// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS64 #include "src/codegen.h" #include "src/ic/ic.h" #include "src/ic/ic-compiler.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ Branch(global_object, eq, type, Operand(JS_GLOBAL_OBJECT_TYPE)); __ Branch(global_object, eq, type, Operand(JS_GLOBAL_PROXY_TYPE)); } // Helper function used from LoadIC GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // result: Register for the result. It is only updated if a jump to the miss // label is not done. Can be the same as elements or name clobbering // one of these in the case of not jumping to the miss label. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. // The address returned from GenerateStringDictionaryProbes() in scratch2 // is used. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss, Register elements, Register name, Register result, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry check that the value is a normal // property. __ bind(&done); // scratch2 == elements + 4 * index. const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ And(at, scratch1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); __ Branch(miss, ne, at, Operand(zero_reg)); // Get the value at the masked, scaled index and return. __ ld(result, FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); } // Helper function used from StoreIC::GenerateNormal. // // elements: Property dictionary. It is not clobbered if a jump to the miss // label is done. // name: Property name. It is not clobbered if a jump to the miss label is // done // value: The value to store. // The two scratch registers need to be different from elements, name and // result. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. // The address returned from GenerateStringDictionaryProbes() in scratch2 // is used. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss, Register elements, Register name, Register value, Register scratch1, Register scratch2) { // Main use of the scratch registers. // scratch1: Used as temporary and to hold the capacity of the property // dictionary. // scratch2: Used as temporary. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss, &done, elements, name, scratch1, scratch2); // If probing finds an entry in the dictionary check that the value // is a normal property that is not read only. __ bind(&done); // scratch2 == elements + 4 * index. const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; const int kTypeAndReadOnlyMask = (PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY)); __ ld(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); __ And(at, scratch1, Operand(Smi::FromInt(kTypeAndReadOnlyMask))); __ Branch(miss, ne, at, Operand(zero_reg)); // Store the value at the masked, scaled index and return. const int kValueOffset = kElementsStartOffset + kPointerSize; __ Daddu(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag)); __ sd(value, MemOperand(scratch2)); // Update the write barrier. Make sure not to clobber the value. __ mov(scratch1, value); __ RecordWrite(elements, scratch2, scratch1, kRAHasNotBeenSaved, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, Register scratch, int interceptor_bit, Label* slow) { // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Get the map of the receiver. __ ld(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check bit field. __ lbu(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); __ And(at, scratch, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ Branch(slow, ne, at, Operand(zero_reg)); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing into string // objects work as intended. DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); __ Branch(slow, lt, scratch, Operand(JS_OBJECT_TYPE)); } // Loads an indexed element from a fast case array. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch1, Register scratch2, Register result, Label* slow, LanguageMode language_mode) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // elements - holds the elements of the receiver and its prototypes. // // scratch1 - used to hold elements length, bit fields, base addresses. // // scratch2 - used to hold maps, prototypes, and the loaded value. Label check_prototypes, check_next_prototype; Label done, in_bounds, absent; __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ AssertFastElements(elements); // Check that the key (index) is within bounds. __ ld(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ Branch(&in_bounds, lo, key, Operand(scratch1)); // Out-of-bounds. Check the prototype chain to see if we can just return // 'undefined'. // Negative keys can't take the fast OOB path. __ Branch(slow, lt, key, Operand(zero_reg)); __ bind(&check_prototypes); __ ld(scratch2, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ bind(&check_next_prototype); __ ld(scratch2, FieldMemOperand(scratch2, Map::kPrototypeOffset)); // scratch2: current prototype __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(&absent, eq, scratch2, Operand(at)); __ ld(elements, FieldMemOperand(scratch2, JSObject::kElementsOffset)); __ ld(scratch2, FieldMemOperand(scratch2, HeapObject::kMapOffset)); // elements: elements of current prototype // scratch2: map of current prototype __ lbu(scratch1, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); __ Branch(slow, lo, scratch1, Operand(JS_OBJECT_TYPE)); __ lbu(scratch1, FieldMemOperand(scratch2, Map::kBitFieldOffset)); __ And(at, scratch1, Operand((1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor))); __ Branch(slow, ne, at, Operand(zero_reg)); __ LoadRoot(at, Heap::kEmptyFixedArrayRootIndex); __ Branch(slow, ne, elements, Operand(at)); __ Branch(&check_next_prototype); __ bind(&absent); if (is_strong(language_mode)) { __ Branch(slow); } else { __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ Branch(&done); } __ bind(&in_bounds); // Fast case: Do the load. __ Daddu(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // The key is a smi. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); __ SmiScale(at, key, kPointerSizeLog2); __ daddu(at, at, scratch1); __ ld(scratch2, MemOperand(at)); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to check the prototype chain. __ Branch(&check_prototypes, eq, scratch2, Operand(at)); __ Move(result, scratch2); __ bind(&done); } // Checks whether a key is an array index string or a unique name. // Falls through if a key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // The key is not a smi. Label unique; // Is it a name? __ GetObjectType(key, map, hash); __ Branch(not_unique, hi, hash, Operand(LAST_UNIQUE_NAME_TYPE)); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ Branch(&unique, eq, hash, Operand(LAST_UNIQUE_NAME_TYPE)); // Is the string an array index, with cached numeric value? __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ And(at, hash, Operand(Name::kContainsCachedArrayIndexMask)); __ Branch(index_string, eq, at, Operand(zero_reg)); // Is the string internalized? We know it's a string, so a single // bit test is enough. // map: key map __ lbu(hash, FieldMemOperand(map, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0); __ And(at, hash, Operand(kIsNotInternalizedMask)); __ Branch(not_unique, ne, at, Operand(zero_reg)); __ bind(&unique); } void LoadIC::GenerateNormal(MacroAssembler* masm, LanguageMode language_mode) { Register dictionary = a0; DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister())); DCHECK(!dictionary.is(LoadDescriptor::NameRegister())); Label slow; __ ld(dictionary, FieldMemOperand(LoadDescriptor::ReceiverRegister(), JSObject::kPropertiesOffset)); GenerateDictionaryLoad(masm, &slow, dictionary, LoadDescriptor::NameRegister(), v0, a3, a4); __ Ret(); // Dictionary load failed, go slow (but don't miss). __ bind(&slow); GenerateRuntimeGetProperty(masm, language_mode); } // A register that isn't one of the parameters to the load ic. static const Register LoadIC_TempRegister() { return a3; } static void LoadIC_PushArgs(MacroAssembler* masm) { Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); __ Push(receiver, name, slot, vector); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is on the stack. Isolate* isolate = masm->isolate(); DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister())); __ IncrementCounter(isolate->counters()->load_miss(), 1, a4, a5); LoadIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kLoadIC_Miss); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm, LanguageMode language_mode) { // The return address is in ra. __ mov(LoadIC_TempRegister(), LoadDescriptor::ReceiverRegister()); __ Push(LoadIC_TempRegister(), LoadDescriptor::NameRegister()); // Do tail-call to runtime routine. __ TailCallRuntime(is_strong(language_mode) ? Runtime::kGetPropertyStrong : Runtime::kGetProperty); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is in ra. Isolate* isolate = masm->isolate(); DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::SlotRegister(), LoadWithVectorDescriptor::VectorRegister())); __ IncrementCounter(isolate->counters()->keyed_load_miss(), 1, a4, a5); LoadIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm, LanguageMode language_mode) { // The return address is in ra. __ Push(LoadDescriptor::ReceiverRegister(), LoadDescriptor::NameRegister()); // Do tail-call to runtime routine. __ TailCallRuntime(is_strong(language_mode) ? Runtime::kKeyedGetPropertyStrong : Runtime::kKeyedGetProperty); } void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode) { // The return address is in ra. Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; Register key = LoadDescriptor::NameRegister(); Register receiver = LoadDescriptor::ReceiverRegister(); DCHECK(key.is(a2)); DCHECK(receiver.is(a1)); Isolate* isolate = masm->isolate(); // Check that the key is a smi. __ JumpIfNotSmi(key, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(a0, a3, &check_number_dictionary); GenerateFastArrayLoad(masm, receiver, key, a0, a3, a4, v0, &slow, language_mode); __ IncrementCounter(isolate->counters()->keyed_load_generic_smi(), 1, a4, a3); __ Ret(); __ bind(&check_number_dictionary); __ ld(a4, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ ld(a3, FieldMemOperand(a4, JSObject::kMapOffset)); // Check whether the elements is a number dictionary. // a3: elements map // a4: elements __ LoadRoot(at, Heap::kHashTableMapRootIndex); __ Branch(&slow, ne, a3, Operand(at)); __ dsra32(a0, key, 0); __ LoadFromNumberDictionary(&slow, a4, key, v0, a0, a3, a5); __ Ret(); // Slow case, key and receiver still in a2 and a1. __ bind(&slow); __ IncrementCounter(isolate->counters()->keyed_load_generic_slow(), 1, a4, a3); GenerateRuntimeGetProperty(masm, language_mode); __ bind(&check_name); GenerateKeyNameCheck(masm, key, a0, a3, &index_name, &slow); GenerateKeyedLoadReceiverCheck(masm, receiver, a0, a3, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the stub cache. Otherwise // probe the dictionary. __ ld(a3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ ld(a4, FieldMemOperand(a3, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHashTableMapRootIndex); __ Branch(&probe_dictionary, eq, a4, Operand(at)); // The handlers in the stub cache expect a vector and slot. Since we won't // change the IC from any downstream misses, a dummy vector can be used. Register vector = LoadWithVectorDescriptor::VectorRegister(); Register slot = LoadWithVectorDescriptor::SlotRegister(); DCHECK(!AreAliased(vector, slot, a4, a5, a6, t1)); Handle dummy_vector = TypeFeedbackVector::DummyVector(masm->isolate()); int slot_index = dummy_vector->GetIndex( FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot)); __ LoadRoot(vector, Heap::kDummyVectorRootIndex); __ li(slot, Operand(Smi::FromInt(slot_index))); Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::LOAD_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, flags, receiver, key, a4, a5, a6, t1); // Cache miss. GenerateMiss(masm); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // a3: elements __ ld(a0, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, a0, &slow); // Load the property to v0. GenerateDictionaryLoad(masm, &slow, a3, key, v0, a5, a4); __ IncrementCounter(isolate->counters()->keyed_load_generic_symbol(), 1, a4, a3); __ Ret(); __ bind(&index_name); __ IndexFromHash(a3, key); // Now jump to the place where smi keys are handled. __ Branch(&index_smi); } static void KeyedStoreGenerateMegamorphicHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length, Register value, Register key, Register receiver, Register receiver_map, Register elements_map, Register elements) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; // Fast case: Do the store, could be either Object or double. __ bind(fast_object); Register scratch = a4; Register scratch2 = t0; Register address = a5; DCHECK(!AreAliased(value, key, receiver, receiver_map, elements_map, elements, scratch, scratch2, address)); if (check_map == kCheckMap) { __ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ Branch(fast_double, ne, elements_map, Operand(masm->isolate()->factory()->fixed_array_map())); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element. Label holecheck_passed1; __ Daddu(address, elements, FixedArray::kHeaderSize - kHeapObjectTag); __ SmiScale(at, key, kPointerSizeLog2); __ daddu(address, address, at); __ ld(scratch, MemOperand(address)); __ Branch(&holecheck_passed1, ne, scratch, Operand(masm->isolate()->factory()->the_hole_value())); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(value, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ Daddu(scratch, key, Operand(Smi::FromInt(1))); __ sd(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset)); } // It's irrelevant whether array is smi-only or not when writing a smi. __ Daddu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiScale(scratch, key, kPointerSizeLog2); __ Daddu(address, address, scratch); __ sd(value, MemOperand(address)); __ Ret(); __ bind(&non_smi_value); // Escape to elements kind transition case. __ CheckFastObjectElements(receiver_map, scratch, &transition_smi_elements); // Fast elements array, store the value to the elements backing store. __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ Daddu(scratch, key, Operand(Smi::FromInt(1))); __ sd(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset)); } __ Daddu(address, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ SmiScale(scratch, key, kPointerSizeLog2); __ Daddu(address, address, scratch); __ sd(value, MemOperand(address)); // Update write barrier for the elements array address. __ mov(scratch, value); // Preserve the value which is returned. __ RecordWrite(elements, address, scratch, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ Ret(); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. __ LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); __ Branch(slow, ne, elements_map, Operand(at)); } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. __ Daddu(address, elements, Operand(FixedDoubleArray::kHeaderSize + Register::kExponentOffset - kHeapObjectTag)); __ SmiScale(at, key, kPointerSizeLog2); __ daddu(address, address, at); __ lw(scratch, MemOperand(address)); __ Branch(&fast_double_without_map_check, ne, scratch, Operand(static_cast(kHoleNanUpper32))); __ JumpIfDictionaryInPrototypeChain(receiver, elements_map, scratch, slow); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(value, key, elements, scratch, scratch2, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ Daddu(scratch, key, Operand(Smi::FromInt(1))); __ sd(scratch, FieldMemOperand(receiver, JSArray::kLengthOffset)); } __ Ret(); __ bind(&transition_smi_elements); // Transition the array appropriately depending on the value type. __ ld(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); __ Branch(&non_double_value, ne, scratch, Operand(at)); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional( FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, receiver_map, scratch, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value, receiver_map, mode, slow); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, receiver_map, scratch, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition( masm, receiver, key, value, receiver_map, mode, slow); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, receiver_map, scratch, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject( masm, receiver, key, value, receiver_map, mode, slow); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); } void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode) { // ---------- S t a t e -------------- // -- a0 : value // -- a1 : key // -- a2 : receiver // -- ra : return address // ----------------------------------- Label slow, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array, maybe_name_key, miss; // Register usage. Register value = StoreDescriptor::ValueRegister(); Register key = StoreDescriptor::NameRegister(); Register receiver = StoreDescriptor::ReceiverRegister(); DCHECK(value.is(a0)); Register receiver_map = a3; Register elements_map = a6; Register elements = a7; // Elements array of the receiver. // a4 and a5 are used as general scratch registers. // Check that the key is a smi. __ JumpIfNotSmi(key, &maybe_name_key); // Check that the object isn't a smi. __ JumpIfSmi(receiver, &slow); // Get the map of the object. __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ lbu(a4, FieldMemOperand(receiver_map, Map::kBitFieldOffset)); __ And(a4, a4, Operand(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved)); __ Branch(&slow, ne, a4, Operand(zero_reg)); // Check if the object is a JS array or not. __ lbu(a4, FieldMemOperand(receiver_map, Map::kInstanceTypeOffset)); __ Branch(&array, eq, a4, Operand(JS_ARRAY_TYPE)); // Check that the object is some kind of JSObject. __ Branch(&slow, lt, a4, Operand(FIRST_JS_OBJECT_TYPE)); // Object case: Check key against length in the elements array. __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check array bounds. Both the key and the length of FixedArray are smis. __ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ Branch(&fast_object, lo, key, Operand(a4)); // Slow case, handle jump to runtime. __ bind(&slow); // Entry registers are intact. // a0: value. // a1: key. // a2: receiver. PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode); // Never returns to here. __ bind(&maybe_name_key); __ ld(a4, FieldMemOperand(key, HeapObject::kMapOffset)); __ lb(a4, FieldMemOperand(a4, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(a4, &slow); // The handlers in the stub cache expect a vector and slot. Since we won't // change the IC from any downstream misses, a dummy vector can be used. Register vector = VectorStoreICDescriptor::VectorRegister(); Register slot = VectorStoreICDescriptor::SlotRegister(); DCHECK(!AreAliased(vector, slot, a5, a6, a7, t0)); Handle dummy_vector = TypeFeedbackVector::DummyVector(masm->isolate()); int slot_index = dummy_vector->GetIndex( FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot)); __ LoadRoot(vector, Heap::kDummyVectorRootIndex); __ li(slot, Operand(Smi::FromInt(slot_index))); Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, flags, receiver, key, a5, a6, a7, t0); // Cache miss. __ Branch(&miss); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // Condition code from comparing key and array length is still available. // Only support writing to array[array.length]. __ Branch(&slow, ne, key, Operand(a4)); // Check for room in the elements backing store. // Both the key and the length of FixedArray are smis. __ ld(a4, FieldMemOperand(elements, FixedArray::kLengthOffset)); __ Branch(&slow, hs, key, Operand(a4)); __ ld(elements_map, FieldMemOperand(elements, HeapObject::kMapOffset)); __ Branch(&check_if_double_array, ne, elements_map, Heap::kFixedArrayMapRootIndex); __ jmp(&fast_object_grow); __ bind(&check_if_double_array); __ Branch(&slow, ne, elements_map, Heap::kFixedDoubleArrayMapRootIndex); __ jmp(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); __ ld(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); // Check the key against the length in the array. __ ld(a4, FieldMemOperand(receiver, JSArray::kLengthOffset)); __ Branch(&extra, hs, key, Operand(a4)); KeyedStoreGenerateMegamorphicHelper( masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength, value, key, receiver, receiver_map, elements_map, elements); KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength, value, key, receiver, receiver_map, elements_map, elements); __ bind(&miss); GenerateMiss(masm); } static void StoreIC_PushArgs(MacroAssembler* masm) { __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(), StoreDescriptor::ValueRegister(), VectorStoreICDescriptor::SlotRegister(), VectorStoreICDescriptor::VectorRegister()); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { StoreIC_PushArgs(masm); __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); DCHECK(receiver.is(a1)); DCHECK(name.is(a2)); DCHECK(StoreDescriptor::ValueRegister().is(a0)); // Get the receiver from the stack and probe the stub cache. Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, flags, receiver, name, a3, a4, a5, a6); // Cache miss: Jump to runtime. GenerateMiss(masm); } void StoreIC::GenerateMiss(MacroAssembler* masm) { StoreIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kStoreIC_Miss); } void StoreIC::GenerateNormal(MacroAssembler* masm) { Label miss; Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Register dictionary = a5; DCHECK(!AreAliased( value, receiver, name, VectorStoreICDescriptor::VectorRegister(), VectorStoreICDescriptor::SlotRegister(), dictionary, a6, a7)); __ ld(dictionary, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); GenerateDictionaryStore(masm, &miss, dictionary, name, value, a6, a7); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1, a6, a7); __ Ret(); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1, a6, a7); GenerateMiss(masm); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address andi_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a andi at, rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(andi_instruction_address); return Assembler::IsAndImmediate(instr) && Assembler::GetRt(instr) == static_cast(zero_reg.code()); } void PatchInlinedSmiCode(Isolate* isolate, Address address, InlinedSmiCheck check) { Address andi_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a andi at, rx, #yyy, nothing // was inlined. Instr instr = Assembler::instr_at(andi_instruction_address); if (!(Assembler::IsAndImmediate(instr) && Assembler::GetRt(instr) == static_cast(zero_reg.code()))) { return; } // The delta to the start of the map check instruction and the // condition code uses at the patched jump. int delta = Assembler::GetImmediate16(instr); delta += Assembler::GetRs(instr) * kImm16Mask; // If the delta is 0 the instruction is andi at, zero_reg, #0 which also // signals that nothing was inlined. if (delta == 0) { return; } if (FLAG_trace_ic) { PrintF("[ patching ic at %p, andi=%p, delta=%d\n", address, andi_instruction_address, delta); } Address patch_address = andi_instruction_address - delta * Instruction::kInstrSize; Instr instr_at_patch = Assembler::instr_at(patch_address); // This is patching a conditional "jump if not smi/jump if smi" site. // Enabling by changing from // andi at, rx, 0 // Branch , eq, at, Operand(zero_reg) // to: // andi at, rx, #kSmiTagMask // Branch , ne, at, Operand(zero_reg) // and vice-versa to be disabled again. CodePatcher patcher(isolate, patch_address, 2); Register reg = Register::from_code(Assembler::GetRs(instr_at_patch)); if (check == ENABLE_INLINED_SMI_CHECK) { DCHECK(Assembler::IsAndImmediate(instr_at_patch)); DCHECK_EQ(0u, Assembler::GetImmediate16(instr_at_patch)); patcher.masm()->andi(at, reg, kSmiTagMask); } else { DCHECK_EQ(check, DISABLE_INLINED_SMI_CHECK); DCHECK(Assembler::IsAndImmediate(instr_at_patch)); patcher.masm()->andi(at, reg, 0); } Instr branch_instr = Assembler::instr_at(patch_address + Instruction::kInstrSize); DCHECK(Assembler::IsBranch(branch_instr)); uint32_t opcode = Assembler::GetOpcodeField(branch_instr); // Currently only the 'eq' and 'ne' cond values are supported and the simple // branch instructions and their r6 variants (with opcode being the branch // type). There are some special cases (see Assembler::IsBranch()) so // extending this would be tricky. DCHECK(opcode == BEQ || // BEQ opcode == BNE || // BNE opcode == POP10 || // BEQC opcode == POP30 || // BNEC opcode == POP66 || // BEQZC opcode == POP76); // BNEZC switch (opcode) { case BEQ: opcode = BNE; // change BEQ to BNE. break; case POP10: opcode = POP30; // change BEQC to BNEC. break; case POP66: opcode = POP76; // change BEQZC to BNEZC. break; case BNE: opcode = BEQ; // change BNE to BEQ. break; case POP30: opcode = POP10; // change BNEC to BEQC. break; case POP76: opcode = POP66; // change BNEZC to BEQZC. break; default: UNIMPLEMENTED(); } patcher.ChangeBranchCondition(branch_instr, opcode); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64