/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDashingEffect.h" #include "GrBatchFlushState.h" #include "GrBatchTest.h" #include "GrCaps.h" #include "GrGeometryProcessor.h" #include "GrContext.h" #include "GrCoordTransform.h" #include "GrDefaultGeoProcFactory.h" #include "GrDrawTarget.h" #include "GrInvariantOutput.h" #include "GrProcessor.h" #include "GrStrokeInfo.h" #include "GrVertexBuffer.h" #include "SkGr.h" #include "batches/GrVertexBatch.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLVertexShaderBuilder.h" /////////////////////////////////////////////////////////////////////////////// // Returns whether or not the gpu can fast path the dash line effect. bool GrDashingEffect::CanDrawDashLine(const SkPoint pts[2], const GrStrokeInfo& strokeInfo, const SkMatrix& viewMatrix) { // Pts must be either horizontal or vertical in src space if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) { return false; } // May be able to relax this to include skew. As of now cannot do perspective // because of the non uniform scaling of bloating a rect if (!viewMatrix.preservesRightAngles()) { return false; } if (!strokeInfo.isDashed() || 2 != strokeInfo.getDashCount()) { return false; } const SkScalar* intervals = strokeInfo.getDashIntervals(); if (0 == intervals[0] && 0 == intervals[1]) { return false; } SkPaint::Cap cap = strokeInfo.getCap(); // Current we do don't handle Round or Square cap dashes if (SkPaint::kRound_Cap == cap && intervals[0] != 0.f) { return false; } return true; } namespace { struct DashLineVertex { SkPoint fPos; SkPoint fDashPos; SkScalar fIntervalLength; SkRect fRect; }; struct DashCircleVertex { SkPoint fPos; SkPoint fDashPos; SkScalar fIntervalLength; SkScalar fRadius; SkScalar fCenterX; }; enum DashAAMode { kBW_DashAAMode, kEdgeAA_DashAAMode, kMSAA_DashAAMode, kDashAAModeCount, }; }; static void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale, const SkMatrix& viewMatrix, const SkPoint pts[2]) { SkVector vecSrc = pts[1] - pts[0]; SkScalar magSrc = vecSrc.length(); SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0; vecSrc.scale(invSrc); SkVector vecSrcPerp; vecSrc.rotateCW(&vecSrcPerp); viewMatrix.mapVectors(&vecSrc, 1); viewMatrix.mapVectors(&vecSrcPerp, 1); // parallelScale tells how much to scale along the line parallel to the dash line // perpScale tells how much to scale in the direction perpendicular to the dash line *parallelScale = vecSrc.length(); *perpScale = vecSrcPerp.length(); } // calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1] // Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot static void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = nullptr) { SkVector vec = pts[1] - pts[0]; SkScalar mag = vec.length(); SkScalar inv = mag ? SkScalarInvert(mag) : 0; vec.scale(inv); rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY); if (ptsRot) { rotMatrix->mapPoints(ptsRot, pts, 2); // correction for numerical issues if map doesn't make ptsRot exactly horizontal ptsRot[1].fY = pts[0].fY; } } // Assumes phase < sum of all intervals static SkScalar calc_start_adjustment(const SkScalar intervals[2], SkScalar phase) { SkASSERT(phase < intervals[0] + intervals[1]); if (phase >= intervals[0] && phase != 0) { SkScalar srcIntervalLen = intervals[0] + intervals[1]; return srcIntervalLen - phase; } return 0; } static SkScalar calc_end_adjustment(const SkScalar intervals[2], const SkPoint pts[2], SkScalar phase, SkScalar* endingInt) { if (pts[1].fX <= pts[0].fX) { return 0; } SkScalar srcIntervalLen = intervals[0] + intervals[1]; SkScalar totalLen = pts[1].fX - pts[0].fX; SkScalar temp = totalLen / srcIntervalLen; SkScalar numFullIntervals = SkScalarFloorToScalar(temp); *endingInt = totalLen - numFullIntervals * srcIntervalLen + phase; temp = *endingInt / srcIntervalLen; *endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen; if (0 == *endingInt) { *endingInt = srcIntervalLen; } if (*endingInt > intervals[0]) { if (0 == intervals[0]) { *endingInt -= 0.01f; // make sure we capture the last zero size pnt (used if has caps) } return *endingInt - intervals[0]; } return 0; } enum DashCap { kRound_DashCap, kNonRound_DashCap, }; static int kDashVertices = 4; template void setup_dashed_rect_common(const SkRect& rect, const SkMatrix& matrix, T* vertices, int idx, SkScalar offset, SkScalar bloatX, SkScalar bloatY, SkScalar len, SkScalar stroke) { SkScalar startDashX = offset - bloatX; SkScalar endDashX = offset + len + bloatX; SkScalar startDashY = -stroke - bloatY; SkScalar endDashY = stroke + bloatY; vertices[idx].fDashPos = SkPoint::Make(startDashX , startDashY); vertices[idx + 1].fDashPos = SkPoint::Make(startDashX, endDashY); vertices[idx + 2].fDashPos = SkPoint::Make(endDashX, endDashY); vertices[idx + 3].fDashPos = SkPoint::Make(endDashX, startDashY); vertices[idx].fPos = SkPoint::Make(rect.fLeft, rect.fTop); vertices[idx + 1].fPos = SkPoint::Make(rect.fLeft, rect.fBottom); vertices[idx + 2].fPos = SkPoint::Make(rect.fRight, rect.fBottom); vertices[idx + 3].fPos = SkPoint::Make(rect.fRight, rect.fTop); matrix.mapPointsWithStride(&vertices[idx].fPos, sizeof(T), 4); } static void setup_dashed_rect(const SkRect& rect, void* vertices, int idx, const SkMatrix& matrix, SkScalar offset, SkScalar bloatX, SkScalar bloatY, SkScalar len, SkScalar stroke, SkScalar startInterval, SkScalar endInterval, SkScalar strokeWidth, DashCap cap, const size_t vertexStride) { SkScalar intervalLength = startInterval + endInterval; if (kRound_DashCap == cap) { SkASSERT(vertexStride == sizeof(DashCircleVertex)); DashCircleVertex* verts = reinterpret_cast(vertices); setup_dashed_rect_common(rect, matrix, verts, idx, offset, bloatX, bloatY, len, stroke); SkScalar radius = SkScalarHalf(strokeWidth) - 0.5f; SkScalar centerX = SkScalarHalf(endInterval); for (int i = 0; i < kDashVertices; i++) { verts[idx + i].fIntervalLength = intervalLength; verts[idx + i].fRadius = radius; verts[idx + i].fCenterX = centerX; } } else { SkASSERT(kNonRound_DashCap == cap && vertexStride == sizeof(DashLineVertex)); DashLineVertex* verts = reinterpret_cast(vertices); setup_dashed_rect_common(rect, matrix, verts, idx, offset, bloatX, bloatY, len, stroke); SkScalar halfOffLen = SkScalarHalf(endInterval); SkScalar halfStroke = SkScalarHalf(strokeWidth); SkRect rectParam; rectParam.set(halfOffLen + 0.5f, -halfStroke + 0.5f, halfOffLen + startInterval - 0.5f, halfStroke - 0.5f); for (int i = 0; i < kDashVertices; i++) { verts[idx + i].fIntervalLength = intervalLength; verts[idx + i].fRect = rectParam; } } } static void setup_dashed_rect_pos(const SkRect& rect, int idx, const SkMatrix& matrix, SkPoint* verts) { verts[idx] = SkPoint::Make(rect.fLeft, rect.fTop); verts[idx + 1] = SkPoint::Make(rect.fLeft, rect.fBottom); verts[idx + 2] = SkPoint::Make(rect.fRight, rect.fBottom); verts[idx + 3] = SkPoint::Make(rect.fRight, rect.fTop); matrix.mapPoints(&verts[idx], 4); } /** * An GrGeometryProcessor that renders a dashed line. * This GrGeometryProcessor is meant for dashed lines that only have a single on/off interval pair. * Bounding geometry is rendered and the effect computes coverage based on the fragment's * position relative to the dashed line. */ static GrGeometryProcessor* create_dash_gp(GrColor, DashAAMode aaMode, DashCap cap, const SkMatrix& localMatrix, bool usesLocalCoords); class DashBatch : public GrVertexBatch { public: DEFINE_BATCH_CLASS_ID struct Geometry { SkMatrix fViewMatrix; SkMatrix fSrcRotInv; SkPoint fPtsRot[2]; SkScalar fSrcStrokeWidth; SkScalar fPhase; SkScalar fIntervals[2]; SkScalar fParallelScale; SkScalar fPerpendicularScale; GrColor fColor; }; static GrDrawBatch* Create(const Geometry& geometry, SkPaint::Cap cap, DashAAMode aaMode, bool fullDash) { return new DashBatch(geometry, cap, aaMode, fullDash); } const char* name() const override { return "DashBatch"; } void computePipelineOptimizations(GrInitInvariantOutput* color, GrInitInvariantOutput* coverage, GrBatchToXPOverrides* overrides) const override { // When this is called on a batch, there is only one geometry bundle color->setKnownFourComponents(fGeoData[0].fColor); coverage->setUnknownSingleComponent(); } SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } private: DashBatch(const Geometry& geometry, SkPaint::Cap cap, DashAAMode aaMode, bool fullDash) : INHERITED(ClassID()) { fGeoData.push_back(geometry); fBatch.fAAMode = aaMode; fBatch.fCap = cap; fBatch.fFullDash = fullDash; // compute bounds SkScalar halfStrokeWidth = 0.5f * geometry.fSrcStrokeWidth; SkScalar xBloat = SkPaint::kButt_Cap == cap ? 0 : halfStrokeWidth; fBounds.set(geometry.fPtsRot[0], geometry.fPtsRot[1]); fBounds.outset(xBloat, halfStrokeWidth); // Note, we actually create the combined matrix here, and save the work SkMatrix& combinedMatrix = fGeoData[0].fSrcRotInv; combinedMatrix.postConcat(geometry.fViewMatrix); combinedMatrix.mapRect(&fBounds); } void initBatchTracker(const GrXPOverridesForBatch& overrides) override { // Handle any color overrides if (!overrides.readsColor()) { fGeoData[0].fColor = GrColor_ILLEGAL; } overrides.getOverrideColorIfSet(&fGeoData[0].fColor); // setup batch properties fBatch.fColorIgnored = !overrides.readsColor(); fBatch.fColor = fGeoData[0].fColor; fBatch.fUsesLocalCoords = overrides.readsLocalCoords(); fBatch.fCoverageIgnored = !overrides.readsCoverage(); } struct DashDraw { DashDraw(const Geometry& geo) { memcpy(fPtsRot, geo.fPtsRot, sizeof(geo.fPtsRot)); memcpy(fIntervals, geo.fIntervals, sizeof(geo.fIntervals)); fPhase = geo.fPhase; } SkPoint fPtsRot[2]; SkScalar fIntervals[2]; SkScalar fPhase; SkScalar fStartOffset; SkScalar fStrokeWidth; SkScalar fLineLength; SkScalar fHalfDevStroke; SkScalar fDevBloatX; SkScalar fDevBloatY; bool fLineDone; bool fHasStartRect; bool fHasEndRect; }; void onPrepareDraws(Target* target) const override { int instanceCount = fGeoData.count(); SkPaint::Cap cap = this->cap(); bool isRoundCap = SkPaint::kRound_Cap == cap; DashCap capType = isRoundCap ? kRound_DashCap : kNonRound_DashCap; SkAutoTUnref gp; if (this->fullDash()) { gp.reset(create_dash_gp(this->color(), this->aaMode(), capType, this->viewMatrix(), this->usesLocalCoords())); } else { // Set up the vertex data for the line and start/end dashes using namespace GrDefaultGeoProcFactory; Color color(this->color()); Coverage coverage(this->coverageIgnored() ? Coverage::kNone_Type : Coverage::kSolid_Type); LocalCoords localCoords(this->usesLocalCoords() ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type); gp.reset(CreateForDeviceSpace(color, coverage, localCoords, this->viewMatrix())); } if (!gp) { SkDebugf("Could not create GrGeometryProcessor\n"); return; } target->initDraw(gp, this->pipeline()); // useAA here means Edge AA or MSAA bool useAA = this->aaMode() != kBW_DashAAMode; bool fullDash = this->fullDash(); // We do two passes over all of the dashes. First we setup the start, end, and bounds, // rectangles. We preserve all of this work in the rects / draws arrays below. Then we // iterate again over these decomposed dashes to generate vertices static const int kNumStackDashes = 128; SkSTArray rects; SkSTArray draws; int totalRectCount = 0; int rectOffset = 0; rects.push_back_n(3 * instanceCount); for (int i = 0; i < instanceCount; i++) { const Geometry& args = fGeoData[i]; DashDraw& draw = draws.push_back(args); bool hasCap = SkPaint::kButt_Cap != cap && 0 != args.fSrcStrokeWidth; // We always want to at least stroke out half a pixel on each side in device space // so 0.5f / perpScale gives us this min in src space SkScalar halfSrcStroke = SkMaxScalar(args.fSrcStrokeWidth * 0.5f, 0.5f / args.fPerpendicularScale); SkScalar strokeAdj; if (!hasCap) { strokeAdj = 0.f; } else { strokeAdj = halfSrcStroke; } SkScalar startAdj = 0; bool lineDone = false; // Too simplify the algorithm, we always push back rects for start and end rect. // Otherwise we'd have to track start / end rects for each individual geometry SkRect& bounds = rects[rectOffset++]; SkRect& startRect = rects[rectOffset++]; SkRect& endRect = rects[rectOffset++]; bool hasStartRect = false; // If we are using AA, check to see if we are drawing a partial dash at the start. If so // draw it separately here and adjust our start point accordingly if (useAA) { if (draw.fPhase > 0 && draw.fPhase < draw.fIntervals[0]) { SkPoint startPts[2]; startPts[0] = draw.fPtsRot[0]; startPts[1].fY = startPts[0].fY; startPts[1].fX = SkMinScalar(startPts[0].fX + draw.fIntervals[0] - draw.fPhase, draw.fPtsRot[1].fX); startRect.set(startPts, 2); startRect.outset(strokeAdj, halfSrcStroke); hasStartRect = true; startAdj = draw.fIntervals[0] + draw.fIntervals[1] - draw.fPhase; } } // adjustments for start and end of bounding rect so we only draw dash intervals // contained in the original line segment. startAdj += calc_start_adjustment(draw.fIntervals, draw.fPhase); if (startAdj != 0) { draw.fPtsRot[0].fX += startAdj; draw.fPhase = 0; } SkScalar endingInterval = 0; SkScalar endAdj = calc_end_adjustment(draw.fIntervals, draw.fPtsRot, draw.fPhase, &endingInterval); draw.fPtsRot[1].fX -= endAdj; if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) { lineDone = true; } bool hasEndRect = false; // If we are using AA, check to see if we are drawing a partial dash at then end. If so // draw it separately here and adjust our end point accordingly if (useAA && !lineDone) { // If we adjusted the end then we will not be drawing a partial dash at the end. // If we didn't adjust the end point then we just need to make sure the ending // dash isn't a full dash if (0 == endAdj && endingInterval != draw.fIntervals[0]) { SkPoint endPts[2]; endPts[1] = draw.fPtsRot[1]; endPts[0].fY = endPts[1].fY; endPts[0].fX = endPts[1].fX - endingInterval; endRect.set(endPts, 2); endRect.outset(strokeAdj, halfSrcStroke); hasEndRect = true; endAdj = endingInterval + draw.fIntervals[1]; draw.fPtsRot[1].fX -= endAdj; if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) { lineDone = true; } } } if (startAdj != 0) { draw.fPhase = 0; } // Change the dashing info from src space into device space SkScalar* devIntervals = draw.fIntervals; devIntervals[0] = draw.fIntervals[0] * args.fParallelScale; devIntervals[1] = draw.fIntervals[1] * args.fParallelScale; SkScalar devPhase = draw.fPhase * args.fParallelScale; SkScalar strokeWidth = args.fSrcStrokeWidth * args.fPerpendicularScale; if ((strokeWidth < 1.f && useAA) || 0.f == strokeWidth) { strokeWidth = 1.f; } SkScalar halfDevStroke = strokeWidth * 0.5f; if (SkPaint::kSquare_Cap == cap && 0 != args.fSrcStrokeWidth) { // add cap to on interval and remove from off interval devIntervals[0] += strokeWidth; devIntervals[1] -= strokeWidth; } SkScalar startOffset = devIntervals[1] * 0.5f + devPhase; // For EdgeAA, we bloat in X & Y for both square and round caps. // For MSAA, we don't bloat at all for square caps, and bloat in Y only for round caps. SkScalar devBloatX = this->aaMode() == kEdgeAA_DashAAMode ? 0.5f : 0.0f; SkScalar devBloatY = (SkPaint::kRound_Cap == cap && this->aaMode() == kMSAA_DashAAMode) ? 0.5f : devBloatX; SkScalar bloatX = devBloatX / args.fParallelScale; SkScalar bloatY = devBloatY / args.fPerpendicularScale; if (devIntervals[1] <= 0.f && useAA) { // Case when we end up drawing a solid AA rect // Reset the start rect to draw this single solid rect // but it requires to upload a new intervals uniform so we can mimic // one giant dash draw.fPtsRot[0].fX -= hasStartRect ? startAdj : 0; draw.fPtsRot[1].fX += hasEndRect ? endAdj : 0; startRect.set(draw.fPtsRot, 2); startRect.outset(strokeAdj, halfSrcStroke); hasStartRect = true; hasEndRect = false; lineDone = true; SkPoint devicePts[2]; args.fViewMatrix.mapPoints(devicePts, draw.fPtsRot, 2); SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]); if (hasCap) { lineLength += 2.f * halfDevStroke; } devIntervals[0] = lineLength; } totalRectCount += !lineDone ? 1 : 0; totalRectCount += hasStartRect ? 1 : 0; totalRectCount += hasEndRect ? 1 : 0; if (SkPaint::kRound_Cap == cap && 0 != args.fSrcStrokeWidth) { // need to adjust this for round caps to correctly set the dashPos attrib on // vertices startOffset -= halfDevStroke; } if (!lineDone) { SkPoint devicePts[2]; args.fViewMatrix.mapPoints(devicePts, draw.fPtsRot, 2); draw.fLineLength = SkPoint::Distance(devicePts[0], devicePts[1]); if (hasCap) { draw.fLineLength += 2.f * halfDevStroke; } bounds.set(draw.fPtsRot[0].fX, draw.fPtsRot[0].fY, draw.fPtsRot[1].fX, draw.fPtsRot[1].fY); bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke); } if (hasStartRect) { SkASSERT(useAA); // so that we know bloatX and bloatY have been set startRect.outset(bloatX, bloatY); } if (hasEndRect) { SkASSERT(useAA); // so that we know bloatX and bloatY have been set endRect.outset(bloatX, bloatY); } draw.fStartOffset = startOffset; draw.fDevBloatX = devBloatX; draw.fDevBloatY = devBloatY; draw.fHalfDevStroke = halfDevStroke; draw.fStrokeWidth = strokeWidth; draw.fHasStartRect = hasStartRect; draw.fLineDone = lineDone; draw.fHasEndRect = hasEndRect; } if (!totalRectCount) { return; } QuadHelper helper; void* vertices = helper.init(target, gp->getVertexStride(), totalRectCount); if (!vertices) { return; } int curVIdx = 0; int rectIndex = 0; for (int i = 0; i < instanceCount; i++) { const Geometry& geom = fGeoData[i]; if (!draws[i].fLineDone) { if (fullDash) { setup_dashed_rect(rects[rectIndex], vertices, curVIdx, geom.fSrcRotInv, draws[i].fStartOffset, draws[i].fDevBloatX, draws[i].fDevBloatY, draws[i].fLineLength, draws[i].fHalfDevStroke, draws[i].fIntervals[0], draws[i].fIntervals[1], draws[i].fStrokeWidth, capType, gp->getVertexStride()); } else { SkPoint* verts = reinterpret_cast(vertices); SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); setup_dashed_rect_pos(rects[rectIndex], curVIdx, geom.fSrcRotInv, verts); } curVIdx += 4; } rectIndex++; if (draws[i].fHasStartRect) { if (fullDash) { setup_dashed_rect(rects[rectIndex], vertices, curVIdx, geom.fSrcRotInv, draws[i].fStartOffset, draws[i].fDevBloatX, draws[i].fDevBloatY, draws[i].fIntervals[0], draws[i].fHalfDevStroke, draws[i].fIntervals[0], draws[i].fIntervals[1], draws[i].fStrokeWidth, capType, gp->getVertexStride()); } else { SkPoint* verts = reinterpret_cast(vertices); SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); setup_dashed_rect_pos(rects[rectIndex], curVIdx, geom.fSrcRotInv, verts); } curVIdx += 4; } rectIndex++; if (draws[i].fHasEndRect) { if (fullDash) { setup_dashed_rect(rects[rectIndex], vertices, curVIdx, geom.fSrcRotInv, draws[i].fStartOffset, draws[i].fDevBloatX, draws[i].fDevBloatY, draws[i].fIntervals[0], draws[i].fHalfDevStroke, draws[i].fIntervals[0], draws[i].fIntervals[1], draws[i].fStrokeWidth, capType, gp->getVertexStride()); } else { SkPoint* verts = reinterpret_cast(vertices); SkASSERT(gp->getVertexStride() == sizeof(SkPoint)); setup_dashed_rect_pos(rects[rectIndex], curVIdx, geom.fSrcRotInv, verts); } curVIdx += 4; } rectIndex++; } SkASSERT(0 == (curVIdx % 4) && (curVIdx / 4) == totalRectCount); helper.recordDraw(target); } bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { DashBatch* that = t->cast(); if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), that->bounds(), caps)) { return false; } if (this->aaMode() != that->aaMode()) { return false; } if (this->fullDash() != that->fullDash()) { return false; } if (this->cap() != that->cap()) { return false; } // TODO vertex color if (this->color() != that->color()) { return false; } SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { return false; } fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); this->joinBounds(that->bounds()); return true; } GrColor color() const { return fBatch.fColor; } bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } DashAAMode aaMode() const { return fBatch.fAAMode; } bool fullDash() const { return fBatch.fFullDash; } SkPaint::Cap cap() const { return fBatch.fCap; } bool coverageIgnored() const { return fBatch.fCoverageIgnored; } struct BatchTracker { GrColor fColor; bool fUsesLocalCoords; bool fColorIgnored; bool fCoverageIgnored; SkPaint::Cap fCap; DashAAMode fAAMode; bool fFullDash; }; static const int kVertsPerDash = 4; static const int kIndicesPerDash = 6; BatchTracker fBatch; SkSTArray<1, Geometry, true> fGeoData; typedef GrVertexBatch INHERITED; }; static GrDrawBatch* create_batch(GrColor color, const SkMatrix& viewMatrix, const SkPoint pts[2], bool useAA, const GrStrokeInfo& strokeInfo, bool msaaRT) { const SkScalar* intervals = strokeInfo.getDashIntervals(); SkScalar phase = strokeInfo.getDashPhase(); SkPaint::Cap cap = strokeInfo.getCap(); DashBatch::Geometry geometry; geometry.fSrcStrokeWidth = strokeInfo.getWidth(); // the phase should be normalized to be [0, sum of all intervals) SkASSERT(phase >= 0 && phase < intervals[0] + intervals[1]); // Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) { SkMatrix rotMatrix; align_to_x_axis(pts, &rotMatrix, geometry.fPtsRot); if(!rotMatrix.invert(&geometry.fSrcRotInv)) { SkDebugf("Failed to create invertible rotation matrix!\n"); return nullptr; } } else { geometry.fSrcRotInv.reset(); memcpy(geometry.fPtsRot, pts, 2 * sizeof(SkPoint)); } // Scale corrections of intervals and stroke from view matrix calc_dash_scaling(&geometry.fParallelScale, &geometry.fPerpendicularScale, viewMatrix, geometry.fPtsRot); SkScalar offInterval = intervals[1] * geometry.fParallelScale; SkScalar strokeWidth = geometry.fSrcStrokeWidth * geometry.fPerpendicularScale; if (SkPaint::kSquare_Cap == cap && 0 != geometry.fSrcStrokeWidth) { // add cap to on interveal and remove from off interval offInterval -= strokeWidth; } DashAAMode aaMode = msaaRT ? kMSAA_DashAAMode : useAA ? kEdgeAA_DashAAMode : kBW_DashAAMode; // TODO we can do a real rect call if not using fulldash(ie no off interval, not using AA) bool fullDash = offInterval > 0.f || aaMode != kBW_DashAAMode; geometry.fColor = color; geometry.fViewMatrix = viewMatrix; geometry.fPhase = phase; geometry.fIntervals[0] = intervals[0]; geometry.fIntervals[1] = intervals[1]; return DashBatch::Create(geometry, cap, aaMode, fullDash); } bool GrDashingEffect::DrawDashLine(GrDrawTarget* target, const GrPipelineBuilder& pipelineBuilder, GrColor color, const SkMatrix& viewMatrix, const SkPoint pts[2], bool useAA, const GrStrokeInfo& strokeInfo) { SkAutoTUnref batch( create_batch(color, viewMatrix, pts, useAA, strokeInfo, pipelineBuilder.getRenderTarget()->isUnifiedMultisampled())); if (!batch) { return false; } target->drawBatch(pipelineBuilder, batch); return true; } ////////////////////////////////////////////////////////////////////////////// class GLDashingCircleEffect; /* * This effect will draw a dotted line (defined as a dashed lined with round caps and no on * interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo. * Both of the previous two parameters are in device space. This effect also requires the setting of * a vec2 vertex attribute for the the four corners of the bounding rect. This attribute is the * "dash position" of each vertex. In other words it is the vertex coords (in device space) if we * transform the line to be horizontal, with the start of line at the origin then shifted to the * right by half the off interval. The line then goes in the positive x direction. */ class DashingCircleEffect : public GrGeometryProcessor { public: typedef SkPathEffect::DashInfo DashInfo; static GrGeometryProcessor* Create(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); const char* name() const override { return "DashingCircleEffect"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inDashParams() const { return fInDashParams; } const Attribute* inCircleParams() const { return fInCircleParams; } DashAAMode aaMode() const { return fAAMode; } GrColor color() const { return fColor; } bool colorIgnored() const { return GrColor_ILLEGAL == fColor; } const SkMatrix& localMatrix() const { return fLocalMatrix; } bool usesLocalCoords() const { return fUsesLocalCoords; } void getGLSLProcessorKey(const GrGLSLCaps&, GrProcessorKeyBuilder* b) const override; GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override; private: DashingCircleEffect(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); GrColor fColor; SkMatrix fLocalMatrix; bool fUsesLocalCoords; DashAAMode fAAMode; const Attribute* fInPosition; const Attribute* fInDashParams; const Attribute* fInCircleParams; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; ////////////////////////////////////////////////////////////////////////////// class GLDashingCircleEffect : public GrGLSLGeometryProcessor { public: GLDashingCircleEffect(); void onEmitCode(EmitArgs&, GrGPArgs*) override; static inline void GenKey(const GrGeometryProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override; void setTransformData(const GrPrimitiveProcessor& primProc, const GrGLSLProgramDataManager& pdman, int index, const SkTArray& transforms) override { this->setTransformDataHelper(primProc, pdman, index, transforms); } private: UniformHandle fParamUniform; UniformHandle fColorUniform; GrColor fColor; SkScalar fPrevRadius; SkScalar fPrevCenterX; SkScalar fPrevIntervalLength; typedef GrGLSLGeometryProcessor INHERITED; }; GLDashingCircleEffect::GLDashingCircleEffect() { fColor = GrColor_ILLEGAL; fPrevRadius = SK_ScalarMin; fPrevCenterX = SK_ScalarMin; fPrevIntervalLength = SK_ScalarMax; } void GLDashingCircleEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { const DashingCircleEffect& dce = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dce); // XY are dashPos, Z is dashInterval GrGLSLVertToFrag dashParams(kVec3f_GrSLType); varyingHandler->addVarying("DashParam", &dashParams); vertBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.inDashParams()->fName); // x refers to circle radius - 0.5, y refers to cicle's center x coord GrGLSLVertToFrag circleParams(kVec2f_GrSLType); varyingHandler->addVarying("CircleParams", &circleParams); vertBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.inCircleParams()->fName); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // Setup pass through color if (!dce.colorIgnored()) { this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); } // Setup position this->setupPosition(vertBuilder, gpArgs, dce.inPosition()->fName); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, dce.inPosition()->fName, dce.localMatrix(), args.fTransformsIn, args.fTransformsOut); // transforms all points so that we can compare them to our test circle fragBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;", dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn()); fragBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", dashParams.fsIn()); fragBuilder->codeAppendf("vec2 center = vec2(%s.y, 0.0);", circleParams.fsIn()); fragBuilder->codeAppend("float dist = length(center - fragPosShifted);"); if (dce.aaMode() != kBW_DashAAMode) { fragBuilder->codeAppendf("float diff = dist - %s.x;", circleParams.fsIn()); fragBuilder->codeAppend("diff = 1.0 - diff;"); fragBuilder->codeAppend("float alpha = clamp(diff, 0.0, 1.0);"); } else { fragBuilder->codeAppendf("float alpha = 1.0;"); fragBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn()); } fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage); } void GLDashingCircleEffect::setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& processor) { const DashingCircleEffect& dce = processor.cast(); if (dce.color() != fColor) { float c[4]; GrColorToRGBAFloat(dce.color(), c); pdman.set4fv(fColorUniform, 1, c); fColor = dce.color(); } } void GLDashingCircleEffect::GenKey(const GrGeometryProcessor& gp, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const DashingCircleEffect& dce = gp.cast(); uint32_t key = 0; key |= dce.usesLocalCoords() && dce.localMatrix().hasPerspective() ? 0x1 : 0x0; key |= dce.colorIgnored() ? 0x2 : 0x0; key |= dce.aaMode() << 8; b->add32(key); } ////////////////////////////////////////////////////////////////////////////// GrGeometryProcessor* DashingCircleEffect::Create(GrColor color, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) { return new DashingCircleEffect(color, aaMode, localMatrix, usesLocalCoords); } void DashingCircleEffect::getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GLDashingCircleEffect::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* DashingCircleEffect::createGLSLInstance(const GrGLSLCaps&) const { return new GLDashingCircleEffect(); } DashingCircleEffect::DashingCircleEffect(GrColor color, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) : fColor(color) , fLocalMatrix(localMatrix) , fUsesLocalCoords(usesLocalCoords) , fAAMode(aaMode) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInDashParams = &this->addVertexAttrib(Attribute("inDashParams", kVec3f_GrVertexAttribType)); fInCircleParams = &this->addVertexAttrib(Attribute("inCircleParams", kVec2f_GrVertexAttribType)); } GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect); const GrGeometryProcessor* DashingCircleEffect::TestCreate(GrProcessorTestData* d) { DashAAMode aaMode = static_cast(d->fRandom->nextULessThan(kDashAAModeCount)); return DashingCircleEffect::Create(GrRandomColor(d->fRandom), aaMode, GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool()); } ////////////////////////////////////////////////////////////////////////////// class GLDashingLineEffect; /* * This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the * length and spacing by the DashInfo. Both of the previous two parameters are in device space. * This effect also requires the setting of a vec2 vertex attribute for the the four corners of the * bounding rect. This attribute is the "dash position" of each vertex. In other words it is the * vertex coords (in device space) if we transform the line to be horizontal, with the start of * line at the origin then shifted to the right by half the off interval. The line then goes in the * positive x direction. */ class DashingLineEffect : public GrGeometryProcessor { public: typedef SkPathEffect::DashInfo DashInfo; static GrGeometryProcessor* Create(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); const char* name() const override { return "DashingEffect"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inDashParams() const { return fInDashParams; } const Attribute* inRectParams() const { return fInRectParams; } DashAAMode aaMode() const { return fAAMode; } GrColor color() const { return fColor; } bool colorIgnored() const { return GrColor_ILLEGAL == fColor; } const SkMatrix& localMatrix() const { return fLocalMatrix; } bool usesLocalCoords() const { return fUsesLocalCoords; } void getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const override; GrGLSLPrimitiveProcessor* createGLSLInstance(const GrGLSLCaps&) const override; private: DashingLineEffect(GrColor, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); GrColor fColor; SkMatrix fLocalMatrix; bool fUsesLocalCoords; DashAAMode fAAMode; const Attribute* fInPosition; const Attribute* fInDashParams; const Attribute* fInRectParams; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; ////////////////////////////////////////////////////////////////////////////// class GLDashingLineEffect : public GrGLSLGeometryProcessor { public: GLDashingLineEffect(); void onEmitCode(EmitArgs&, GrGPArgs*) override; static inline void GenKey(const GrGeometryProcessor&, const GrGLSLCaps&, GrProcessorKeyBuilder*); void setData(const GrGLSLProgramDataManager&, const GrPrimitiveProcessor&) override; void setTransformData(const GrPrimitiveProcessor& primProc, const GrGLSLProgramDataManager& pdman, int index, const SkTArray& transforms) override { this->setTransformDataHelper(primProc, pdman, index, transforms); } private: GrColor fColor; UniformHandle fColorUniform; typedef GrGLSLGeometryProcessor INHERITED; }; GLDashingLineEffect::GLDashingLineEffect() { fColor = GrColor_ILLEGAL; } void GLDashingLineEffect::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { const DashingLineEffect& de = args.fGP.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(de); // XY refers to dashPos, Z is the dash interval length GrGLSLVertToFrag inDashParams(kVec3f_GrSLType); varyingHandler->addVarying("DashParams", &inDashParams, GrSLPrecision::kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.inDashParams()->fName); // The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5), // respectively. GrGLSLVertToFrag inRectParams(kVec4f_GrSLType); varyingHandler->addVarying("RectParams", &inRectParams, GrSLPrecision::kHigh_GrSLPrecision); vertBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.inRectParams()->fName); GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; // Setup pass through color if (!de.colorIgnored()) { this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); } // Setup position this->setupPosition(vertBuilder, gpArgs, de.inPosition()->fName); // emit transforms this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, de.inPosition()->fName, de.localMatrix(), args.fTransformsIn, args.fTransformsOut); // transforms all points so that we can compare them to our test rect fragBuilder->codeAppendf("float xShifted = %s.x - floor(%s.x / %s.z) * %s.z;", inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn()); fragBuilder->codeAppendf("vec2 fragPosShifted = vec2(xShifted, %s.y);", inDashParams.fsIn()); if (de.aaMode() == kEdgeAA_DashAAMode) { // The amount of coverage removed in x and y by the edges is computed as a pair of negative // numbers, xSub and ySub. fragBuilder->codeAppend("float xSub, ySub;"); fragBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn()); fragBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn()); fragBuilder->codeAppendf("ySub = min(fragPosShifted.y - %s.y, 0.0);", inRectParams.fsIn()); fragBuilder->codeAppendf("ySub += min(%s.w - fragPosShifted.y, 0.0);", inRectParams.fsIn()); // Now compute coverage in x and y and multiply them to get the fraction of the pixel // covered. fragBuilder->codeAppendf( "float alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));"); } else if (de.aaMode() == kMSAA_DashAAMode) { // For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle // AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha. fragBuilder->codeAppend("float xSub;"); fragBuilder->codeAppendf("xSub = min(fragPosShifted.x - %s.x, 0.0);", inRectParams.fsIn()); fragBuilder->codeAppendf("xSub += min(%s.z - fragPosShifted.x, 0.0);", inRectParams.fsIn()); // Now compute coverage in x to get the fraction of the pixel covered. fragBuilder->codeAppendf("float alpha = (1.0 + max(xSub, -1.0));"); } else { // Assuming the bounding geometry is tight so no need to check y values fragBuilder->codeAppendf("float alpha = 1.0;"); fragBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;", inRectParams.fsIn()); fragBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;", inRectParams.fsIn()); } fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage); } void GLDashingLineEffect::setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& processor) { const DashingLineEffect& de = processor.cast(); if (de.color() != fColor) { float c[4]; GrColorToRGBAFloat(de.color(), c); pdman.set4fv(fColorUniform, 1, c); fColor = de.color(); } } void GLDashingLineEffect::GenKey(const GrGeometryProcessor& gp, const GrGLSLCaps&, GrProcessorKeyBuilder* b) { const DashingLineEffect& de = gp.cast(); uint32_t key = 0; key |= de.usesLocalCoords() && de.localMatrix().hasPerspective() ? 0x1 : 0x0; key |= de.colorIgnored() ? 0x2 : 0x0; key |= de.aaMode() << 8; b->add32(key); } ////////////////////////////////////////////////////////////////////////////// GrGeometryProcessor* DashingLineEffect::Create(GrColor color, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) { return new DashingLineEffect(color, aaMode, localMatrix, usesLocalCoords); } void DashingLineEffect::getGLSLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) const { GLDashingLineEffect::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* DashingLineEffect::createGLSLInstance(const GrGLSLCaps&) const { return new GLDashingLineEffect(); } DashingLineEffect::DashingLineEffect(GrColor color, DashAAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) : fColor(color) , fLocalMatrix(localMatrix) , fUsesLocalCoords(usesLocalCoords) , fAAMode(aaMode) { this->initClassID(); fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); fInDashParams = &this->addVertexAttrib(Attribute("inDashParams", kVec3f_GrVertexAttribType)); fInRectParams = &this->addVertexAttrib(Attribute("inRect", kVec4f_GrVertexAttribType)); } GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect); const GrGeometryProcessor* DashingLineEffect::TestCreate(GrProcessorTestData* d) { DashAAMode aaMode = static_cast(d->fRandom->nextULessThan(kDashAAModeCount)); return DashingLineEffect::Create(GrRandomColor(d->fRandom), aaMode, GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool()); } ////////////////////////////////////////////////////////////////////////////// static GrGeometryProcessor* create_dash_gp(GrColor color, DashAAMode dashAAMode, DashCap cap, const SkMatrix& viewMatrix, bool usesLocalCoords) { SkMatrix invert; if (usesLocalCoords && !viewMatrix.invert(&invert)) { SkDebugf("Failed to invert\n"); return nullptr; } switch (cap) { case kRound_DashCap: return DashingCircleEffect::Create(color, dashAAMode, invert, usesLocalCoords); case kNonRound_DashCap: return DashingLineEffect::Create(color, dashAAMode, invert, usesLocalCoords); } return nullptr; } ///////////////////////////////////////////////////////////////////////////////////////////////// #ifdef GR_TEST_UTILS DRAW_BATCH_TEST_DEFINE(DashBatch) { GrColor color = GrRandomColor(random); SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); bool useAA = random->nextBool(); bool msaaRT = random->nextBool(); // We can only dash either horizontal or vertical lines SkPoint pts[2]; if (random->nextBool()) { // vertical pts[0].fX = 1.f; pts[0].fY = random->nextF() * 10.f; pts[1].fX = 1.f; pts[1].fY = random->nextF() * 10.f; } else { // horizontal pts[0].fX = random->nextF() * 10.f; pts[0].fY = 1.f; pts[1].fX = random->nextF() * 10.f; pts[1].fY = 1.f; } // pick random cap SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::Cap::kCapCount)); SkScalar intervals[2]; // We can only dash with the following intervals enum Intervals { kOpenOpen_Intervals , kOpenClose_Intervals, kCloseOpen_Intervals, }; Intervals intervalType = SkPaint::kRound_Cap ? kOpenClose_Intervals : Intervals(random->nextULessThan(kCloseOpen_Intervals + 1)); static const SkScalar kIntervalMin = 0.1f; static const SkScalar kIntervalMax = 10.f; switch (intervalType) { case kOpenOpen_Intervals: intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax); break; case kOpenClose_Intervals: intervals[0] = 0.f; intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax); break; case kCloseOpen_Intervals: intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); intervals[1] = 0.f; break; } // phase is 0 < sum (i0, i1) SkScalar phase = random->nextRangeScalar(0, intervals[0] + intervals[1]); SkPaint p; p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(SkIntToScalar(1)); p.setStrokeCap(cap); GrStrokeInfo strokeInfo(p); SkPathEffect::DashInfo info; info.fIntervals = intervals; info.fCount = 2; info.fPhase = phase; SkDEBUGCODE(bool success = ) strokeInfo.setDashInfo(info); SkASSERT(success); return create_batch(color, viewMatrix, pts, useAA, strokeInfo, msaaRT); } #endif