// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CRANKSHAFT_ARM64_LITHIUM_CODEGEN_ARM64_H_ #define V8_CRANKSHAFT_ARM64_LITHIUM_CODEGEN_ARM64_H_ #include "src/crankshaft/arm64/lithium-arm64.h" #include "src/ast/scopes.h" #include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h" #include "src/crankshaft/lithium-codegen.h" #include "src/deoptimizer.h" #include "src/safepoint-table.h" #include "src/utils.h" namespace v8 { namespace internal { // Forward declarations. class LDeferredCode; class SafepointGenerator; class BranchGenerator; class LCodeGen: public LCodeGenBase { public: LCodeGen(LChunk* chunk, MacroAssembler* assembler, CompilationInfo* info) : LCodeGenBase(chunk, assembler, info), jump_table_(4, info->zone()), scope_(info->scope()), deferred_(8, info->zone()), frame_is_built_(false), safepoints_(info->zone()), resolver_(this), expected_safepoint_kind_(Safepoint::kSimple), pushed_arguments_(0) { PopulateDeoptimizationLiteralsWithInlinedFunctions(); } // Simple accessors. Scope* scope() const { return scope_; } int LookupDestination(int block_id) const { return chunk()->LookupDestination(block_id); } bool IsNextEmittedBlock(int block_id) const { return LookupDestination(block_id) == GetNextEmittedBlock(); } bool NeedsEagerFrame() const { return GetStackSlotCount() > 0 || info()->is_non_deferred_calling() || !info()->IsStub() || info()->requires_frame(); } bool NeedsDeferredFrame() const { return !NeedsEagerFrame() && info()->is_deferred_calling(); } LinkRegisterStatus GetLinkRegisterState() const { return frame_is_built_ ? kLRHasBeenSaved : kLRHasNotBeenSaved; } // Try to generate code for the entire chunk, but it may fail if the // chunk contains constructs we cannot handle. Returns true if the // code generation attempt succeeded. bool GenerateCode(); // Finish the code by setting stack height, safepoint, and bailout // information on it. void FinishCode(Handle code); enum IntegerSignedness { SIGNED_INT32, UNSIGNED_INT32 }; // Support for converting LOperands to assembler types. Register ToRegister(LOperand* op) const; Register ToRegister32(LOperand* op) const; Operand ToOperand(LOperand* op); Operand ToOperand32(LOperand* op); enum StackMode { kMustUseFramePointer, kCanUseStackPointer }; MemOperand ToMemOperand(LOperand* op, StackMode stack_mode = kCanUseStackPointer) const; Handle ToHandle(LConstantOperand* op) const; template Operand ToShiftedRightOperand32(LOperand* right, LI* shift_info); int JSShiftAmountFromLConstant(LOperand* constant) { return ToInteger32(LConstantOperand::cast(constant)) & 0x1f; } // TODO(jbramley): Examine these helpers and check that they make sense. // IsInteger32Constant returns true for smi constants, for example. bool IsInteger32Constant(LConstantOperand* op) const; bool IsSmi(LConstantOperand* op) const; int32_t ToInteger32(LConstantOperand* op) const; Smi* ToSmi(LConstantOperand* op) const; double ToDouble(LConstantOperand* op) const; DoubleRegister ToDoubleRegister(LOperand* op) const; // Declare methods that deal with the individual node types. #define DECLARE_DO(type) void Do##type(L##type* node); LITHIUM_CONCRETE_INSTRUCTION_LIST(DECLARE_DO) #undef DECLARE_DO private: // Return a double scratch register which can be used locally // when generating code for a lithium instruction. DoubleRegister double_scratch() { return crankshaft_fp_scratch; } // Deferred code support. void DoDeferredNumberTagD(LNumberTagD* instr); void DoDeferredStackCheck(LStackCheck* instr); void DoDeferredMaybeGrowElements(LMaybeGrowElements* instr); void DoDeferredStringCharCodeAt(LStringCharCodeAt* instr); void DoDeferredStringCharFromCode(LStringCharFromCode* instr); void DoDeferredMathAbsTagged(LMathAbsTagged* instr, Label* exit, Label* allocation_entry); void DoDeferredNumberTagU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2); void DoDeferredTaggedToI(LTaggedToI* instr, LOperand* value, LOperand* temp1, LOperand* temp2); void DoDeferredAllocate(LAllocate* instr); void DoDeferredInstanceMigration(LCheckMaps* instr, Register object); void DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register result, Register object, Register index); static Condition TokenToCondition(Token::Value op, bool is_unsigned); void EmitGoto(int block); void DoGap(LGap* instr); // Generic version of EmitBranch. It contains some code to avoid emitting a // branch on the next emitted basic block where we could just fall-through. // You shouldn't use that directly but rather consider one of the helper like // LCodeGen::EmitBranch, LCodeGen::EmitCompareAndBranch... template void EmitBranchGeneric(InstrType instr, const BranchGenerator& branch); template void EmitBranch(InstrType instr, Condition condition); template void EmitCompareAndBranch(InstrType instr, Condition condition, const Register& lhs, const Operand& rhs); template void EmitTestAndBranch(InstrType instr, Condition condition, const Register& value, uint64_t mask); template void EmitBranchIfNonZeroNumber(InstrType instr, const FPRegister& value, const FPRegister& scratch); template void EmitBranchIfHeapNumber(InstrType instr, const Register& value); template void EmitBranchIfRoot(InstrType instr, const Register& value, Heap::RootListIndex index); // Emits optimized code to deep-copy the contents of statically known object // graphs (e.g. object literal boilerplate). Expects a pointer to the // allocated destination object in the result register, and a pointer to the // source object in the source register. void EmitDeepCopy(Handle object, Register result, Register source, Register scratch, int* offset, AllocationSiteMode mode); template void EmitVectorLoadICRegisters(T* instr); template void EmitVectorStoreICRegisters(T* instr); // Emits optimized code for %_IsString(x). Preserves input register. // Returns the condition on which a final split to // true and false label should be made, to optimize fallthrough. Condition EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed); MemOperand BuildSeqStringOperand(Register string, Register temp, LOperand* index, String::Encoding encoding); void DeoptimizeBranch(LInstruction* instr, Deoptimizer::DeoptReason deopt_reason, BranchType branch_type, Register reg = NoReg, int bit = -1, Deoptimizer::BailoutType* override_bailout_type = NULL); void Deoptimize(LInstruction* instr, Deoptimizer::DeoptReason deopt_reason, Deoptimizer::BailoutType* override_bailout_type = NULL); void DeoptimizeIf(Condition cond, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfZero(Register rt, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfNotZero(Register rt, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfNegative(Register rt, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfSmi(Register rt, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfNotSmi(Register rt, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfRoot(Register rt, Heap::RootListIndex index, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr); void DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); void DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr, Deoptimizer::DeoptReason deopt_reason); MemOperand PrepareKeyedExternalArrayOperand(Register key, Register base, Register scratch, bool key_is_smi, bool key_is_constant, int constant_key, ElementsKind elements_kind, int base_offset); MemOperand PrepareKeyedArrayOperand(Register base, Register elements, Register key, bool key_is_tagged, ElementsKind elements_kind, Representation representation, int base_offset); void RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode); int GetStackSlotCount() const { return chunk()->spill_slot_count(); } void AddDeferredCode(LDeferredCode* code) { deferred_.Add(code, zone()); } // Emit frame translation commands for an environment. void WriteTranslation(LEnvironment* environment, Translation* translation); void AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer); void SaveCallerDoubles(); void RestoreCallerDoubles(); // Code generation steps. Returns true if code generation should continue. void GenerateBodyInstructionPre(LInstruction* instr) override; bool GeneratePrologue(); bool GenerateDeferredCode(); bool GenerateJumpTable(); bool GenerateSafepointTable(); // Generates the custom OSR entrypoint and sets the osr_pc_offset. void GenerateOsrPrologue(); enum SafepointMode { RECORD_SIMPLE_SAFEPOINT, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS }; void CallCode(Handle code, RelocInfo::Mode mode, LInstruction* instr); void CallCodeGeneric(Handle code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode); void CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles = kDontSaveFPRegs); void CallRuntime(Runtime::FunctionId id, int num_arguments, LInstruction* instr) { const Runtime::Function* function = Runtime::FunctionForId(id); CallRuntime(function, num_arguments, instr); } void CallRuntime(Runtime::FunctionId id, LInstruction* instr) { const Runtime::Function* function = Runtime::FunctionForId(id); CallRuntime(function, function->nargs, instr); } void LoadContextFromDeferred(LOperand* context); void CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context); // Generate a direct call to a known function. Expects the function // to be in x1. void CallKnownFunction(Handle function, int formal_parameter_count, int arity, LInstruction* instr); // Support for recording safepoint and position information. void RecordAndWritePosition(int position) override; void RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode mode); void RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode mode); void RecordSafepoint(Safepoint::DeoptMode mode); void RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode mode); void RecordSafepointWithLazyDeopt(LInstruction* instr, SafepointMode safepoint_mode); void EnsureSpaceForLazyDeopt(int space_needed) override; ZoneList jump_table_; Scope* const scope_; ZoneList deferred_; bool frame_is_built_; // Builder that keeps track of safepoints in the code. The table itself is // emitted at the end of the generated code. SafepointTableBuilder safepoints_; // Compiler from a set of parallel moves to a sequential list of moves. LGapResolver resolver_; Safepoint::Kind expected_safepoint_kind_; // The number of arguments pushed onto the stack, either by this block or by a // predecessor. int pushed_arguments_; void RecordPushedArgumentsDelta(int delta) { pushed_arguments_ += delta; DCHECK(pushed_arguments_ >= 0); } int old_position_; class PushSafepointRegistersScope BASE_EMBEDDED { public: explicit PushSafepointRegistersScope(LCodeGen* codegen) : codegen_(codegen) { DCHECK(codegen_->info()->is_calling()); DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; UseScratchRegisterScope temps(codegen_->masm_); // Preserve the value of lr which must be saved on the stack (the call to // the stub will clobber it). Register to_be_pushed_lr = temps.UnsafeAcquire(StoreRegistersStateStub::to_be_pushed_lr()); codegen_->masm_->Mov(to_be_pushed_lr, lr); StoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->CallStub(&stub); } ~PushSafepointRegistersScope() { DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); RestoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->CallStub(&stub); codegen_->expected_safepoint_kind_ = Safepoint::kSimple; } private: LCodeGen* codegen_; }; friend class LDeferredCode; friend class SafepointGenerator; DISALLOW_COPY_AND_ASSIGN(LCodeGen); }; class LDeferredCode: public ZoneObject { public: explicit LDeferredCode(LCodeGen* codegen) : codegen_(codegen), external_exit_(NULL), instruction_index_(codegen->current_instruction_) { codegen->AddDeferredCode(this); } virtual ~LDeferredCode() { } virtual void Generate() = 0; virtual LInstruction* instr() = 0; void SetExit(Label* exit) { external_exit_ = exit; } Label* entry() { return &entry_; } Label* exit() { return (external_exit_ != NULL) ? external_exit_ : &exit_; } int instruction_index() const { return instruction_index_; } protected: LCodeGen* codegen() const { return codegen_; } MacroAssembler* masm() const { return codegen_->masm(); } private: LCodeGen* codegen_; Label entry_; Label exit_; Label* external_exit_; int instruction_index_; }; // This is the abstract class used by EmitBranchGeneric. // It is used to emit code for conditional branching. The Emit() function // emits code to branch when the condition holds and EmitInverted() emits // the branch when the inverted condition is verified. // // For actual examples of condition see the concrete implementation in // lithium-codegen-arm64.cc (e.g. BranchOnCondition, CompareAndBranch). class BranchGenerator BASE_EMBEDDED { public: explicit BranchGenerator(LCodeGen* codegen) : codegen_(codegen) { } virtual ~BranchGenerator() { } virtual void Emit(Label* label) const = 0; virtual void EmitInverted(Label* label) const = 0; protected: MacroAssembler* masm() const { return codegen_->masm(); } LCodeGen* codegen_; }; } // namespace internal } // namespace v8 #endif // V8_CRANKSHAFT_ARM64_LITHIUM_CODEGEN_ARM64_H_