/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkTypes.h" // Keep this before any #ifdef ... #if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS) #ifdef SK_BUILD_FOR_MAC #import #endif #ifdef SK_BUILD_FOR_IOS #include #include #include #include #endif #include "SkAdvancedTypefaceMetrics.h" #include "SkCGUtils.h" #include "SkColorPriv.h" #include "SkDescriptor.h" #include "SkEndian.h" #include "SkFloatingPoint.h" #include "SkFontDescriptor.h" #include "SkFontMgr.h" #include "SkGlyph.h" #include "SkMaskGamma.h" #include "SkMutex.h" #include "SkOTTable_glyf.h" #include "SkOTTable_head.h" #include "SkOTTable_hhea.h" #include "SkOTTable_loca.h" #include "SkOTUtils.h" #include "SkOncePtr.h" #include "SkPaint.h" #include "SkPath.h" #include "SkSFNTHeader.h" #include "SkStream.h" #include "SkString.h" #include "SkTemplates.h" #include "SkTypefaceCache.h" #include "SkTypeface_mac.h" #include "SkUtils.h" #include "SkUtils.h" #include // Experimental code to use a global lock whenever we access CG, to see if this reduces // crashes in Chrome #define USE_GLOBAL_MUTEX_FOR_CG_ACCESS #ifdef USE_GLOBAL_MUTEX_FOR_CG_ACCESS SK_DECLARE_STATIC_MUTEX(gCGMutex); #define AUTO_CG_LOCK() SkAutoMutexAcquire amc(gCGMutex) #else #define AUTO_CG_LOCK() #endif // Set to make glyph bounding boxes visible. #define SK_SHOW_TEXT_BLIT_COVERAGE 0 class SkScalerContext_Mac; // CTFontManagerCopyAvailableFontFamilyNames() is not always available, so we // provide a wrapper here that will return an empty array if need be. static CFArrayRef SkCTFontManagerCopyAvailableFontFamilyNames() { #ifdef SK_BUILD_FOR_IOS return CFArrayCreate(nullptr, nullptr, 0, nullptr); #else return CTFontManagerCopyAvailableFontFamilyNames(); #endif } // Being templated and taking const T* prevents calling // CFSafeRelease(autoCFRelease) through implicit conversion. template static void CFSafeRelease(/*CFTypeRef*/const T* cfTypeRef) { if (cfTypeRef) { CFRelease(cfTypeRef); } } // Being templated and taking const T* prevents calling // CFSafeRetain(autoCFRelease) through implicit conversion. template static void CFSafeRetain(/*CFTypeRef*/const T* cfTypeRef) { if (cfTypeRef) { CFRetain(cfTypeRef); } } /** Acts like a CFRef, but calls CFSafeRelease when it goes out of scope. */ template class AutoCFRelease : private SkNoncopyable { public: explicit AutoCFRelease(CFRef cfRef = nullptr) : fCFRef(cfRef) { } ~AutoCFRelease() { CFSafeRelease(fCFRef); } void reset(CFRef that = nullptr) { if (that != fCFRef) { CFSafeRelease(fCFRef); fCFRef = that; } } CFRef detach() { CFRef self = fCFRef; fCFRef = nullptr; return self; } operator CFRef() const { return fCFRef; } CFRef get() const { return fCFRef; } CFRef* operator&() { SkASSERT(fCFRef == nullptr); return &fCFRef; } private: CFRef fCFRef; }; static CFStringRef make_CFString(const char str[]) { return CFStringCreateWithCString(nullptr, str, kCFStringEncodingUTF8); } template class AutoCGTable : SkNoncopyable { public: AutoCGTable(CGFontRef font) //Undocumented: the tag parameter in this call is expected in machine order and not BE order. : fCFData(CGFontCopyTableForTag(font, SkSetFourByteTag(T::TAG0, T::TAG1, T::TAG2, T::TAG3))) , fData(fCFData ? reinterpret_cast(CFDataGetBytePtr(fCFData)) : nullptr) { } const T* operator->() const { return fData; } private: AutoCFRelease fCFData; public: const T* fData; }; // inline versions of these rect helpers static bool CGRectIsEmpty_inline(const CGRect& rect) { return rect.size.width <= 0 || rect.size.height <= 0; } static CGFloat CGRectGetMinX_inline(const CGRect& rect) { return rect.origin.x; } static CGFloat CGRectGetMaxX_inline(const CGRect& rect) { return rect.origin.x + rect.size.width; } static CGFloat CGRectGetMinY_inline(const CGRect& rect) { return rect.origin.y; } static CGFloat CGRectGetMaxY_inline(const CGRect& rect) { return rect.origin.y + rect.size.height; } static CGFloat CGRectGetWidth_inline(const CGRect& rect) { return rect.size.width; } /////////////////////////////////////////////////////////////////////////////// static void sk_memset_rect32(uint32_t* ptr, uint32_t value, int width, int height, size_t rowBytes) { SkASSERT(width); SkASSERT(width * sizeof(uint32_t) <= rowBytes); if (width >= 32) { while (height) { sk_memset32(ptr, value, width); ptr = (uint32_t*)((char*)ptr + rowBytes); height -= 1; } return; } rowBytes -= width * sizeof(uint32_t); if (width >= 8) { while (height) { int w = width; do { *ptr++ = value; *ptr++ = value; *ptr++ = value; *ptr++ = value; *ptr++ = value; *ptr++ = value; *ptr++ = value; *ptr++ = value; w -= 8; } while (w >= 8); while (--w >= 0) { *ptr++ = value; } ptr = (uint32_t*)((char*)ptr + rowBytes); height -= 1; } } else { while (height) { int w = width; do { *ptr++ = value; } while (--w > 0); ptr = (uint32_t*)((char*)ptr + rowBytes); height -= 1; } } } #include typedef uint32_t CGRGBPixel; static unsigned CGRGBPixel_getAlpha(CGRGBPixel pixel) { return pixel & 0xFF; } static const char FONT_DEFAULT_NAME[] = "Lucida Sans"; // See Source/WebKit/chromium/base/mac/mac_util.mm DarwinMajorVersionInternal for original source. static int readVersion() { struct utsname info; if (uname(&info) != 0) { SkDebugf("uname failed\n"); return 0; } if (strcmp(info.sysname, "Darwin") != 0) { SkDebugf("unexpected uname sysname %s\n", info.sysname); return 0; } char* dot = strchr(info.release, '.'); if (!dot) { SkDebugf("expected dot in uname release %s\n", info.release); return 0; } int version = atoi(info.release); if (version == 0) { SkDebugf("could not parse uname release %s\n", info.release); } return version; } static int darwinVersion() { static int darwin_version = readVersion(); return darwin_version; } static bool isSnowLeopard() { return darwinVersion() == 10; } static bool isLion() { return darwinVersion() == 11; } static bool isMountainLion() { return darwinVersion() == 12; } static bool isLCDFormat(unsigned format) { return SkMask::kLCD16_Format == format; } static CGFloat ScalarToCG(SkScalar scalar) { if (sizeof(CGFloat) == sizeof(float)) { return SkScalarToFloat(scalar); } else { SkASSERT(sizeof(CGFloat) == sizeof(double)); return (CGFloat) SkScalarToDouble(scalar); } } static SkScalar CGToScalar(CGFloat cgFloat) { if (sizeof(CGFloat) == sizeof(float)) { return cgFloat; } else { SkASSERT(sizeof(CGFloat) == sizeof(double)); return SkDoubleToScalar(cgFloat); } } static CGAffineTransform MatrixToCGAffineTransform(const SkMatrix& matrix, SkScalar sx = SK_Scalar1, SkScalar sy = SK_Scalar1) { return CGAffineTransformMake( ScalarToCG(matrix[SkMatrix::kMScaleX] * sx), -ScalarToCG(matrix[SkMatrix::kMSkewY] * sy), -ScalarToCG(matrix[SkMatrix::kMSkewX] * sx), ScalarToCG(matrix[SkMatrix::kMScaleY] * sy), ScalarToCG(matrix[SkMatrix::kMTransX] * sx), ScalarToCG(matrix[SkMatrix::kMTransY] * sy)); } /////////////////////////////////////////////////////////////////////////////// #define BITMAP_INFO_RGB (kCGImageAlphaNoneSkipFirst | kCGBitmapByteOrder32Host) /** * There does not appear to be a publicly accessable API for determining if lcd * font smoothing will be applied if we request it. The main issue is that if * smoothing is applied a gamma of 2.0 will be used, if not a gamma of 1.0. */ static bool supports_LCD() { static int gSupportsLCD = -1; if (gSupportsLCD >= 0) { return (bool) gSupportsLCD; } uint32_t rgb = 0; AutoCFRelease colorspace(CGColorSpaceCreateDeviceRGB()); AutoCFRelease cgContext(CGBitmapContextCreate(&rgb, 1, 1, 8, 4, colorspace, BITMAP_INFO_RGB)); CGContextSelectFont(cgContext, "Helvetica", 16, kCGEncodingMacRoman); CGContextSetShouldSmoothFonts(cgContext, true); CGContextSetShouldAntialias(cgContext, true); CGContextSetTextDrawingMode(cgContext, kCGTextFill); CGContextSetGrayFillColor(cgContext, 1, 1); CGContextShowTextAtPoint(cgContext, -1, 0, "|", 1); uint32_t r = (rgb >> 16) & 0xFF; uint32_t g = (rgb >> 8) & 0xFF; uint32_t b = (rgb >> 0) & 0xFF; gSupportsLCD = (r != g || r != b); return (bool) gSupportsLCD; } class Offscreen { public: Offscreen() : fRGBSpace(nullptr) , fCG(nullptr) , fDoAA(false) , fDoLCD(false) { fSize.set(0, 0); } CGRGBPixel* getCG(const SkScalerContext_Mac& context, const SkGlyph& glyph, CGGlyph glyphID, size_t* rowBytesPtr, bool generateA8FromLCD); private: enum { kSize = 32 * 32 * sizeof(CGRGBPixel) }; SkAutoSMalloc fImageStorage; AutoCFRelease fRGBSpace; // cached state AutoCFRelease fCG; SkISize fSize; bool fDoAA; bool fDoLCD; static int RoundSize(int dimension) { return SkNextPow2(dimension); } }; /////////////////////////////////////////////////////////////////////////////// static bool find_dict_float(CFDictionaryRef dict, CFStringRef name, float* value) { CFNumberRef num; return CFDictionaryGetValueIfPresent(dict, name, (const void**)&num) && CFNumberIsFloatType(num) && CFNumberGetValue(num, kCFNumberFloatType, value); } static int unit_weight_to_fontstyle(float unit) { float value; if (unit < 0) { value = 100 + (1 + unit) * 300; } else { value = 400 + unit * 500; } return sk_float_round2int(value); } static int unit_width_to_fontstyle(float unit) { float value; if (unit < 0) { value = 1 + (1 + unit) * 4; } else { value = 5 + unit * 4; } return sk_float_round2int(value); } static SkFontStyle fontstyle_from_descriptor(CTFontDescriptorRef desc) { AutoCFRelease dict( (CFDictionaryRef)CTFontDescriptorCopyAttribute(desc, kCTFontTraitsAttribute)); if (nullptr == dict.get()) { return SkFontStyle(); } float weight, width, slant; if (!find_dict_float(dict, kCTFontWeightTrait, &weight)) { weight = 0; } if (!find_dict_float(dict, kCTFontWidthTrait, &width)) { width = 0; } if (!find_dict_float(dict, kCTFontSlantTrait, &slant)) { slant = 0; } return SkFontStyle(unit_weight_to_fontstyle(weight), unit_width_to_fontstyle(width), slant ? SkFontStyle::kItalic_Slant : SkFontStyle::kUpright_Slant); } static SkTypeface::Style computeStyleBits(CTFontRef font, bool* isFixedPitch) { unsigned style = SkTypeface::kNormal; CTFontSymbolicTraits traits = CTFontGetSymbolicTraits(font); if (traits & kCTFontBoldTrait) { style |= SkTypeface::kBold; } if (traits & kCTFontItalicTrait) { style |= SkTypeface::kItalic; } if (isFixedPitch) { *isFixedPitch = (traits & kCTFontMonoSpaceTrait) != 0; } return (SkTypeface::Style)style; } #define WEIGHT_THRESHOLD ((SkFontStyle::kNormal_Weight + SkFontStyle::kBold_Weight)/2) // kCTFontColorGlyphsTrait was added in the Mac 10.7 and iPhone 4.3 SDKs. // Being an enum value it is not guarded by version macros, but old SDKs must still be supported. #if defined(__MAC_10_7) || defined(__IPHONE_4_3) static const uint32_t SkCTFontColorGlyphsTrait = kCTFontColorGlyphsTrait; #else static const uint32_t SkCTFontColorGlyphsTrait = (1 << 13); #endif class SkTypeface_Mac : public SkTypeface { public: SkTypeface_Mac(CTFontRef fontRef, CFTypeRef resourceRef, const SkFontStyle& fs, bool isFixedPitch, const char requestedName[], bool isLocalStream) : SkTypeface(fs, SkTypefaceCache::NewFontID(), isFixedPitch) , fRequestedName(requestedName) , fFontRef(fontRef) // caller has already called CFRetain for us , fOriginatingCFTypeRef(resourceRef) // caller has already called CFRetain for us , fHasColorGlyphs(SkToBool(CTFontGetSymbolicTraits(fFontRef) & SkCTFontColorGlyphsTrait)) , fIsLocalStream(isLocalStream) { SkASSERT(fontRef); } SkString fRequestedName; AutoCFRelease fFontRef; AutoCFRelease fOriginatingCFTypeRef; const bool fHasColorGlyphs; protected: int onGetUPEM() const override; SkStreamAsset* onOpenStream(int* ttcIndex) const override; SkFontData* onCreateFontData() const override; void onGetFamilyName(SkString* familyName) const override; SkTypeface::LocalizedStrings* onCreateFamilyNameIterator() const override; int onGetTableTags(SkFontTableTag tags[]) const override; virtual size_t onGetTableData(SkFontTableTag, size_t offset, size_t length, void* data) const override; SkScalerContext* onCreateScalerContext(const SkDescriptor*) const override; void onFilterRec(SkScalerContextRec*) const override; void onGetFontDescriptor(SkFontDescriptor*, bool*) const override; virtual SkAdvancedTypefaceMetrics* onGetAdvancedTypefaceMetrics( PerGlyphInfo, const uint32_t*, uint32_t) const override; virtual int onCharsToGlyphs(const void* chars, Encoding, uint16_t glyphs[], int glyphCount) const override; int onCountGlyphs() const override; private: bool fIsLocalStream; typedef SkTypeface INHERITED; }; /** Creates a typeface without searching the cache. Takes ownership of the CTFontRef. */ static SkTypeface* NewFromFontRef(CTFontRef fontRef, CFTypeRef resourceRef, const char name[], bool isLocalStream) { SkASSERT(fontRef); bool isFixedPitch; SkFontStyle style = SkFontStyle(computeStyleBits(fontRef, &isFixedPitch)); return new SkTypeface_Mac(fontRef, resourceRef, style, isFixedPitch, name, isLocalStream); } static bool find_by_CTFontRef(SkTypeface* cached, const SkFontStyle&, void* context) { CTFontRef self = (CTFontRef)context; CTFontRef other = ((SkTypeface_Mac*)cached)->fFontRef; return CFEqual(self, other); } /** Creates a typeface from a name, searching the cache. */ static SkTypeface* NewFromName(const char familyName[], const SkFontStyle& theStyle) { CTFontSymbolicTraits ctFontTraits = 0; if (theStyle.weight() >= SkFontStyle::kBold_Weight) { ctFontTraits |= kCTFontBoldTrait; } if (theStyle.slant() != SkFontStyle::kUpright_Slant) { ctFontTraits |= kCTFontItalicTrait; } //TODO: add weight width slant // Create the font info AutoCFRelease cfFontName(make_CFString(familyName)); AutoCFRelease cfFontTraits( CFNumberCreate(kCFAllocatorDefault, kCFNumberSInt32Type, &ctFontTraits)); AutoCFRelease cfAttributes( CFDictionaryCreateMutable(kCFAllocatorDefault, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks)); AutoCFRelease cfTraits( CFDictionaryCreateMutable(kCFAllocatorDefault, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks)); if (!cfFontName || !cfFontTraits || !cfAttributes || !cfTraits) { return nullptr; } CFDictionaryAddValue(cfTraits, kCTFontSymbolicTrait, cfFontTraits); CFDictionaryAddValue(cfAttributes, kCTFontFamilyNameAttribute, cfFontName); CFDictionaryAddValue(cfAttributes, kCTFontTraitsAttribute, cfTraits); AutoCFRelease ctFontDesc( CTFontDescriptorCreateWithAttributes(cfAttributes)); if (!ctFontDesc) { return nullptr; } AutoCFRelease ctFont(CTFontCreateWithFontDescriptor(ctFontDesc, 0, nullptr)); if (!ctFont) { return nullptr; } SkTypeface* face = SkTypefaceCache::FindByProcAndRef(find_by_CTFontRef, (void*)ctFont.get()); if (!face) { face = NewFromFontRef(ctFont.detach(), nullptr, nullptr, false); SkTypefaceCache::Add(face, face->fontStyle()); } return face; } SK_DECLARE_STATIC_MUTEX(gGetDefaultFaceMutex); static SkTypeface* GetDefaultFace() { SkAutoMutexAcquire ma(gGetDefaultFaceMutex); static SkTypeface* gDefaultFace; if (nullptr == gDefaultFace) { gDefaultFace = NewFromName(FONT_DEFAULT_NAME, SkFontStyle()); SkTypefaceCache::Add(gDefaultFace, SkFontStyle()); } return gDefaultFace; } /////////////////////////////////////////////////////////////////////////////// extern CTFontRef SkTypeface_GetCTFontRef(const SkTypeface* face); CTFontRef SkTypeface_GetCTFontRef(const SkTypeface* face) { const SkTypeface_Mac* macface = (const SkTypeface_Mac*)face; return macface ? macface->fFontRef.get() : nullptr; } /* This function is visible on the outside. It first searches the cache, and if * not found, returns a new entry (after adding it to the cache). */ SkTypeface* SkCreateTypefaceFromCTFont(CTFontRef fontRef, CFTypeRef resourceRef) { SkTypeface* face = SkTypefaceCache::FindByProcAndRef(find_by_CTFontRef, (void*)fontRef); if (!face) { CFRetain(fontRef); if (resourceRef) { CFRetain(resourceRef); } face = NewFromFontRef(fontRef, resourceRef, nullptr, false); SkTypefaceCache::Add(face, face->fontStyle()); } return face; } struct NameStyle { const char* fName; SkFontStyle fStyle; }; static bool find_by_NameStyle(SkTypeface* cachedFace, const SkFontStyle& cachedStyle, void* ctx) { const SkTypeface_Mac* cachedMacFace = static_cast(cachedFace); const NameStyle* requested = static_cast(ctx); return cachedStyle == requested->fStyle && cachedMacFace->fRequestedName.equals(requested->fName); } static const char* map_css_names(const char* name) { static const struct { const char* fFrom; // name the caller specified const char* fTo; // "canonical" name we map to } gPairs[] = { { "sans-serif", "Helvetica" }, { "serif", "Times" }, { "monospace", "Courier" } }; for (size_t i = 0; i < SK_ARRAY_COUNT(gPairs); i++) { if (strcmp(name, gPairs[i].fFrom) == 0) { return gPairs[i].fTo; } } return name; // no change } /////////////////////////////////////////////////////////////////////////////// /** GlyphRect is in FUnits (em space, y up). */ struct GlyphRect { int16_t fMinX; int16_t fMinY; int16_t fMaxX; int16_t fMaxY; }; class SkScalerContext_Mac : public SkScalerContext { public: SkScalerContext_Mac(SkTypeface_Mac*, const SkDescriptor*); protected: unsigned generateGlyphCount(void) override; uint16_t generateCharToGlyph(SkUnichar uni) override; void generateAdvance(SkGlyph* glyph) override; void generateMetrics(SkGlyph* glyph) override; void generateImage(const SkGlyph& glyph) override; void generatePath(const SkGlyph& glyph, SkPath* path) override; void generateFontMetrics(SkPaint::FontMetrics*) override; private: static void CTPathElement(void *info, const CGPathElement *element); /** Returns the offset from the horizontal origin to the vertical origin in SkGlyph units. */ void getVerticalOffset(CGGlyph glyphID, SkPoint* offset) const; /** Initializes and returns the value of fFBoundingBoxesGlyphOffset. * * For use with (and must be called before) generateBBoxes. */ uint16_t getFBoundingBoxesGlyphOffset(); /** Initializes fFBoundingBoxes and returns true on success. * * On Lion and Mountain Lion, CTFontGetBoundingRectsForGlyphs has a bug which causes it to * return a bad value in bounds.origin.x for SFNT fonts whose hhea::numberOfHMetrics is * less than its maxp::numGlyphs. When this is the case we try to read the bounds from the * font directly. * * This routine initializes fFBoundingBoxes to an array of * fGlyphCount - fFBoundingBoxesGlyphOffset GlyphRects which contain the bounds in FUnits * (em space, y up) of glyphs with ids in the range [fFBoundingBoxesGlyphOffset, fGlyphCount). * * Returns true if fFBoundingBoxes is properly initialized. The table can only be properly * initialized for a TrueType font with 'head', 'loca', and 'glyf' tables. * * TODO: A future optimization will compute fFBoundingBoxes once per fCTFont. */ bool generateBBoxes(); /** Converts from FUnits (em space, y up) to SkGlyph units (pixels, y down). * * Used on Snow Leopard to correct CTFontGetVerticalTranslationsForGlyphs. * Used on Lion to correct CTFontGetBoundingRectsForGlyphs. */ SkMatrix fFUnitMatrix; Offscreen fOffscreen; /** Unrotated variant of fCTFont. * * In 10.10.1 CTFontGetAdvancesForGlyphs applies the font transform to the width of the * advances, but always sets the height to 0. This font is used to get the advances of the * unrotated glyph, and then the rotation is applied separately. * * CT vertical metrics are pre-rotated (in em space, before transform) 90deg clock-wise. * This makes kCTFontDefaultOrientation dangerous, because the metrics from * kCTFontHorizontalOrientation are in a different space from kCTFontVerticalOrientation. * With kCTFontVerticalOrientation the advances must be unrotated. * * Sometimes, creating a copy of a CTFont with the same size but different trasform will select * different underlying font data. As a result, avoid ever creating more than one CTFont per * SkScalerContext to ensure that only one CTFont is used. * * As a result of the above (and other constraints) this font contains the size, but not the * transform. The transform must always be applied separately. */ AutoCFRelease fCTFont; /** The transform without the font size. */ CGAffineTransform fTransform; CGAffineTransform fInvTransform; AutoCFRelease fCGFont; SkAutoTMalloc fFBoundingBoxes; uint16_t fFBoundingBoxesGlyphOffset; uint16_t fGlyphCount; bool fGeneratedFBoundingBoxes; const bool fDoSubPosition; const bool fVertical; friend class Offscreen; typedef SkScalerContext INHERITED; }; // CTFontCreateCopyWithAttributes or CTFontCreateCopyWithSymbolicTraits cannot be used on 10.10 // and later, as they will return different underlying fonts depending on the size requested. // It is not possible to use descriptors with CTFontCreateWithFontDescriptor, since that does not // work with non-system fonts. As a result, create the strike specific CTFonts from the underlying // CGFont. static CTFontRef ctfont_create_exact_copy(CTFontRef baseFont, CGFloat textSize, const CGAffineTransform* transform) { AutoCFRelease baseCGFont(CTFontCopyGraphicsFont(baseFont, nullptr)); // The last parameter (CTFontDescriptorRef attributes) *must* be nullptr. // If non-nullptr then with fonts with variation axes, the copy will fail in // CGFontVariationFromDictCallback when it assumes kCGFontVariationAxisName is CFNumberRef // which it quite obviously is not. // Because we cannot setup the CTFont descriptor to match, the same restriction applies here // as other uses of CTFontCreateWithGraphicsFont which is that such CTFonts should not escape // the scaler context, since they aren't 'normal'. return CTFontCreateWithGraphicsFont(baseCGFont, textSize, transform, nullptr); } SkScalerContext_Mac::SkScalerContext_Mac(SkTypeface_Mac* typeface, const SkDescriptor* desc) : INHERITED(typeface, desc) , fFBoundingBoxes() , fFBoundingBoxesGlyphOffset(0) , fGeneratedFBoundingBoxes(false) , fDoSubPosition(SkToBool(fRec.fFlags & kSubpixelPositioning_Flag)) , fVertical(SkToBool(fRec.fFlags & kVertical_Flag)) { AUTO_CG_LOCK(); CTFontRef ctFont = typeface->fFontRef.get(); CFIndex numGlyphs = CTFontGetGlyphCount(ctFont); SkASSERT(numGlyphs >= 1 && numGlyphs <= 0xFFFF); fGlyphCount = SkToU16(numGlyphs); // CT on (at least) 10.9 will size color glyphs down from the requested size, but not up. // As a result, it is necessary to know the actual device size and request that. SkVector scale; SkMatrix skTransform; fRec.computeMatrices(SkScalerContextRec::kVertical_PreMatrixScale, &scale, &skTransform, nullptr, nullptr, &fFUnitMatrix); fTransform = MatrixToCGAffineTransform(skTransform); fInvTransform = CGAffineTransformInvert(fTransform); // The transform contains everything except the requested text size. // Some properties, like 'trak', are based on the text size (before applying the matrix). CGFloat textSize = ScalarToCG(scale.y()); fCTFont.reset(ctfont_create_exact_copy(ctFont, textSize, nullptr)); fCGFont.reset(CTFontCopyGraphicsFont(fCTFont, nullptr)); // The fUnitMatrix includes the text size (and em) as it is used to scale the raw font data. SkScalar emPerFUnit = SkScalarInvert(SkIntToScalar(CGFontGetUnitsPerEm(fCGFont))); fFUnitMatrix.preScale(emPerFUnit, -emPerFUnit); } /** This is an implementation of CTFontDrawGlyphs for 10.6; it was introduced in 10.7. */ static void legacy_CTFontDrawGlyphs(CTFontRef, const CGGlyph glyphs[], const CGPoint points[], size_t count, CGContextRef cg) { CGContextShowGlyphsAtPositions(cg, glyphs, points, count); } typedef decltype(legacy_CTFontDrawGlyphs) CTFontDrawGlyphsProc; static CTFontDrawGlyphsProc* choose_CTFontDrawGlyphs() { if (void* real = dlsym(RTLD_DEFAULT, "CTFontDrawGlyphs")) { return (CTFontDrawGlyphsProc*)real; } return &legacy_CTFontDrawGlyphs; } SK_DECLARE_STATIC_ONCE_PTR(CTFontDrawGlyphsProc, gCTFontDrawGlyphs); CGRGBPixel* Offscreen::getCG(const SkScalerContext_Mac& context, const SkGlyph& glyph, CGGlyph glyphID, size_t* rowBytesPtr, bool generateA8FromLCD) { auto ctFontDrawGlyphs = gCTFontDrawGlyphs.get(choose_CTFontDrawGlyphs); if (!fRGBSpace) { //It doesn't appear to matter what color space is specified. //Regular blends and antialiased text are always (s*a + d*(1-a)) //and smoothed text is always g=2.0. fRGBSpace.reset(CGColorSpaceCreateDeviceRGB()); } // default to kBW_Format bool doAA = false; bool doLCD = false; if (SkMask::kBW_Format != glyph.fMaskFormat) { doLCD = true; doAA = true; } // FIXME: lcd smoothed un-hinted rasterization unsupported. if (!generateA8FromLCD && SkMask::kA8_Format == glyph.fMaskFormat) { doLCD = false; doAA = true; } // If this font might have color glyphs, disable LCD as there's no way to support it. // CoreText doesn't tell us which format it ended up using, so we can't detect it. // A8 will end up black on transparent, but TODO: we can detect gray and set to A8. if (SkMask::kARGB32_Format == glyph.fMaskFormat) { doLCD = false; } size_t rowBytes = fSize.fWidth * sizeof(CGRGBPixel); if (!fCG || fSize.fWidth < glyph.fWidth || fSize.fHeight < glyph.fHeight) { if (fSize.fWidth < glyph.fWidth) { fSize.fWidth = RoundSize(glyph.fWidth); } if (fSize.fHeight < glyph.fHeight) { fSize.fHeight = RoundSize(glyph.fHeight); } rowBytes = fSize.fWidth * sizeof(CGRGBPixel); void* image = fImageStorage.reset(rowBytes * fSize.fHeight); const CGImageAlphaInfo alpha = (SkMask::kARGB32_Format == glyph.fMaskFormat) ? kCGImageAlphaPremultipliedFirst : kCGImageAlphaNoneSkipFirst; const CGBitmapInfo bitmapInfo = kCGBitmapByteOrder32Host | alpha; fCG.reset(CGBitmapContextCreate(image, fSize.fWidth, fSize.fHeight, 8, rowBytes, fRGBSpace, bitmapInfo)); // Skia handles quantization and subpixel positioning, // so disable quantization and enabe subpixel positioning in CG. CGContextSetAllowsFontSubpixelQuantization(fCG, false); CGContextSetShouldSubpixelQuantizeFonts(fCG, false); // Because CG always draws from the horizontal baseline, // if there is a non-integral translation from the horizontal origin to the vertical origin, // then CG cannot draw the glyph in the correct location without subpixel positioning. CGContextSetAllowsFontSubpixelPositioning(fCG, true); CGContextSetShouldSubpixelPositionFonts(fCG, true); CGContextSetTextDrawingMode(fCG, kCGTextFill); // Draw black on white to create mask. (Special path exists to speed this up in CG.) CGContextSetGrayFillColor(fCG, 0.0f, 1.0f); // force our checks below to happen fDoAA = !doAA; fDoLCD = !doLCD; if (legacy_CTFontDrawGlyphs == ctFontDrawGlyphs) { // CTFontDrawGlyphs will apply the font, font size, and font matrix to the CGContext. // Our 'fake' one does not, so set up the CGContext here. CGContextSetFont(fCG, context.fCGFont); CGContextSetFontSize(fCG, CTFontGetSize(context.fCTFont)); } CGContextSetTextMatrix(fCG, context.fTransform); } if (fDoAA != doAA) { CGContextSetShouldAntialias(fCG, doAA); fDoAA = doAA; } if (fDoLCD != doLCD) { CGContextSetShouldSmoothFonts(fCG, doLCD); fDoLCD = doLCD; } CGRGBPixel* image = (CGRGBPixel*)fImageStorage.get(); // skip rows based on the glyph's height image += (fSize.fHeight - glyph.fHeight) * fSize.fWidth; // Erase to white (or transparent black if it's a color glyph, to not composite against white). uint32_t bgColor = (SkMask::kARGB32_Format != glyph.fMaskFormat) ? 0xFFFFFFFF : 0x00000000; sk_memset_rect32(image, bgColor, glyph.fWidth, glyph.fHeight, rowBytes); float subX = 0; float subY = 0; if (context.fDoSubPosition) { subX = SkFixedToFloat(glyph.getSubXFixed()); subY = SkFixedToFloat(glyph.getSubYFixed()); } // CoreText and CoreGraphics always draw using the horizontal baseline origin. if (context.fVertical) { SkPoint offset; context.getVerticalOffset(glyphID, &offset); subX += offset.fX; subY += offset.fY; } CGPoint point = CGPointMake(-glyph.fLeft + subX, glyph.fTop + glyph.fHeight - subY); // Prior to 10.10, CTFontDrawGlyphs acted like CGContextShowGlyphsAtPositions and took // 'positions' which are in text space. The glyph location (in device space) must be // mapped into text space, so that CG can convert it back into device space. // In 10.10.1, this is handled directly in CTFontDrawGlyphs. // // However, in 10.10.2 color glyphs no longer rotate based on the font transform. // So always make the font transform identity and place the transform on the context. point = CGPointApplyAffineTransform(point, context.fInvTransform); ctFontDrawGlyphs(context.fCTFont, &glyphID, &point, 1, fCG); SkASSERT(rowBytesPtr); *rowBytesPtr = rowBytes; return image; } void SkScalerContext_Mac::getVerticalOffset(CGGlyph glyphID, SkPoint* offset) const { // Snow Leopard returns cgVertOffset in completely un-transformed FUnits (em space, y up). // Lion and Leopard return cgVertOffset in CG units (pixels, y up). CGSize cgVertOffset; CTFontGetVerticalTranslationsForGlyphs(fCTFont, &glyphID, &cgVertOffset, 1); if (isSnowLeopard()) { SkPoint skVertOffset = { CGToScalar(cgVertOffset.width), CGToScalar(cgVertOffset.height) }; // From FUnits (em space, y up) to SkGlyph units (pixels, y down). fFUnitMatrix.mapPoints(&skVertOffset, 1); *offset = skVertOffset; return; } cgVertOffset = CGSizeApplyAffineTransform(cgVertOffset, fTransform); SkPoint skVertOffset = { CGToScalar(cgVertOffset.width), CGToScalar(cgVertOffset.height) }; // From CG units (pixels, y up) to SkGlyph units (pixels, y down). skVertOffset.fY = -skVertOffset.fY; *offset = skVertOffset; } uint16_t SkScalerContext_Mac::getFBoundingBoxesGlyphOffset() { if (fFBoundingBoxesGlyphOffset) { return fFBoundingBoxesGlyphOffset; } fFBoundingBoxesGlyphOffset = fGlyphCount; // fallback for all fonts AutoCGTable hheaTable(fCGFont); if (hheaTable.fData) { fFBoundingBoxesGlyphOffset = SkEndian_SwapBE16(hheaTable->numberOfHMetrics); } return fFBoundingBoxesGlyphOffset; } bool SkScalerContext_Mac::generateBBoxes() { if (fGeneratedFBoundingBoxes) { return SkToBool(fFBoundingBoxes.get()); } fGeneratedFBoundingBoxes = true; AutoCGTable headTable(fCGFont); if (!headTable.fData) { return false; } AutoCGTable locaTable(fCGFont); if (!locaTable.fData) { return false; } AutoCGTable glyfTable(fCGFont); if (!glyfTable.fData) { return false; } uint16_t entries = fGlyphCount - fFBoundingBoxesGlyphOffset; fFBoundingBoxes.reset(entries); SkOTTableHead::IndexToLocFormat locaFormat = headTable->indexToLocFormat; SkOTTableGlyph::Iterator glyphDataIter(*glyfTable.fData, *locaTable.fData, locaFormat); glyphDataIter.advance(fFBoundingBoxesGlyphOffset); for (uint16_t boundingBoxesIndex = 0; boundingBoxesIndex < entries; ++boundingBoxesIndex) { const SkOTTableGlyphData* glyphData = glyphDataIter.next(); GlyphRect& rect = fFBoundingBoxes[boundingBoxesIndex]; rect.fMinX = SkEndian_SwapBE16(glyphData->xMin); rect.fMinY = SkEndian_SwapBE16(glyphData->yMin); rect.fMaxX = SkEndian_SwapBE16(glyphData->xMax); rect.fMaxY = SkEndian_SwapBE16(glyphData->yMax); } return true; } unsigned SkScalerContext_Mac::generateGlyphCount(void) { return fGlyphCount; } uint16_t SkScalerContext_Mac::generateCharToGlyph(SkUnichar uni) { AUTO_CG_LOCK(); CGGlyph cgGlyph[2]; UniChar theChar[2]; // UniChar is a UTF-16 16-bit code unit. // Get the glyph size_t numUniChar = SkUTF16_FromUnichar(uni, theChar); SkASSERT(sizeof(CGGlyph) <= sizeof(uint16_t)); // Undocumented behavior of CTFontGetGlyphsForCharacters with non-bmp code points: // When a surrogate pair is detected, the glyph index used is the index of the high surrogate. // It is documented that if a mapping is unavailable, the glyph will be set to 0. CTFontGetGlyphsForCharacters(fCTFont, theChar, cgGlyph, numUniChar); return cgGlyph[0]; } void SkScalerContext_Mac::generateAdvance(SkGlyph* glyph) { this->generateMetrics(glyph); } void SkScalerContext_Mac::generateMetrics(SkGlyph* glyph) { AUTO_CG_LOCK(); const CGGlyph cgGlyph = (CGGlyph) glyph->getGlyphID(); glyph->zeroMetrics(); // The following block produces cgAdvance in CG units (pixels, y up). CGSize cgAdvance; if (fVertical) { CTFontGetAdvancesForGlyphs(fCTFont, kCTFontVerticalOrientation, &cgGlyph, &cgAdvance, 1); // Vertical advances are returned as widths instead of heights. SkTSwap(cgAdvance.height, cgAdvance.width); cgAdvance.height = -cgAdvance.height; } else { CTFontGetAdvancesForGlyphs(fCTFont, kCTFontHorizontalOrientation, &cgGlyph, &cgAdvance, 1); } cgAdvance = CGSizeApplyAffineTransform(cgAdvance, fTransform); glyph->fAdvanceX = SkFloatToFixed_Check(cgAdvance.width); glyph->fAdvanceY = -SkFloatToFixed_Check(cgAdvance.height); // The following produces skBounds in SkGlyph units (pixels, y down), // or returns early if skBounds would be empty. SkRect skBounds; // On Mountain Lion, CTFontGetBoundingRectsForGlyphs with kCTFontVerticalOrientation and // CTFontGetVerticalTranslationsForGlyphs do not agree when using OTF CFF fonts. // For TTF fonts these two do agree and we can use CTFontGetBoundingRectsForGlyphs to get // the bounding box and CTFontGetVerticalTranslationsForGlyphs to then draw the glyph // inside that bounding box. However, with OTF CFF fonts this does not work. It appears that // CTFontGetBoundingRectsForGlyphs with kCTFontVerticalOrientation on OTF CFF fonts tries // to center the glyph along the vertical baseline and also perform some mysterious shift // along the baseline. CTFontGetVerticalTranslationsForGlyphs does not appear to perform // these steps. // // It is not known which is correct (or if either is correct). However, we must always draw // from the horizontal origin and must use CTFontGetVerticalTranslationsForGlyphs to draw. // As a result, we do not call CTFontGetBoundingRectsForGlyphs for vertical glyphs. // On Snow Leopard, CTFontGetBoundingRectsForGlyphs ignores kCTFontVerticalOrientation and // returns horizontal bounds. // On Lion and Mountain Lion, CTFontGetBoundingRectsForGlyphs has a bug which causes it to // return a bad value in cgBounds.origin.x for SFNT fonts whose hhea::numberOfHMetrics is // less than its maxp::numGlyphs. When this is the case we try to read the bounds from the // font directly. if ((isLion() || isMountainLion()) && (cgGlyph < fGlyphCount && cgGlyph >= getFBoundingBoxesGlyphOffset() && generateBBoxes())) { const GlyphRect& gRect = fFBoundingBoxes[cgGlyph - fFBoundingBoxesGlyphOffset]; if (gRect.fMinX >= gRect.fMaxX || gRect.fMinY >= gRect.fMaxY) { return; } skBounds = SkRect::MakeLTRB(gRect.fMinX, gRect.fMinY, gRect.fMaxX, gRect.fMaxY); // From FUnits (em space, y up) to SkGlyph units (pixels, y down). fFUnitMatrix.mapRect(&skBounds); } else { // CTFontGetBoundingRectsForGlyphs produces cgBounds in CG units (pixels, y up). CGRect cgBounds; CTFontGetBoundingRectsForGlyphs(fCTFont, kCTFontHorizontalOrientation, &cgGlyph, &cgBounds, 1); cgBounds = CGRectApplyAffineTransform(cgBounds, fTransform); // BUG? // 0x200B (zero-advance space) seems to return a huge (garbage) bounds, when // it should be empty. So, if we see a zero-advance, we check if it has an // empty path or not, and if so, we jam the bounds to 0. Hopefully a zero-advance // is rare, so we won't incur a big performance cost for this extra check. if (0 == cgAdvance.width && 0 == cgAdvance.height) { AutoCFRelease path(CTFontCreatePathForGlyph(fCTFont, cgGlyph, nullptr)); if (nullptr == path || CGPathIsEmpty(path)) { return; } } if (CGRectIsEmpty_inline(cgBounds)) { return; } // Convert cgBounds to SkGlyph units (pixels, y down). skBounds = SkRect::MakeXYWH(cgBounds.origin.x, -cgBounds.origin.y - cgBounds.size.height, cgBounds.size.width, cgBounds.size.height); } if (fVertical) { // Due to all of the vertical bounds bugs, skBounds is always the horizontal bounds. // Convert these horizontal bounds into vertical bounds. SkPoint offset; getVerticalOffset(cgGlyph, &offset); skBounds.offset(offset); } // Currently the bounds are based on being rendered at (0,0). // The top left must not move, since that is the base from which subpixel positioning is offset. if (fDoSubPosition) { skBounds.fRight += SkFixedToFloat(glyph->getSubXFixed()); skBounds.fBottom += SkFixedToFloat(glyph->getSubYFixed()); } SkIRect skIBounds; skBounds.roundOut(&skIBounds); // Expand the bounds by 1 pixel, to give CG room for anti-aliasing. // Note that this outset is to allow room for LCD smoothed glyphs. However, the correct outset // is not currently known, as CG dilates the outlines by some percentage. // Note that if this context is A8 and not back-forming from LCD, there is no need to outset. skIBounds.outset(1, 1); glyph->fLeft = SkToS16(skIBounds.fLeft); glyph->fTop = SkToS16(skIBounds.fTop); glyph->fWidth = SkToU16(skIBounds.width()); glyph->fHeight = SkToU16(skIBounds.height()); } #include "SkColorPriv.h" static void build_power_table(uint8_t table[]) { for (int i = 0; i < 256; i++) { float x = i / 255.f; int xx = SkScalarRoundToInt(x * x * 255); table[i] = SkToU8(xx); } } /** * This will invert the gamma applied by CoreGraphics, so we can get linear * values. * * CoreGraphics obscurely defaults to 2.0 as the smoothing gamma value. * The color space used does not appear to affect this choice. */ static const uint8_t* getInverseGammaTableCoreGraphicSmoothing() { static bool gInited; static uint8_t gTableCoreGraphicsSmoothing[256]; if (!gInited) { build_power_table(gTableCoreGraphicsSmoothing); gInited = true; } return gTableCoreGraphicsSmoothing; } static void cgpixels_to_bits(uint8_t dst[], const CGRGBPixel src[], int count) { while (count > 0) { uint8_t mask = 0; for (int i = 7; i >= 0; --i) { mask |= ((CGRGBPixel_getAlpha(*src++) >> 7) ^ 0x1) << i; if (0 == --count) { break; } } *dst++ = mask; } } template static inline uint8_t rgb_to_a8(CGRGBPixel rgb, const uint8_t* table8) { U8CPU r = 0xFF - ((rgb >> 16) & 0xFF); U8CPU g = 0xFF - ((rgb >> 8) & 0xFF); U8CPU b = 0xFF - ((rgb >> 0) & 0xFF); U8CPU lum = sk_apply_lut_if(SkComputeLuminance(r, g, b), table8); #if SK_SHOW_TEXT_BLIT_COVERAGE lum = SkTMax(lum, (U8CPU)0x30); #endif return lum; } template static void rgb_to_a8(const CGRGBPixel* SK_RESTRICT cgPixels, size_t cgRowBytes, const SkGlyph& glyph, const uint8_t* table8) { const int width = glyph.fWidth; size_t dstRB = glyph.rowBytes(); uint8_t* SK_RESTRICT dst = (uint8_t*)glyph.fImage; for (int y = 0; y < glyph.fHeight; y++) { for (int i = 0; i < width; ++i) { dst[i] = rgb_to_a8(cgPixels[i], table8); } cgPixels = (CGRGBPixel*)((char*)cgPixels + cgRowBytes); dst += dstRB; } } template static inline uint16_t rgb_to_lcd16(CGRGBPixel rgb, const uint8_t* tableR, const uint8_t* tableG, const uint8_t* tableB) { U8CPU r = sk_apply_lut_if(0xFF - ((rgb >> 16) & 0xFF), tableR); U8CPU g = sk_apply_lut_if(0xFF - ((rgb >> 8) & 0xFF), tableG); U8CPU b = sk_apply_lut_if(0xFF - ((rgb >> 0) & 0xFF), tableB); #if SK_SHOW_TEXT_BLIT_COVERAGE r = SkTMax(r, (U8CPU)0x30); g = SkTMax(g, (U8CPU)0x30); b = SkTMax(b, (U8CPU)0x30); #endif return SkPack888ToRGB16(r, g, b); } template static void rgb_to_lcd16(const CGRGBPixel* SK_RESTRICT cgPixels, size_t cgRowBytes, const SkGlyph& glyph, const uint8_t* tableR, const uint8_t* tableG, const uint8_t* tableB) { const int width = glyph.fWidth; size_t dstRB = glyph.rowBytes(); uint16_t* SK_RESTRICT dst = (uint16_t*)glyph.fImage; for (int y = 0; y < glyph.fHeight; y++) { for (int i = 0; i < width; i++) { dst[i] = rgb_to_lcd16(cgPixels[i], tableR, tableG, tableB); } cgPixels = (CGRGBPixel*)((char*)cgPixels + cgRowBytes); dst = (uint16_t*)((char*)dst + dstRB); } } static SkPMColor cgpixels_to_pmcolor(CGRGBPixel rgb) { U8CPU a = (rgb >> 24) & 0xFF; U8CPU r = (rgb >> 16) & 0xFF; U8CPU g = (rgb >> 8) & 0xFF; U8CPU b = (rgb >> 0) & 0xFF; #if SK_SHOW_TEXT_BLIT_COVERAGE a = SkTMax(a, (U8CPU)0x30); #endif return SkPackARGB32(a, r, g, b); } void SkScalerContext_Mac::generateImage(const SkGlyph& glyph) { CGGlyph cgGlyph = (CGGlyph) glyph.getGlyphID(); // FIXME: lcd smoothed un-hinted rasterization unsupported. bool generateA8FromLCD = fRec.getHinting() != SkPaint::kNo_Hinting; // Draw the glyph size_t cgRowBytes; CGRGBPixel* cgPixels = fOffscreen.getCG(*this, glyph, cgGlyph, &cgRowBytes, generateA8FromLCD); if (cgPixels == nullptr) { return; } // Fix the glyph const bool isLCD = isLCDFormat(glyph.fMaskFormat); if (isLCD || (glyph.fMaskFormat == SkMask::kA8_Format && supports_LCD() && generateA8FromLCD)) { const uint8_t* table = getInverseGammaTableCoreGraphicSmoothing(); //Note that the following cannot really be integrated into the //pre-blend, since we may not be applying the pre-blend; when we aren't //applying the pre-blend it means that a filter wants linear anyway. //Other code may also be applying the pre-blend, so we'd need another //one with this and one without. CGRGBPixel* addr = cgPixels; for (int y = 0; y < glyph.fHeight; ++y) { for (int x = 0; x < glyph.fWidth; ++x) { int r = (addr[x] >> 16) & 0xFF; int g = (addr[x] >> 8) & 0xFF; int b = (addr[x] >> 0) & 0xFF; addr[x] = (table[r] << 16) | (table[g] << 8) | table[b]; } addr = SkTAddOffset(addr, cgRowBytes); } } // Convert glyph to mask switch (glyph.fMaskFormat) { case SkMask::kLCD16_Format: { if (fPreBlend.isApplicable()) { rgb_to_lcd16(cgPixels, cgRowBytes, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } else { rgb_to_lcd16(cgPixels, cgRowBytes, glyph, fPreBlend.fR, fPreBlend.fG, fPreBlend.fB); } } break; case SkMask::kA8_Format: { if (fPreBlend.isApplicable()) { rgb_to_a8(cgPixels, cgRowBytes, glyph, fPreBlend.fG); } else { rgb_to_a8(cgPixels, cgRowBytes, glyph, fPreBlend.fG); } } break; case SkMask::kBW_Format: { const int width = glyph.fWidth; size_t dstRB = glyph.rowBytes(); uint8_t* dst = (uint8_t*)glyph.fImage; for (int y = 0; y < glyph.fHeight; y++) { cgpixels_to_bits(dst, cgPixels, width); cgPixels = (CGRGBPixel*)((char*)cgPixels + cgRowBytes); dst += dstRB; } } break; case SkMask::kARGB32_Format: { const int width = glyph.fWidth; size_t dstRB = glyph.rowBytes(); SkPMColor* dst = (SkPMColor*)glyph.fImage; for (int y = 0; y < glyph.fHeight; y++) { for (int x = 0; x < width; ++x) { dst[x] = cgpixels_to_pmcolor(cgPixels[x]); } cgPixels = (CGRGBPixel*)((char*)cgPixels + cgRowBytes); dst = (SkPMColor*)((char*)dst + dstRB); } } break; default: SkDEBUGFAIL("unexpected mask format"); break; } } /* * Our subpixel resolution is only 2 bits in each direction, so a scale of 4 * seems sufficient, and possibly even correct, to allow the hinted outline * to be subpixel positioned. */ #define kScaleForSubPixelPositionHinting (4.0f) void SkScalerContext_Mac::generatePath(const SkGlyph& glyph, SkPath* path) { AUTO_CG_LOCK(); SkScalar scaleX = SK_Scalar1; SkScalar scaleY = SK_Scalar1; CGAffineTransform xform = fTransform; /* * For subpixel positioning, we want to return an unhinted outline, so it * can be positioned nicely at fractional offsets. However, we special-case * if the baseline of the (horizontal) text is axis-aligned. In those cases * we want to retain hinting in the direction orthogonal to the baseline. * e.g. for horizontal baseline, we want to retain hinting in Y. * The way we remove hinting is to scale the font by some value (4) in that * direction, ask for the path, and then scale the path back down. */ if (fDoSubPosition) { SkMatrix m; fRec.getSingleMatrix(&m); // start out by assuming that we want no hining in X and Y scaleX = scaleY = kScaleForSubPixelPositionHinting; // now see if we need to restore hinting for axis-aligned baselines switch (SkComputeAxisAlignmentForHText(m)) { case kX_SkAxisAlignment: scaleY = SK_Scalar1; // want hinting in the Y direction break; case kY_SkAxisAlignment: scaleX = SK_Scalar1; // want hinting in the X direction break; default: break; } CGAffineTransform scale(CGAffineTransformMakeScale(ScalarToCG(scaleX), ScalarToCG(scaleY))); xform = CGAffineTransformConcat(fTransform, scale); } CGGlyph cgGlyph = (CGGlyph)glyph.getGlyphID(); AutoCFRelease cgPath(CTFontCreatePathForGlyph(fCTFont, cgGlyph, &xform)); path->reset(); if (cgPath != nullptr) { CGPathApply(cgPath, path, SkScalerContext_Mac::CTPathElement); } if (fDoSubPosition) { SkMatrix m; m.setScale(SkScalarInvert(scaleX), SkScalarInvert(scaleY)); path->transform(m); } if (fVertical) { SkPoint offset; getVerticalOffset(cgGlyph, &offset); path->offset(offset.fX, offset.fY); } } void SkScalerContext_Mac::generateFontMetrics(SkPaint::FontMetrics* metrics) { if (nullptr == metrics) { return; } AUTO_CG_LOCK(); CGRect theBounds = CTFontGetBoundingBox(fCTFont); metrics->fTop = CGToScalar(-CGRectGetMaxY_inline(theBounds)); metrics->fAscent = CGToScalar(-CTFontGetAscent(fCTFont)); metrics->fDescent = CGToScalar( CTFontGetDescent(fCTFont)); metrics->fBottom = CGToScalar(-CGRectGetMinY_inline(theBounds)); metrics->fLeading = CGToScalar( CTFontGetLeading(fCTFont)); metrics->fAvgCharWidth = CGToScalar( CGRectGetWidth_inline(theBounds)); metrics->fXMin = CGToScalar( CGRectGetMinX_inline(theBounds)); metrics->fXMax = CGToScalar( CGRectGetMaxX_inline(theBounds)); metrics->fMaxCharWidth = metrics->fXMax - metrics->fXMin; metrics->fXHeight = CGToScalar( CTFontGetXHeight(fCTFont)); metrics->fCapHeight = CGToScalar( CTFontGetCapHeight(fCTFont)); metrics->fUnderlineThickness = CGToScalar( CTFontGetUnderlineThickness(fCTFont)); metrics->fUnderlinePosition = -CGToScalar( CTFontGetUnderlinePosition(fCTFont)); metrics->fFlags |= SkPaint::FontMetrics::kUnderlineThinknessIsValid_Flag; metrics->fFlags |= SkPaint::FontMetrics::kUnderlinePositionIsValid_Flag; } void SkScalerContext_Mac::CTPathElement(void *info, const CGPathElement *element) { SkPath* skPath = (SkPath*)info; // Process the path element switch (element->type) { case kCGPathElementMoveToPoint: skPath->moveTo(element->points[0].x, -element->points[0].y); break; case kCGPathElementAddLineToPoint: skPath->lineTo(element->points[0].x, -element->points[0].y); break; case kCGPathElementAddQuadCurveToPoint: skPath->quadTo(element->points[0].x, -element->points[0].y, element->points[1].x, -element->points[1].y); break; case kCGPathElementAddCurveToPoint: skPath->cubicTo(element->points[0].x, -element->points[0].y, element->points[1].x, -element->points[1].y, element->points[2].x, -element->points[2].y); break; case kCGPathElementCloseSubpath: skPath->close(); break; default: SkDEBUGFAIL("Unknown path element!"); break; } } /////////////////////////////////////////////////////////////////////////////// // Returns nullptr on failure // Call must still manage its ownership of provider static SkTypeface* create_from_dataProvider(CGDataProviderRef provider) { AutoCFRelease cg(CGFontCreateWithDataProvider(provider)); if (nullptr == cg) { return nullptr; } CTFontRef ct = CTFontCreateWithGraphicsFont(cg, 0, nullptr, nullptr); return ct ? NewFromFontRef(ct, nullptr, nullptr, true) : nullptr; } // Web fonts added to the the CTFont registry do not return their character set. // Iterate through the font in this case. The existing caller caches the result, // so the performance impact isn't too bad. static void populate_glyph_to_unicode_slow(CTFontRef ctFont, CFIndex glyphCount, SkTDArray* glyphToUnicode) { glyphToUnicode->setCount(SkToInt(glyphCount)); SkUnichar* out = glyphToUnicode->begin(); sk_bzero(out, glyphCount * sizeof(SkUnichar)); UniChar unichar = 0; while (glyphCount > 0) { CGGlyph glyph; if (CTFontGetGlyphsForCharacters(ctFont, &unichar, &glyph, 1)) { out[glyph] = unichar; --glyphCount; } if (++unichar == 0) { break; } } } // Construct Glyph to Unicode table. // Unicode code points that require conjugate pairs in utf16 are not // supported. static void populate_glyph_to_unicode(CTFontRef ctFont, CFIndex glyphCount, SkTDArray* glyphToUnicode) { AutoCFRelease charSet(CTFontCopyCharacterSet(ctFont)); if (!charSet) { populate_glyph_to_unicode_slow(ctFont, glyphCount, glyphToUnicode); return; } AutoCFRelease bitmap(CFCharacterSetCreateBitmapRepresentation(kCFAllocatorDefault, charSet)); if (!bitmap) { return; } CFIndex length = CFDataGetLength(bitmap); if (!length) { return; } if (length > 8192) { // TODO: Add support for Unicode above 0xFFFF // Consider only the BMP portion of the Unicode character points. // The bitmap may contain other planes, up to plane 16. // See http://developer.apple.com/library/ios/#documentation/CoreFoundation/Reference/CFCharacterSetRef/Reference/reference.html length = 8192; } const UInt8* bits = CFDataGetBytePtr(bitmap); glyphToUnicode->setCount(SkToInt(glyphCount)); SkUnichar* out = glyphToUnicode->begin(); sk_bzero(out, glyphCount * sizeof(SkUnichar)); for (int i = 0; i < length; i++) { int mask = bits[i]; if (!mask) { continue; } for (int j = 0; j < 8; j++) { CGGlyph glyph; UniChar unichar = static_cast((i << 3) + j); if (mask & (1 << j) && CTFontGetGlyphsForCharacters(ctFont, &unichar, &glyph, 1)) { out[glyph] = unichar; } } } } static bool getWidthAdvance(CTFontRef ctFont, int gId, int16_t* data) { CGSize advance; advance.width = 0; CGGlyph glyph = gId; CTFontGetAdvancesForGlyphs(ctFont, kCTFontHorizontalOrientation, &glyph, &advance, 1); *data = sk_float_round2int(advance.width); return true; } /** Assumes src and dst are not nullptr. */ static void CFStringToSkString(CFStringRef src, SkString* dst) { // Reserve enough room for the worst-case string, // plus 1 byte for the trailing null. CFIndex length = CFStringGetMaximumSizeForEncoding(CFStringGetLength(src), kCFStringEncodingUTF8) + 1; dst->resize(length); CFStringGetCString(src, dst->writable_str(), length, kCFStringEncodingUTF8); // Resize to the actual UTF-8 length used, stripping the null character. dst->resize(strlen(dst->c_str())); } SkAdvancedTypefaceMetrics* SkTypeface_Mac::onGetAdvancedTypefaceMetrics( PerGlyphInfo perGlyphInfo, const uint32_t* glyphIDs, uint32_t glyphIDsCount) const { AUTO_CG_LOCK(); CTFontRef originalCTFont = fFontRef.get(); AutoCFRelease ctFont(ctfont_create_exact_copy( originalCTFont, CTFontGetUnitsPerEm(originalCTFont), nullptr)); SkAdvancedTypefaceMetrics* info = new SkAdvancedTypefaceMetrics; { AutoCFRelease fontName(CTFontCopyPostScriptName(ctFont)); if (fontName.get()) { CFStringToSkString(fontName, &info->fFontName); } } CFIndex glyphCount = CTFontGetGlyphCount(ctFont); info->fLastGlyphID = SkToU16(glyphCount - 1); info->fEmSize = CTFontGetUnitsPerEm(ctFont); if (perGlyphInfo & kToUnicode_PerGlyphInfo) { populate_glyph_to_unicode(ctFont, glyphCount, &info->fGlyphToUnicode); } // If it's not a truetype font, mark it as 'other'. Assume that TrueType // fonts always have both glyf and loca tables. At the least, this is what // sfntly needs to subset the font. CTFontCopyAttribute() does not always // succeed in determining this directly. if (!this->getTableSize('glyf') || !this->getTableSize('loca')) { return info; } info->fType = SkAdvancedTypefaceMetrics::kTrueType_Font; CTFontSymbolicTraits symbolicTraits = CTFontGetSymbolicTraits(ctFont); if (symbolicTraits & kCTFontMonoSpaceTrait) { info->fStyle |= SkAdvancedTypefaceMetrics::kFixedPitch_Style; } if (symbolicTraits & kCTFontItalicTrait) { info->fStyle |= SkAdvancedTypefaceMetrics::kItalic_Style; } CTFontStylisticClass stylisticClass = symbolicTraits & kCTFontClassMaskTrait; if (stylisticClass >= kCTFontOldStyleSerifsClass && stylisticClass <= kCTFontSlabSerifsClass) { info->fStyle |= SkAdvancedTypefaceMetrics::kSerif_Style; } else if (stylisticClass & kCTFontScriptsClass) { info->fStyle |= SkAdvancedTypefaceMetrics::kScript_Style; } info->fItalicAngle = (int16_t) CTFontGetSlantAngle(ctFont); info->fAscent = (int16_t) CTFontGetAscent(ctFont); info->fDescent = (int16_t) CTFontGetDescent(ctFont); info->fCapHeight = (int16_t) CTFontGetCapHeight(ctFont); CGRect bbox = CTFontGetBoundingBox(ctFont); SkRect r; r.set( CGToScalar(CGRectGetMinX_inline(bbox)), // Left CGToScalar(CGRectGetMaxY_inline(bbox)), // Top CGToScalar(CGRectGetMaxX_inline(bbox)), // Right CGToScalar(CGRectGetMinY_inline(bbox))); // Bottom r.roundOut(&(info->fBBox)); // Figure out a good guess for StemV - Min width of i, I, !, 1. // This probably isn't very good with an italic font. int16_t min_width = SHRT_MAX; info->fStemV = 0; static const UniChar stem_chars[] = {'i', 'I', '!', '1'}; const size_t count = sizeof(stem_chars) / sizeof(stem_chars[0]); CGGlyph glyphs[count]; CGRect boundingRects[count]; if (CTFontGetGlyphsForCharacters(ctFont, stem_chars, glyphs, count)) { CTFontGetBoundingRectsForGlyphs(ctFont, kCTFontHorizontalOrientation, glyphs, boundingRects, count); for (size_t i = 0; i < count; i++) { int16_t width = (int16_t) boundingRects[i].size.width; if (width > 0 && width < min_width) { min_width = width; info->fStemV = min_width; } } } if (perGlyphInfo & kHAdvance_PerGlyphInfo) { if (info->fStyle & SkAdvancedTypefaceMetrics::kFixedPitch_Style) { skia_advanced_typeface_metrics_utils::appendRange(&info->fGlyphWidths, 0); info->fGlyphWidths->fAdvance.append(1, &min_width); skia_advanced_typeface_metrics_utils::finishRange(info->fGlyphWidths.get(), 0, SkAdvancedTypefaceMetrics::WidthRange::kDefault); } else { info->fGlyphWidths.reset( skia_advanced_typeface_metrics_utils::getAdvanceData(ctFont.get(), SkToInt(glyphCount), glyphIDs, glyphIDsCount, &getWidthAdvance)); } } return info; } /////////////////////////////////////////////////////////////////////////////// static SK_SFNT_ULONG get_font_type_tag(const SkTypeface_Mac* typeface) { CTFontRef ctFont = typeface->fFontRef.get(); AutoCFRelease fontFormatRef( static_cast(CTFontCopyAttribute(ctFont, kCTFontFormatAttribute))); if (!fontFormatRef) { return 0; } SInt32 fontFormatValue; if (!CFNumberGetValue(fontFormatRef, kCFNumberSInt32Type, &fontFormatValue)) { return 0; } switch (fontFormatValue) { case kCTFontFormatOpenTypePostScript: return SkSFNTHeader::fontType_OpenTypeCFF::TAG; case kCTFontFormatOpenTypeTrueType: return SkSFNTHeader::fontType_WindowsTrueType::TAG; case kCTFontFormatTrueType: return SkSFNTHeader::fontType_MacTrueType::TAG; case kCTFontFormatPostScript: return SkSFNTHeader::fontType_PostScript::TAG; case kCTFontFormatBitmap: return SkSFNTHeader::fontType_MacTrueType::TAG; case kCTFontFormatUnrecognized: default: //CT seems to be unreliable in being able to obtain the type, //even if all we want is the first four bytes of the font resource. //Just the presence of the FontForge 'FFTM' table seems to throw it off. return SkSFNTHeader::fontType_WindowsTrueType::TAG; } } SkStreamAsset* SkTypeface_Mac::onOpenStream(int* ttcIndex) const { SK_SFNT_ULONG fontType = get_font_type_tag(this); if (0 == fontType) { return nullptr; } // get table tags int numTables = this->countTables(); SkTDArray tableTags; tableTags.setCount(numTables); this->getTableTags(tableTags.begin()); // calc total size for font, save sizes SkTDArray tableSizes; size_t totalSize = sizeof(SkSFNTHeader) + sizeof(SkSFNTHeader::TableDirectoryEntry) * numTables; for (int tableIndex = 0; tableIndex < numTables; ++tableIndex) { size_t tableSize = this->getTableSize(tableTags[tableIndex]); totalSize += (tableSize + 3) & ~3; *tableSizes.append() = tableSize; } // reserve memory for stream, and zero it (tables must be zero padded) SkMemoryStream* stream = new SkMemoryStream(totalSize); char* dataStart = (char*)stream->getMemoryBase(); sk_bzero(dataStart, totalSize); char* dataPtr = dataStart; // compute font header entries uint16_t entrySelector = 0; uint16_t searchRange = 1; while (searchRange < numTables >> 1) { entrySelector++; searchRange <<= 1; } searchRange <<= 4; uint16_t rangeShift = (numTables << 4) - searchRange; // write font header SkSFNTHeader* header = (SkSFNTHeader*)dataPtr; header->fontType = fontType; header->numTables = SkEndian_SwapBE16(numTables); header->searchRange = SkEndian_SwapBE16(searchRange); header->entrySelector = SkEndian_SwapBE16(entrySelector); header->rangeShift = SkEndian_SwapBE16(rangeShift); dataPtr += sizeof(SkSFNTHeader); // write tables SkSFNTHeader::TableDirectoryEntry* entry = (SkSFNTHeader::TableDirectoryEntry*)dataPtr; dataPtr += sizeof(SkSFNTHeader::TableDirectoryEntry) * numTables; for (int tableIndex = 0; tableIndex < numTables; ++tableIndex) { size_t tableSize = tableSizes[tableIndex]; this->getTableData(tableTags[tableIndex], 0, tableSize, dataPtr); entry->tag = SkEndian_SwapBE32(tableTags[tableIndex]); entry->checksum = SkEndian_SwapBE32(SkOTUtils::CalcTableChecksum((SK_OT_ULONG*)dataPtr, tableSize)); entry->offset = SkEndian_SwapBE32(SkToU32(dataPtr - dataStart)); entry->logicalLength = SkEndian_SwapBE32(SkToU32(tableSize)); dataPtr += (tableSize + 3) & ~3; ++entry; } *ttcIndex = 0; return stream; } struct NonDefaultAxesContext { SkFixed* axisValue; CFArrayRef cgAxes; }; static void set_non_default_axes(CFTypeRef key, CFTypeRef value, void* context) { NonDefaultAxesContext* self = static_cast(context); if (CFGetTypeID(key) != CFStringGetTypeID() || CFGetTypeID(value) != CFNumberGetTypeID()) { return; } // The key is a CFString which is a string from the 'name' table. // Search the cgAxes for an axis with this name, and use its index to store the value. CFIndex keyIndex = -1; CFStringRef keyString = static_cast(key); for (CFIndex i = 0; i < CFArrayGetCount(self->cgAxes); ++i) { CFTypeRef cgAxis = CFArrayGetValueAtIndex(self->cgAxes, i); if (CFGetTypeID(cgAxis) != CFDictionaryGetTypeID()) { continue; } CFDictionaryRef cgAxisDict = static_cast(cgAxis); CFTypeRef cgAxisName = CFDictionaryGetValue(cgAxisDict, kCGFontVariationAxisName); if (!cgAxisName || CFGetTypeID(cgAxisName) != CFStringGetTypeID()) { continue; } CFStringRef cgAxisNameString = static_cast(cgAxisName); if (CFStringCompare(keyString, cgAxisNameString, 0) == kCFCompareEqualTo) { keyIndex = i; break; } } if (keyIndex == -1) { return; } CFNumberRef valueNumber = static_cast(value); double valueDouble; if (!CFNumberGetValue(valueNumber, kCFNumberDoubleType, &valueDouble) || valueDouble < SkFixedToDouble(SK_FixedMin) || SkFixedToDouble(SK_FixedMax) < valueDouble) { return; } self->axisValue[keyIndex] = SkDoubleToFixed(valueDouble); } static bool get_variations(CTFontRef fFontRef, CFIndex* cgAxisCount, SkAutoSTMalloc<4, SkFixed>* axisValues) { // CTFontCopyVariationAxes and CTFontCopyVariation do not work when applied to fonts which // started life with CGFontCreateWithDataProvider (they simply always return nullptr). // As a result, we are limited to CGFontCopyVariationAxes and CGFontCopyVariations. AutoCFRelease cgFont(CTFontCopyGraphicsFont(fFontRef, nullptr)); AutoCFRelease cgVariations(CGFontCopyVariations(cgFont)); // If a font has no variations CGFontCopyVariations returns nullptr (instead of an empty dict). if (!cgVariations.get()) { return false; } AutoCFRelease cgAxes(CGFontCopyVariationAxes(cgFont)); *cgAxisCount = CFArrayGetCount(cgAxes); axisValues->reset(*cgAxisCount); // Set all of the axes to their default values. // Fail if any default value cannot be determined. for (CFIndex i = 0; i < *cgAxisCount; ++i) { CFTypeRef cgAxis = CFArrayGetValueAtIndex(cgAxes, i); if (CFGetTypeID(cgAxis) != CFDictionaryGetTypeID()) { return false; } CFDictionaryRef cgAxisDict = static_cast(cgAxis); CFTypeRef axisDefaultValue = CFDictionaryGetValue(cgAxisDict, kCGFontVariationAxisDefaultValue); if (!axisDefaultValue || CFGetTypeID(axisDefaultValue) != CFNumberGetTypeID()) { return false; } CFNumberRef axisDefaultValueNumber = static_cast(axisDefaultValue); double axisDefaultValueDouble; if (!CFNumberGetValue(axisDefaultValueNumber, kCFNumberDoubleType, &axisDefaultValueDouble)) { return false; } if (axisDefaultValueDouble < SkFixedToDouble(SK_FixedMin) || SkFixedToDouble(SK_FixedMax) < axisDefaultValueDouble) { return false; } (*axisValues)[(int)i] = SkDoubleToFixed(axisDefaultValueDouble); } // Override the default values with the given font's stated axis values. NonDefaultAxesContext c = { axisValues->get(), cgAxes.get() }; CFDictionaryApplyFunction(cgVariations, set_non_default_axes, &c); return true; } SkFontData* SkTypeface_Mac::onCreateFontData() const { int index; SkAutoTDelete stream(this->onOpenStream(&index)); CFIndex cgAxisCount; SkAutoSTMalloc<4, SkFixed> axisValues; if (get_variations(fFontRef, &cgAxisCount, &axisValues)) { return new SkFontData(stream.detach(), index, axisValues.get(), cgAxisCount); } return new SkFontData(stream.detach(), index, nullptr, 0); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// int SkTypeface_Mac::onGetUPEM() const { AutoCFRelease cgFont(CTFontCopyGraphicsFont(fFontRef, nullptr)); return CGFontGetUnitsPerEm(cgFont); } SkTypeface::LocalizedStrings* SkTypeface_Mac::onCreateFamilyNameIterator() const { SkTypeface::LocalizedStrings* nameIter = SkOTUtils::LocalizedStrings_NameTable::CreateForFamilyNames(*this); if (nullptr == nameIter) { AutoCFRelease cfLanguage; AutoCFRelease cfFamilyName( CTFontCopyLocalizedName(fFontRef, kCTFontFamilyNameKey, &cfLanguage)); SkString skLanguage; SkString skFamilyName; if (cfLanguage.get()) { CFStringToSkString(cfLanguage.get(), &skLanguage); } else { skLanguage = "und"; //undetermined } if (cfFamilyName.get()) { CFStringToSkString(cfFamilyName.get(), &skFamilyName); } nameIter = new SkOTUtils::LocalizedStrings_SingleName(skFamilyName, skLanguage); } return nameIter; } // If, as is the case with web fonts, the CTFont data isn't available, // the CGFont data may work. While the CGFont may always provide the // right result, leave the CTFont code path to minimize disruption. static CFDataRef copyTableFromFont(CTFontRef ctFont, SkFontTableTag tag) { CFDataRef data = CTFontCopyTable(ctFont, (CTFontTableTag) tag, kCTFontTableOptionNoOptions); if (nullptr == data) { AutoCFRelease cgFont(CTFontCopyGraphicsFont(ctFont, nullptr)); data = CGFontCopyTableForTag(cgFont, tag); } return data; } int SkTypeface_Mac::onGetTableTags(SkFontTableTag tags[]) const { AutoCFRelease cfArray(CTFontCopyAvailableTables(fFontRef, kCTFontTableOptionNoOptions)); if (nullptr == cfArray) { return 0; } int count = SkToInt(CFArrayGetCount(cfArray)); if (tags) { for (int i = 0; i < count; ++i) { uintptr_t fontTag = reinterpret_cast(CFArrayGetValueAtIndex(cfArray, i)); tags[i] = static_cast(fontTag); } } return count; } size_t SkTypeface_Mac::onGetTableData(SkFontTableTag tag, size_t offset, size_t length, void* dstData) const { AutoCFRelease srcData(copyTableFromFont(fFontRef, tag)); if (nullptr == srcData) { return 0; } size_t srcSize = CFDataGetLength(srcData); if (offset >= srcSize) { return 0; } if (length > srcSize - offset) { length = srcSize - offset; } if (dstData) { memcpy(dstData, CFDataGetBytePtr(srcData) + offset, length); } return length; } SkScalerContext* SkTypeface_Mac::onCreateScalerContext(const SkDescriptor* desc) const { return new SkScalerContext_Mac(const_cast(this), desc); } void SkTypeface_Mac::onFilterRec(SkScalerContextRec* rec) const { if (rec->fFlags & SkScalerContext::kLCD_BGROrder_Flag || rec->fFlags & SkScalerContext::kLCD_Vertical_Flag) { rec->fMaskFormat = SkMask::kA8_Format; // Render the glyphs as close as possible to what was requested. // The above turns off subpixel rendering, but the user requested it. // Normal hinting will cause the A8 masks to be generated from CoreGraphics subpixel masks. // See comments below for more details. rec->setHinting(SkPaint::kNormal_Hinting); } unsigned flagsWeDontSupport = SkScalerContext::kDevKernText_Flag | SkScalerContext::kForceAutohinting_Flag | SkScalerContext::kLCD_BGROrder_Flag | SkScalerContext::kLCD_Vertical_Flag; rec->fFlags &= ~flagsWeDontSupport; bool lcdSupport = supports_LCD(); // Only two levels of hinting are supported. // kNo_Hinting means avoid CoreGraphics outline dilation. // kNormal_Hinting means CoreGraphics outline dilation is allowed. // If there is no lcd support, hinting (dilation) cannot be supported. SkPaint::Hinting hinting = rec->getHinting(); if (SkPaint::kSlight_Hinting == hinting || !lcdSupport) { hinting = SkPaint::kNo_Hinting; } else if (SkPaint::kFull_Hinting == hinting) { hinting = SkPaint::kNormal_Hinting; } rec->setHinting(hinting); // FIXME: lcd smoothed un-hinted rasterization unsupported. // Tracked by http://code.google.com/p/skia/issues/detail?id=915 . // There is no current means to honor a request for unhinted lcd, // so arbitrarilly ignore the hinting request and honor lcd. // Hinting and smoothing should be orthogonal, but currently they are not. // CoreGraphics has no API to influence hinting. However, its lcd smoothed // output is drawn from auto-dilated outlines (the amount of which is // determined by AppleFontSmoothing). Its regular anti-aliased output is // drawn from un-dilated outlines. // The behavior of Skia is as follows: // [AA][no-hint]: generate AA using CoreGraphic's AA output. // [AA][yes-hint]: use CoreGraphic's LCD output and reduce it to a single // channel. This matches [LCD][yes-hint] in weight. // [LCD][no-hint]: curently unable to honor, and must pick which to respect. // Currenly side with LCD, effectively ignoring the hinting setting. // [LCD][yes-hint]: generate LCD using CoreGraphic's LCD output. if (isLCDFormat(rec->fMaskFormat)) { if (lcdSupport) { //CoreGraphics creates 555 masks for smoothed text anyway. rec->fMaskFormat = SkMask::kLCD16_Format; rec->setHinting(SkPaint::kNormal_Hinting); } else { rec->fMaskFormat = SkMask::kA8_Format; } } // CoreText provides no information as to whether a glyph will be color or not. // Fonts may mix outlines and bitmaps, so information is needed on a glyph by glyph basis. // If a font contains an 'sbix' table, consider it to be a color font, and disable lcd. if (fHasColorGlyphs) { rec->fMaskFormat = SkMask::kARGB32_Format; } // Unhinted A8 masks (those not derived from LCD masks) must respect SK_GAMMA_APPLY_TO_A8. // All other masks can use regular gamma. if (SkMask::kA8_Format == rec->fMaskFormat && SkPaint::kNo_Hinting == hinting) { #ifndef SK_GAMMA_APPLY_TO_A8 rec->ignorePreBlend(); #endif } else { //CoreGraphics dialates smoothed text as needed. rec->setContrast(0); } } // we take ownership of the ref static const char* get_str(CFStringRef ref, SkString* str) { if (nullptr == ref) { return nullptr; } CFStringToSkString(ref, str); CFSafeRelease(ref); return str->c_str(); } void SkTypeface_Mac::onGetFamilyName(SkString* familyName) const { get_str(CTFontCopyFamilyName(fFontRef), familyName); } void SkTypeface_Mac::onGetFontDescriptor(SkFontDescriptor* desc, bool* isLocalStream) const { SkString tmpStr; desc->setFamilyName(get_str(CTFontCopyFamilyName(fFontRef), &tmpStr)); desc->setFullName(get_str(CTFontCopyFullName(fFontRef), &tmpStr)); desc->setPostscriptName(get_str(CTFontCopyPostScriptName(fFontRef), &tmpStr)); *isLocalStream = fIsLocalStream; } int SkTypeface_Mac::onCharsToGlyphs(const void* chars, Encoding encoding, uint16_t glyphs[], int glyphCount) const { // Undocumented behavior of CTFontGetGlyphsForCharacters with non-bmp code points: // When a surrogate pair is detected, the glyph index used is the index of the high surrogate. // It is documented that if a mapping is unavailable, the glyph will be set to 0. SkAutoSTMalloc<1024, UniChar> charStorage; const UniChar* src; // UniChar is a UTF-16 16-bit code unit. int srcCount; switch (encoding) { case kUTF8_Encoding: { const char* utf8 = reinterpret_cast(chars); UniChar* utf16 = charStorage.reset(2 * glyphCount); src = utf16; for (int i = 0; i < glyphCount; ++i) { SkUnichar uni = SkUTF8_NextUnichar(&utf8); utf16 += SkUTF16_FromUnichar(uni, utf16); } srcCount = SkToInt(utf16 - src); break; } case kUTF16_Encoding: { src = reinterpret_cast(chars); int extra = 0; for (int i = 0; i < glyphCount; ++i) { if (SkUTF16_IsHighSurrogate(src[i + extra])) { ++extra; } } srcCount = glyphCount + extra; break; } case kUTF32_Encoding: { const SkUnichar* utf32 = reinterpret_cast(chars); UniChar* utf16 = charStorage.reset(2 * glyphCount); src = utf16; for (int i = 0; i < glyphCount; ++i) { utf16 += SkUTF16_FromUnichar(utf32[i], utf16); } srcCount = SkToInt(utf16 - src); break; } } // If glyphs is nullptr, CT still needs glyph storage for finding the first failure. // Also, if there are any non-bmp code points, the provided 'glyphs' storage will be inadequate. SkAutoSTMalloc<1024, uint16_t> glyphStorage; uint16_t* macGlyphs = glyphs; if (nullptr == macGlyphs || srcCount > glyphCount) { macGlyphs = glyphStorage.reset(srcCount); } bool allEncoded = CTFontGetGlyphsForCharacters(fFontRef, src, macGlyphs, srcCount); // If there were any non-bmp, then copy and compact. // If 'glyphs' is nullptr, then compact glyphStorage in-place. // If all are bmp and 'glyphs' is non-nullptr, 'glyphs' already contains the compact glyphs. // If some are non-bmp and 'glyphs' is non-nullptr, copy and compact into 'glyphs'. uint16_t* compactedGlyphs = glyphs; if (nullptr == compactedGlyphs) { compactedGlyphs = macGlyphs; } if (srcCount > glyphCount) { int extra = 0; for (int i = 0; i < glyphCount; ++i) { compactedGlyphs[i] = macGlyphs[i + extra]; if (SkUTF16_IsHighSurrogate(src[i + extra])) { ++extra; } } } if (allEncoded) { return glyphCount; } // If we got false, then we need to manually look for first failure. for (int i = 0; i < glyphCount; ++i) { if (0 == compactedGlyphs[i]) { return i; } } // Odd to get here, as we expected CT to have returned true up front. return glyphCount; } int SkTypeface_Mac::onCountGlyphs() const { return SkToInt(CTFontGetGlyphCount(fFontRef)); } /////////////////////////////////////////////////////////////////////////////// /////////////////////////////////////////////////////////////////////////////// static bool find_desc_str(CTFontDescriptorRef desc, CFStringRef name, SkString* value) { AutoCFRelease ref((CFStringRef)CTFontDescriptorCopyAttribute(desc, name)); if (nullptr == ref.get()) { return false; } CFStringToSkString(ref, value); return true; } #include "SkFontMgr.h" static inline int sqr(int value) { SkASSERT(SkAbs32(value) < 0x7FFF); // check for overflow return value * value; } // We normalize each axis (weight, width, italic) to be base-900 static int compute_metric(const SkFontStyle& a, const SkFontStyle& b) { return sqr(a.weight() - b.weight()) + sqr((a.width() - b.width()) * 100) + sqr((a.isItalic() != b.isItalic()) * 900); } static SkTypeface* createFromDesc(CFStringRef cfFamilyName, CTFontDescriptorRef desc) { NameStyle cacheRequest; SkString skFamilyName; CFStringToSkString(cfFamilyName, &skFamilyName); cacheRequest.fName = skFamilyName.c_str(); cacheRequest.fStyle = fontstyle_from_descriptor(desc); SkTypeface* face = SkTypefaceCache::FindByProcAndRef(find_by_NameStyle, &cacheRequest); if (face) { return face; } AutoCFRelease ctFont(CTFontCreateWithFontDescriptor(desc, 0, nullptr)); if (!ctFont) { return nullptr; } bool isFixedPitch; (void)computeStyleBits(ctFont, &isFixedPitch); face = new SkTypeface_Mac(ctFont.detach(), nullptr, cacheRequest.fStyle, isFixedPitch, skFamilyName.c_str(), false); SkTypefaceCache::Add(face, face->fontStyle()); return face; } class SkFontStyleSet_Mac : public SkFontStyleSet { public: SkFontStyleSet_Mac(CFStringRef familyName, CTFontDescriptorRef desc) : fArray(CTFontDescriptorCreateMatchingFontDescriptors(desc, nullptr)) , fFamilyName(familyName) , fCount(0) { CFRetain(familyName); if (nullptr == fArray) { fArray = CFArrayCreate(nullptr, nullptr, 0, nullptr); } fCount = SkToInt(CFArrayGetCount(fArray)); } virtual ~SkFontStyleSet_Mac() { CFRelease(fArray); CFRelease(fFamilyName); } int count() override { return fCount; } void getStyle(int index, SkFontStyle* style, SkString* name) override { SkASSERT((unsigned)index < (unsigned)fCount); CTFontDescriptorRef desc = (CTFontDescriptorRef)CFArrayGetValueAtIndex(fArray, index); if (style) { *style = fontstyle_from_descriptor(desc); } if (name) { if (!find_desc_str(desc, kCTFontStyleNameAttribute, name)) { name->reset(); } } } SkTypeface* createTypeface(int index) override { SkASSERT((unsigned)index < (unsigned)CFArrayGetCount(fArray)); CTFontDescriptorRef desc = (CTFontDescriptorRef)CFArrayGetValueAtIndex(fArray, index); return createFromDesc(fFamilyName, desc); } SkTypeface* matchStyle(const SkFontStyle& pattern) override { if (0 == fCount) { return nullptr; } return createFromDesc(fFamilyName, findMatchingDesc(pattern)); } private: CFArrayRef fArray; CFStringRef fFamilyName; int fCount; CTFontDescriptorRef findMatchingDesc(const SkFontStyle& pattern) const { int bestMetric = SK_MaxS32; CTFontDescriptorRef bestDesc = nullptr; for (int i = 0; i < fCount; ++i) { CTFontDescriptorRef desc = (CTFontDescriptorRef)CFArrayGetValueAtIndex(fArray, i); int metric = compute_metric(pattern, fontstyle_from_descriptor(desc)); if (0 == metric) { return desc; } if (metric < bestMetric) { bestMetric = metric; bestDesc = desc; } } SkASSERT(bestDesc); return bestDesc; } }; class SkFontMgr_Mac : public SkFontMgr { CFArrayRef fNames; int fCount; CFStringRef stringAt(int index) const { SkASSERT((unsigned)index < (unsigned)fCount); return (CFStringRef)CFArrayGetValueAtIndex(fNames, index); } static SkFontStyleSet* CreateSet(CFStringRef cfFamilyName) { AutoCFRelease cfAttr( CFDictionaryCreateMutable(kCFAllocatorDefault, 0, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks)); CFDictionaryAddValue(cfAttr, kCTFontFamilyNameAttribute, cfFamilyName); AutoCFRelease desc( CTFontDescriptorCreateWithAttributes(cfAttr)); return new SkFontStyleSet_Mac(cfFamilyName, desc); } public: SkFontMgr_Mac() : fNames(SkCTFontManagerCopyAvailableFontFamilyNames()) , fCount(fNames ? SkToInt(CFArrayGetCount(fNames)) : 0) {} virtual ~SkFontMgr_Mac() { CFSafeRelease(fNames); } protected: int onCountFamilies() const override { return fCount; } void onGetFamilyName(int index, SkString* familyName) const override { if ((unsigned)index < (unsigned)fCount) { CFStringToSkString(this->stringAt(index), familyName); } else { familyName->reset(); } } SkFontStyleSet* onCreateStyleSet(int index) const override { if ((unsigned)index >= (unsigned)fCount) { return nullptr; } return CreateSet(this->stringAt(index)); } SkFontStyleSet* onMatchFamily(const char familyName[]) const override { AutoCFRelease cfName(make_CFString(familyName)); return CreateSet(cfName); } virtual SkTypeface* onMatchFamilyStyle(const char familyName[], const SkFontStyle& fontStyle) const override { SkAutoTUnref sset(this->matchFamily(familyName)); return sset->matchStyle(fontStyle); } virtual SkTypeface* onMatchFamilyStyleCharacter(const char familyName[], const SkFontStyle&, const char* bcp47[], int bcp47Count, SkUnichar character) const override { return nullptr; } virtual SkTypeface* onMatchFaceStyle(const SkTypeface* familyMember, const SkFontStyle&) const override { return nullptr; } SkTypeface* onCreateFromData(SkData* data, int ttcIndex) const override { AutoCFRelease pr(SkCreateDataProviderFromData(data)); if (nullptr == pr) { return nullptr; } return create_from_dataProvider(pr); } SkTypeface* onCreateFromStream(SkStreamAsset* stream, int ttcIndex) const override { AutoCFRelease pr(SkCreateDataProviderFromStream(stream)); if (nullptr == pr) { return nullptr; } return create_from_dataProvider(pr); } static CFNumberRef get_tag_for_name(CFStringRef name, CFArrayRef ctAxes) { CFIndex ctAxisCount = CFArrayGetCount(ctAxes); for (int i = 0; i < ctAxisCount; ++i) { CFTypeRef ctAxisInfo = CFArrayGetValueAtIndex(ctAxes, i); if (CFDictionaryGetTypeID() != CFGetTypeID(ctAxisInfo)) { return nullptr; } CFDictionaryRef ctAxisInfoDict = static_cast(ctAxisInfo); CFTypeRef ctAxisName = CFDictionaryGetValue(ctAxisInfoDict, kCTFontVariationAxisNameKey); if (!ctAxisName || CFGetTypeID(ctAxisName) != CFStringGetTypeID()) { return nullptr; } if (CFEqual(name, ctAxisName)) { CFTypeRef tag = CFDictionaryGetValue(ctAxisInfoDict, kCTFontVariationAxisIdentifierKey); if (!tag || CFGetTypeID(tag) != CFNumberGetTypeID()) { return nullptr; } return static_cast(tag); } } return nullptr; } static CFDictionaryRef get_axes(CGFontRef cg, const FontParameters& params) { AutoCFRelease cgAxes(CGFontCopyVariationAxes(cg)); if (!cgAxes) { return nullptr; } CFIndex axisCount = CFArrayGetCount(cgAxes); // The CGFont variation data is keyed by name, and lacks the tag. // The CTFont variation data is keyed by tag, and also has the name. // We would like to work with CTFont variaitons, but creating a CTFont font with // CTFont variation dictionary runs into bugs. So use the CTFont variation data // to match names to tags to create the appropriate CGFont. AutoCFRelease ct(CTFontCreateWithGraphicsFont(cg, 0, nullptr, nullptr)); AutoCFRelease ctAxes(CTFontCopyVariationAxes(ct)); if (!ctAxes || CFArrayGetCount(ctAxes) != axisCount) { return nullptr; } int paramAxisCount; const FontParameters::Axis* paramAxes = params.getAxes(¶mAxisCount); CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorDefault, axisCount, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); for (int i = 0; i < axisCount; ++i) { CFTypeRef axisInfo = CFArrayGetValueAtIndex(cgAxes, i); if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) { return nullptr; } CFDictionaryRef axisInfoDict = static_cast(axisInfo); CFTypeRef axisName = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisName); if (!axisName || CFGetTypeID(axisName) != CFStringGetTypeID()) { return nullptr; } CFNumberRef tagNumber = get_tag_for_name(static_cast(axisName), ctAxes); if (!tagNumber) { // Could not find a tag to go with the name of this index. // This would be a bug in CG/CT. continue; } int64_t tagLong; if (!CFNumberGetValue(tagNumber, kCFNumberSInt64Type, &tagLong)) { return nullptr; } // The variation axes can be set to any value, but cg will effectively pin them. // Pin them here to normalize. CFTypeRef min = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisMinValue); CFTypeRef max = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisMaxValue); CFTypeRef def = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisDefaultValue); if (!min || CFGetTypeID(min) != CFNumberGetTypeID() || !max || CFGetTypeID(max) != CFNumberGetTypeID() || !def || CFGetTypeID(def) != CFNumberGetTypeID()) { return nullptr; } CFNumberRef minNumber = static_cast(min); CFNumberRef maxNumber = static_cast(max); CFNumberRef defNumber = static_cast(def); double minDouble; double maxDouble; double defDouble; if (!CFNumberGetValue(minNumber, kCFNumberDoubleType, &minDouble) || !CFNumberGetValue(maxNumber, kCFNumberDoubleType, &maxDouble) || !CFNumberGetValue(defNumber, kCFNumberDoubleType, &defDouble)) { return nullptr; } double value = defDouble; for (int j = 0; j < paramAxisCount; ++j) { if (paramAxes[j].fTag == tagLong) { value = SkTPin(SkScalarToDouble(paramAxes[j].fStyleValue),minDouble,maxDouble); break; } } CFNumberRef valueNumber = CFNumberCreate(kCFAllocatorDefault, kCFNumberDoubleType, &value); CFDictionaryAddValue(dict, axisName, valueNumber); CFRelease(valueNumber); } return dict; } SkTypeface* onCreateFromStream(SkStreamAsset* s, const FontParameters& params) const override { AutoCFRelease provider(SkCreateDataProviderFromStream(s)); if (nullptr == provider) { return nullptr; } AutoCFRelease cg(CGFontCreateWithDataProvider(provider)); if (nullptr == cg) { return nullptr; } AutoCFRelease cgVariations(get_axes(cg, params)); // The CGFontRef returned by CGFontCreateCopyWithVariations when the passed CGFontRef was // created from a data provider does not appear to have any ownership of the underlying // data. The original CGFontRef must be kept alive until the copy will no longer be used. AutoCFRelease cgVariant; if (cgVariations) { cgVariant.reset(CGFontCreateCopyWithVariations(cg, cgVariations)); } else { cgVariant.reset(cg.detach()); } CTFontRef ct = CTFontCreateWithGraphicsFont(cgVariant, 0, nullptr, nullptr); if (!ct) { return nullptr; } return NewFromFontRef(ct, cg.detach(), nullptr, true); } static CFDictionaryRef get_axes(CGFontRef cg, SkFontData* fontData) { AutoCFRelease cgAxes(CGFontCopyVariationAxes(cg)); if (!cgAxes) { return nullptr; } CFIndex axisCount = CFArrayGetCount(cgAxes); if (0 == axisCount || axisCount != fontData->getAxisCount()) { return nullptr; } CFMutableDictionaryRef dict = CFDictionaryCreateMutable(kCFAllocatorDefault, axisCount, &kCFTypeDictionaryKeyCallBacks, &kCFTypeDictionaryValueCallBacks); for (int i = 0; i < fontData->getAxisCount(); ++i) { CFTypeRef axisInfo = CFArrayGetValueAtIndex(cgAxes, i); if (CFDictionaryGetTypeID() != CFGetTypeID(axisInfo)) { return nullptr; } CFDictionaryRef axisInfoDict = static_cast(axisInfo); CFTypeRef axisName = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisName); if (!axisName || CFGetTypeID(axisName) != CFStringGetTypeID()) { return nullptr; } // The variation axes can be set to any value, but cg will effectively pin them. // Pin them here to normalize. CFTypeRef min = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisMinValue); CFTypeRef max = CFDictionaryGetValue(axisInfoDict, kCGFontVariationAxisMaxValue); if (!min || CFGetTypeID(min) != CFNumberGetTypeID() || !max || CFGetTypeID(max) != CFNumberGetTypeID()) { return nullptr; } CFNumberRef minNumber = static_cast(min); CFNumberRef maxNumber = static_cast(max); double minDouble; double maxDouble; if (!CFNumberGetValue(minNumber, kCFNumberDoubleType, &minDouble) || !CFNumberGetValue(maxNumber, kCFNumberDoubleType, &maxDouble)) { return nullptr; } double value = SkTPin(SkFixedToDouble(fontData->getAxis()[i]), minDouble, maxDouble); CFNumberRef valueNumber = CFNumberCreate(kCFAllocatorDefault, kCFNumberDoubleType, &value); CFDictionaryAddValue(dict, axisName, valueNumber); CFRelease(valueNumber); } return dict; } SkTypeface* onCreateFromFontData(SkFontData* data) const override { SkAutoTDelete fontData(data); SkStreamAsset* stream = fontData->detachStream(); AutoCFRelease provider(SkCreateDataProviderFromStream(stream)); if (nullptr == provider) { return nullptr; } AutoCFRelease cg(CGFontCreateWithDataProvider(provider)); if (nullptr == cg) { return nullptr; } AutoCFRelease cgVariations(get_axes(cg, fontData)); // The CGFontRef returned by CGFontCreateCopyWithVariations when the passed CGFontRef was // created from a data provider does not appear to have any ownership of the underlying // data. The original CGFontRef must be kept alive until the copy will no longer be used. AutoCFRelease cgVariant; if (cgVariations) { cgVariant.reset(CGFontCreateCopyWithVariations(cg, cgVariations)); } else { cgVariant.reset(cg.detach()); } CTFontRef ct = CTFontCreateWithGraphicsFont(cgVariant, 0, nullptr, nullptr); if (!ct) { return nullptr; } return NewFromFontRef(ct, cg.detach(), nullptr, true); } SkTypeface* onCreateFromFile(const char path[], int ttcIndex) const override { AutoCFRelease pr(CGDataProviderCreateWithFilename(path)); if (nullptr == pr) { return nullptr; } return create_from_dataProvider(pr); } virtual SkTypeface* onLegacyCreateTypeface(const char familyName[], unsigned styleBits) const override { SkFontStyle style = SkFontStyle((SkTypeface::Style)styleBits); if (familyName) { familyName = map_css_names(familyName); } if (!familyName || !*familyName) { familyName = FONT_DEFAULT_NAME; } NameStyle cacheRequest = { familyName, style }; SkTypeface* face = SkTypefaceCache::FindByProcAndRef(find_by_NameStyle, &cacheRequest); if (nullptr == face) { face = NewFromName(familyName, style); if (face) { SkTypefaceCache::Add(face, style); } else { face = GetDefaultFace(); face->ref(); } } return face; } }; /////////////////////////////////////////////////////////////////////////////// SkFontMgr* SkFontMgr::Factory() { return new SkFontMgr_Mac; } #endif//defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)