// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/codegen.h" #include "src/ic/ic.h" #include "src/ic/ic-compiler.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // Static IC stub generators. // #define __ ACCESS_MASM(masm) static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, Register type, Label* global_object) { // Register usage: // type: holds the receiver instance type on entry. __ cmpb(type, Immediate(JS_GLOBAL_OBJECT_TYPE)); __ j(equal, global_object); __ cmpb(type, Immediate(JS_GLOBAL_PROXY_TYPE)); __ j(equal, global_object); } // Helper function used to load a property from a dictionary backing storage. // This function may return false negatives, so miss_label // must always call a backup property load that is complete. // This function is safe to call if name is not an internalized string, // and will jump to the miss_label in that case. // The generated code assumes that the receiver has slow properties, // is not a global object and does not have interceptors. static void GenerateDictionaryLoad(MacroAssembler* masm, Label* miss_label, Register elements, Register name, Register r0, Register r1, Register result) { // Register use: // // elements - holds the property dictionary on entry and is unchanged. // // name - holds the name of the property on entry and is unchanged. // // r0 - used to hold the capacity of the property dictionary. // // r1 - used to hold the index into the property dictionary. // // result - holds the result on exit if the load succeeded. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup(masm, miss_label, &done, elements, name, r0, r1); // If probing finds an entry in the dictionary, r1 contains the // index into the dictionary. Check that the value is a normal // property. __ bind(&done); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; __ Test(Operand(elements, r1, times_pointer_size, kDetailsOffset - kHeapObjectTag), Smi::FromInt(PropertyDetails::TypeField::kMask)); __ j(not_zero, miss_label); // Get the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ movp(result, Operand(elements, r1, times_pointer_size, kValueOffset - kHeapObjectTag)); } // Helper function used to store a property to a dictionary backing // storage. This function may fail to store a property even though it // is in the dictionary, so code at miss_label must always call a // backup property store that is complete. This function is safe to // call if name is not an internalized string, and will jump to the miss_label // in that case. The generated code assumes that the receiver has slow // properties, is not a global object and does not have interceptors. static void GenerateDictionaryStore(MacroAssembler* masm, Label* miss_label, Register elements, Register name, Register value, Register scratch0, Register scratch1) { // Register use: // // elements - holds the property dictionary on entry and is clobbered. // // name - holds the name of the property on entry and is unchanged. // // value - holds the value to store and is unchanged. // // scratch0 - used during the positive dictionary lookup and is clobbered. // // scratch1 - used for index into the property dictionary and is clobbered. Label done; // Probe the dictionary. NameDictionaryLookupStub::GeneratePositiveLookup( masm, miss_label, &done, elements, name, scratch0, scratch1); // If probing finds an entry in the dictionary, scratch0 contains the // index into the dictionary. Check that the value is a normal // property that is not read only. __ bind(&done); const int kElementsStartOffset = NameDictionary::kHeaderSize + NameDictionary::kElementsStartIndex * kPointerSize; const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; const int kTypeAndReadOnlyMask = PropertyDetails::TypeField::kMask | PropertyDetails::AttributesField::encode(READ_ONLY); __ Test(Operand(elements, scratch1, times_pointer_size, kDetailsOffset - kHeapObjectTag), Smi::FromInt(kTypeAndReadOnlyMask)); __ j(not_zero, miss_label); // Store the value at the masked, scaled index. const int kValueOffset = kElementsStartOffset + kPointerSize; __ leap(scratch1, Operand(elements, scratch1, times_pointer_size, kValueOffset - kHeapObjectTag)); __ movp(Operand(scratch1, 0), value); // Update write barrier. Make sure not to clobber the value. __ movp(scratch0, value); __ RecordWrite(elements, scratch1, scratch0, kDontSaveFPRegs); } // Checks the receiver for special cases (value type, slow case bits). // Falls through for regular JS object. static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, Register receiver, Register map, int interceptor_bit, Label* slow) { // Register use: // receiver - holds the receiver and is unchanged. // Scratch registers: // map - used to hold the map of the receiver. // Check that the object isn't a smi. __ JumpIfSmi(receiver, slow); // Check that the object is some kind of JS object EXCEPT JS Value type. // In the case that the object is a value-wrapper object, // we enter the runtime system to make sure that indexing // into string objects work as intended. DCHECK(JS_OBJECT_TYPE > JS_VALUE_TYPE); __ CmpObjectType(receiver, JS_OBJECT_TYPE, map); __ j(below, slow); // Check bit field. __ testb( FieldOperand(map, Map::kBitFieldOffset), Immediate((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); __ j(not_zero, slow); } // Loads an indexed element from a fast case array. static void GenerateFastArrayLoad(MacroAssembler* masm, Register receiver, Register key, Register elements, Register scratch, Register result, Label* slow, LanguageMode language_mode) { // Register use: // // receiver - holds the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // result - holds the result on exit if the load succeeded. // Allowed to be the the same as 'receiver' or 'key'. // Unchanged on bailout so 'receiver' and 'key' can be safely // used by further computation. // // Scratch registers: // // elements - holds the elements of the receiver and its prototypes. // // scratch - used to hold maps, prototypes, and the loaded value. Label check_prototypes, check_next_prototype; Label done, in_bounds, absent; __ movp(elements, FieldOperand(receiver, JSObject::kElementsOffset)); __ AssertFastElements(elements); // Check that the key (index) is within bounds. __ SmiCompare(key, FieldOperand(elements, FixedArray::kLengthOffset)); // Unsigned comparison rejects negative indices. __ j(below, &in_bounds); // Out-of-bounds. Check the prototype chain to see if we can just return // 'undefined'. __ SmiCompare(key, Smi::FromInt(0)); __ j(less, slow); // Negative keys can't take the fast OOB path. __ bind(&check_prototypes); __ movp(scratch, FieldOperand(receiver, HeapObject::kMapOffset)); __ bind(&check_next_prototype); __ movp(scratch, FieldOperand(scratch, Map::kPrototypeOffset)); // scratch: current prototype __ CompareRoot(scratch, Heap::kNullValueRootIndex); __ j(equal, &absent); __ movp(elements, FieldOperand(scratch, JSObject::kElementsOffset)); __ movp(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); // elements: elements of current prototype // scratch: map of current prototype __ CmpInstanceType(scratch, JS_OBJECT_TYPE); __ j(below, slow); __ testb(FieldOperand(scratch, Map::kBitFieldOffset), Immediate((1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor))); __ j(not_zero, slow); __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex); __ j(not_equal, slow); __ jmp(&check_next_prototype); __ bind(&absent); if (is_strong(language_mode)) { // Strong mode accesses must throw in this case, so call the runtime. __ jmp(slow); } else { __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); } __ bind(&in_bounds); // Fast case: Do the load. SmiIndex index = masm->SmiToIndex(scratch, key, kPointerSizeLog2); __ movp(scratch, FieldOperand(elements, index.reg, index.scale, FixedArray::kHeaderSize)); __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex); // In case the loaded value is the_hole we have to check the prototype chain. __ j(equal, &check_prototypes); __ Move(result, scratch); __ bind(&done); } // Checks whether a key is an array index string or a unique name. // Falls through if the key is a unique name. static void GenerateKeyNameCheck(MacroAssembler* masm, Register key, Register map, Register hash, Label* index_string, Label* not_unique) { // Register use: // key - holds the key and is unchanged. Assumed to be non-smi. // Scratch registers: // map - used to hold the map of the key. // hash - used to hold the hash of the key. Label unique; __ CmpObjectType(key, LAST_UNIQUE_NAME_TYPE, map); __ j(above, not_unique); STATIC_ASSERT(LAST_UNIQUE_NAME_TYPE == FIRST_NONSTRING_TYPE); __ j(equal, &unique); // Is the string an array index, with cached numeric value? __ movl(hash, FieldOperand(key, Name::kHashFieldOffset)); __ testl(hash, Immediate(Name::kContainsCachedArrayIndexMask)); __ j(zero, index_string); // The value in hash is used at jump target. // Is the string internalized? We already know it's a string so a single // bit test is enough. STATIC_ASSERT(kNotInternalizedTag != 0); __ testb(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(kIsNotInternalizedMask)); __ j(not_zero, not_unique); __ bind(&unique); } void KeyedLoadIC::GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode) { // The return address is on the stack. Label slow, check_name, index_smi, index_name, property_array_property; Label probe_dictionary, check_number_dictionary; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); DCHECK(receiver.is(rdx)); DCHECK(key.is(rcx)); // Check that the key is a smi. __ JumpIfNotSmi(key, &check_name); __ bind(&index_smi); // Now the key is known to be a smi. This place is also jumped to from below // where a numeric string is converted to a smi. GenerateKeyedLoadReceiverCheck(masm, receiver, rax, Map::kHasIndexedInterceptor, &slow); // Check the receiver's map to see if it has fast elements. __ CheckFastElements(rax, &check_number_dictionary); GenerateFastArrayLoad(masm, receiver, key, rax, rbx, rax, &slow, language_mode); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->keyed_load_generic_smi(), 1); __ ret(0); __ bind(&check_number_dictionary); __ SmiToInteger32(rbx, key); __ movp(rax, FieldOperand(receiver, JSObject::kElementsOffset)); // Check whether the elements is a number dictionary. // rbx: key as untagged int32 // rax: elements __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(not_equal, &slow); __ LoadFromNumberDictionary(&slow, rax, key, rbx, r9, rdi, rax); __ ret(0); __ bind(&slow); // Slow case: Jump to runtime. __ IncrementCounter(counters->keyed_load_generic_slow(), 1); KeyedLoadIC::GenerateRuntimeGetProperty(masm, language_mode); __ bind(&check_name); GenerateKeyNameCheck(masm, key, rax, rbx, &index_name, &slow); GenerateKeyedLoadReceiverCheck(masm, receiver, rax, Map::kHasNamedInterceptor, &slow); // If the receiver is a fast-case object, check the stub cache. Otherwise // probe the dictionary. __ movp(rbx, FieldOperand(receiver, JSObject::kPropertiesOffset)); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kHashTableMapRootIndex); __ j(equal, &probe_dictionary); Register megamorphic_scratch = rdi; // The handlers in the stub cache expect a vector and slot. Since we won't // change the IC from any downstream misses, a dummy vector can be used. Register vector = LoadWithVectorDescriptor::VectorRegister(); Register slot = LoadDescriptor::SlotRegister(); DCHECK(!AreAliased(megamorphic_scratch, vector, slot)); Handle dummy_vector = TypeFeedbackVector::DummyVector(masm->isolate()); int slot_index = dummy_vector->GetIndex( FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedLoadICSlot)); __ Move(vector, dummy_vector); __ Move(slot, Smi::FromInt(slot_index)); Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::LOAD_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, Code::KEYED_LOAD_IC, flags, receiver, key, megamorphic_scratch, no_reg); // Cache miss. GenerateMiss(masm); // Do a quick inline probe of the receiver's dictionary, if it // exists. __ bind(&probe_dictionary); // rbx: elements __ movp(rax, FieldOperand(receiver, JSObject::kMapOffset)); __ movb(rax, FieldOperand(rax, Map::kInstanceTypeOffset)); GenerateGlobalInstanceTypeCheck(masm, rax, &slow); GenerateDictionaryLoad(masm, &slow, rbx, key, rax, rdi, rax); __ IncrementCounter(counters->keyed_load_generic_symbol(), 1); __ ret(0); __ bind(&index_name); __ IndexFromHash(rbx, key); __ jmp(&index_smi); } static void KeyedStoreGenerateMegamorphicHelper( MacroAssembler* masm, Label* fast_object, Label* fast_double, Label* slow, KeyedStoreCheckMap check_map, KeyedStoreIncrementLength increment_length) { Label transition_smi_elements; Label finish_object_store, non_double_value, transition_double_elements; Label fast_double_without_map_check; Register receiver = StoreDescriptor::ReceiverRegister(); Register key = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); DCHECK(receiver.is(rdx)); DCHECK(key.is(rcx)); DCHECK(value.is(rax)); // Fast case: Do the store, could be either Object or double. __ bind(fast_object); // rbx: receiver's elements array (a FixedArray) // receiver is a JSArray. // r9: map of receiver if (check_map == kCheckMap) { __ movp(rdi, FieldOperand(rbx, HeapObject::kMapOffset)); __ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex); __ j(not_equal, fast_double); } // HOLECHECK: guards "A[i] = V" // We have to go to the runtime if the current value is the hole because // there may be a callback on the element Label holecheck_passed1; __ movp(kScratchRegister, FieldOperand(rbx, key, times_pointer_size, FixedArray::kHeaderSize)); __ CompareRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ j(not_equal, &holecheck_passed1); __ JumpIfDictionaryInPrototypeChain(receiver, rdi, kScratchRegister, slow); __ bind(&holecheck_passed1); // Smi stores don't require further checks. Label non_smi_value; __ JumpIfNotSmi(value, &non_smi_value); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ leal(rdi, Operand(key, 1)); __ Integer32ToSmiField(FieldOperand(receiver, JSArray::kLengthOffset), rdi); } // It's irrelevant whether array is smi-only or not when writing a smi. __ movp(FieldOperand(rbx, key, times_pointer_size, FixedArray::kHeaderSize), value); __ ret(0); __ bind(&non_smi_value); // Writing a non-smi, check whether array allows non-smi elements. // r9: receiver's map __ CheckFastObjectElements(r9, &transition_smi_elements); __ bind(&finish_object_store); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ leal(rdi, Operand(key, 1)); __ Integer32ToSmiField(FieldOperand(receiver, JSArray::kLengthOffset), rdi); } __ movp(FieldOperand(rbx, key, times_pointer_size, FixedArray::kHeaderSize), value); __ movp(rdx, value); // Preserve the value which is returned. __ RecordWriteArray(rbx, rdx, key, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); __ bind(fast_double); if (check_map == kCheckMap) { // Check for fast double array case. If this fails, call through to the // runtime. // rdi: elements array's map __ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ j(not_equal, slow); } // HOLECHECK: guards "A[i] double hole?" // We have to see if the double version of the hole is present. If so // go to the runtime. uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); __ cmpl(FieldOperand(rbx, key, times_8, offset), Immediate(kHoleNanUpper32)); __ j(not_equal, &fast_double_without_map_check); __ JumpIfDictionaryInPrototypeChain(receiver, rdi, kScratchRegister, slow); __ bind(&fast_double_without_map_check); __ StoreNumberToDoubleElements(value, rbx, key, xmm0, &transition_double_elements); if (increment_length == kIncrementLength) { // Add 1 to receiver->length. __ leal(rdi, Operand(key, 1)); __ Integer32ToSmiField(FieldOperand(receiver, JSArray::kLengthOffset), rdi); } __ ret(0); __ bind(&transition_smi_elements); __ movp(rbx, FieldOperand(receiver, HeapObject::kMapOffset)); // Transition the array appropriately depending on the value type. __ movp(r9, FieldOperand(value, HeapObject::kMapOffset)); __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex); __ j(not_equal, &non_double_value); // Value is a double. Transition FAST_SMI_ELEMENTS -> // FAST_DOUBLE_ELEMENTS and complete the store. __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS, rbx, rdi, slow); AllocationSiteMode mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_DOUBLE_ELEMENTS); ElementsTransitionGenerator::GenerateSmiToDouble(masm, receiver, key, value, rbx, mode, slow); __ movp(rbx, FieldOperand(receiver, JSObject::kElementsOffset)); __ jmp(&fast_double_without_map_check); __ bind(&non_double_value); // Value is not a double, FAST_SMI_ELEMENTS -> FAST_ELEMENTS __ LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_ELEMENTS, rbx, rdi, slow); mode = AllocationSite::GetMode(FAST_SMI_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateMapChangeElementsTransition( masm, receiver, key, value, rbx, mode, slow); __ movp(rbx, FieldOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); __ bind(&transition_double_elements); // Elements are FAST_DOUBLE_ELEMENTS, but value is an Object that's not a // HeapNumber. Make sure that the receiver is a Array with FAST_ELEMENTS and // transition array from FAST_DOUBLE_ELEMENTS to FAST_ELEMENTS __ movp(rbx, FieldOperand(receiver, HeapObject::kMapOffset)); __ LoadTransitionedArrayMapConditional(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS, rbx, rdi, slow); mode = AllocationSite::GetMode(FAST_DOUBLE_ELEMENTS, FAST_ELEMENTS); ElementsTransitionGenerator::GenerateDoubleToObject(masm, receiver, key, value, rbx, mode, slow); __ movp(rbx, FieldOperand(receiver, JSObject::kElementsOffset)); __ jmp(&finish_object_store); } void KeyedStoreIC::GenerateMegamorphic(MacroAssembler* masm, LanguageMode language_mode) { // Return address is on the stack. Label slow, slow_with_tagged_index, fast_object, fast_object_grow; Label fast_double, fast_double_grow; Label array, extra, check_if_double_array, maybe_name_key, miss; Register receiver = StoreDescriptor::ReceiverRegister(); Register key = StoreDescriptor::NameRegister(); DCHECK(receiver.is(rdx)); DCHECK(key.is(rcx)); // Check that the object isn't a smi. __ JumpIfSmi(receiver, &slow_with_tagged_index); // Get the map from the receiver. __ movp(r9, FieldOperand(receiver, HeapObject::kMapOffset)); // Check that the receiver does not require access checks and is not observed. // The generic stub does not perform map checks or handle observed objects. __ testb(FieldOperand(r9, Map::kBitFieldOffset), Immediate(1 << Map::kIsAccessCheckNeeded | 1 << Map::kIsObserved)); __ j(not_zero, &slow_with_tagged_index); // Check that the key is a smi. __ JumpIfNotSmi(key, &maybe_name_key); __ SmiToInteger32(key, key); __ CmpInstanceType(r9, JS_ARRAY_TYPE); __ j(equal, &array); // Check that the object is some kind of JS object EXCEPT JS Value type. In // the case that the object is a value-wrapper object, we enter the runtime // system to make sure that indexing into string objects works as intended. STATIC_ASSERT(JS_VALUE_TYPE < JS_OBJECT_TYPE); __ CmpInstanceType(r9, JS_OBJECT_TYPE); __ j(below, &slow); // Object case: Check key against length in the elements array. __ movp(rbx, FieldOperand(receiver, JSObject::kElementsOffset)); // Check array bounds. __ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), key); // rbx: FixedArray __ j(above, &fast_object); // Slow case: call runtime. __ bind(&slow); __ Integer32ToSmi(key, key); __ bind(&slow_with_tagged_index); PropertyICCompiler::GenerateRuntimeSetProperty(masm, language_mode); // Never returns to here. __ bind(&maybe_name_key); __ movp(r9, FieldOperand(key, HeapObject::kMapOffset)); __ movzxbp(r9, FieldOperand(r9, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(r9, &slow_with_tagged_index); Register vector = VectorStoreICDescriptor::VectorRegister(); Register slot = VectorStoreICDescriptor::SlotRegister(); // The handlers in the stub cache expect a vector and slot. Since we won't // change the IC from any downstream misses, a dummy vector can be used. Handle dummy_vector = TypeFeedbackVector::DummyVector(masm->isolate()); int slot_index = dummy_vector->GetIndex( FeedbackVectorSlot(TypeFeedbackVector::kDummyKeyedStoreICSlot)); __ Move(vector, dummy_vector); __ Move(slot, Smi::FromInt(slot_index)); Code::Flags flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, Code::STORE_IC, flags, receiver, key, r9, no_reg); // Cache miss. __ jmp(&miss); // Extra capacity case: Check if there is extra capacity to // perform the store and update the length. Used for adding one // element to the array by writing to array[array.length]. __ bind(&extra); // receiver is a JSArray. // rbx: receiver's elements array (a FixedArray) // flags: smicompare (receiver.length(), rbx) __ j(not_equal, &slow); // do not leave holes in the array __ SmiCompareInteger32(FieldOperand(rbx, FixedArray::kLengthOffset), key); __ j(below_equal, &slow); // Increment index to get new length. __ movp(rdi, FieldOperand(rbx, HeapObject::kMapOffset)); __ CompareRoot(rdi, Heap::kFixedArrayMapRootIndex); __ j(not_equal, &check_if_double_array); __ jmp(&fast_object_grow); __ bind(&check_if_double_array); // rdi: elements array's map __ CompareRoot(rdi, Heap::kFixedDoubleArrayMapRootIndex); __ j(not_equal, &slow); __ jmp(&fast_double_grow); // Array case: Get the length and the elements array from the JS // array. Check that the array is in fast mode (and writable); if it // is the length is always a smi. __ bind(&array); // receiver is a JSArray. __ movp(rbx, FieldOperand(receiver, JSObject::kElementsOffset)); // Check the key against the length in the array, compute the // address to store into and fall through to fast case. __ SmiCompareInteger32(FieldOperand(receiver, JSArray::kLengthOffset), key); __ j(below_equal, &extra); KeyedStoreGenerateMegamorphicHelper(masm, &fast_object, &fast_double, &slow, kCheckMap, kDontIncrementLength); KeyedStoreGenerateMegamorphicHelper(masm, &fast_object_grow, &fast_double_grow, &slow, kDontCheckMap, kIncrementLength); __ bind(&miss); GenerateMiss(masm); } void LoadIC::GenerateNormal(MacroAssembler* masm, LanguageMode language_mode) { Register dictionary = rax; DCHECK(!dictionary.is(LoadDescriptor::ReceiverRegister())); DCHECK(!dictionary.is(LoadDescriptor::NameRegister())); Label slow; __ movp(dictionary, FieldOperand(LoadDescriptor::ReceiverRegister(), JSObject::kPropertiesOffset)); GenerateDictionaryLoad(masm, &slow, dictionary, LoadDescriptor::NameRegister(), rbx, rdi, rax); __ ret(0); // Dictionary load failed, go slow (but don't miss). __ bind(&slow); LoadIC::GenerateRuntimeGetProperty(masm, language_mode); } static void LoadIC_PushArgs(MacroAssembler* masm) { Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); DCHECK(!rdi.is(receiver) && !rdi.is(name) && !rdi.is(slot) && !rdi.is(vector)); __ PopReturnAddressTo(rdi); __ Push(receiver); __ Push(name); __ Push(slot); __ Push(vector); __ PushReturnAddressFrom(rdi); } void LoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is on the stack. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->load_miss(), 1); LoadIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kLoadIC_Miss); } void LoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm, LanguageMode language_mode) { // The return address is on the stack. Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); DCHECK(!rbx.is(receiver) && !rbx.is(name)); __ PopReturnAddressTo(rbx); __ Push(receiver); __ Push(name); __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. __ TailCallRuntime(is_strong(language_mode) ? Runtime::kGetPropertyStrong : Runtime::kGetProperty); } void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { // The return address is on the stack. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->keyed_load_miss(), 1); LoadIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kKeyedLoadIC_Miss); } void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm, LanguageMode language_mode) { // The return address is on the stack. Register receiver = LoadDescriptor::ReceiverRegister(); Register name = LoadDescriptor::NameRegister(); DCHECK(!rbx.is(receiver) && !rbx.is(name)); __ PopReturnAddressTo(rbx); __ Push(receiver); __ Push(name); __ PushReturnAddressFrom(rbx); // Do tail-call to runtime routine. __ TailCallRuntime(is_strong(language_mode) ? Runtime::kKeyedGetPropertyStrong : Runtime::kKeyedGetProperty); } void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { // This shouldn't be called. __ int3(); } static void StoreIC_PushArgs(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Register temp = r11; DCHECK(!temp.is(receiver) && !temp.is(name) && !temp.is(value)); __ PopReturnAddressTo(temp); __ Push(receiver); __ Push(name); __ Push(value); Register slot = VectorStoreICDescriptor::SlotRegister(); Register vector = VectorStoreICDescriptor::VectorRegister(); DCHECK(!temp.is(slot) && !temp.is(vector)); __ Push(slot); __ Push(vector); __ PushReturnAddressFrom(temp); } void StoreIC::GenerateMiss(MacroAssembler* masm) { // Return address is on the stack. StoreIC_PushArgs(masm); // Perform tail call to the entry. __ TailCallRuntime(Runtime::kStoreIC_Miss); } void StoreIC::GenerateNormal(MacroAssembler* masm) { Register receiver = StoreDescriptor::ReceiverRegister(); Register name = StoreDescriptor::NameRegister(); Register value = StoreDescriptor::ValueRegister(); Register dictionary = r11; DCHECK(!AreAliased(dictionary, VectorStoreICDescriptor::VectorRegister(), VectorStoreICDescriptor::SlotRegister())); Label miss; __ movp(dictionary, FieldOperand(receiver, JSObject::kPropertiesOffset)); GenerateDictionaryStore(masm, &miss, dictionary, name, value, r8, r9); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->store_normal_hit(), 1); __ ret(0); __ bind(&miss); __ IncrementCounter(counters->store_normal_miss(), 1); GenerateMiss(masm); } void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { // Return address is on the stack. StoreIC_PushArgs(masm); // Do tail-call to runtime routine. __ TailCallRuntime(Runtime::kKeyedStoreIC_Miss); } #undef __ Condition CompareIC::ComputeCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return equal; case Token::LT: return less; case Token::GT: return greater; case Token::LTE: return less_equal; case Token::GTE: return greater_equal; default: UNREACHABLE(); return no_condition; } } bool CompareIC::HasInlinedSmiCode(Address address) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test al, nothing // was inlined. return *test_instruction_address == Assembler::kTestAlByte; } void PatchInlinedSmiCode(Isolate* isolate, Address address, InlinedSmiCheck check) { // The address of the instruction following the call. Address test_instruction_address = address + Assembler::kCallTargetAddressOffset; // If the instruction following the call is not a test al, nothing // was inlined. if (*test_instruction_address != Assembler::kTestAlByte) { DCHECK(*test_instruction_address == Assembler::kNopByte); return; } Address delta_address = test_instruction_address + 1; // The delta to the start of the map check instruction and the // condition code uses at the patched jump. uint8_t delta = *reinterpret_cast(delta_address); if (FLAG_trace_ic) { PrintF("[ patching ic at %p, test=%p, delta=%d\n", address, test_instruction_address, delta); } // Patch with a short conditional jump. Enabling means switching from a short // jump-if-carry/not-carry to jump-if-zero/not-zero, whereas disabling is the // reverse operation of that. Address jmp_address = test_instruction_address - delta; DCHECK((check == ENABLE_INLINED_SMI_CHECK) ? (*jmp_address == Assembler::kJncShortOpcode || *jmp_address == Assembler::kJcShortOpcode) : (*jmp_address == Assembler::kJnzShortOpcode || *jmp_address == Assembler::kJzShortOpcode)); Condition cc = (check == ENABLE_INLINED_SMI_CHECK) ? (*jmp_address == Assembler::kJncShortOpcode ? not_zero : zero) : (*jmp_address == Assembler::kJnzShortOpcode ? not_carry : carry); *jmp_address = static_cast(Assembler::kJccShortPrefix | cc); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64