// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/ast/scopes.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/debug/debug.h" #include "src/full-codegen/full-codegen.h" #include "src/ic/ic.h" #include "src/parsing/parser.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); } void EmitJumpIfNotSmi(Register reg, Label* target, Label::Distance near_jump = Label::kFar) { __ testb(reg, Immediate(kSmiTagMask)); EmitJump(not_carry, target, near_jump); // Always taken before patched. } void EmitJumpIfSmi(Register reg, Label* target, Label::Distance near_jump = Label::kFar) { __ testb(reg, Immediate(kSmiTagMask)); EmitJump(carry, target, near_jump); // Never taken before patched. } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_); DCHECK(is_uint8(delta_to_patch_site)); __ testl(rax, Immediate(delta_to_patch_site)); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: // jc will be patched with jz, jnc will become jnz. void EmitJump(Condition cc, Label* target, Label::Distance near_jump) { DCHECK(!patch_site_.is_bound() && !info_emitted_); DCHECK(cc == carry || cc == not_carry); __ bind(&patch_site_); __ j(cc, target, near_jump); } MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o rdi: the JS function object being called (i.e. ourselves) // o rdx: the new target value // o rsi: our context // o rbp: our caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; profiling_counter_ = isolate()->factory()->NewCell( Handle(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(literal()); Comment cmnt(masm_, "[ function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) { StackArgumentsAccessor args(rsp, info->scope()->num_parameters()); __ movp(rcx, args.GetReceiverOperand()); __ AssertNotSmi(rcx); __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rcx); __ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->GeneratePreagedPrologue()); { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0); if (locals_count == 1) { __ PushRoot(Heap::kUndefinedValueRootIndex); } else if (locals_count > 1) { if (locals_count >= 128) { Label ok; __ movp(rcx, rsp); __ subp(rcx, Immediate(locals_count * kPointerSize)); __ CompareRoot(rcx, Heap::kRealStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); } __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); const int kMaxPushes = 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ movp(rcx, Immediate(loop_iterations)); Label loop_header; __ bind(&loop_header); // Do pushes. for (int i = 0; i < kMaxPushes; i++) { __ Push(rax); } // Continue loop if not done. __ decp(rcx); __ j(not_zero, &loop_header, Label::kNear); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. for (int i = 0; i < remaining; i++) { __ Push(rax); } } } bool function_in_register = true; // Possibly allocate a local context. if (info->scope()->num_heap_slots() > 0) { Comment cmnt(masm_, "[ Allocate context"); bool need_write_barrier = true; int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; // Argument to NewContext is the function, which is still in rdi. if (info->scope()->is_script_scope()) { __ Push(rdi); __ Push(info->scope()->GetScopeInfo(info->isolate())); __ CallRuntime(Runtime::kNewScriptContext); PrepareForBailoutForId(BailoutId::ScriptContext(), TOS_REG); // The new target value is not used, clobbering is safe. DCHECK_NULL(info->scope()->new_target_var()); } else { if (info->scope()->new_target_var() != nullptr) { __ Push(rdx); // Preserve new target. } if (slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(isolate(), slots); __ CallStub(&stub); // Result of FastNewContextStub is always in new space. need_write_barrier = false; } else { __ Push(rdi); __ CallRuntime(Runtime::kNewFunctionContext); } if (info->scope()->new_target_var() != nullptr) { __ Pop(rdx); // Restore new target. } } function_in_register = false; // Context is returned in rax. It replaces the context passed to us. // It's saved in the stack and kept live in rsi. __ movp(rsi, rax); __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); int first_parameter = info->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movp(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ movp(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers rax and rbx. if (need_write_barrier) { __ RecordWriteContextSlot( rsi, context_offset, rax, rbx, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } // Register holding this function and new target are both trashed in case we // bailout here. But since that can happen only when new target is not used // and we allocate a context, the value of |function_in_register| is correct. PrepareForBailoutForId(BailoutId::FunctionContext(), NO_REGISTERS); // Possibly set up a local binding to the this function which is used in // derived constructors with super calls. Variable* this_function_var = scope()->this_function_var(); if (this_function_var != nullptr) { Comment cmnt(masm_, "[ This function"); if (!function_in_register) { __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); // The write barrier clobbers register again, keep it marked as such. } SetVar(this_function_var, rdi, rbx, rcx); } // Possibly set up a local binding to the new target value. Variable* new_target_var = scope()->new_target_var(); if (new_target_var != nullptr) { Comment cmnt(masm_, "[ new.target"); SetVar(new_target_var, rdx, rbx, rcx); } // Possibly allocate RestParameters int rest_index; Variable* rest_param = scope()->rest_parameter(&rest_index); if (rest_param) { Comment cmnt(masm_, "[ Allocate rest parameter array"); int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ Move(RestParamAccessDescriptor::parameter_count(), Smi::FromInt(num_parameters)); __ leap(RestParamAccessDescriptor::parameter_pointer(), Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset)); __ Move(RestParamAccessDescriptor::rest_parameter_index(), Smi::FromInt(rest_index)); function_in_register = false; RestParamAccessStub stub(isolate()); __ CallStub(&stub); SetVar(rest_param, rax, rbx, rdx); } // Possibly allocate an arguments object. Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Arguments object must be allocated after the context object, in // case the "arguments" or ".arguments" variables are in the context. Comment cmnt(masm_, "[ Allocate arguments object"); DCHECK(rdi.is(ArgumentsAccessNewDescriptor::function())); if (!function_in_register) { __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // The receiver is just before the parameters on the caller's stack. int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ Move(ArgumentsAccessNewDescriptor::parameter_count(), Smi::FromInt(num_parameters)); __ leap(ArgumentsAccessNewDescriptor::parameter_pointer(), Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset)); // Arguments to ArgumentsAccessStub: // function, parameter pointer, parameter count. // The stub will rewrite parameter pointer and parameter count if the // previous stack frame was an arguments adapter frame. bool is_unmapped = is_strict(language_mode()) || !has_simple_parameters(); ArgumentsAccessStub::Type type = ArgumentsAccessStub::ComputeType( is_unmapped, literal()->has_duplicate_parameters()); ArgumentsAccessStub stub(isolate(), type); __ CallStub(&stub); SetVar(arguments, rax, rbx, rdx); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter); } // Visit the declarations and body unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ Declarations"); VisitForEffect(scope()->GetIllegalRedeclaration()); } else { PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(scope()->declarations()); } // Assert that the declarations do not use ICs. Otherwise the debugger // won't be able to redirect a PC at an IC to the correct IC in newly // recompiled code. DCHECK_EQ(0, ic_total_count_); { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(literal()->body()); DCHECK(loop_depth() == 0); } } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return ;"); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); EmitReturnSequence(); } } void FullCodeGenerator::ClearAccumulator() { __ Set(rax, 0); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT); __ SmiAddConstant(FieldOperand(rbx, Cell::kValueOffset), Smi::FromInt(-delta)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; __ Move(rbx, profiling_counter_, RelocInfo::EMBEDDED_OBJECT); __ Move(kScratchRegister, Smi::FromInt(reset_value)); __ movp(FieldOperand(rbx, Cell::kValueOffset), kScratchRegister); } static const byte kJnsOffset = kPointerSize == kInt64Size ? 0x1d : 0x14; void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { Comment cmnt(masm_, "[ Back edge bookkeeping"); Label ok; DCHECK(back_edge_target->is_bound()); int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ j(positive, &ok, Label::kNear); { PredictableCodeSizeScope predictible_code_size_scope(masm_, kJnsOffset); DontEmitDebugCodeScope dont_emit_debug_code_scope(masm_); __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); } __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { __ Push(rax); __ CallRuntime(Runtime::kTraceExit); } // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset(); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ j(positive, &ok, Label::kNear); __ Push(rax); __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); __ Pop(rax); EmitProfilingCounterReset(); __ bind(&ok); SetReturnPosition(literal()); __ leave(); int arg_count = info_->scope()->num_parameters() + 1; int arguments_bytes = arg_count * kPointerSize; __ Ret(arguments_bytes, rcx); } } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand operand = codegen()->VarOperand(var, result_register()); __ Push(operand); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ PushRoot(index); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle lit) const { if (lit->IsSmi()) { __ SafeMove(result_register(), Smi::cast(*lit)); } else { __ Move(result_register(), lit); } } void FullCodeGenerator::StackValueContext::Plug(Handle lit) const { if (lit->IsSmi()) { __ SafePush(Smi::cast(*lit)); } else { __ Push(lit); } } void FullCodeGenerator::TestContext::Plug(Handle lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { if (true_label_ != fall_through_) __ jmp(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else { // For simplicity we always test the accumulator register. __ Move(result_register(), lit); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { DCHECK(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) __ Drop(count - 1); __ movp(Operand(rsp, 0), reg); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ Move(result_register(), isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ Move(result_register(), isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ Push(isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ Push(isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ PushRoot(value_root_index); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { if (false_label_ != fall_through_) __ jmp(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { Handle ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ CompareRoot(result_register(), Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ j(cc, if_true); } else if (if_true == fall_through) { __ j(NegateCondition(cc), if_false); } else { __ j(cc, if_true); __ jmp(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { DCHECK(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += kFPOnStackSize + kPCOnStackSize + (info_->scope()->num_parameters() - 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return Operand(rbp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); MemOperand location = VarOperand(var, dest); __ movp(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!scratch0.is(src)); DCHECK(!scratch0.is(scratch1)); DCHECK(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ movp(location, src); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest()) return; Label skip; if (should_normalize) __ jmp(&skip, Label::kNear); PrepareForBailout(expr, TOS_REG); if (should_normalize) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (generate_debug_code_) { // Check that we're not inside a with or catch context. __ movp(rbx, FieldOperand(rsi, HeapObject::kMapOffset)); __ CompareRoot(rbx, Heap::kWithContextMapRootIndex); __ Check(not_equal, kDeclarationInWithContext); __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex); __ Check(not_equal, kDeclarationInCatchContext); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { // If it was not possible to allocate the variable at compile time, we // need to "declare" it at runtime to make sure it actually exists in the // local context. VariableProxy* proxy = declaration->proxy(); VariableMode mode = declaration->mode(); Variable* variable = proxy->var(); bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: globals_->Add(variable->name(), zone()); globals_->Add(variable->binding_needs_init() ? isolate()->factory()->the_hole_value() : isolate()->factory()->undefined_value(), zone()); break; case VariableLocation::PARAMETER: case VariableLocation::LOCAL: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movp(StackOperand(variable), kScratchRegister); } break; case VariableLocation::CONTEXT: if (hole_init) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movp(ContextOperand(rsi, variable->index()), kScratchRegister); // No write barrier since the hole value is in old space. PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } break; case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); __ Push(variable->name()); // Declaration nodes are always introduced in one of four modes. DCHECK(IsDeclaredVariableMode(mode)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (hole_init) { __ PushRoot(Heap::kTheHoleValueRootIndex); } else { __ Push(Smi::FromInt(0)); // Indicates no initial value. } __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes())); __ CallRuntime(Runtime::kDeclareLookupSlot); break; } } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { globals_->Add(variable->name(), zone()); Handle function = Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { Comment cmnt(masm_, "[ FunctionDeclaration"); VisitForAccumulatorValue(declaration->fun()); __ movp(StackOperand(variable), result_register()); break; } case VariableLocation::CONTEXT: { Comment cmnt(masm_, "[ FunctionDeclaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ movp(ContextOperand(rsi, variable->index()), result_register()); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(rsi, offset, result_register(), rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), NO_REGISTERS); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ FunctionDeclaration"); __ Push(variable->name()); VisitForStackValue(declaration->fun()); __ Push(Smi::FromInt(variable->DeclarationPropertyAttributes())); __ CallRuntime(Runtime::kDeclareLookupSlot); break; } } } void FullCodeGenerator::DeclareGlobals(Handle pairs) { // Call the runtime to declare the globals. __ Push(pairs); __ Push(Smi::FromInt(DeclareGlobalsFlags())); __ CallRuntime(Runtime::kDeclareGlobals); // Return value is ignored. } void FullCodeGenerator::DeclareModules(Handle descriptions) { // Call the runtime to declare the modules. __ Push(descriptions); __ CallRuntime(Runtime::kDeclareModules); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); ZoneList* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ movp(rdx, Operand(rsp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ movp(rcx, rdx); __ orp(rcx, rax); patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear); __ cmpp(rdx, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); __ bind(&slow_case); } // Record position before stub call for type feedback. SetExpressionPosition(clause); Handle ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT, strength(language_mode())).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ jmp(&skip, Label::kNear); PrepareForBailout(clause, TOS_REG); __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(not_equal, &next_test); __ Drop(1); __ jmp(clause->body_target()); __ bind(&skip); __ testp(rax, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ jmp(nested_statement.break_label()); } else { __ jmp(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt, SKIP_BREAK); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. If the object is null or undefined, skip // over the loop. See ECMA-262 version 5, section 12.6.4. SetExpressionAsStatementPosition(stmt->enumerable()); VisitForAccumulatorValue(stmt->enumerable()); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, &exit); Register null_value = rdi; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ cmpp(rax, null_value); __ j(equal, &exit); PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(rax, &convert, Label::kNear); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); __ j(above_equal, &done_convert, Label::kNear); __ bind(&convert); ToObjectStub stub(isolate()); __ CallStub(&stub); __ bind(&done_convert); PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG); __ Push(rax); // Check for proxies. Label call_runtime; __ CmpObjectType(rax, JS_PROXY_TYPE, rcx); __ j(equal, &call_runtime); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. __ CheckEnumCache(null_value, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ Push(rax); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast); PrepareForBailoutForId(stmt->EnumId(), TOS_REG); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kMetaMapRootIndex); __ j(not_equal, &fixed_array); // We got a map in register rax. Get the enumeration cache from it. __ bind(&use_cache); Label no_descriptors; __ EnumLength(rdx, rax); __ Cmp(rdx, Smi::FromInt(0)); __ j(equal, &no_descriptors); __ LoadInstanceDescriptors(rax, rcx); __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheOffset)); __ movp(rcx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ Push(rax); // Map. __ Push(rcx); // Enumeration cache. __ Push(rdx); // Number of valid entries for the map in the enum cache. __ Push(Smi::FromInt(0)); // Initial index. __ jmp(&loop); __ bind(&no_descriptors); __ addp(rsp, Immediate(kPointerSize)); __ jmp(&exit); // We got a fixed array in register rax. Iterate through that. __ bind(&fixed_array); // No need for a write barrier, we are storing a Smi in the feedback vector. __ EmitLoadTypeFeedbackVector(rbx); int vector_index = SmiFromSlot(slot)->value(); __ Move(FieldOperand(rbx, FixedArray::OffsetOfElementAt(vector_index)), TypeFeedbackVector::MegamorphicSentinel(isolate())); __ movp(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object __ Push(Smi::FromInt(1)); // Smi(1) indicates slow check __ Push(rax); // Array __ movp(rax, FieldOperand(rax, FixedArray::kLengthOffset)); __ Push(rax); // Fixed array length (as smi). __ Push(Smi::FromInt(0)); // Initial index. // Generate code for doing the condition check. __ bind(&loop); SetExpressionAsStatementPosition(stmt->each()); __ movp(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index. __ cmpp(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length. __ j(above_equal, loop_statement.break_label()); // Get the current entry of the array into register rbx. __ movp(rbx, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2); __ movp(rbx, FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize)); // Get the expected map from the stack or a smi in the // permanent slow case into register rdx. __ movp(rdx, Operand(rsp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ movp(rcx, Operand(rsp, 4 * kPointerSize)); __ cmpp(rdx, FieldOperand(rcx, HeapObject::kMapOffset)); __ j(equal, &update_each, Label::kNear); // Convert the entry to a string or null if it isn't a property // anymore. If the property has been removed while iterating, we // just skip it. __ Push(rcx); // Enumerable. __ Push(rbx); // Current entry. __ CallRuntime(Runtime::kForInFilter); PrepareForBailoutForId(stmt->FilterId(), TOS_REG); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, loop_statement.continue_label()); __ movp(rbx, rax); // Update the 'each' property or variable from the possibly filtered // entry in register rbx. __ bind(&update_each); __ movp(result_register(), rbx); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each(), stmt->EachFeedbackSlot()); PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS); } // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body(). PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for going to the next element by incrementing the // index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1)); EmitBackEdgeBookkeeping(stmt, &loop); __ jmp(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); __ addp(rsp, Immediate(5 * kPointerSize)); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle info, bool pretenure) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. If // we're running with the --always-opt or the --prepare-always-opt // flag, we need to use the runtime function so that the new function // we are creating here gets a chance to have its code optimized and // doesn't just get a copy of the existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub(isolate(), info->language_mode(), info->kind()); __ Move(rbx, info); __ CallStub(&stub); } else { __ Push(info); __ CallRuntime(pretenure ? Runtime::kNewClosure_Tenured : Runtime::kNewClosure); } context()->Plug(rax); } void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0)); __ Move(StoreDescriptor::NameRegister(), isolate()->factory()->home_object_symbol()); __ movp(StoreDescriptor::ValueRegister(), Operand(rsp, offset * kPointerSize)); EmitLoadStoreICSlot(slot); CallStoreIC(); } void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ movp(StoreDescriptor::ReceiverRegister(), rax); __ Move(StoreDescriptor::NameRegister(), isolate()->factory()->home_object_symbol()); __ movp(StoreDescriptor::ValueRegister(), Operand(rsp, offset * kPointerSize)); EmitLoadStoreICSlot(slot); CallStoreIC(); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow) { Register context = rsi; Register temp = rdx; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); } // Load next context in chain. __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering rsi. context = temp; } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(temp)) { __ movp(temp, context); } // Load map for comparison into register, outside loop. __ LoadRoot(kScratchRegister, Heap::kNativeContextMapRootIndex); __ bind(&next); // Terminate at native context. __ cmpp(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset)); __ j(equal, &fast, Label::kNear); // Check that extension is "the hole". __ JumpIfNotRoot(ContextOperand(temp, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); // Load next context in chain. __ movp(temp, ContextOperand(temp, Context::PREVIOUS_INDEX)); __ jmp(&next); __ bind(&fast); } // All extension objects were empty and it is safe to use a normal global // load machinery. EmitGlobalVariableLoad(proxy, typeof_mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = rsi; Register temp = rbx; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); } __ movp(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering rsi. context = temp; } } // Check that last extension is "the hole". __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); // This function is used only for loads, not stores, so it's safe to // return an rsi-based operand (the write barrier cannot be allowed to // destroy the rsi register). return ContextOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow); __ jmp(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ movp(rax, ContextSlotOperandCheckExtensions(local, slow)); if (local->mode() == LET || local->mode() == CONST || local->mode() == CONST_LEGACY) { __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, done); if (local->mode() == CONST_LEGACY) { __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } else { // LET || CONST __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError); } } __ jmp(done); } } void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { Variable* var = proxy->var(); DCHECK(var->IsUnallocatedOrGlobalSlot() || (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL)); __ Move(LoadDescriptor::NameRegister(), var->name()); __ LoadGlobalObject(LoadDescriptor::ReceiverRegister()); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(proxy->VariableFeedbackSlot())); CallLoadIC(typeof_mode); } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { // Record position before possible IC call. SetExpressionPosition(proxy); PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case VariableLocation::GLOBAL: case VariableLocation::UNALLOCATED: { Comment cmnt(masm_, "[ Global variable"); EmitGlobalVariableLoad(proxy, typeof_mode); context()->Plug(rax); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::CONTEXT: { DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode); Comment cmnt(masm_, var->IsContextSlot() ? "[ Context slot" : "[ Stack slot"); if (NeedsHoleCheckForLoad(proxy)) { // Let and const need a read barrier. Label done; GetVar(rax, var); __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done, Label::kNear); if (var->mode() == LET || var->mode() == CONST) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError); } else { // Uninitialized legacy const bindings are unholed. DCHECK(var->mode() == CONST_LEGACY); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } __ bind(&done); context()->Plug(rax); break; } context()->Plug(var); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ Lookup slot"); Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done); __ bind(&slow); __ Push(rsi); // Context. __ Push(var->name()); Runtime::FunctionId function_id = typeof_mode == NOT_INSIDE_TYPEOF ? Runtime::kLoadLookupSlot : Runtime::kLoadLookupSlotNoReferenceError; __ CallRuntime(function_id); __ bind(&done); context()->Plug(rax); break; } } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Move(rax, Smi::FromInt(expr->literal_index())); __ Move(rcx, expr->pattern()); __ Move(rdx, Smi::FromInt(expr->flags())); FastCloneRegExpStub stub(isolate()); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) { Expression* expression = (property == NULL) ? NULL : property->value(); if (expression == NULL) { __ PushRoot(Heap::kNullValueRootIndex); } else { VisitForStackValue(expression); if (NeedsHomeObject(expression)) { DCHECK(property->kind() == ObjectLiteral::Property::GETTER || property->kind() == ObjectLiteral::Property::SETTER); int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3; EmitSetHomeObject(expression, offset, property->GetSlot()); } } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle constant_properties = expr->constant_properties(); int flags = expr->ComputeFlags(); if (MustCreateObjectLiteralWithRuntime(expr)) { __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(constant_properties); __ Push(Smi::FromInt(flags)); __ CallRuntime(Runtime::kCreateObjectLiteral); } else { __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Move(rbx, Smi::FromInt(expr->literal_index())); __ Move(rcx, constant_properties); __ Move(rdx, Smi::FromInt(flags)); FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); __ CallStub(&stub); } PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in rax. bool result_saved = false; AccessorTable accessor_table(zone()); int property_index = 0; for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; Literal* key = property->key()->AsLiteral(); Expression* value = property->value(); if (!result_saved) { __ Push(rax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (key->value()->IsInternalizedString()) { if (property->emit_store()) { VisitForAccumulatorValue(value); DCHECK(StoreDescriptor::ValueRegister().is(rax)); __ Move(StoreDescriptor::NameRegister(), key->value()); __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0)); EmitLoadStoreICSlot(property->GetSlot(0)); CallStoreIC(); PrepareForBailoutForId(key->id(), NO_REGISTERS); if (NeedsHomeObject(value)) { EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1)); } } else { VisitForEffect(value); } break; } __ Push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } __ Push(Smi::FromInt(SLOPPY)); // Language mode __ CallRuntime(Runtime::kSetProperty); } else { __ Drop(3); } break; case ObjectLiteral::Property::PROTOTYPE: __ Push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(value); DCHECK(property->emit_store()); __ CallRuntime(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), NO_REGISTERS); break; case ObjectLiteral::Property::GETTER: if (property->emit_store()) { accessor_table.lookup(key)->second->getter = property; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { accessor_table.lookup(key)->second->setter = property; } break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ Push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ Push(Smi::FromInt(NONE)); __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part // starts with the first computed property name, and continues with all // properties to its right. All the code from above initializes the static // component of the object literal, and arranges for the map of the result to // reflect the static order in which the keys appear. For the dynamic // properties, we compile them into a series of "SetOwnProperty" runtime // calls. This will preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); Expression* value = property->value(); if (!result_saved) { __ Push(rax); // Save result on the stack result_saved = true; } __ Push(Operand(rsp, 0)); // Duplicate receiver. if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(!property->is_computed_name()); VisitForStackValue(value); DCHECK(property->emit_store()); __ CallRuntime(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), NO_REGISTERS); } else { EmitPropertyKey(property, expr->GetIdForPropertyName(property_index)); VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::COMPUTED: if (property->emit_store()) { __ Push(Smi::FromInt(NONE)); __ CallRuntime(Runtime::kDefineDataPropertyUnchecked); } else { __ Drop(3); } break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); break; case ObjectLiteral::Property::GETTER: __ Push(Smi::FromInt(NONE)); __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: __ Push(Smi::FromInt(NONE)); __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked); break; } } } if (expr->has_function()) { DCHECK(result_saved); __ Push(Operand(rsp, 0)); __ CallRuntime(Runtime::kToFastProperties); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Handle constant_elements = expr->constant_elements(); bool has_constant_fast_elements = IsFastObjectElementsKind(expr->constant_elements_kind()); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } if (MustCreateArrayLiteralWithRuntime(expr)) { __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(constant_elements); __ Push(Smi::FromInt(expr->ComputeFlags())); __ CallRuntime(Runtime::kCreateArrayLiteral); } else { __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ Move(rbx, Smi::FromInt(expr->literal_index())); __ Move(rcx, constant_elements); FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); } PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); bool result_saved = false; // Is the result saved to the stack? ZoneList* subexprs = expr->values(); int length = subexprs->length(); // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. int array_index = 0; for (; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); if (subexpr->IsSpread()) break; // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { __ Push(rax); // array literal result_saved = true; } VisitForAccumulatorValue(subexpr); __ Move(StoreDescriptor::NameRegister(), Smi::FromInt(array_index)); __ movp(StoreDescriptor::ReceiverRegister(), Operand(rsp, 0)); EmitLoadStoreICSlot(expr->LiteralFeedbackSlot()); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic); PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS); } // In case the array literal contains spread expressions it has two parts. The // first part is the "static" array which has a literal index is handled // above. The second part is the part after the first spread expression // (inclusive) and these elements gets appended to the array. Note that the // number elements an iterable produces is unknown ahead of time. if (array_index < length && result_saved) { __ Pop(rax); result_saved = false; } for (; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); __ Push(rax); if (subexpr->IsSpread()) { VisitForStackValue(subexpr->AsSpread()->expression()); __ InvokeBuiltin(Context::CONCAT_ITERABLE_TO_ARRAY_BUILTIN_INDEX, CALL_FUNCTION); } else { VisitForStackValue(subexpr); __ CallRuntime(Runtime::kAppendElement); } PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ Assignment"); SetExpressionPosition(expr, INSERT_BREAK); Property* property = expr->target()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); } else { VisitForStackValue(property->obj()); } break; case NAMED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( property->obj()->AsSuperPropertyReference()->home_object()); __ Push(result_register()); if (expr->is_compound()) { __ Push(MemOperand(rsp, kPointerSize)); __ Push(result_register()); } break; case KEYED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( property->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(property->key()); __ Push(result_register()); if (expr->is_compound()) { __ Push(MemOperand(rsp, 2 * kPointerSize)); __ Push(MemOperand(rsp, 2 * kPointerSize)); __ Push(result_register()); } break; case KEYED_PROPERTY: { if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize)); __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0)); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), TOS_REG); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), TOS_REG); break; } } Token::Value op = expr->binary_op(); __ Push(rax); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), TOS_REG); } else { VisitForAccumulatorValue(expr->value()); } SetExpressionPosition(expr); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op(), expr->AssignmentSlot()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyStore(property); context()->Plug(rax); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyStore(property); context()->Plug(rax); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); SetExpressionPosition(expr); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); switch (expr->yield_kind()) { case Yield::kSuspend: // Pop value from top-of-stack slot; box result into result register. EmitCreateIteratorResult(false); __ Push(result_register()); // Fall through. case Yield::kInitial: { Label suspend, continuation, post_runtime, resume; __ jmp(&suspend); __ bind(&continuation); __ RecordGeneratorContinuation(); __ jmp(&resume); __ bind(&suspend); VisitForAccumulatorValue(expr->generator_object()); DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset), Smi::FromInt(continuation.pos())); __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi); __ movp(rcx, rsi); __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx, kDontSaveFPRegs); __ leap(rbx, Operand(rbp, StandardFrameConstants::kExpressionsOffset)); __ cmpp(rsp, rbx); __ j(equal, &post_runtime); __ Push(rax); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); __ movp(context_register(), Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&post_runtime); __ Pop(result_register()); EmitReturnSequence(); __ bind(&resume); context()->Plug(result_register()); break; } case Yield::kFinal: { VisitForAccumulatorValue(expr->generator_object()); __ Move(FieldOperand(result_register(), JSGeneratorObject::kContinuationOffset), Smi::FromInt(JSGeneratorObject::kGeneratorClosed)); // Pop value from top-of-stack slot, box result into result register. EmitCreateIteratorResult(true); EmitUnwindBeforeReturn(); EmitReturnSequence(); break; } case Yield::kDelegating: { VisitForStackValue(expr->generator_object()); // Initial stack layout is as follows: // [sp + 1 * kPointerSize] iter // [sp + 0 * kPointerSize] g Label l_catch, l_try, l_suspend, l_continuation, l_resume; Label l_next, l_call, l_loop; Register load_receiver = LoadDescriptor::ReceiverRegister(); Register load_name = LoadDescriptor::NameRegister(); // Initial send value is undefined. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ jmp(&l_next); // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } __ bind(&l_catch); __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" __ Push(load_name); __ Push(Operand(rsp, 2 * kPointerSize)); // iter __ Push(rax); // exception __ jmp(&l_call); // try { received = %yield result } // Shuffle the received result above a try handler and yield it without // re-boxing. __ bind(&l_try); __ Pop(rax); // result int handler_index = NewHandlerTableEntry(); EnterTryBlock(handler_index, &l_catch); const int try_block_size = TryCatch::kElementCount * kPointerSize; __ Push(rax); // result __ jmp(&l_suspend); __ bind(&l_continuation); __ RecordGeneratorContinuation(); __ jmp(&l_resume); __ bind(&l_suspend); const int generator_object_depth = kPointerSize + try_block_size; __ movp(rax, Operand(rsp, generator_object_depth)); __ Push(rax); // g __ Push(Smi::FromInt(handler_index)); // handler-index DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos())); __ Move(FieldOperand(rax, JSGeneratorObject::kContinuationOffset), Smi::FromInt(l_continuation.pos())); __ movp(FieldOperand(rax, JSGeneratorObject::kContextOffset), rsi); __ movp(rcx, rsi); __ RecordWriteField(rax, JSGeneratorObject::kContextOffset, rcx, rdx, kDontSaveFPRegs); __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2); __ movp(context_register(), Operand(rbp, StandardFrameConstants::kContextOffset)); __ Pop(rax); // result EmitReturnSequence(); __ bind(&l_resume); // received in rax ExitTryBlock(handler_index); // receiver = iter; f = 'next'; arg = received; __ bind(&l_next); __ LoadRoot(load_name, Heap::knext_stringRootIndex); __ Push(load_name); // "next" __ Push(Operand(rsp, 2 * kPointerSize)); // iter __ Push(rax); // received // result = receiver[f](arg); __ bind(&l_call); __ movp(load_receiver, Operand(rsp, kPointerSize)); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(expr->KeyedLoadFeedbackSlot())); Handle ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code(); CallIC(ic, TypeFeedbackId::None()); __ movp(rdi, rax); __ movp(Operand(rsp, 2 * kPointerSize), rdi); SetCallPosition(expr); __ Set(rax, 1); __ Call( isolate()->builtins()->Call(ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ Drop(1); // The function is still on the stack; drop it. // if (!result.done) goto l_try; __ bind(&l_loop); __ Move(load_receiver, rax); __ Push(load_receiver); // save result __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(expr->DoneFeedbackSlot())); CallLoadIC(NOT_INSIDE_TYPEOF); // rax=result.done Handle bool_ic = ToBooleanStub::GetUninitialized(isolate()); CallIC(bool_ic); __ CompareRoot(result_register(), Heap::kTrueValueRootIndex); __ j(not_equal, &l_try); // result.value __ Pop(load_receiver); // result __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(expr->ValueFeedbackSlot())); CallLoadIC(NOT_INSIDE_TYPEOF); // result.value in rax context()->DropAndPlug(2, rax); // drop iter and g break; } } } void FullCodeGenerator::EmitGeneratorResume(Expression *generator, Expression *value, JSGeneratorObject::ResumeMode resume_mode) { // The value stays in rax, and is ultimately read by the resumed generator, as // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it // is read to throw the value when the resumed generator is already closed. // rbx will hold the generator object until the activation has been resumed. VisitForStackValue(generator); VisitForAccumulatorValue(value); __ Pop(rbx); // Load suspended function and context. __ movp(rsi, FieldOperand(rbx, JSGeneratorObject::kContextOffset)); __ movp(rdi, FieldOperand(rbx, JSGeneratorObject::kFunctionOffset)); // Push receiver. __ Push(FieldOperand(rbx, JSGeneratorObject::kReceiverOffset)); // Push holes for arguments to generator function. __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ LoadSharedFunctionInfoSpecialField(rdx, rdx, SharedFunctionInfo::kFormalParameterCountOffset); __ LoadRoot(rcx, Heap::kTheHoleValueRootIndex); Label push_argument_holes, push_frame; __ bind(&push_argument_holes); __ subp(rdx, Immediate(1)); __ j(carry, &push_frame); __ Push(rcx); __ jmp(&push_argument_holes); // Enter a new JavaScript frame, and initialize its slots as they were when // the generator was suspended. Label resume_frame, done; __ bind(&push_frame); __ call(&resume_frame); __ jmp(&done); __ bind(&resume_frame); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS Function. // Load the operand stack size. __ movp(rdx, FieldOperand(rbx, JSGeneratorObject::kOperandStackOffset)); __ movp(rdx, FieldOperand(rdx, FixedArray::kLengthOffset)); __ SmiToInteger32(rdx, rdx); // If we are sending a value and there is no operand stack, we can jump back // in directly. if (resume_mode == JSGeneratorObject::NEXT) { Label slow_resume; __ cmpp(rdx, Immediate(0)); __ j(not_zero, &slow_resume); __ movp(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ SmiToInteger64(rcx, FieldOperand(rbx, JSGeneratorObject::kContinuationOffset)); __ addp(rdx, rcx); __ Move(FieldOperand(rbx, JSGeneratorObject::kContinuationOffset), Smi::FromInt(JSGeneratorObject::kGeneratorExecuting)); __ jmp(rdx); __ bind(&slow_resume); } // Otherwise, we push holes for the operand stack and call the runtime to fix // up the stack and the handlers. Label push_operand_holes, call_resume; __ bind(&push_operand_holes); __ subp(rdx, Immediate(1)); __ j(carry, &call_resume); __ Push(rcx); __ jmp(&push_operand_holes); __ bind(&call_resume); __ Push(rbx); __ Push(result_register()); __ Push(Smi::FromInt(resume_mode)); __ CallRuntime(Runtime::kResumeJSGeneratorObject); // Not reached: the runtime call returns elsewhere. __ Abort(kGeneratorFailedToResume); __ bind(&done); context()->Plug(result_register()); } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label allocate, done_allocate; __ Allocate(JSIteratorResult::kSize, rax, rcx, rdx, &allocate, TAG_OBJECT); __ jmp(&done_allocate, Label::kNear); __ bind(&allocate); __ Push(Smi::FromInt(JSIteratorResult::kSize)); __ CallRuntime(Runtime::kAllocateInNewSpace); __ bind(&done_allocate); __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, rbx); __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx); __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx); __ Pop(FieldOperand(rax, JSIteratorResult::kValueOffset)); __ LoadRoot(FieldOperand(rax, JSIteratorResult::kDoneOffset), done ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!prop->IsSuperAccess()); __ Move(LoadDescriptor::NameRegister(), key->value()); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(prop->PropertyFeedbackSlot())); CallLoadIC(NOT_INSIDE_TYPEOF, language_mode()); } void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); DCHECK(prop->IsSuperAccess()); __ Push(key->value()); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kLoadFromSuper); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetExpressionPosition(prop); Handle ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code(); __ Move(LoadDescriptor::SlotRegister(), SmiFromSlot(prop->PropertyFeedbackSlot())); CallIC(ic); } void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) { // Stack: receiver, home_object, key. SetExpressionPosition(prop); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kLoadKeyedFromSuper); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, Expression* left, Expression* right) { // Do combined smi check of the operands. Left operand is on the // stack (popped into rdx). Right operand is in rax but moved into // rcx to make the shifts easier. Label done, stub_call, smi_case; __ Pop(rdx); __ movp(rcx, rax); __ orp(rax, rdx); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear); __ bind(&stub_call); __ movp(rax, rcx); Handle code = CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code(); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); __ jmp(&done, Label::kNear); __ bind(&smi_case); switch (op) { case Token::SAR: __ SmiShiftArithmeticRight(rax, rdx, rcx); break; case Token::SHL: __ SmiShiftLeft(rax, rdx, rcx, &stub_call); break; case Token::SHR: __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call); break; case Token::ADD: __ SmiAdd(rax, rdx, rcx, &stub_call); break; case Token::SUB: __ SmiSub(rax, rdx, rcx, &stub_call); break; case Token::MUL: __ SmiMul(rax, rdx, rcx, &stub_call); break; case Token::BIT_OR: __ SmiOr(rax, rdx, rcx); break; case Token::BIT_AND: __ SmiAnd(rax, rdx, rcx); break; case Token::BIT_XOR: __ SmiXor(rax, rdx, rcx); break; default: UNREACHABLE(); break; } __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) { // Constructor is in rax. DCHECK(lit != NULL); __ Push(rax); // No access check is needed here since the constructor is created by the // class literal. Register scratch = rbx; __ movp(scratch, FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset)); __ Push(scratch); for (int i = 0; i < lit->properties()->length(); i++) { ObjectLiteral::Property* property = lit->properties()->at(i); Expression* value = property->value(); if (property->is_static()) { __ Push(Operand(rsp, kPointerSize)); // constructor } else { __ Push(Operand(rsp, 0)); // prototype } EmitPropertyKey(property, lit->GetIdForProperty(i)); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { __ CallRuntime(Runtime::kThrowIfStaticPrototype); __ Push(rax); } VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); case ObjectLiteral::Property::COMPUTED: __ CallRuntime(Runtime::kDefineClassMethod); break; case ObjectLiteral::Property::GETTER: __ Push(Smi::FromInt(DONT_ENUM)); __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: __ Push(Smi::FromInt(DONT_ENUM)); __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked); break; default: UNREACHABLE(); } } // Set both the prototype and constructor to have fast properties, and also // freeze them in strong mode. __ CallRuntime(Runtime::kFinalizeClassDefinition); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { __ Pop(rdx); Handle code = CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code(); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); context()->Plug(rax); } void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackVectorSlot slot) { DCHECK(expr->IsValidReferenceExpressionOrThis()); Property* prop = expr->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN, slot); break; } case NAMED_PROPERTY: { __ Push(rax); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ Move(StoreDescriptor::ReceiverRegister(), rax); __ Pop(StoreDescriptor::ValueRegister()); // Restore value. __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value()); EmitLoadStoreICSlot(slot); CallStoreIC(); break; } case NAMED_SUPER_PROPERTY: { __ Push(rax); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); // stack: value, this; rax: home_object Register scratch = rcx; Register scratch2 = rdx; __ Move(scratch, result_register()); // home_object __ movp(rax, MemOperand(rsp, kPointerSize)); // value __ movp(scratch2, MemOperand(rsp, 0)); // this __ movp(MemOperand(rsp, kPointerSize), scratch2); // this __ movp(MemOperand(rsp, 0), scratch); // home_object // stack: this, home_object; rax: value EmitNamedSuperPropertyStore(prop); break; } case KEYED_SUPER_PROPERTY: { __ Push(rax); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); Register scratch = rcx; Register scratch2 = rdx; __ movp(scratch2, MemOperand(rsp, 2 * kPointerSize)); // value // stack: value, this, home_object; rax: key, rdx: value __ movp(scratch, MemOperand(rsp, kPointerSize)); // this __ movp(MemOperand(rsp, 2 * kPointerSize), scratch); __ movp(scratch, MemOperand(rsp, 0)); // home_object __ movp(MemOperand(rsp, kPointerSize), scratch); __ movp(MemOperand(rsp, 0), rax); __ Move(rax, scratch2); // stack: this, home_object, key; rax: value. EmitKeyedSuperPropertyStore(prop); break; } case KEYED_PROPERTY: { __ Push(rax); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ Move(StoreDescriptor::NameRegister(), rax); __ Pop(StoreDescriptor::ReceiverRegister()); __ Pop(StoreDescriptor::ValueRegister()); // Restore value. EmitLoadStoreICSlot(slot); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); CallIC(ic); break; } } context()->Plug(rax); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ movp(location, rax); if (var->IsContextSlot()) { __ movp(rdx, rax); __ RecordWriteContextSlot( rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, FeedbackVectorSlot slot) { if (var->IsUnallocated()) { // Global var, const, or let. __ Move(StoreDescriptor::NameRegister(), var->name()); __ LoadGlobalObject(StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(slot); CallStoreIC(); } else if (var->mode() == LET && op != Token::INIT) { // Non-initializing assignment to let variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label assign; MemOperand location = VarOperand(var, rcx); __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &assign, Label::kNear); __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&assign); EmitStoreToStackLocalOrContextSlot(var, location); } else if (var->mode() == CONST && op != Token::INIT) { // Assignment to const variable needs a write barrier. DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label const_error; MemOperand location = VarOperand(var, rcx); __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &const_error, Label::kNear); __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&const_error); __ CallRuntime(Runtime::kThrowConstAssignError); } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) { // Initializing assignment to const {this} needs a write barrier. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label uninitialized_this; MemOperand location = VarOperand(var, rcx); __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(equal, &uninitialized_this); __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&uninitialized_this); EmitStoreToStackLocalOrContextSlot(var, location); } else if (!var->is_const_mode() || (var->mode() == CONST && op == Token::INIT)) { if (var->IsLookupSlot()) { // Assignment to var. __ Push(rax); // Value. __ Push(rsi); // Context. __ Push(var->name()); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kStoreLookupSlot); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, rcx); if (generate_debug_code_ && var->mode() == LET && op == Token::INIT) { // Check for an uninitialized let binding. __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ Check(equal, kLetBindingReInitialization); } EmitStoreToStackLocalOrContextSlot(var, location); } } else if (var->mode() == CONST_LEGACY && op == Token::INIT) { // Const initializers need a write barrier. DCHECK(!var->IsParameter()); // No const parameters. if (var->IsLookupSlot()) { __ Push(rax); __ Push(rsi); __ Push(var->name()); __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot); } else { DCHECK(var->IsStackLocal() || var->IsContextSlot()); Label skip; MemOperand location = VarOperand(var, rcx); __ movp(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &skip); EmitStoreToStackLocalOrContextSlot(var, location); __ bind(&skip); } } else { DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT); if (is_strict(language_mode())) { __ CallRuntime(Runtime::kThrowConstAssignError); } // Silently ignore store in sloppy mode. } } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value()); __ Pop(StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(expr->AssignmentSlot()); CallStoreIC(); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // rax : value // stack : receiver ('this'), home_object DCHECK(prop != NULL); Literal* key = prop->key()->AsLiteral(); DCHECK(key != NULL); __ Push(key->value()); __ Push(rax); __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy)); } void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // rax : value // stack : receiver ('this'), home_object, key DCHECK(prop != NULL); __ Push(rax); __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy)); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. __ Pop(StoreDescriptor::NameRegister()); // Key. __ Pop(StoreDescriptor::ReceiverRegister()); DCHECK(StoreDescriptor::ValueRegister().is(rax)); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); EmitLoadStoreICSlot(expr->AssignmentSlot()); CallIC(ic); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); SetExpressionPosition(expr); Expression* key = expr->key(); if (key->IsPropertyName()) { if (!expr->IsSuperAccess()) { VisitForAccumulatorValue(expr->obj()); DCHECK(!rax.is(LoadDescriptor::ReceiverRegister())); __ movp(LoadDescriptor::ReceiverRegister(), rax); EmitNamedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( expr->obj()->AsSuperPropertyReference()->home_object()); EmitNamedSuperPropertyLoad(expr); } } else { if (!expr->IsSuperAccess()) { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ Move(LoadDescriptor::NameRegister(), rax); __ Pop(LoadDescriptor::ReceiverRegister()); EmitKeyedPropertyLoad(expr); } else { VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( expr->obj()->AsSuperPropertyReference()->home_object()); VisitForStackValue(expr->key()); EmitKeyedSuperPropertyLoad(expr); } } PrepareForBailoutForId(expr->LoadId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::CallIC(Handle code, TypeFeedbackId ast_id) { ic_total_count_++; __ call(code, RelocInfo::CODE_TARGET, ast_id); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); // Get the target function. ConvertReceiverMode convert_mode; if (callee->IsVariableProxy()) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, NO_REGISTERS); } // Push undefined as receiver. This is patched in the Call builtin if it // is a sloppy mode method. __ Push(isolate()->factory()->undefined_value()); convert_mode = ConvertReceiverMode::kNullOrUndefined; } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ Push(Operand(rsp, 0)); __ movp(Operand(rsp, kPointerSize), rax); convert_mode = ConvertReceiverMode::kNotNullOrUndefined; } EmitCall(expr, convert_mode); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForStackValue(super_ref->home_object()); VisitForAccumulatorValue(super_ref->this_var()); __ Push(rax); __ Push(rax); __ Push(Operand(rsp, kPointerSize * 2)); __ Push(key->value()); __ Push(Smi::FromInt(language_mode())); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadFromSuper will pop here and below. // - home_object // - key // - language_mode __ CallRuntime(Runtime::kLoadFromSuper); // Replace home_object with target function. __ movp(Operand(rsp, kPointerSize), rax); // Stack here: // - target function // - this (receiver) EmitCall(expr); } // Common code for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); __ Move(LoadDescriptor::NameRegister(), rax); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); // Push the target function under the receiver. __ Push(Operand(rsp, 0)); __ movp(Operand(rsp, kPointerSize), rax); EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined); } void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); // Load the function from the receiver. SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForStackValue(super_ref->home_object()); VisitForAccumulatorValue(super_ref->this_var()); __ Push(rax); __ Push(rax); __ Push(Operand(rsp, kPointerSize * 2)); VisitForStackValue(prop->key()); __ Push(Smi::FromInt(language_mode())); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. // - home_object // - key // - language_mode __ CallRuntime(Runtime::kLoadKeyedFromSuper); // Replace home_object with target function. __ movp(Operand(rsp, kPointerSize), rax); // Stack here: // - target function // - this (receiver) EmitCall(expr); } void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) { // Load the arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); SetCallPosition(expr); Handle ic = CodeFactory::CallIC(isolate(), arg_count, mode).code(); __ Move(rdx, SmiFromSlot(expr->CallFeedbackICSlot())); __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); // Don't assign a type feedback id to the IC, since type feedback is provided // by the vector above. CallIC(ic); RecordJSReturnSite(expr); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. context()->DropAndPlug(1, rax); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ Push(Operand(rsp, arg_count * kPointerSize)); } else { __ PushRoot(Heap::kUndefinedValueRootIndex); } // Push the enclosing function. __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); // Push the language mode. __ Push(Smi::FromInt(language_mode())); // Push the start position of the scope the calls resides in. __ Push(Smi::FromInt(scope()->start_position())); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval); } // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls. void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) { VariableProxy* callee = expr->expression()->AsVariableProxy(); if (callee->var()->IsLookupSlot()) { Label slow, done; SetExpressionPosition(callee); // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); // Call the runtime to find the function to call (returned in rax) and // the object holding it (returned in rdx). __ Push(context_register()); __ Push(callee->name()); __ CallRuntime(Runtime::kLoadLookupSlot); __ Push(rax); // Function. __ Push(rdx); // Receiver. PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS); // If fast case code has been generated, emit code to push the function // and receiver and have the slow path jump around this code. if (done.is_linked()) { Label call; __ jmp(&call, Label::kNear); __ bind(&done); // Push function. __ Push(rax); // Pass undefined as the receiver, which is the WithBaseObject of a // non-object environment record. If the callee is sloppy, it will patch // it up to be the global receiver. __ PushRoot(Heap::kUndefinedValueRootIndex); __ bind(&call); } } else { VisitForStackValue(callee); // refEnv.WithBaseObject() __ PushRoot(Heap::kUndefinedValueRootIndex); } } void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) { // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval // to resolve the function we need to call. Then we call the resolved // function using the given arguments. ZoneList* args = expr->arguments(); int arg_count = args->length(); PushCalleeAndWithBaseObject(expr); // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and resolve // eval. __ Push(Operand(rsp, (arg_count + 1) * kPointerSize)); EmitResolvePossiblyDirectEval(arg_count); // Touch up the callee. __ movp(Operand(rsp, (arg_count + 1) * kPointerSize), rax); PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS); SetCallPosition(expr); __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); __ Set(rax, arg_count); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); RecordJSReturnSite(expr); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. DCHECK(!expr->expression()->IsSuperPropertyReference()); VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load function and argument count into rdi and rax. __ Set(rax, arg_count); __ movp(rdi, Operand(rsp, arg_count * kPointerSize)); // Record call targets in unoptimized code, but not in the snapshot. __ EmitLoadTypeFeedbackVector(rbx); __ Move(rdx, SmiFromSlot(expr->CallNewFeedbackSlot())); CallConstructStub stub(isolate()); __ Call(stub.GetCode(), RelocInfo::CODE_TARGET); PrepareForBailoutForId(expr->ReturnId(), TOS_REG); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { SuperCallReference* super_call_ref = expr->expression()->AsSuperCallReference(); DCHECK_NOT_NULL(super_call_ref); // Push the super constructor target on the stack (may be null, // but the Construct builtin can deal with that properly). VisitForAccumulatorValue(super_call_ref->this_function_var()); __ AssertFunction(result_register()); __ movp(result_register(), FieldOperand(result_register(), HeapObject::kMapOffset)); __ Push(FieldOperand(result_register(), Map::kPrototypeOffset)); // Push the arguments ("left-to-right") on the stack. ZoneList* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load new target into rdx. VisitForAccumulatorValue(super_call_ref->new_target_var()); __ movp(rdx, result_register()); // Load function and argument count into rdi and rax. __ Set(rax, arg_count); __ movp(rdi, Operand(rsp, arg_count * kPointerSize)); __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); RecordJSReturnSite(expr); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ JumpIfSmi(rax, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, SIMD128_VALUE_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, FIRST_FUNCTION_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Handle map = masm()->isolate()->factory()->heap_number_map(); __ CheckMap(rax, map, if_false, DO_SMI_CHECK); __ cmpl(FieldOperand(rax, HeapNumber::kExponentOffset), Immediate(0x1)); __ j(no_overflow, if_false); __ cmpl(FieldOperand(rax, HeapNumber::kMantissaOffset), Immediate(0x00000000)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_TYPED_ARRAY_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_PROXY_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ Pop(rbx); __ cmpp(rax, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); // ArgumentsAccessStub expects the key in rdx and the formal // parameter count in rax. VisitForAccumulatorValue(args->at(0)); __ movp(rdx, rax); __ Move(rax, Smi::FromInt(info_->scope()->num_parameters())); ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); Label exit; // Get the number of formal parameters. __ Move(rax, Smi::FromInt(info_->scope()->num_parameters())); // Check if the calling frame is an arguments adaptor frame. __ movp(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &exit, Label::kNear); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ movp(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); __ AssertSmi(rax); context()->Plug(rax); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is not a JSReceiver, we return null. __ JumpIfSmi(rax, &null, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rax); __ j(below, &null, Label::kNear); // Return 'Function' for JSFunction objects. __ CmpInstanceType(rax, JS_FUNCTION_TYPE); __ j(equal, &function, Label::kNear); // Check if the constructor in the map is a JS function. __ GetMapConstructor(rax, rax, rbx); __ CmpInstanceType(rbx, JS_FUNCTION_TYPE); __ j(not_equal, &non_function_constructor, Label::kNear); // rax now contains the constructor function. Grab the // instance class name from there. __ movp(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset)); __ movp(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset)); __ jmp(&done, Label::kNear); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(rax, Heap::kNullValueRootIndex); __ jmp(&done, Label::kNear); // Functions have class 'Function'. __ bind(&function); __ LoadRoot(rax, Heap::kFunction_stringRootIndex); __ jmp(&done, Label::kNear); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ LoadRoot(rax, Heap::kObject_stringRootIndex); // All done. __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(rax, &done); // If the object is not a value type, return the object. __ CmpObjectType(rax, JS_VALUE_TYPE, rbx); __ j(not_equal, &done); __ movp(rax, FieldOperand(rax, JSValue::kValueOffset)); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitIsDate(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = nullptr; Label* if_false = nullptr; Label* fall_through = nullptr; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_DATE_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = rax; Register index = rbx; Register value = rcx; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(value); __ Pop(index); if (FLAG_debug_code) { __ Check(__ CheckSmi(value), kNonSmiValue); __ Check(__ CheckSmi(index), kNonSmiValue); } __ SmiToInteger32(value, value); __ SmiToInteger32(index, index); if (FLAG_debug_code) { static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; __ EmitSeqStringSetCharCheck(string, index, value, one_byte_seq_type); } __ movb(FieldOperand(string, index, times_1, SeqOneByteString::kHeaderSize), value); context()->Plug(string); } void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(3, args->length()); Register string = rax; Register index = rbx; Register value = rcx; VisitForStackValue(args->at(0)); // index VisitForStackValue(args->at(1)); // value VisitForAccumulatorValue(args->at(2)); // string __ Pop(value); __ Pop(index); if (FLAG_debug_code) { __ Check(__ CheckSmi(value), kNonSmiValue); __ Check(__ CheckSmi(index), kNonSmiValue); } __ SmiToInteger32(value, value); __ SmiToInteger32(index, index); if (FLAG_debug_code) { static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ EmitSeqStringSetCharCheck(string, index, value, two_byte_seq_type); } __ movw(FieldOperand(string, index, times_2, SeqTwoByteString::kHeaderSize), value); context()->Plug(rax); } void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ Pop(rbx); // rax = value. rbx = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(rbx, &done); // If the object is not a value type, return the value. __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx); __ j(not_equal, &done); // Store the value. __ movp(FieldOperand(rbx, JSValue::kValueOffset), rax); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ movp(rdx, rax); __ RecordWriteField(rbx, JSValue::kValueOffset, rdx, rcx, kDontSaveFPRegs); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitToInteger(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); // Load the argument into rax and convert it. VisitForAccumulatorValue(args->at(0)); // Convert the object to an integer. Label done_convert; __ JumpIfSmi(rax, &done_convert, Label::kNear); __ Push(rax); __ CallRuntime(Runtime::kToInteger); __ bind(&done_convert); context()->Plug(rax); } void FullCodeGenerator::EmitToName(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); // Load the argument into rax and convert it. VisitForAccumulatorValue(args->at(0)); // Convert the object to a name. Label convert, done_convert; __ JumpIfSmi(rax, &convert, Label::kNear); STATIC_ASSERT(FIRST_NAME_TYPE == FIRST_TYPE); __ CmpObjectType(rax, LAST_NAME_TYPE, rcx); __ j(below_equal, &done_convert, Label::kNear); __ bind(&convert); __ Push(rax); __ CallRuntime(Runtime::kToName); __ bind(&done_convert); context()->Plug(rax); } void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(rax, rbx); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(rbx); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register result = rdx; __ Pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register scratch = rdx; Register result = rax; __ Pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kempty_stringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ Move(result, Smi::FromInt(0)); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitCall(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_LE(2, args->length()); // Push target, receiver and arguments onto the stack. for (Expression* const arg : *args) { VisitForStackValue(arg); } PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); // Move target to rdi. int const argc = args->length() - 2; __ movp(rdi, Operand(rsp, (argc + 1) * kPointerSize)); // Call the target. __ Set(rax, argc); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. context()->DropAndPlug(1, rax); } void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ testl(FieldOperand(rax, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ j(zero, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); __ AssertString(rax); __ movl(rax, FieldOperand(rax, String::kHashFieldOffset)); DCHECK(String::kHashShift >= kSmiTagSize); __ IndexFromHash(rax, rax); context()->Plug(rax); } void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); __ AssertFunction(rax); __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ movp(rax, FieldOperand(rax, Map::kPrototypeOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) { Label bailout, return_result, done, one_char_separator, long_separator, non_trivial_array, not_size_one_array, loop, loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry; ZoneList* args = expr->arguments(); DCHECK(args->length() == 2); // We will leave the separator on the stack until the end of the function. VisitForStackValue(args->at(1)); // Load this to rax (= array) VisitForAccumulatorValue(args->at(0)); // All aliases of the same register have disjoint lifetimes. Register array = rax; Register elements = no_reg; // Will be rax. Register index = rdx; Register string_length = rcx; Register string = rsi; Register scratch = rbx; Register array_length = rdi; Register result_pos = no_reg; // Will be rdi. Operand separator_operand = Operand(rsp, 2 * kPointerSize); Operand result_operand = Operand(rsp, 1 * kPointerSize); Operand array_length_operand = Operand(rsp, 0 * kPointerSize); // Separator operand is already pushed. Make room for the two // other stack fields, and clear the direction flag in anticipation // of calling CopyBytes. __ subp(rsp, Immediate(2 * kPointerSize)); __ cld(); // Check that the array is a JSArray __ JumpIfSmi(array, &bailout); __ CmpObjectType(array, JS_ARRAY_TYPE, scratch); __ j(not_equal, &bailout); // Check that the array has fast elements. __ CheckFastElements(scratch, &bailout); // Array has fast elements, so its length must be a smi. // If the array has length zero, return the empty string. __ movp(array_length, FieldOperand(array, JSArray::kLengthOffset)); __ SmiCompare(array_length, Smi::FromInt(0)); __ j(not_zero, &non_trivial_array); __ LoadRoot(rax, Heap::kempty_stringRootIndex); __ jmp(&return_result); // Save the array length on the stack. __ bind(&non_trivial_array); __ SmiToInteger32(array_length, array_length); __ movl(array_length_operand, array_length); // Save the FixedArray containing array's elements. // End of array's live range. elements = array; __ movp(elements, FieldOperand(array, JSArray::kElementsOffset)); array = no_reg; // Check that all array elements are sequential one-byte strings, and // accumulate the sum of their lengths, as a smi-encoded value. __ Set(index, 0); __ Set(string_length, 0); // Loop condition: while (index < array_length). // Live loop registers: index(int32), array_length(int32), string(String*), // scratch, string_length(int32), elements(FixedArray*). if (generate_debug_code_) { __ cmpp(index, array_length); __ Assert(below, kNoEmptyArraysHereInEmitFastOneByteArrayJoin); } __ bind(&loop); __ movp(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ JumpIfSmi(string, &bailout); __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ andb(scratch, Immediate( kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag)); __ j(not_equal, &bailout); __ AddSmiField(string_length, FieldOperand(string, SeqOneByteString::kLengthOffset)); __ j(overflow, &bailout); __ incl(index); __ cmpl(index, array_length); __ j(less, &loop); // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // array_length: Array length. // If array_length is 1, return elements[0], a string. __ cmpl(array_length, Immediate(1)); __ j(not_equal, ¬_size_one_array); __ movp(rax, FieldOperand(elements, FixedArray::kHeaderSize)); __ jmp(&return_result); __ bind(¬_size_one_array); // End of array_length live range. result_pos = array_length; array_length = no_reg; // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // Check that the separator is a sequential one-byte string. __ movp(string, separator_operand); __ JumpIfSmi(string, &bailout); __ movp(scratch, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ andb(scratch, Immediate( kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); __ cmpb(scratch, Immediate(kStringTag | kOneByteStringTag | kSeqStringTag)); __ j(not_equal, &bailout); // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // string: Separator string. // Add (separator length times (array_length - 1)) to string_length. __ SmiToInteger32(scratch, FieldOperand(string, SeqOneByteString::kLengthOffset)); __ decl(index); __ imull(scratch, index); __ j(overflow, &bailout); __ addl(string_length, scratch); __ j(overflow, &bailout); __ jmp(&bailout); // Bailout for large object allocations. __ cmpl(string_length, Immediate(Page::kMaxRegularHeapObjectSize)); __ j(greater, &bailout); // Live registers and stack values: // string_length: Total length of result string. // elements: FixedArray of strings. __ AllocateOneByteString(result_pos, string_length, scratch, index, string, &bailout); __ movp(result_operand, result_pos); __ leap(result_pos, FieldOperand(result_pos, SeqOneByteString::kHeaderSize)); __ movp(string, separator_operand); __ SmiCompare(FieldOperand(string, SeqOneByteString::kLengthOffset), Smi::FromInt(1)); __ j(equal, &one_char_separator); __ j(greater, &long_separator); // Empty separator case: __ Set(index, 0); __ movl(scratch, array_length_operand); __ jmp(&loop_1_condition); // Loop condition: while (index < array_length). __ bind(&loop_1); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // elements: the FixedArray of strings we are joining. // scratch: array length. // Get string = array[index]. __ movp(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incl(index); __ bind(&loop_1_condition); __ cmpl(index, scratch); __ j(less, &loop_1); // Loop while (index < array_length). __ jmp(&done); // Generic bailout code used from several places. __ bind(&bailout); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ jmp(&return_result); // One-character separator case __ bind(&one_char_separator); // Get the separator one-byte character value. // Register "string" holds the separator. __ movzxbl(scratch, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ Set(index, 0); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ jmp(&loop_2_entry); // Loop condition: while (index < length). __ bind(&loop_2); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // elements: The FixedArray of strings we are joining. // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // scratch: Separator character. // Copy the separator character to the result. __ movb(Operand(result_pos, 0), scratch); __ incp(result_pos); __ bind(&loop_2_entry); // Get string = array[index]. __ movp(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incl(index); __ cmpl(index, array_length_operand); __ j(less, &loop_2); // End while (index < length). __ jmp(&done); // Long separator case (separator is more than one character). __ bind(&long_separator); // Make elements point to end of elements array, and index // count from -array_length to zero, so we don't need to maintain // a loop limit. __ movl(index, array_length_operand); __ leap(elements, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ negq(index); // Replace separator string with pointer to its first character, and // make scratch be its length. __ movp(string, separator_operand); __ SmiToInteger32(scratch, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ movp(separator_operand, string); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ jmp(&loop_3_entry); // Loop condition: while (index < length). __ bind(&loop_3); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // scratch: Separator length. // separator_operand (rsp[0x10]): Address of first char of separator. // Copy the separator to the result. __ movp(string, separator_operand); __ movl(string_length, scratch); __ CopyBytes(result_pos, string, string_length, 2); __ bind(&loop_3_entry); // Get string = array[index]. __ movp(string, Operand(elements, index, times_pointer_size, 0)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ leap(string, FieldOperand(string, SeqOneByteString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incq(index); __ j(not_equal, &loop_3); // Loop while (index < 0). __ bind(&done); __ movp(rax, result_operand); __ bind(&return_result); // Drop temp values from the stack, and restore context register. __ addp(rsp, Immediate(3 * kPointerSize)); __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ Move(kScratchRegister, debug_is_active); __ movzxbp(rax, Operand(kScratchRegister, 0)); __ Integer32ToSmi(rax, rax); context()->Plug(rax); } void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) { ZoneList* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); Label runtime, done; __ Allocate(JSIteratorResult::kSize, rax, rcx, rdx, &runtime, TAG_OBJECT); __ LoadNativeContextSlot(Context::ITERATOR_RESULT_MAP_INDEX, rbx); __ movp(FieldOperand(rax, HeapObject::kMapOffset), rbx); __ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex); __ movp(FieldOperand(rax, JSObject::kPropertiesOffset), rbx); __ movp(FieldOperand(rax, JSObject::kElementsOffset), rbx); __ Pop(FieldOperand(rax, JSIteratorResult::kDoneOffset)); __ Pop(FieldOperand(rax, JSIteratorResult::kValueOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); __ jmp(&done, Label::kNear); __ bind(&runtime); __ CallRuntime(Runtime::kCreateIterResultObject); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) { // Push the builtins object as receiver. __ PushRoot(Heap::kUndefinedValueRootIndex); __ LoadNativeContextSlot(expr->context_index(), rax); } void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) { ZoneList* args = expr->arguments(); int arg_count = args->length(); SetCallPosition(expr); __ movp(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); __ Set(rax, arg_count); __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined), RelocInfo::CODE_TARGET); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { ZoneList* args = expr->arguments(); int arg_count = args->length(); if (expr->is_jsruntime()) { Comment cmnt(masm_, "[ CallRuntime"); EmitLoadJSRuntimeFunction(expr); // Push the target function under the receiver. __ Push(Operand(rsp, 0)); __ movp(Operand(rsp, kPointerSize), rax); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); EmitCallJSRuntimeFunction(expr); // Restore context register. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); } else { const Runtime::Function* function = expr->function(); switch (function->function_id) { #define CALL_INTRINSIC_GENERATOR(Name) \ case Runtime::kInline##Name: { \ Comment cmnt(masm_, "[ Inline" #Name); \ return Emit##Name(expr); \ } FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR) #undef CALL_INTRINSIC_GENERATOR default: { Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic"); // Push the arguments ("left-to-right"). for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the C runtime. PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); __ CallRuntime(function, arg_count); context()->Plug(rax); } } } } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ CallRuntime(is_strict(language_mode()) ? Runtime::kDeleteProperty_Strict : Runtime::kDeleteProperty_Sloppy); context()->Plug(rax); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode but // "delete this" is allowed. bool is_this = var->HasThisName(isolate()); DCHECK(is_sloppy(language_mode()) || is_this); if (var->IsUnallocatedOrGlobalSlot()) { __ movp(rax, NativeContextOperand()); __ Push(ContextOperand(rax, Context::EXTENSION_INDEX)); __ Push(var->name()); __ CallRuntime(Runtime::kDeleteProperty_Sloppy); context()->Plug(rax); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global variables is false. 'this' is // not really a variable, though we implement it as one. The // subexpression does not have side effects. context()->Plug(is_this); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ Push(context_register()); __ Push(var->name()); __ CallRuntime(Runtime::kDeleteLookupSlot); context()->Plug(rax); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ LoadRoot(rax, Heap::kTrueValueRootIndex); } else { __ PushRoot(Heap::kTrueValueRootIndex); } __ jmp(&done, Label::kNear); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ LoadRoot(rax, Heap::kFalseValueRootIndex); } else { __ PushRoot(Heap::kFalseValueRootIndex); } __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { AccumulatorValueContext context(this); VisitForTypeofValue(expr->expression()); } __ movp(rbx, rax); TypeofStub typeof_stub(isolate()); __ CallStub(&typeof_stub); context()->Plug(rax); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ CountOperation"); Property* prop = expr->expression()->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ Push(Smi::FromInt(0)); } switch (assign_type) { case NAMED_PROPERTY: { VisitForStackValue(prop->obj()); __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, 0)); EmitNamedPropertyLoad(prop); break; } case NAMED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); __ Push(result_register()); __ Push(MemOperand(rsp, kPointerSize)); __ Push(result_register()); EmitNamedSuperPropertyLoad(prop); break; } case KEYED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); __ Push(result_register()); __ Push(MemOperand(rsp, 2 * kPointerSize)); __ Push(MemOperand(rsp, 2 * kPointerSize)); __ Push(result_register()); EmitKeyedSuperPropertyLoad(prop); break; } case KEYED_PROPERTY: { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); // Leave receiver on stack __ movp(LoadDescriptor::ReceiverRegister(), Operand(rsp, kPointerSize)); // Copy of key, needed for later store. __ movp(LoadDescriptor::NameRegister(), Operand(rsp, 0)); EmitKeyedPropertyLoad(prop); break; } case VARIABLE: UNREACHABLE(); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), TOS_REG); } else { PrepareForBailoutForId(prop->LoadId(), TOS_REG); } // Inline smi case if we are in a loop. Label done, stub_call; JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(rax, &slow, Label::kNear); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ Push(rax); break; case NAMED_PROPERTY: __ movp(Operand(rsp, kPointerSize), rax); break; case NAMED_SUPER_PROPERTY: __ movp(Operand(rsp, 2 * kPointerSize), rax); break; case KEYED_PROPERTY: __ movp(Operand(rsp, 2 * kPointerSize), rax); break; case KEYED_SUPER_PROPERTY: __ movp(Operand(rsp, 3 * kPointerSize), rax); break; } } } SmiOperationConstraints constraints = SmiOperationConstraint::kPreserveSourceRegister | SmiOperationConstraint::kBailoutOnNoOverflow; if (expr->op() == Token::INC) { __ SmiAddConstant(rax, rax, Smi::FromInt(1), constraints, &done, Label::kNear); } else { __ SmiSubConstant(rax, rax, Smi::FromInt(1), constraints, &done, Label::kNear); } __ jmp(&stub_call, Label::kNear); __ bind(&slow); } if (!is_strong(language_mode())) { ToNumberStub convert_stub(isolate()); __ CallStub(&convert_stub); PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); } // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ Push(rax); break; case NAMED_PROPERTY: __ movp(Operand(rsp, kPointerSize), rax); break; case NAMED_SUPER_PROPERTY: __ movp(Operand(rsp, 2 * kPointerSize), rax); break; case KEYED_PROPERTY: __ movp(Operand(rsp, 2 * kPointerSize), rax); break; case KEYED_SUPER_PROPERTY: __ movp(Operand(rsp, 3 * kPointerSize), rax); break; } } } SetExpressionPosition(expr); // Call stub for +1/-1. __ bind(&stub_call); __ movp(rdx, rax); __ Move(rax, Smi::FromInt(1)); Handle code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op(), strength(language_mode())).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); __ bind(&done); if (is_strong(language_mode())) { PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); } // Store the value returned in rax. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { // Perform the assignment as if via '='. { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN, expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context.Plug(rax); } // For all contexts except kEffect: We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { // Perform the assignment as if via '='. EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN, expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } break; case NAMED_PROPERTY: { __ Move(StoreDescriptor::NameRegister(), prop->key()->AsLiteral()->value()); __ Pop(StoreDescriptor::ReceiverRegister()); EmitLoadStoreICSlot(expr->CountSlot()); CallStoreIC(); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } case NAMED_SUPER_PROPERTY: { EmitNamedSuperPropertyStore(prop); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } case KEYED_SUPER_PROPERTY: { EmitKeyedSuperPropertyStore(prop); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } case KEYED_PROPERTY: { __ Pop(StoreDescriptor::NameRegister()); __ Pop(StoreDescriptor::ReceiverRegister()); Handle ic = CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); EmitLoadStoreICSlot(expr->CountSlot()); CallIC(ic); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { __ JumpIfSmi(rax, if_true); __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx); Split(below, if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, SYMBOL_TYPE, rdx); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(equal, if_true); __ CompareRoot(rax, Heap::kFalseValueRootIndex); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, if_true); __ JumpIfSmi(rax, if_false); // Check for undetectable objects => true. __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } else if (String::Equals(check, factory->function_string())) { __ JumpIfSmi(rax, if_false); // Check for callable and not undetectable objects => true. __ movp(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ movzxbl(rdx, FieldOperand(rdx, Map::kBitFieldOffset)); __ andb(rdx, Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); __ cmpb(rdx, Immediate(1 << Map::kIsCallable)); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { __ JumpIfSmi(rax, if_false); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rdx); __ j(below, if_false); // Check for callable or undetectable objects => false. __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); Split(zero, if_true, if_false, fall_through); // clang-format off #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ } else if (String::Equals(check, factory->type##_string())) { \ __ JumpIfSmi(rax, if_false); \ __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset)); \ __ CompareRoot(rax, Heap::k##Type##MapRootIndex); \ Split(equal, if_true, if_false, fall_through); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE // clang-format on } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetExpressionPosition(expr); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ CallRuntime(Runtime::kHasProperty); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForAccumulatorValue(expr->right()); __ Pop(rdx); InstanceOfStub stub(isolate()); __ CallStub(&stub); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = CompareIC::ComputeCondition(op); __ Pop(rdx); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ movp(rcx, rdx); __ orp(rcx, rax); patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear); __ cmpp(rdx, rax); Split(cc, if_true, if_false, NULL); __ bind(&slow_case); } Handle ic = CodeFactory::CompareIC( isolate(), op, strength(language_mode())).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ testp(rax, rax); Split(cc, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (expr->op() == Token::EQ_STRICT) { Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ CompareRoot(rax, nil_value); Split(equal, if_true, if_false, fall_through); } else { Handle ic = CompareNilICStub::GetUninitialized(isolate(), nil); CallIC(ic, expr->CompareOperationFeedbackId()); __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(rax); } Register FullCodeGenerator::result_register() { return rax; } Register FullCodeGenerator::context_register() { return rsi; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK(IsAligned(frame_offset, kPointerSize)); __ movp(Operand(rbp, frame_offset), value); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ movp(dst, ContextOperand(rsi, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { Scope* closure_scope = scope()->ClosureScope(); if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. __ movp(rax, NativeContextOperand()); __ Push(ContextOperand(rax, Context::CLOSURE_INDEX)); } else if (closure_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ Push(ContextOperand(rsi, Context::CLOSURE_INDEX)); } else { DCHECK(closure_scope->is_function_scope()); __ Push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { DCHECK(!result_register().is(rdx)); DCHECK(!result_register().is(rcx)); // Cook return address on top of stack (smi encoded Code* delta) __ PopReturnAddressTo(rdx); __ Move(rcx, masm_->CodeObject()); __ subp(rdx, rcx); __ Integer32ToSmi(rdx, rdx); __ Push(rdx); // Store result register while executing finally block. __ Push(result_register()); // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Load(rdx, pending_message_obj); __ Push(rdx); ClearPendingMessage(); } void FullCodeGenerator::ExitFinallyBlock() { DCHECK(!result_register().is(rdx)); DCHECK(!result_register().is(rcx)); // Restore pending message from stack. __ Pop(rdx); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ Store(pending_message_obj, rdx); // Restore result register from stack. __ Pop(result_register()); // Uncook return address. __ Pop(rdx); __ SmiToInteger32(rdx, rdx); __ Move(rcx, masm_->CodeObject()); __ addp(rdx, rcx); __ jmp(rdx); } void FullCodeGenerator::ClearPendingMessage() { DCHECK(!result_register().is(rdx)); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ LoadRoot(rdx, Heap::kTheHoleValueRootIndex); __ Store(pending_message_obj, rdx); } void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorSlot slot) { DCHECK(!slot.IsInvalid()); __ Move(VectorStoreICTrampolineDescriptor::SlotRegister(), SmiFromSlot(slot)); } #undef __ static const byte kJnsInstruction = 0x79; static const byte kNopByteOne = 0x66; static const byte kNopByteTwo = 0x90; #ifdef DEBUG static const byte kCallInstruction = 0xe8; #endif void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { Address call_target_address = pc - kIntSize; Address jns_instr_address = call_target_address - 3; Address jns_offset_address = call_target_address - 2; switch (target_state) { case INTERRUPT: // sub , ;; Not changed // jns ok // call // ok: *jns_instr_address = kJnsInstruction; *jns_offset_address = kJnsOffset; break; case ON_STACK_REPLACEMENT: case OSR_AFTER_STACK_CHECK: // sub , ;; Not changed // nop // nop // call // ok: *jns_instr_address = kNopByteOne; *jns_offset_address = kNopByteTwo; break; } Assembler::set_target_address_at(unoptimized_code->GetIsolate(), call_target_address, unoptimized_code, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { Address call_target_address = pc - kIntSize; Address jns_instr_address = call_target_address - 3; DCHECK_EQ(kCallInstruction, *(call_target_address - 1)); if (*jns_instr_address == kJnsInstruction) { DCHECK_EQ(kJnsOffset, *(call_target_address - 2)); DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(), Assembler::target_address_at(call_target_address, unoptimized_code)); return INTERRUPT; } DCHECK_EQ(kNopByteOne, *jns_instr_address); DCHECK_EQ(kNopByteTwo, *(call_target_address - 2)); if (Assembler::target_address_at(call_target_address, unoptimized_code) == isolate->builtins()->OnStackReplacement()->entry()) { return ON_STACK_REPLACEMENT; } DCHECK_EQ(isolate->builtins()->OsrAfterStackCheck()->entry(), Assembler::target_address_at(call_target_address, unoptimized_code)); return OSR_AFTER_STACK_CHECK; } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64