/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrConfigConversionEffect.h" #include "GrContext.h" #include "GrDrawContext.h" #include "GrInvariantOutput.h" #include "GrSimpleTextureEffect.h" #include "SkMatrix.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" class GrGLConfigConversionEffect : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { const GrConfigConversionEffect& cce = args.fFp.cast(); const GrSwizzle& swizzle = cce.swizzle(); GrConfigConversionEffect::PMConversion pmConversion = cce.pmConversion(); // Using highp for GLES here in order to avoid some precision issues on specific GPUs. GrGLSLShaderVar tmpVar("tmpColor", kVec4f_GrSLType, 0, kHigh_GrSLPrecision); SkString tmpDecl; tmpVar.appendDecl(args.fGLSLCaps, &tmpDecl); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppendf("%s;", tmpDecl.c_str()); fragBuilder->codeAppendf("%s = ", tmpVar.c_str()); fragBuilder->appendTextureLookup(args.fSamplers[0], args.fCoords[0].c_str(), args.fCoords[0].getType()); fragBuilder->codeAppend(";"); if (GrConfigConversionEffect::kNone_PMConversion == pmConversion) { SkASSERT(GrSwizzle::RGBA() != swizzle); fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), swizzle.c_str()); } else { switch (pmConversion) { case GrConfigConversionEffect::kMulByAlpha_RoundUp_PMConversion: fragBuilder->codeAppendf( "%s = vec4(ceil(%s.rgb * %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kMulByAlpha_RoundDown_PMConversion: // Add a compensation(0.001) here to avoid the side effect of the floor operation. // In Intel GPUs, the integer value converted from floor(%s.r * 255.0) / 255.0 // is less than the integer value converted from %s.r by 1 when the %s.r is // converted from the integer value 2^n, such as 1, 2, 4, 8, etc. fragBuilder->codeAppendf( "%s = vec4(floor(%s.rgb * %s.a * 255.0 + 0.001) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kDivByAlpha_RoundUp_PMConversion: fragBuilder->codeAppendf( "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(ceil(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; case GrConfigConversionEffect::kDivByAlpha_RoundDown_PMConversion: fragBuilder->codeAppendf( "%s = %s.a <= 0.0 ? vec4(0,0,0,0) : vec4(floor(%s.rgb / %s.a * 255.0) / 255.0, %s.a);", tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str(), tmpVar.c_str()); break; default: SkFAIL("Unknown conversion op."); break; } fragBuilder->codeAppendf("%s = %s.%s;", args.fOutputColor, tmpVar.c_str(), swizzle.c_str()); } SkString modulate; GrGLSLMulVarBy4f(&modulate, args.fOutputColor, args.fInputColor); fragBuilder->codeAppend(modulate.c_str()); } static inline void GenKey(const GrProcessor& processor, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const GrConfigConversionEffect& cce = processor.cast(); uint32_t key = (cce.swizzle().asKey()) | (cce.pmConversion() << 16); b->add32(key); } private: typedef GrGLSLFragmentProcessor INHERITED; }; /////////////////////////////////////////////////////////////////////////////// GrConfigConversionEffect::GrConfigConversionEffect(GrTexture* texture, const GrSwizzle& swizzle, PMConversion pmConversion, const SkMatrix& matrix) : INHERITED(texture, matrix) , fSwizzle(swizzle) , fPMConversion(pmConversion) { this->initClassID(); // We expect to get here with non-BGRA/RGBA only if we're doing not doing a premul/unpremul // conversion. SkASSERT((kRGBA_8888_GrPixelConfig == texture->config() || kBGRA_8888_GrPixelConfig == texture->config()) || kNone_PMConversion == pmConversion); // Why did we pollute our texture cache instead of using a GrSingleTextureEffect? SkASSERT(swizzle != GrSwizzle::RGBA() || kNone_PMConversion != pmConversion); } bool GrConfigConversionEffect::onIsEqual(const GrFragmentProcessor& s) const { const GrConfigConversionEffect& other = s.cast(); return other.fSwizzle == fSwizzle && other.fPMConversion == fPMConversion; } void GrConfigConversionEffect::onComputeInvariantOutput(GrInvariantOutput* inout) const { this->updateInvariantOutputForModulation(inout); } /////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConfigConversionEffect); const GrFragmentProcessor* GrConfigConversionEffect::TestCreate(GrProcessorTestData* d) { PMConversion pmConv = static_cast(d->fRandom->nextULessThan(kPMConversionCnt)); GrSwizzle swizzle; do { swizzle = GrSwizzle::CreateRandom(d->fRandom); } while (pmConv == kNone_PMConversion && swizzle == GrSwizzle::RGBA()); return new GrConfigConversionEffect(d->fTextures[GrProcessorUnitTest::kSkiaPMTextureIdx], swizzle, pmConv, GrTest::TestMatrix(d->fRandom)); } /////////////////////////////////////////////////////////////////////////////// void GrConfigConversionEffect::onGetGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GrGLConfigConversionEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrConfigConversionEffect::onCreateGLSLInstance() const { return new GrGLConfigConversionEffect(); } void GrConfigConversionEffect::TestForPreservingPMConversions(GrContext* context, PMConversion* pmToUPMRule, PMConversion* upmToPMRule) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; SkAutoTMalloc data(256 * 256 * 3); uint32_t* srcData = data.get(); uint32_t* firstRead = data.get() + 256 * 256; uint32_t* secondRead = data.get() + 2 * 256 * 256; // Fill with every possible premultiplied A, color channel value. There will be 256-y duplicate // values in row y. We set r,g, and b to the same value since they are handled identically. for (int y = 0; y < 256; ++y) { for (int x = 0; x < 256; ++x) { uint8_t* color = reinterpret_cast(&srcData[256*y + x]); color[3] = y; color[2] = SkTMin(x, y); color[1] = SkTMin(x, y); color[0] = SkTMin(x, y); } } GrSurfaceDesc desc; desc.fFlags = kRenderTarget_GrSurfaceFlag; desc.fWidth = 256; desc.fHeight = 256; desc.fConfig = kRGBA_8888_GrPixelConfig; SkAutoTUnref readTex(context->textureProvider()->createTexture( desc, SkBudgeted::kYes, nullptr, 0)); if (!readTex.get()) { return; } SkAutoTUnref tempTex(context->textureProvider()->createTexture( desc, SkBudgeted::kYes, nullptr, 0)); if (!tempTex.get()) { return; } desc.fFlags = kNone_GrSurfaceFlags; SkAutoTUnref dataTex(context->textureProvider()->createTexture( desc, SkBudgeted::kYes, data, 0)); if (!dataTex.get()) { return; } static const PMConversion kConversionRules[][2] = { {kDivByAlpha_RoundDown_PMConversion, kMulByAlpha_RoundUp_PMConversion}, {kDivByAlpha_RoundUp_PMConversion, kMulByAlpha_RoundDown_PMConversion}, }; bool failed = true; for (size_t i = 0; i < SK_ARRAY_COUNT(kConversionRules) && failed; ++i) { *pmToUPMRule = kConversionRules[i][0]; *upmToPMRule = kConversionRules[i][1]; static const SkRect kDstRect = SkRect::MakeWH(SkIntToScalar(256), SkIntToScalar(256)); static const SkRect kSrcRect = SkRect::MakeWH(SK_Scalar1, SK_Scalar1); // We do a PM->UPM draw from dataTex to readTex and read the data. Then we do a UPM->PM draw // from readTex to tempTex followed by a PM->UPM draw to readTex and finally read the data. // We then verify that two reads produced the same values. GrPaint paint1; GrPaint paint2; GrPaint paint3; SkAutoTUnref pmToUPM1(new GrConfigConversionEffect( dataTex, GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); SkAutoTUnref upmToPM(new GrConfigConversionEffect( readTex, GrSwizzle::RGBA(), *upmToPMRule, SkMatrix::I())); SkAutoTUnref pmToUPM2(new GrConfigConversionEffect( tempTex, GrSwizzle::RGBA(), *pmToUPMRule, SkMatrix::I())); paint1.addColorFragmentProcessor(pmToUPM1); paint1.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); SkAutoTUnref readDrawContext( context->drawContext(readTex->asRenderTarget())); if (!readDrawContext) { failed = true; break; } readDrawContext->fillRectToRect(GrClip::WideOpen(), paint1, SkMatrix::I(), kDstRect, kSrcRect); readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, firstRead); paint2.addColorFragmentProcessor(upmToPM); paint2.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); SkAutoTUnref tempDrawContext( context->drawContext(tempTex->asRenderTarget())); if (!tempDrawContext) { failed = true; break; } tempDrawContext->fillRectToRect(GrClip::WideOpen(), paint2, SkMatrix::I(), kDstRect, kSrcRect); paint3.addColorFragmentProcessor(pmToUPM2); paint3.setPorterDuffXPFactory(SkXfermode::kSrc_Mode); readDrawContext.reset(context->drawContext(readTex->asRenderTarget())); if (!readDrawContext) { failed = true; break; } readDrawContext->fillRectToRect(GrClip::WideOpen(), paint3, SkMatrix::I(), kDstRect, kSrcRect); readTex->readPixels(0, 0, 256, 256, kRGBA_8888_GrPixelConfig, secondRead); failed = false; for (int y = 0; y < 256 && !failed; ++y) { for (int x = 0; x <= y; ++x) { if (firstRead[256 * y + x] != secondRead[256 * y + x]) { failed = true; break; } } } } if (failed) { *pmToUPMRule = kNone_PMConversion; *upmToPMRule = kNone_PMConversion; } } const GrFragmentProcessor* GrConfigConversionEffect::Create(GrTexture* texture, const GrSwizzle& swizzle, PMConversion pmConversion, const SkMatrix& matrix) { if (swizzle == GrSwizzle::RGBA() && kNone_PMConversion == pmConversion) { // If we returned a GrConfigConversionEffect that was equivalent to a GrSimpleTextureEffect // then we may pollute our texture cache with redundant shaders. So in the case that no // conversions were requested we instead return a GrSimpleTextureEffect. return GrSimpleTextureEffect::Create(texture, matrix); } else { if (kRGBA_8888_GrPixelConfig != texture->config() && kBGRA_8888_GrPixelConfig != texture->config() && kNone_PMConversion != pmConversion) { // The PM conversions assume colors are 0..255 return nullptr; } return new GrConfigConversionEffect(texture, swizzle, pmConversion, matrix); } }