sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args); /* Save the old policydb and SID table to free later. */ memcpy(&oldpolicydb, policydb, sizeof *policydb); sepol_sidtab_set(&oldsidtab, sidtab); /* Install the new policydb and SID table. */ memcpy(policydb, &newpolicydb, sizeof *policydb); sepol_sidtab_set(sidtab, &newsidtab); /* Free the old policydb and SID table. */ policydb_destroy(&oldpolicydb); sepol_sidtab_destroy(&oldsidtab); return 0; err: sepol_sidtab_destroy(&newsidtab); policydb_destroy(&newpolicydb); return rc; } /* * Return the SIDs to use for an unlabeled file system * that is being mounted from the device with the * the kdevname `name'. The `fs_sid' SID is returned for * the file system and the `file_sid' SID is returned * for all files within that file system. */ int hidden sepol_fs_sid(char *name, sepol_security_id_t * fs_sid, sepol_security_id_t * file_sid) { int rc = 0; ocontext_t *c; c = policydb->ocontexts[OCON_FS]; while (c) { if (strcmp(c->u.name, name) == 0) break; c = c->next; } if (c) { if (!c->sid[0] || !c->sid[1]) { rc = sepol_sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); if (rc) goto out; rc = sepol_sidtab_context_to_sid(sidtab, &c->context[1], &c->sid[1]); if (rc) goto out; } *fs_sid = c->sid[0]; *file_sid = c->sid[1]; } else { *fs_sid = SECINITSID_FS; *file_sid = SECINITSID_FILE; } out: return rc; } /* * Return the SID of the port specified by * `domain', `type', `protocol', and `port'. */ int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)), uint16_t type __attribute__ ((unused)), uint8_t protocol, uint16_t port, sepol_security_id_t * out_sid) { ocontext_t *c; int rc = 0; c = policydb->ocontexts[OCON_PORT]; while (c) { if (c->u.port.protocol == protocol && c->u.port.low_port <= port && c->u.port.high_port >= port) break; c = c->next; } if (c) { if (!c->sid[0]) { rc = sepol_sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); if (rc) goto out; } *out_sid = c->sid[0]; } else { *out_sid = SECINITSID_PORT; } out: return rc; } /* * Return the SIDs to use for a network interface * with the name `name'. The `if_sid' SID is returned for * the interface and the `msg_sid' SID is returned as * the default SID for messages received on the * interface. */ int hidden sepol_netif_sid(char *name, sepol_security_id_t * if_sid, sepol_security_id_t * msg_sid) { int rc = 0; ocontext_t *c; c = policydb->ocontexts[OCON_NETIF]; while (c) { if (strcmp(name, c->u.name) == 0) break; c = c->next; } if (c) { if (!c->sid[0] || !c->sid[1]) { rc = sepol_sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); if (rc) goto out; rc = sepol_sidtab_context_to_sid(sidtab, &c->context[1], &c->sid[1]); if (rc) goto out; } *if_sid = c->sid[0]; *msg_sid = c->sid[1]; } else { *if_sid = SECINITSID_NETIF; *msg_sid = SECINITSID_NETMSG; } out: return rc; } static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr, uint32_t * mask) { int i, fail = 0; for (i = 0; i < 4; i++) if (addr[i] != (input[i] & mask[i])) { fail = 1; break; } return !fail; } /* * Return the SID of the node specified by the address * `addrp' where `addrlen' is the length of the address * in bytes and `domain' is the communications domain or * address family in which the address should be interpreted. */ int hidden sepol_node_sid(uint16_t domain, void *addrp, size_t addrlen, sepol_security_id_t * out_sid) { int rc = 0; ocontext_t *c; switch (domain) { case AF_INET:{ uint32_t addr; if (addrlen != sizeof(uint32_t)) { rc = -EINVAL; goto out; } addr = *((uint32_t *) addrp); c = policydb->ocontexts[OCON_NODE]; while (c) { if (c->u.node.addr == (addr & c->u.node.mask)) break; c = c->next; } break; } case AF_INET6: if (addrlen != sizeof(uint64_t) * 2) { rc = -EINVAL; goto out; } c = policydb->ocontexts[OCON_NODE6]; while (c) { if (match_ipv6_addrmask(addrp, c->u.node6.addr, c->u.node6.mask)) break; c = c->next; } break; default: *out_sid = SECINITSID_NODE; goto out; } if (c) { if (!c->sid[0]) { rc = sepol_sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); if (rc) goto out; } *out_sid = c->sid[0]; } else { *out_sid = SECINITSID_NODE; } out: return rc; } /* * Generate the set of SIDs for legal security contexts * for a given user that can be reached by `fromsid'. * Set `*sids' to point to a dynamically allocated * array containing the set of SIDs. Set `*nel' to the * number of elements in the array. */ #define SIDS_NEL 25 int hidden sepol_get_user_sids(sepol_security_id_t fromsid, char *username, sepol_security_id_t ** sids, uint32_t * nel) { context_struct_t *fromcon, usercon; sepol_security_id_t *mysids, *mysids2, sid; uint32_t mynel = 0, maxnel = SIDS_NEL; user_datum_t *user; role_datum_t *role; struct sepol_av_decision avd; int rc = 0; unsigned int i, j, reason; ebitmap_node_t *rnode, *tnode; fromcon = sepol_sidtab_search(sidtab, fromsid); if (!fromcon) { rc = -EINVAL; goto out; } user = (user_datum_t *) hashtab_search(policydb->p_users.table, username); if (!user) { rc = -EINVAL; goto out; } usercon.user = user->s.value; mysids = malloc(maxnel * sizeof(sepol_security_id_t)); if (!mysids) { rc = -ENOMEM; goto out; } memset(mysids, 0, maxnel * sizeof(sepol_security_id_t)); ebitmap_for_each_bit(&user->roles.roles, rnode, i) { if (!ebitmap_node_get_bit(rnode, i)) continue; role = policydb->role_val_to_struct[i]; usercon.role = i + 1; ebitmap_for_each_bit(&role->types.types, tnode, j) { if (!ebitmap_node_get_bit(tnode, j)) continue; usercon.type = j + 1; if (usercon.type == fromcon->type) continue; if (mls_setup_user_range (fromcon, user, &usercon, policydb->mls)) continue; rc = context_struct_compute_av(fromcon, &usercon, SECCLASS_PROCESS, PROCESS__TRANSITION, &avd, &reason, NULL, 0); if (rc || !(avd.allowed & PROCESS__TRANSITION)) continue; rc = sepol_sidtab_context_to_sid(sidtab, &usercon, &sid); if (rc) { free(mysids); goto out; } if (mynel < maxnel) { mysids[mynel++] = sid; } else { maxnel += SIDS_NEL; mysids2 = malloc(maxnel * sizeof(sepol_security_id_t)); if (!mysids2) { rc = -ENOMEM; free(mysids); goto out; } memset(mysids2, 0, maxnel * sizeof(sepol_security_id_t)); memcpy(mysids2, mysids, mynel * sizeof(sepol_security_id_t)); free(mysids); mysids = mysids2; mysids[mynel++] = sid; } } } *sids = mysids; *nel = mynel; out: return rc; } /* * Return the SID to use for a file in a filesystem * that cannot support a persistent label mapping or use another * fixed labeling behavior like transition SIDs or task SIDs. */ int hidden sepol_genfs_sid(const char *fstype, const char *path, sepol_security_class_t sclass, sepol_security_id_t * sid) { size_t len; genfs_t *genfs; ocontext_t *c; int rc = 0, cmp = 0; for (genfs = policydb->genfs; genfs; genfs = genfs->next) { cmp = strcmp(fstype, genfs->fstype); if (cmp <= 0) break; } if (!genfs || cmp) { *sid = SECINITSID_UNLABELED; rc = -ENOENT; goto out; } for (c = genfs->head; c; c = c->next) { len = strlen(c->u.name); if ((!c->v.sclass || sclass == c->v.sclass) && (strncmp(c->u.name, path, len) == 0)) break; } if (!c) { *sid = SECINITSID_UNLABELED; rc = -ENOENT; goto out; } if (!c->sid[0]) { rc = sepol_sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); if (rc) goto out; } *sid = c->sid[0]; out: return rc; } int hidden sepol_fs_use(const char *fstype, unsigned int *behavior, sepol_security_id_t * sid) { int rc = 0; ocontext_t *c; c = policydb->ocontexts[OCON_FSUSE]; while (c) { if (strcmp(fstype, c->u.name) == 0) break; c = c->next; } if (c) { *behavior = c->v.behavior; if (!c->sid[0]) { rc = sepol_sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]); if (rc) goto out; } *sid = c->sid[0]; } else { rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid); if (rc) { *behavior = SECURITY_FS_USE_NONE; rc = 0; } else { *behavior = SECURITY_FS_USE_GENFS; } } out: return rc; } /* FLASK */