/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkPerlinNoiseShader.h" #include "SkColorFilter.h" #include "SkReadBuffer.h" #include "SkWriteBuffer.h" #include "SkShader.h" #include "SkUnPreMultiply.h" #include "SkString.h" #if SK_SUPPORT_GPU #include "GrContext.h" #include "GrCoordTransform.h" #include "GrInvariantOutput.h" #include "SkGr.h" #include "effects/GrConstColorProcessor.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #endif static const int kBlockSize = 256; static const int kBlockMask = kBlockSize - 1; static const int kPerlinNoise = 4096; static const int kRandMaximum = SK_MaxS32; // 2**31 - 1 namespace { // noiseValue is the color component's value (or color) // limitValue is the maximum perlin noise array index value allowed // newValue is the current noise dimension (either width or height) inline int checkNoise(int noiseValue, int limitValue, int newValue) { // If the noise value would bring us out of bounds of the current noise array while we are // stiching noise tiles together, wrap the noise around the current dimension of the noise to // stay within the array bounds in a continuous fashion (so that tiling lines are not visible) if (noiseValue >= limitValue) { noiseValue -= newValue; } return noiseValue; } inline SkScalar smoothCurve(SkScalar t) { static const SkScalar SK_Scalar3 = 3.0f; // returns t * t * (3 - 2 * t) return SkScalarMul(SkScalarSquare(t), SK_Scalar3 - 2 * t); } } // end namespace struct SkPerlinNoiseShader::StitchData { StitchData() : fWidth(0) , fWrapX(0) , fHeight(0) , fWrapY(0) {} bool operator==(const StitchData& other) const { return fWidth == other.fWidth && fWrapX == other.fWrapX && fHeight == other.fHeight && fWrapY == other.fWrapY; } int fWidth; // How much to subtract to wrap for stitching. int fWrapX; // Minimum value to wrap. int fHeight; int fWrapY; }; struct SkPerlinNoiseShader::PaintingData { PaintingData(const SkISize& tileSize, SkScalar seed, SkScalar baseFrequencyX, SkScalar baseFrequencyY, const SkMatrix& matrix) { SkVector vec[2] = { { SkScalarInvert(baseFrequencyX), SkScalarInvert(baseFrequencyY) }, { SkIntToScalar(tileSize.fWidth), SkIntToScalar(tileSize.fHeight) }, }; matrix.mapVectors(vec, 2); fBaseFrequency.set(SkScalarInvert(vec[0].fX), SkScalarInvert(vec[0].fY)); fTileSize.set(SkScalarRoundToInt(vec[1].fX), SkScalarRoundToInt(vec[1].fY)); this->init(seed); if (!fTileSize.isEmpty()) { this->stitch(); } #if SK_SUPPORT_GPU fPermutationsBitmap.setInfo(SkImageInfo::MakeA8(kBlockSize, 1)); fPermutationsBitmap.setPixels(fLatticeSelector); fNoiseBitmap.setInfo(SkImageInfo::MakeN32Premul(kBlockSize, 4)); fNoiseBitmap.setPixels(fNoise[0][0]); #endif } int fSeed; uint8_t fLatticeSelector[kBlockSize]; uint16_t fNoise[4][kBlockSize][2]; SkPoint fGradient[4][kBlockSize]; SkISize fTileSize; SkVector fBaseFrequency; StitchData fStitchDataInit; private: #if SK_SUPPORT_GPU SkBitmap fPermutationsBitmap; SkBitmap fNoiseBitmap; #endif inline int random() { static const int gRandAmplitude = 16807; // 7**5; primitive root of m static const int gRandQ = 127773; // m / a static const int gRandR = 2836; // m % a int result = gRandAmplitude * (fSeed % gRandQ) - gRandR * (fSeed / gRandQ); if (result <= 0) result += kRandMaximum; fSeed = result; return result; } // Only called once. Could be part of the constructor. void init(SkScalar seed) { static const SkScalar gInvBlockSizef = SkScalarInvert(SkIntToScalar(kBlockSize)); // According to the SVG spec, we must truncate (not round) the seed value. fSeed = SkScalarTruncToInt(seed); // The seed value clamp to the range [1, kRandMaximum - 1]. if (fSeed <= 0) { fSeed = -(fSeed % (kRandMaximum - 1)) + 1; } if (fSeed > kRandMaximum - 1) { fSeed = kRandMaximum - 1; } for (int channel = 0; channel < 4; ++channel) { for (int i = 0; i < kBlockSize; ++i) { fLatticeSelector[i] = i; fNoise[channel][i][0] = (random() % (2 * kBlockSize)); fNoise[channel][i][1] = (random() % (2 * kBlockSize)); } } for (int i = kBlockSize - 1; i > 0; --i) { int k = fLatticeSelector[i]; int j = random() % kBlockSize; SkASSERT(j >= 0); SkASSERT(j < kBlockSize); fLatticeSelector[i] = fLatticeSelector[j]; fLatticeSelector[j] = k; } // Perform the permutations now { // Copy noise data uint16_t noise[4][kBlockSize][2]; for (int i = 0; i < kBlockSize; ++i) { for (int channel = 0; channel < 4; ++channel) { for (int j = 0; j < 2; ++j) { noise[channel][i][j] = fNoise[channel][i][j]; } } } // Do permutations on noise data for (int i = 0; i < kBlockSize; ++i) { for (int channel = 0; channel < 4; ++channel) { for (int j = 0; j < 2; ++j) { fNoise[channel][i][j] = noise[channel][fLatticeSelector[i]][j]; } } } } // Half of the largest possible value for 16 bit unsigned int static const SkScalar gHalfMax16bits = 32767.5f; // Compute gradients from permutated noise data for (int channel = 0; channel < 4; ++channel) { for (int i = 0; i < kBlockSize; ++i) { fGradient[channel][i] = SkPoint::Make( SkScalarMul(SkIntToScalar(fNoise[channel][i][0] - kBlockSize), gInvBlockSizef), SkScalarMul(SkIntToScalar(fNoise[channel][i][1] - kBlockSize), gInvBlockSizef)); fGradient[channel][i].normalize(); // Put the normalized gradient back into the noise data fNoise[channel][i][0] = SkScalarRoundToInt(SkScalarMul( fGradient[channel][i].fX + SK_Scalar1, gHalfMax16bits)); fNoise[channel][i][1] = SkScalarRoundToInt(SkScalarMul( fGradient[channel][i].fY + SK_Scalar1, gHalfMax16bits)); } } } // Only called once. Could be part of the constructor. void stitch() { SkScalar tileWidth = SkIntToScalar(fTileSize.width()); SkScalar tileHeight = SkIntToScalar(fTileSize.height()); SkASSERT(tileWidth > 0 && tileHeight > 0); // When stitching tiled turbulence, the frequencies must be adjusted // so that the tile borders will be continuous. if (fBaseFrequency.fX) { SkScalar lowFrequencx = SkScalarFloorToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; SkScalar highFrequencx = SkScalarCeilToScalar(tileWidth * fBaseFrequency.fX) / tileWidth; // BaseFrequency should be non-negative according to the standard. if (fBaseFrequency.fX / lowFrequencx < highFrequencx / fBaseFrequency.fX) { fBaseFrequency.fX = lowFrequencx; } else { fBaseFrequency.fX = highFrequencx; } } if (fBaseFrequency.fY) { SkScalar lowFrequency = SkScalarFloorToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; SkScalar highFrequency = SkScalarCeilToScalar(tileHeight * fBaseFrequency.fY) / tileHeight; if (fBaseFrequency.fY / lowFrequency < highFrequency / fBaseFrequency.fY) { fBaseFrequency.fY = lowFrequency; } else { fBaseFrequency.fY = highFrequency; } } // Set up TurbulenceInitial stitch values. fStitchDataInit.fWidth = SkScalarRoundToInt(tileWidth * fBaseFrequency.fX); fStitchDataInit.fWrapX = kPerlinNoise + fStitchDataInit.fWidth; fStitchDataInit.fHeight = SkScalarRoundToInt(tileHeight * fBaseFrequency.fY); fStitchDataInit.fWrapY = kPerlinNoise + fStitchDataInit.fHeight; } public: #if SK_SUPPORT_GPU const SkBitmap& getPermutationsBitmap() const { return fPermutationsBitmap; } const SkBitmap& getNoiseBitmap() const { return fNoiseBitmap; } #endif }; SkShader* SkPerlinNoiseShader::CreateFractalNoise(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) { return new SkPerlinNoiseShader(kFractalNoise_Type, baseFrequencyX, baseFrequencyY, numOctaves, seed, tileSize); } SkShader* SkPerlinNoiseShader::CreateTurbulence(SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) { return new SkPerlinNoiseShader(kTurbulence_Type, baseFrequencyX, baseFrequencyY, numOctaves, seed, tileSize); } SkPerlinNoiseShader::SkPerlinNoiseShader(SkPerlinNoiseShader::Type type, SkScalar baseFrequencyX, SkScalar baseFrequencyY, int numOctaves, SkScalar seed, const SkISize* tileSize) : fType(type) , fBaseFrequencyX(baseFrequencyX) , fBaseFrequencyY(baseFrequencyY) , fNumOctaves(numOctaves > 255 ? 255 : numOctaves/*[0,255] octaves allowed*/) , fSeed(seed) , fTileSize(nullptr == tileSize ? SkISize::Make(0, 0) : *tileSize) , fStitchTiles(!fTileSize.isEmpty()) { SkASSERT(numOctaves >= 0 && numOctaves < 256); } SkPerlinNoiseShader::~SkPerlinNoiseShader() { } SkFlattenable* SkPerlinNoiseShader::CreateProc(SkReadBuffer& buffer) { Type type = (Type)buffer.readInt(); SkScalar freqX = buffer.readScalar(); SkScalar freqY = buffer.readScalar(); int octaves = buffer.readInt(); SkScalar seed = buffer.readScalar(); SkISize tileSize; tileSize.fWidth = buffer.readInt(); tileSize.fHeight = buffer.readInt(); switch (type) { case kFractalNoise_Type: return SkPerlinNoiseShader::CreateFractalNoise(freqX, freqY, octaves, seed, &tileSize); case kTurbulence_Type: return SkPerlinNoiseShader::CreateTubulence(freqX, freqY, octaves, seed, &tileSize); default: return nullptr; } } void SkPerlinNoiseShader::flatten(SkWriteBuffer& buffer) const { buffer.writeInt((int) fType); buffer.writeScalar(fBaseFrequencyX); buffer.writeScalar(fBaseFrequencyY); buffer.writeInt(fNumOctaves); buffer.writeScalar(fSeed); buffer.writeInt(fTileSize.fWidth); buffer.writeInt(fTileSize.fHeight); } SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::noise2D( int channel, const StitchData& stitchData, const SkPoint& noiseVector) const { struct Noise { int noisePositionIntegerValue; int nextNoisePositionIntegerValue; SkScalar noisePositionFractionValue; Noise(SkScalar component) { SkScalar position = component + kPerlinNoise; noisePositionIntegerValue = SkScalarFloorToInt(position); noisePositionFractionValue = position - SkIntToScalar(noisePositionIntegerValue); nextNoisePositionIntegerValue = noisePositionIntegerValue + 1; } }; Noise noiseX(noiseVector.x()); Noise noiseY(noiseVector.y()); SkScalar u, v; const SkPerlinNoiseShader& perlinNoiseShader = static_cast(fShader); // If stitching, adjust lattice points accordingly. if (perlinNoiseShader.fStitchTiles) { noiseX.noisePositionIntegerValue = checkNoise(noiseX.noisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); noiseY.noisePositionIntegerValue = checkNoise(noiseY.noisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); noiseX.nextNoisePositionIntegerValue = checkNoise(noiseX.nextNoisePositionIntegerValue, stitchData.fWrapX, stitchData.fWidth); noiseY.nextNoisePositionIntegerValue = checkNoise(noiseY.nextNoisePositionIntegerValue, stitchData.fWrapY, stitchData.fHeight); } noiseX.noisePositionIntegerValue &= kBlockMask; noiseY.noisePositionIntegerValue &= kBlockMask; noiseX.nextNoisePositionIntegerValue &= kBlockMask; noiseY.nextNoisePositionIntegerValue &= kBlockMask; int i = fPaintingData->fLatticeSelector[noiseX.noisePositionIntegerValue]; int j = fPaintingData->fLatticeSelector[noiseX.nextNoisePositionIntegerValue]; int b00 = (i + noiseY.noisePositionIntegerValue) & kBlockMask; int b10 = (j + noiseY.noisePositionIntegerValue) & kBlockMask; int b01 = (i + noiseY.nextNoisePositionIntegerValue) & kBlockMask; int b11 = (j + noiseY.nextNoisePositionIntegerValue) & kBlockMask; SkScalar sx = smoothCurve(noiseX.noisePositionFractionValue); SkScalar sy = smoothCurve(noiseY.noisePositionFractionValue); // This is taken 1:1 from SVG spec: http://www.w3.org/TR/SVG11/filters.html#feTurbulenceElement SkPoint fractionValue = SkPoint::Make(noiseX.noisePositionFractionValue, noiseY.noisePositionFractionValue); // Offset (0,0) u = fPaintingData->fGradient[channel][b00].dot(fractionValue); fractionValue.fX -= SK_Scalar1; // Offset (-1,0) v = fPaintingData->fGradient[channel][b10].dot(fractionValue); SkScalar a = SkScalarInterp(u, v, sx); fractionValue.fY -= SK_Scalar1; // Offset (-1,-1) v = fPaintingData->fGradient[channel][b11].dot(fractionValue); fractionValue.fX = noiseX.noisePositionFractionValue; // Offset (0,-1) u = fPaintingData->fGradient[channel][b01].dot(fractionValue); SkScalar b = SkScalarInterp(u, v, sx); return SkScalarInterp(a, b, sy); } SkScalar SkPerlinNoiseShader::PerlinNoiseShaderContext::calculateTurbulenceValueForPoint( int channel, StitchData& stitchData, const SkPoint& point) const { const SkPerlinNoiseShader& perlinNoiseShader = static_cast(fShader); if (perlinNoiseShader.fStitchTiles) { // Set up TurbulenceInitial stitch values. stitchData = fPaintingData->fStitchDataInit; } SkScalar turbulenceFunctionResult = 0; SkPoint noiseVector(SkPoint::Make(SkScalarMul(point.x(), fPaintingData->fBaseFrequency.fX), SkScalarMul(point.y(), fPaintingData->fBaseFrequency.fY))); SkScalar ratio = SK_Scalar1; for (int octave = 0; octave < perlinNoiseShader.fNumOctaves; ++octave) { SkScalar noise = noise2D(channel, stitchData, noiseVector); SkScalar numer = (perlinNoiseShader.fType == kFractalNoise_Type) ? noise : SkScalarAbs(noise); turbulenceFunctionResult += numer / ratio; noiseVector.fX *= 2; noiseVector.fY *= 2; ratio *= 2; if (perlinNoiseShader.fStitchTiles) { // Update stitch values stitchData.fWidth *= 2; stitchData.fWrapX = stitchData.fWidth + kPerlinNoise; stitchData.fHeight *= 2; stitchData.fWrapY = stitchData.fHeight + kPerlinNoise; } } // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. if (perlinNoiseShader.fType == kFractalNoise_Type) { turbulenceFunctionResult = SkScalarMul(turbulenceFunctionResult, SK_ScalarHalf) + SK_ScalarHalf; } if (channel == 3) { // Scale alpha by paint value turbulenceFunctionResult *= SkIntToScalar(getPaintAlpha()) / 255; } // Clamp result return SkScalarPin(turbulenceFunctionResult, 0, SK_Scalar1); } SkPMColor SkPerlinNoiseShader::PerlinNoiseShaderContext::shade( const SkPoint& point, StitchData& stitchData) const { SkPoint newPoint; fMatrix.mapPoints(&newPoint, &point, 1); newPoint.fX = SkScalarRoundToScalar(newPoint.fX); newPoint.fY = SkScalarRoundToScalar(newPoint.fY); U8CPU rgba[4]; for (int channel = 3; channel >= 0; --channel) { rgba[channel] = SkScalarFloorToInt(255 * calculateTurbulenceValueForPoint(channel, stitchData, newPoint)); } return SkPreMultiplyARGB(rgba[3], rgba[0], rgba[1], rgba[2]); } SkShader::Context* SkPerlinNoiseShader::onCreateContext(const ContextRec& rec, void* storage) const { return new (storage) PerlinNoiseShaderContext(*this, rec); } size_t SkPerlinNoiseShader::contextSize(const ContextRec&) const { return sizeof(PerlinNoiseShaderContext); } SkPerlinNoiseShader::PerlinNoiseShaderContext::PerlinNoiseShaderContext( const SkPerlinNoiseShader& shader, const ContextRec& rec) : INHERITED(shader, rec) { SkMatrix newMatrix = *rec.fMatrix; newMatrix.preConcat(shader.getLocalMatrix()); if (rec.fLocalMatrix) { newMatrix.preConcat(*rec.fLocalMatrix); } // This (1,1) translation is due to WebKit's 1 based coordinates for the noise // (as opposed to 0 based, usually). The same adjustment is in the setData() function. fMatrix.setTranslate(-newMatrix.getTranslateX() + SK_Scalar1, -newMatrix.getTranslateY() + SK_Scalar1); fPaintingData = new PaintingData(shader.fTileSize, shader.fSeed, shader.fBaseFrequencyX, shader.fBaseFrequencyY, newMatrix); } SkPerlinNoiseShader::PerlinNoiseShaderContext::~PerlinNoiseShaderContext() { delete fPaintingData; } void SkPerlinNoiseShader::PerlinNoiseShaderContext::shadeSpan( int x, int y, SkPMColor result[], int count) { SkPoint point = SkPoint::Make(SkIntToScalar(x), SkIntToScalar(y)); StitchData stitchData; for (int i = 0; i < count; ++i) { result[i] = shade(point, stitchData); point.fX += SK_Scalar1; } } ///////////////////////////////////////////////////////////////////// #if SK_SUPPORT_GPU class GrGLPerlinNoise : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fStitchDataUni; GrGLSLProgramDataManager::UniformHandle fBaseFrequencyUni; typedef GrGLSLFragmentProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// class GrPerlinNoiseEffect : public GrFragmentProcessor { public: static GrFragmentProcessor* Create(SkPerlinNoiseShader::Type type, int numOctaves, bool stitchTiles, SkPerlinNoiseShader::PaintingData* paintingData, GrTexture* permutationsTexture, GrTexture* noiseTexture, const SkMatrix& matrix) { return new GrPerlinNoiseEffect(type, numOctaves, stitchTiles, paintingData, permutationsTexture, noiseTexture, matrix); } virtual ~GrPerlinNoiseEffect() { delete fPaintingData; } const char* name() const override { return "PerlinNoise"; } const SkPerlinNoiseShader::StitchData& stitchData() const { return fPaintingData->fStitchDataInit; } SkPerlinNoiseShader::Type type() const { return fType; } bool stitchTiles() const { return fStitchTiles; } const SkVector& baseFrequency() const { return fPaintingData->fBaseFrequency; } int numOctaves() const { return fNumOctaves; } const SkMatrix& matrix() const { return fCoordTransform.getMatrix(); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new GrGLPerlinNoise; } virtual void onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override { GrGLPerlinNoise::GenKey(*this, caps, b); } bool onIsEqual(const GrFragmentProcessor& sBase) const override { const GrPerlinNoiseEffect& s = sBase.cast(); return fType == s.fType && fPaintingData->fBaseFrequency == s.fPaintingData->fBaseFrequency && fNumOctaves == s.fNumOctaves && fStitchTiles == s.fStitchTiles && fPaintingData->fStitchDataInit == s.fPaintingData->fStitchDataInit; } void onComputeInvariantOutput(GrInvariantOutput* inout) const override { inout->setToUnknown(GrInvariantOutput::kWillNot_ReadInput); } GrPerlinNoiseEffect(SkPerlinNoiseShader::Type type, int numOctaves, bool stitchTiles, SkPerlinNoiseShader::PaintingData* paintingData, GrTexture* permutationsTexture, GrTexture* noiseTexture, const SkMatrix& matrix) : fType(type) , fNumOctaves(numOctaves) , fStitchTiles(stitchTiles) , fPermutationsAccess(permutationsTexture) , fNoiseAccess(noiseTexture) , fPaintingData(paintingData) { this->initClassID(); this->addTextureAccess(&fPermutationsAccess); this->addTextureAccess(&fNoiseAccess); fCoordTransform.reset(kLocal_GrCoordSet, matrix); this->addCoordTransform(&fCoordTransform); } GR_DECLARE_FRAGMENT_PROCESSOR_TEST; SkPerlinNoiseShader::Type fType; GrCoordTransform fCoordTransform; int fNumOctaves; bool fStitchTiles; GrTextureAccess fPermutationsAccess; GrTextureAccess fNoiseAccess; SkPerlinNoiseShader::PaintingData *fPaintingData; private: typedef GrFragmentProcessor INHERITED; }; ///////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrPerlinNoiseEffect); const GrFragmentProcessor* GrPerlinNoiseEffect::TestCreate(GrProcessorTestData* d) { int numOctaves = d->fRandom->nextRangeU(2, 10); bool stitchTiles = d->fRandom->nextBool(); SkScalar seed = SkIntToScalar(d->fRandom->nextU()); SkISize tileSize = SkISize::Make(d->fRandom->nextRangeU(4, 4096), d->fRandom->nextRangeU(4, 4096)); SkScalar baseFrequencyX = d->fRandom->nextRangeScalar(0.01f, 0.99f); SkScalar baseFrequencyY = d->fRandom->nextRangeScalar(0.01f, 0.99f); SkAutoTUnref shader(d->fRandom->nextBool() ? SkPerlinNoiseShader::CreateFractalNoise(baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles ? &tileSize : nullptr) : SkPerlinNoiseShader::CreateTurbulence(baseFrequencyX, baseFrequencyY, numOctaves, seed, stitchTiles ? &tileSize : nullptr)); return shader->asFragmentProcessor(d->fContext, GrTest::TestMatrix(d->fRandom), nullptr, kNone_SkFilterQuality); } void GrGLPerlinNoise::emitCode(EmitArgs& args) { const GrPerlinNoiseEffect& pne = args.fFp.cast(); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; SkString vCoords = fragBuilder->ensureFSCoords2D(args.fCoords, 0); fBaseFrequencyUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "baseFrequency"); const char* baseFrequencyUni = uniformHandler->getUniformCStr(fBaseFrequencyUni); const char* stitchDataUni = nullptr; if (pne.stitchTiles()) { fStitchDataUni = uniformHandler->addUniform(kFragment_GrShaderFlag, kVec2f_GrSLType, kDefault_GrSLPrecision, "stitchData"); stitchDataUni = uniformHandler->getUniformCStr(fStitchDataUni); } // There are 4 lines, so the center of each line is 1/8, 3/8, 5/8 and 7/8 const char* chanCoordR = "0.125"; const char* chanCoordG = "0.375"; const char* chanCoordB = "0.625"; const char* chanCoordA = "0.875"; const char* chanCoord = "chanCoord"; const char* stitchData = "stitchData"; const char* ratio = "ratio"; const char* noiseVec = "noiseVec"; const char* noiseSmooth = "noiseSmooth"; const char* floorVal = "floorVal"; const char* fractVal = "fractVal"; const char* uv = "uv"; const char* ab = "ab"; const char* latticeIdx = "latticeIdx"; const char* bcoords = "bcoords"; const char* lattice = "lattice"; const char* inc8bit = "0.00390625"; // 1.0 / 256.0 // This is the math to convert the two 16bit integer packed into rgba 8 bit input into a // [-1,1] vector and perform a dot product between that vector and the provided vector. const char* dotLattice = "dot(((%s.ga + %s.rb * vec2(%s)) * vec2(2.0) - vec2(1.0)), %s);"; // Add noise function static const GrGLSLShaderVar gPerlinNoiseArgs[] = { GrGLSLShaderVar(chanCoord, kFloat_GrSLType), GrGLSLShaderVar(noiseVec, kVec2f_GrSLType) }; static const GrGLSLShaderVar gPerlinNoiseStitchArgs[] = { GrGLSLShaderVar(chanCoord, kFloat_GrSLType), GrGLSLShaderVar(noiseVec, kVec2f_GrSLType), GrGLSLShaderVar(stitchData, kVec2f_GrSLType) }; SkString noiseCode; noiseCode.appendf("\tvec4 %s;\n", floorVal); noiseCode.appendf("\t%s.xy = floor(%s);\n", floorVal, noiseVec); noiseCode.appendf("\t%s.zw = %s.xy + vec2(1.0);\n", floorVal, floorVal); noiseCode.appendf("\tvec2 %s = fract(%s);\n", fractVal, noiseVec); // smooth curve : t * t * (3 - 2 * t) noiseCode.appendf("\n\tvec2 %s = %s * %s * (vec2(3.0) - vec2(2.0) * %s);", noiseSmooth, fractVal, fractVal, fractVal); // Adjust frequencies if we're stitching tiles if (pne.stitchTiles()) { noiseCode.appendf("\n\tif(%s.x >= %s.x) { %s.x -= %s.x; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.y >= %s.y) { %s.y -= %s.y; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.z >= %s.x) { %s.z -= %s.x; }", floorVal, stitchData, floorVal, stitchData); noiseCode.appendf("\n\tif(%s.w >= %s.y) { %s.w -= %s.y; }", floorVal, stitchData, floorVal, stitchData); } // Get texture coordinates and normalize noiseCode.appendf("\n\t%s = fract(floor(mod(%s, 256.0)) / vec4(256.0));\n", floorVal, floorVal); // Get permutation for x { SkString xCoords(""); xCoords.appendf("vec2(%s.x, 0.5)", floorVal); noiseCode.appendf("\n\tvec2 %s;\n\t%s.x = ", latticeIdx, latticeIdx); fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(), kVec2f_GrSLType); noiseCode.append(".r;"); } // Get permutation for x + 1 { SkString xCoords(""); xCoords.appendf("vec2(%s.z, 0.5)", floorVal); noiseCode.appendf("\n\t%s.y = ", latticeIdx); fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[0], xCoords.c_str(), kVec2f_GrSLType); noiseCode.append(".r;"); } #if defined(SK_BUILD_FOR_ANDROID) // Android rounding for Tegra devices, like, for example: Xoom (Tegra 2), Nexus 7 (Tegra 3). // The issue is that colors aren't accurate enough on Tegra devices. For example, if an 8 bit // value of 124 (or 0.486275 here) is entered, we can get a texture value of 123.513725 // (or 0.484368 here). The following rounding operation prevents these precision issues from // affecting the result of the noise by making sure that we only have multiples of 1/255. // (Note that 1/255 is about 0.003921569, which is the value used here). noiseCode.appendf("\n\t%s = floor(%s * vec2(255.0) + vec2(0.5)) * vec2(0.003921569);", latticeIdx, latticeIdx); #endif // Get (x,y) coordinates with the permutated x noiseCode.appendf("\n\tvec4 %s = fract(%s.xyxy + %s.yyww);", bcoords, latticeIdx, floorVal); noiseCode.appendf("\n\n\tvec2 %s;", uv); // Compute u, at offset (0,0) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.x, %s)", bcoords, chanCoord); noiseCode.appendf("\n\tvec4 %s = ", lattice); fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x -= 1.0;", fractVal); // Compute v, at offset (-1,0) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.y, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'a' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\tvec2 %s;", ab); noiseCode.appendf("\n\t%s.x = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); noiseCode.appendf("\n\t%s.y -= 1.0;", fractVal); // Compute v, at offset (-1,-1) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.w, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.y = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } noiseCode.appendf("\n\t%s.x += 1.0;", fractVal); // Compute u, at offset (0,-1) { SkString latticeCoords(""); latticeCoords.appendf("vec2(%s.z, %s)", bcoords, chanCoord); noiseCode.append("\n\tlattice = "); fragBuilder->appendTextureLookup(&noiseCode, args.fSamplers[1], latticeCoords.c_str(), kVec2f_GrSLType); noiseCode.appendf(".bgra;\n\t%s.x = ", uv); noiseCode.appendf(dotLattice, lattice, lattice, inc8bit, fractVal); } // Compute 'b' as a linear interpolation of 'u' and 'v' noiseCode.appendf("\n\t%s.y = mix(%s.x, %s.y, %s.x);", ab, uv, uv, noiseSmooth); // Compute the noise as a linear interpolation of 'a' and 'b' noiseCode.appendf("\n\treturn mix(%s.x, %s.y, %s.y);\n", ab, ab, noiseSmooth); SkString noiseFuncName; if (pne.stitchTiles()) { fragBuilder->emitFunction(kFloat_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseStitchArgs), gPerlinNoiseStitchArgs, noiseCode.c_str(), &noiseFuncName); } else { fragBuilder->emitFunction(kFloat_GrSLType, "perlinnoise", SK_ARRAY_COUNT(gPerlinNoiseArgs), gPerlinNoiseArgs, noiseCode.c_str(), &noiseFuncName); } // There are rounding errors if the floor operation is not performed here fragBuilder->codeAppendf("\n\t\tvec2 %s = floor(%s.xy) * %s;", noiseVec, vCoords.c_str(), baseFrequencyUni); // Clear the color accumulator fragBuilder->codeAppendf("\n\t\t%s = vec4(0.0);", args.fOutputColor); if (pne.stitchTiles()) { // Set up TurbulenceInitial stitch values. fragBuilder->codeAppendf("vec2 %s = %s;", stitchData, stitchDataUni); } fragBuilder->codeAppendf("float %s = 1.0;", ratio); // Loop over all octaves fragBuilder->codeAppendf("for (int octave = 0; octave < %d; ++octave) {", pne.numOctaves()); fragBuilder->codeAppendf("%s += ", args.fOutputColor); if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) { fragBuilder->codeAppend("abs("); } if (pne.stitchTiles()) { fragBuilder->codeAppendf( "vec4(\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s)," "\n\t\t\t\t%s(%s, %s, %s),\n\t\t\t\t%s(%s, %s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordG, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordB, noiseVec, stitchData, noiseFuncName.c_str(), chanCoordA, noiseVec, stitchData); } else { fragBuilder->codeAppendf( "vec4(\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s)," "\n\t\t\t\t%s(%s, %s),\n\t\t\t\t%s(%s, %s))", noiseFuncName.c_str(), chanCoordR, noiseVec, noiseFuncName.c_str(), chanCoordG, noiseVec, noiseFuncName.c_str(), chanCoordB, noiseVec, noiseFuncName.c_str(), chanCoordA, noiseVec); } if (pne.type() != SkPerlinNoiseShader::kFractalNoise_Type) { fragBuilder->codeAppendf(")"); // end of "abs(" } fragBuilder->codeAppendf(" * %s;", ratio); fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", noiseVec); fragBuilder->codeAppendf("\n\t\t\t%s *= 0.5;", ratio); if (pne.stitchTiles()) { fragBuilder->codeAppendf("\n\t\t\t%s *= vec2(2.0);", stitchData); } fragBuilder->codeAppend("\n\t\t}"); // end of the for loop on octaves if (pne.type() == SkPerlinNoiseShader::kFractalNoise_Type) { // The value of turbulenceFunctionResult comes from ((turbulenceFunctionResult) + 1) / 2 // by fractalNoise and (turbulenceFunctionResult) by turbulence. fragBuilder->codeAppendf("\n\t\t%s = %s * vec4(0.5) + vec4(0.5);", args.fOutputColor,args.fOutputColor); } // Clamp values fragBuilder->codeAppendf("\n\t\t%s = clamp(%s, 0.0, 1.0);", args.fOutputColor, args.fOutputColor); // Pre-multiply the result fragBuilder->codeAppendf("\n\t\t%s = vec4(%s.rgb * %s.aaa, %s.a);\n", args.fOutputColor, args.fOutputColor, args.fOutputColor, args.fOutputColor); } void GrGLPerlinNoise::GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const GrPerlinNoiseEffect& turbulence = processor.cast(); uint32_t key = turbulence.numOctaves(); key = key << 3; // Make room for next 3 bits switch (turbulence.type()) { case SkPerlinNoiseShader::kFractalNoise_Type: key |= 0x1; break; case SkPerlinNoiseShader::kTurbulence_Type: key |= 0x2; break; default: // leave key at 0 break; } if (turbulence.stitchTiles()) { key |= 0x4; // Flip the 3rd bit if tile stitching is on } b->add32(key); } void GrGLPerlinNoise::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& processor) { INHERITED::onSetData(pdman, processor); const GrPerlinNoiseEffect& turbulence = processor.cast(); const SkVector& baseFrequency = turbulence.baseFrequency(); pdman.set2f(fBaseFrequencyUni, baseFrequency.fX, baseFrequency.fY); if (turbulence.stitchTiles()) { const SkPerlinNoiseShader::StitchData& stitchData = turbulence.stitchData(); pdman.set2f(fStitchDataUni, SkIntToScalar(stitchData.fWidth), SkIntToScalar(stitchData.fHeight)); } } ///////////////////////////////////////////////////////////////////// const GrFragmentProcessor* SkPerlinNoiseShader::asFragmentProcessor( GrContext* context, const SkMatrix& viewM, const SkMatrix* externalLocalMatrix, SkFilterQuality) const { SkASSERT(context); SkMatrix localMatrix = this->getLocalMatrix(); if (externalLocalMatrix) { localMatrix.preConcat(*externalLocalMatrix); } SkMatrix matrix = viewM; matrix.preConcat(localMatrix); if (0 == fNumOctaves) { if (kFractalNoise_Type == fType) { // Extract the incoming alpha and emit rgba = (a/4, a/4, a/4, a/2) SkAutoTUnref inner( GrConstColorProcessor::Create(0x80404040, GrConstColorProcessor::kModulateRGBA_InputMode)); return GrFragmentProcessor::MulOutputByInputAlpha(inner); } // Emit zero. return GrConstColorProcessor::Create(0x0, GrConstColorProcessor::kIgnore_InputMode); } // Either we don't stitch tiles, either we have a valid tile size SkASSERT(!fStitchTiles || !fTileSize.isEmpty()); SkPerlinNoiseShader::PaintingData* paintingData = new PaintingData(fTileSize, fSeed, fBaseFrequencyX, fBaseFrequencyY, matrix); SkAutoTUnref permutationsTexture( GrRefCachedBitmapTexture(context, paintingData->getPermutationsBitmap(), GrTextureParams::ClampNoFilter())); SkAutoTUnref noiseTexture( GrRefCachedBitmapTexture(context, paintingData->getNoiseBitmap(), GrTextureParams::ClampNoFilter())); SkMatrix m = viewM; m.setTranslateX(-localMatrix.getTranslateX() + SK_Scalar1); m.setTranslateY(-localMatrix.getTranslateY() + SK_Scalar1); if ((permutationsTexture) && (noiseTexture)) { SkAutoTUnref inner( GrPerlinNoiseEffect::Create(fType, fNumOctaves, fStitchTiles, paintingData, permutationsTexture, noiseTexture, m)); return GrFragmentProcessor::MulOutputByInputAlpha(inner); } delete paintingData; return nullptr; } #endif #ifndef SK_IGNORE_TO_STRING void SkPerlinNoiseShader::toString(SkString* str) const { str->append("SkPerlinNoiseShader: ("); str->append("type: "); switch (fType) { case kFractalNoise_Type: str->append("\"fractal noise\""); break; case kTurbulence_Type: str->append("\"turbulence\""); break; default: str->append("\"unknown\""); break; } str->append(" base frequency: ("); str->appendScalar(fBaseFrequencyX); str->append(", "); str->appendScalar(fBaseFrequencyY); str->append(") number of octaves: "); str->appendS32(fNumOctaves); str->append(" seed: "); str->appendScalar(fSeed); str->append(" stitch tiles: "); str->append(fStitchTiles ? "true " : "false "); this->INHERITED::toString(str); str->append(")"); } #endif