// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_MIPS64 #include "src/bootstrapper.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/ic/handler-compiler.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" #include "src/isolate.h" #include "src/mips64/code-stubs-mips64.h" #include "src/regexp/jsregexp.h" #include "src/regexp/regexp-macro-assembler.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { static void InitializeArrayConstructorDescriptor( Isolate* isolate, CodeStubDescriptor* descriptor, int constant_stack_parameter_count) { Address deopt_handler = Runtime::FunctionForId( Runtime::kArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { descriptor->Initialize(deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } } static void InitializeInternalArrayConstructorDescriptor( Isolate* isolate, CodeStubDescriptor* descriptor, int constant_stack_parameter_count) { Address deopt_handler = Runtime::FunctionForId( Runtime::kInternalArrayConstructor)->entry; if (constant_stack_parameter_count == 0) { descriptor->Initialize(deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } else { descriptor->Initialize(a0, deopt_handler, constant_stack_parameter_count, JS_FUNCTION_STUB_MODE); } } void ArrayNoArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); } void ArraySingleArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, 1); } void ArrayNArgumentsConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeArrayConstructorDescriptor(isolate(), descriptor, -1); } void InternalArrayNoArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 0); } void InternalArraySingleArgumentConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, 1); } void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( CodeStubDescriptor* descriptor) { InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); } #define __ ACCESS_MASM(masm) static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cc, Strength strength); static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* rhs_not_nan, Label* slow, bool strict); static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs); void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, ExternalReference miss) { // Update the static counter each time a new code stub is generated. isolate()->counters()->code_stubs()->Increment(); CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); int param_count = descriptor.GetRegisterParameterCount(); { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); DCHECK((param_count == 0) || a0.is(descriptor.GetRegisterParameter(param_count - 1))); // Push arguments, adjust sp. __ Dsubu(sp, sp, Operand(param_count * kPointerSize)); for (int i = 0; i < param_count; ++i) { // Store argument to stack. __ sd(descriptor.GetRegisterParameter(i), MemOperand(sp, (param_count - 1 - i) * kPointerSize)); } __ CallExternalReference(miss, param_count); } __ Ret(); } void DoubleToIStub::Generate(MacroAssembler* masm) { Label out_of_range, only_low, negate, done; Register input_reg = source(); Register result_reg = destination(); int double_offset = offset(); // Account for saved regs if input is sp. if (input_reg.is(sp)) double_offset += 3 * kPointerSize; Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); Register scratch2 = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); Register scratch3 = GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch2); DoubleRegister double_scratch = kLithiumScratchDouble; __ Push(scratch, scratch2, scratch3); if (!skip_fastpath()) { // Load double input. __ ldc1(double_scratch, MemOperand(input_reg, double_offset)); // Clear cumulative exception flags and save the FCSR. __ cfc1(scratch2, FCSR); __ ctc1(zero_reg, FCSR); // Try a conversion to a signed integer. __ Trunc_w_d(double_scratch, double_scratch); // Move the converted value into the result register. __ mfc1(scratch3, double_scratch); // Retrieve and restore the FCSR. __ cfc1(scratch, FCSR); __ ctc1(scratch2, FCSR); // Check for overflow and NaNs. __ And( scratch, scratch, kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); // If we had no exceptions then set result_reg and we are done. Label error; __ Branch(&error, ne, scratch, Operand(zero_reg)); __ Move(result_reg, scratch3); __ Branch(&done); __ bind(&error); } // Load the double value and perform a manual truncation. Register input_high = scratch2; Register input_low = scratch3; __ lw(input_low, MemOperand(input_reg, double_offset + Register::kMantissaOffset)); __ lw(input_high, MemOperand(input_reg, double_offset + Register::kExponentOffset)); Label normal_exponent, restore_sign; // Extract the biased exponent in result. __ Ext(result_reg, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Check for Infinity and NaNs, which should return 0. __ Subu(scratch, result_reg, HeapNumber::kExponentMask); __ Movz(result_reg, zero_reg, scratch); __ Branch(&done, eq, scratch, Operand(zero_reg)); // Express exponent as delta to (number of mantissa bits + 31). __ Subu(result_reg, result_reg, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); // If the delta is strictly positive, all bits would be shifted away, // which means that we can return 0. __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); __ mov(result_reg, zero_reg); __ Branch(&done); __ bind(&normal_exponent); const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; // Calculate shift. __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); // Save the sign. Register sign = result_reg; result_reg = no_reg; __ And(sign, input_high, Operand(HeapNumber::kSignMask)); // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need // to check for this specific case. Label high_shift_needed, high_shift_done; __ Branch(&high_shift_needed, lt, scratch, Operand(32)); __ mov(input_high, zero_reg); __ Branch(&high_shift_done); __ bind(&high_shift_needed); // Set the implicit 1 before the mantissa part in input_high. __ Or(input_high, input_high, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); // Shift the mantissa bits to the correct position. // We don't need to clear non-mantissa bits as they will be shifted away. // If they weren't, it would mean that the answer is in the 32bit range. __ sllv(input_high, input_high, scratch); __ bind(&high_shift_done); // Replace the shifted bits with bits from the lower mantissa word. Label pos_shift, shift_done; __ li(at, 32); __ subu(scratch, at, scratch); __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); // Negate scratch. __ Subu(scratch, zero_reg, scratch); __ sllv(input_low, input_low, scratch); __ Branch(&shift_done); __ bind(&pos_shift); __ srlv(input_low, input_low, scratch); __ bind(&shift_done); __ Or(input_high, input_high, Operand(input_low)); // Restore sign if necessary. __ mov(scratch, sign); result_reg = sign; sign = no_reg; __ Subu(result_reg, zero_reg, input_high); __ Movz(result_reg, input_high, scratch); __ bind(&done); __ Pop(scratch, scratch2, scratch3); __ Ret(); } // Handle the case where the lhs and rhs are the same object. // Equality is almost reflexive (everything but NaN), so this is a test // for "identity and not NaN". static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, Condition cc, Strength strength) { Label not_identical; Label heap_number, return_equal; Register exp_mask_reg = t1; __ Branch(¬_identical, ne, a0, Operand(a1)); __ li(exp_mask_reg, Operand(HeapNumber::kExponentMask)); // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), // so we do the second best thing - test it ourselves. // They are both equal and they are not both Smis so both of them are not // Smis. If it's not a heap number, then return equal. __ GetObjectType(a0, t0, t0); if (cc == less || cc == greater) { // Call runtime on identical JSObjects. __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE)); // Call runtime on identical symbols since we need to throw a TypeError. __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE)); // Call runtime on identical SIMD values since we must throw a TypeError. __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE)); if (is_strong(strength)) { // Call the runtime on anything that is converted in the semantics, since // we need to throw a TypeError. Smis have already been ruled out. __ Branch(&return_equal, eq, t0, Operand(HEAP_NUMBER_TYPE)); __ And(t0, t0, Operand(kIsNotStringMask)); __ Branch(slow, ne, t0, Operand(zero_reg)); } } else { __ Branch(&heap_number, eq, t0, Operand(HEAP_NUMBER_TYPE)); // Comparing JS objects with <=, >= is complicated. if (cc != eq) { __ Branch(slow, greater, t0, Operand(FIRST_JS_RECEIVER_TYPE)); // Call runtime on identical symbols since we need to throw a TypeError. __ Branch(slow, eq, t0, Operand(SYMBOL_TYPE)); // Call runtime on identical SIMD values since we must throw a TypeError. __ Branch(slow, eq, t0, Operand(SIMD128_VALUE_TYPE)); if (is_strong(strength)) { // Call the runtime on anything that is converted in the semantics, // since we need to throw a TypeError. Smis and heap numbers have // already been ruled out. __ And(t0, t0, Operand(kIsNotStringMask)); __ Branch(slow, ne, t0, Operand(zero_reg)); } // Normally here we fall through to return_equal, but undefined is // special: (undefined == undefined) == true, but // (undefined <= undefined) == false! See ECMAScript 11.8.5. if (cc == less_equal || cc == greater_equal) { __ Branch(&return_equal, ne, t0, Operand(ODDBALL_TYPE)); __ LoadRoot(a6, Heap::kUndefinedValueRootIndex); __ Branch(&return_equal, ne, a0, Operand(a6)); DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == le) { // undefined <= undefined should fail. __ li(v0, Operand(GREATER)); } else { // undefined >= undefined should fail. __ li(v0, Operand(LESS)); } } } } __ bind(&return_equal); DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == less) { __ li(v0, Operand(GREATER)); // Things aren't less than themselves. } else if (cc == greater) { __ li(v0, Operand(LESS)); // Things aren't greater than themselves. } else { __ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves. } // For less and greater we don't have to check for NaN since the result of // x < x is false regardless. For the others here is some code to check // for NaN. if (cc != lt && cc != gt) { __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if it's // not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // Read top bits of double representation (second word of value). __ lwu(a6, FieldMemOperand(a0, HeapNumber::kExponentOffset)); // Test that exponent bits are all set. __ And(a7, a6, Operand(exp_mask_reg)); // If all bits not set (ne cond), then not a NaN, objects are equal. __ Branch(&return_equal, ne, a7, Operand(exp_mask_reg)); // Shift out flag and all exponent bits, retaining only mantissa. __ sll(a6, a6, HeapNumber::kNonMantissaBitsInTopWord); // Or with all low-bits of mantissa. __ lwu(a7, FieldMemOperand(a0, HeapNumber::kMantissaOffset)); __ Or(v0, a7, Operand(a6)); // For equal we already have the right value in v0: Return zero (equal) // if all bits in mantissa are zero (it's an Infinity) and non-zero if // not (it's a NaN). For <= and >= we need to load v0 with the failing // value if it's a NaN. if (cc != eq) { // All-zero means Infinity means equal. __ Ret(eq, v0, Operand(zero_reg)); DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == le) { __ li(v0, Operand(GREATER)); // NaN <= NaN should fail. } else { __ li(v0, Operand(LESS)); // NaN >= NaN should fail. } } } // No fall through here. __ bind(¬_identical); } static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* slow, bool strict) { DCHECK((lhs.is(a0) && rhs.is(a1)) || (lhs.is(a1) && rhs.is(a0))); Label lhs_is_smi; __ JumpIfSmi(lhs, &lhs_is_smi); // Rhs is a Smi. // Check whether the non-smi is a heap number. __ GetObjectType(lhs, t0, t0); if (strict) { // If lhs was not a number and rhs was a Smi then strict equality cannot // succeed. Return non-equal (lhs is already not zero). __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE)); __ mov(v0, lhs); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE)); } // Rhs is a smi, lhs is a number. // Convert smi rhs to double. __ SmiUntag(at, rhs); __ mtc1(at, f14); __ cvt_d_w(f14, f14); __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); // We now have both loaded as doubles. __ jmp(both_loaded_as_doubles); __ bind(&lhs_is_smi); // Lhs is a Smi. Check whether the non-smi is a heap number. __ GetObjectType(rhs, t0, t0); if (strict) { // If lhs was not a number and rhs was a Smi then strict equality cannot // succeed. Return non-equal. __ Ret(USE_DELAY_SLOT, ne, t0, Operand(HEAP_NUMBER_TYPE)); __ li(v0, Operand(1)); } else { // Smi compared non-strictly with a non-Smi non-heap-number. Call // the runtime. __ Branch(slow, ne, t0, Operand(HEAP_NUMBER_TYPE)); } // Lhs is a smi, rhs is a number. // Convert smi lhs to double. __ SmiUntag(at, lhs); __ mtc1(at, f12); __ cvt_d_w(f12, f12); __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); // Fall through to both_loaded_as_doubles. } static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, Register rhs) { // If either operand is a JS object or an oddball value, then they are // not equal since their pointers are different. // There is no test for undetectability in strict equality. STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); Label first_non_object; // Get the type of the first operand into a2 and compare it with // FIRST_JS_RECEIVER_TYPE. __ GetObjectType(lhs, a2, a2); __ Branch(&first_non_object, less, a2, Operand(FIRST_JS_RECEIVER_TYPE)); // Return non-zero. Label return_not_equal; __ bind(&return_not_equal); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(1)); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE)); __ GetObjectType(rhs, a3, a3); __ Branch(&return_not_equal, greater, a3, Operand(FIRST_JS_RECEIVER_TYPE)); // Check for oddballs: true, false, null, undefined. __ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE)); // Now that we have the types we might as well check for // internalized-internalized. STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ Or(a2, a2, Operand(a3)); __ And(at, a2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ Branch(&return_not_equal, eq, at, Operand(zero_reg)); } static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, Register rhs, Label* both_loaded_as_doubles, Label* not_heap_numbers, Label* slow) { __ GetObjectType(lhs, a3, a2); __ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ ld(a2, FieldMemOperand(rhs, HeapObject::kMapOffset)); // If first was a heap number & second wasn't, go to slow case. __ Branch(slow, ne, a3, Operand(a2)); // Both are heap numbers. Load them up then jump to the code we have // for that. __ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset)); __ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset)); __ jmp(both_loaded_as_doubles); } // Fast negative check for internalized-to-internalized equality. static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, Register lhs, Register rhs, Label* possible_strings, Label* not_both_strings) { DCHECK((lhs.is(a0) && rhs.is(a1)) || (lhs.is(a1) && rhs.is(a0))); // a2 is object type of rhs. Label object_test; STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ And(at, a2, Operand(kIsNotStringMask)); __ Branch(&object_test, ne, at, Operand(zero_reg)); __ And(at, a2, Operand(kIsNotInternalizedMask)); __ Branch(possible_strings, ne, at, Operand(zero_reg)); __ GetObjectType(rhs, a3, a3); __ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE)); __ And(at, a3, Operand(kIsNotInternalizedMask)); __ Branch(possible_strings, ne, at, Operand(zero_reg)); // Both are internalized strings. We already checked they weren't the same // pointer so they are not equal. __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(1)); // Non-zero indicates not equal. __ bind(&object_test); __ Branch(not_both_strings, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE)); __ GetObjectType(rhs, a2, a3); __ Branch(not_both_strings, lt, a3, Operand(FIRST_JS_RECEIVER_TYPE)); // If both objects are undetectable, they are equal. Otherwise, they // are not equal, since they are different objects and an object is not // equal to undefined. __ ld(a3, FieldMemOperand(lhs, HeapObject::kMapOffset)); __ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset)); __ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset)); __ and_(a0, a2, a3); __ And(a0, a0, Operand(1 << Map::kIsUndetectable)); __ Ret(USE_DELAY_SLOT); __ xori(v0, a0, 1 << Map::kIsUndetectable); } static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, Register scratch, CompareICState::State expected, Label* fail) { Label ok; if (expected == CompareICState::SMI) { __ JumpIfNotSmi(input, fail); } else if (expected == CompareICState::NUMBER) { __ JumpIfSmi(input, &ok); __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, DONT_DO_SMI_CHECK); } // We could be strict about internalized/string here, but as long as // hydrogen doesn't care, the stub doesn't have to care either. __ bind(&ok); } // On entry a1 and a2 are the values to be compared. // On exit a0 is 0, positive or negative to indicate the result of // the comparison. void CompareICStub::GenerateGeneric(MacroAssembler* masm) { Register lhs = a1; Register rhs = a0; Condition cc = GetCondition(); Label miss; CompareICStub_CheckInputType(masm, lhs, a2, left(), &miss); CompareICStub_CheckInputType(masm, rhs, a3, right(), &miss); Label slow; // Call builtin. Label not_smis, both_loaded_as_doubles; Label not_two_smis, smi_done; __ Or(a2, a1, a0); __ JumpIfNotSmi(a2, ¬_two_smis); __ SmiUntag(a1); __ SmiUntag(a0); __ Ret(USE_DELAY_SLOT); __ dsubu(v0, a1, a0); __ bind(¬_two_smis); // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Handle the case where the objects are identical. Either returns the answer // or goes to slow. Only falls through if the objects were not identical. EmitIdenticalObjectComparison(masm, &slow, cc, strength()); // If either is a Smi (we know that not both are), then they can only // be strictly equal if the other is a HeapNumber. STATIC_ASSERT(kSmiTag == 0); DCHECK_EQ(static_cast(0), Smi::FromInt(0)); __ And(a6, lhs, Operand(rhs)); __ JumpIfNotSmi(a6, ¬_smis, a4); // One operand is a smi. EmitSmiNonsmiComparison generates code that can: // 1) Return the answer. // 2) Go to slow. // 3) Fall through to both_loaded_as_doubles. // 4) Jump to rhs_not_nan. // In cases 3 and 4 we have found out we were dealing with a number-number // comparison and the numbers have been loaded into f12 and f14 as doubles, // or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU. EmitSmiNonsmiComparison(masm, lhs, rhs, &both_loaded_as_doubles, &slow, strict()); __ bind(&both_loaded_as_doubles); // f12, f14 are the double representations of the left hand side // and the right hand side if we have FPU. Otherwise a2, a3 represent // left hand side and a0, a1 represent right hand side. Label nan; __ li(a4, Operand(LESS)); __ li(a5, Operand(GREATER)); __ li(a6, Operand(EQUAL)); // Check if either rhs or lhs is NaN. __ BranchF(NULL, &nan, eq, f12, f14); // Check if LESS condition is satisfied. If true, move conditionally // result to v0. if (kArchVariant != kMips64r6) { __ c(OLT, D, f12, f14); __ Movt(v0, a4); // Use previous check to store conditionally to v0 oposite condition // (GREATER). If rhs is equal to lhs, this will be corrected in next // check. __ Movf(v0, a5); // Check if EQUAL condition is satisfied. If true, move conditionally // result to v0. __ c(EQ, D, f12, f14); __ Movt(v0, a6); } else { Label skip; __ BranchF(USE_DELAY_SLOT, &skip, NULL, lt, f12, f14); __ mov(v0, a4); // Return LESS as result. __ BranchF(USE_DELAY_SLOT, &skip, NULL, eq, f12, f14); __ mov(v0, a6); // Return EQUAL as result. __ mov(v0, a5); // Return GREATER as result. __ bind(&skip); } __ Ret(); __ bind(&nan); // NaN comparisons always fail. // Load whatever we need in v0 to make the comparison fail. DCHECK(is_int16(GREATER) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); if (cc == lt || cc == le) { __ li(v0, Operand(GREATER)); } else { __ li(v0, Operand(LESS)); } __ bind(¬_smis); // At this point we know we are dealing with two different objects, // and neither of them is a Smi. The objects are in lhs_ and rhs_. if (strict()) { // This returns non-equal for some object types, or falls through if it // was not lucky. EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); } Label check_for_internalized_strings; Label flat_string_check; // Check for heap-number-heap-number comparison. Can jump to slow case, // or load both doubles and jump to the code that handles // that case. If the inputs are not doubles then jumps to // check_for_internalized_strings. // In this case a2 will contain the type of lhs_. EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, &check_for_internalized_strings, &flat_string_check); __ bind(&check_for_internalized_strings); if (cc == eq && !strict()) { // Returns an answer for two internalized strings or two // detectable objects. // Otherwise jumps to string case or not both strings case. // Assumes that a2 is the type of lhs_ on entry. EmitCheckForInternalizedStringsOrObjects( masm, lhs, rhs, &flat_string_check, &slow); } // Check for both being sequential one-byte strings, // and inline if that is the case. __ bind(&flat_string_check); __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, a2, a3, &slow); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2, a3); if (cc == eq) { StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, a2, a3, a4); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, a2, a3, a4, a5); } // Never falls through to here. __ bind(&slow); // Prepare for call to builtin. Push object pointers, a0 (lhs) first, // a1 (rhs) second. __ Push(lhs, rhs); // Figure out which native to call and setup the arguments. if (cc == eq) { __ TailCallRuntime(strict() ? Runtime::kStrictEquals : Runtime::kEquals); } else { int ncr; // NaN compare result. if (cc == lt || cc == le) { ncr = GREATER; } else { DCHECK(cc == gt || cc == ge); // Remaining cases. ncr = LESS; } __ li(a0, Operand(Smi::FromInt(ncr))); __ push(a0); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ TailCallRuntime(is_strong(strength()) ? Runtime::kCompare_Strong : Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void StoreRegistersStateStub::Generate(MacroAssembler* masm) { __ mov(t9, ra); __ pop(ra); __ PushSafepointRegisters(); __ Jump(t9); } void RestoreRegistersStateStub::Generate(MacroAssembler* masm) { __ mov(t9, ra); __ pop(ra); __ PopSafepointRegisters(); __ Jump(t9); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ MultiPush(kJSCallerSaved | ra.bit()); if (save_doubles()) { __ MultiPushFPU(kCallerSavedFPU); } const int argument_count = 1; const int fp_argument_count = 0; const Register scratch = a1; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); __ li(a0, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction( ExternalReference::store_buffer_overflow_function(isolate()), argument_count); if (save_doubles()) { __ MultiPopFPU(kCallerSavedFPU); } __ MultiPop(kJSCallerSaved | ra.bit()); __ Ret(); } void MathPowStub::Generate(MacroAssembler* masm) { const Register base = a1; const Register exponent = MathPowTaggedDescriptor::exponent(); DCHECK(exponent.is(a2)); const Register heapnumbermap = a5; const Register heapnumber = v0; const DoubleRegister double_base = f2; const DoubleRegister double_exponent = f4; const DoubleRegister double_result = f0; const DoubleRegister double_scratch = f6; const FPURegister single_scratch = f8; const Register scratch = t1; const Register scratch2 = a7; Label call_runtime, done, int_exponent; if (exponent_type() == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack to double registers. __ ld(base, MemOperand(sp, 1 * kPointerSize)); __ ld(exponent, MemOperand(sp, 0 * kPointerSize)); __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); __ ld(scratch, FieldMemOperand(base, JSObject::kMapOffset)); __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); __ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent); __ bind(&base_is_smi); __ mtc1(scratch, single_scratch); __ cvt_d_w(double_base, single_scratch); __ bind(&unpack_exponent); __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ ld(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); __ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap)); __ ldc1(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type() == TAGGED) { // Base is already in double_base. __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); __ ldc1(double_exponent, FieldMemOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type() != INTEGER) { Label int_exponent_convert; // Detect integer exponents stored as double. __ EmitFPUTruncate(kRoundToMinusInf, scratch, double_exponent, at, double_scratch, scratch2, kCheckForInexactConversion); // scratch2 == 0 means there was no conversion error. __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg)); if (exponent_type() == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label not_plus_half; // Test for 0.5. __ Move(double_scratch, 0.5); __ BranchF(USE_DELAY_SLOT, ¬_plus_half, NULL, ne, double_exponent, double_scratch); // double_scratch can be overwritten in the delay slot. // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). __ Move(double_scratch, static_cast(-V8_INFINITY)); __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch); __ neg_d(double_result, double_scratch); // Add +0 to convert -0 to +0. __ add_d(double_scratch, double_base, kDoubleRegZero); __ sqrt_d(double_result, double_scratch); __ jmp(&done); __ bind(¬_plus_half); __ Move(double_scratch, -0.5); __ BranchF(USE_DELAY_SLOT, &call_runtime, NULL, ne, double_exponent, double_scratch); // double_scratch can be overwritten in the delay slot. // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). __ Move(double_scratch, static_cast(-V8_INFINITY)); __ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch); __ Move(double_result, kDoubleRegZero); // Add +0 to convert -0 to +0. __ add_d(double_scratch, double_base, kDoubleRegZero); __ Move(double_result, 1.); __ sqrt_d(double_scratch, double_scratch); __ div_d(double_result, double_result, double_scratch); __ jmp(&done); } __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch2); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(ra); __ MovFromFloatResult(double_result); __ jmp(&done); __ bind(&int_exponent_convert); } // Calculate power with integer exponent. __ bind(&int_exponent); // Get two copies of exponent in the registers scratch and exponent. if (exponent_type() == INTEGER) { __ mov(scratch, exponent); } else { // Exponent has previously been stored into scratch as untagged integer. __ mov(exponent, scratch); } __ mov_d(double_scratch, double_base); // Back up base. __ Move(double_result, 1.0); // Get absolute value of exponent. Label positive_exponent; __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg)); __ Dsubu(scratch, zero_reg, scratch); __ bind(&positive_exponent); Label while_true, no_carry, loop_end; __ bind(&while_true); __ And(scratch2, scratch, 1); __ Branch(&no_carry, eq, scratch2, Operand(zero_reg)); __ mul_d(double_result, double_result, double_scratch); __ bind(&no_carry); __ dsra(scratch, scratch, 1); __ Branch(&loop_end, eq, scratch, Operand(zero_reg)); __ mul_d(double_scratch, double_scratch, double_scratch); __ Branch(&while_true); __ bind(&loop_end); __ Branch(&done, ge, exponent, Operand(zero_reg)); __ Move(double_scratch, 1.0); __ div_d(double_result, double_scratch, double_result); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ BranchF(&done, NULL, ne, double_result, kDoubleRegZero); // double_exponent may not contain the exponent value if the input was a // smi. We set it with exponent value before bailing out. __ mtc1(exponent, single_scratch); __ cvt_d_w(double_exponent, single_scratch); // Returning or bailing out. Counters* counters = isolate()->counters(); if (exponent_type() == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMathPowRT); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber( heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); __ sdc1(double_result, FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); DCHECK(heapnumber.is(v0)); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ DropAndRet(2); } else { __ push(ra); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(0, 2, scratch); __ MovToFloatParameters(double_base, double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(isolate()), 0, 2); } __ pop(ra); __ MovFromFloatResult(double_result); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); __ Ret(); } } bool CEntryStub::NeedsImmovableCode() { return true; } void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { CEntryStub::GenerateAheadOfTime(isolate); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); StubFailureTrampolineStub::GenerateAheadOfTime(isolate); ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); CreateAllocationSiteStub::GenerateAheadOfTime(isolate); CreateWeakCellStub::GenerateAheadOfTime(isolate); BinaryOpICStub::GenerateAheadOfTime(isolate); StoreRegistersStateStub::GenerateAheadOfTime(isolate); RestoreRegistersStateStub::GenerateAheadOfTime(isolate); BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); StoreFastElementStub::GenerateAheadOfTime(isolate); TypeofStub::GenerateAheadOfTime(isolate); } void StoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { StoreRegistersStateStub stub(isolate); stub.GetCode(); } void RestoreRegistersStateStub::GenerateAheadOfTime(Isolate* isolate) { RestoreRegistersStateStub stub(isolate); stub.GetCode(); } void CodeStub::GenerateFPStubs(Isolate* isolate) { // Generate if not already in cache. SaveFPRegsMode mode = kSaveFPRegs; CEntryStub(isolate, 1, mode).GetCode(); StoreBufferOverflowStub(isolate, mode).GetCode(); isolate->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { CEntryStub stub(isolate, 1, kDontSaveFPRegs); stub.GetCode(); } void CEntryStub::Generate(MacroAssembler* masm) { // Called from JavaScript; parameters are on stack as if calling JS function // a0: number of arguments including receiver // a1: pointer to builtin function // fp: frame pointer (restored after C call) // sp: stack pointer (restored as callee's sp after C call) // cp: current context (C callee-saved) // // If argv_in_register(): // a2: pointer to the first argument ProfileEntryHookStub::MaybeCallEntryHook(masm); if (argv_in_register()) { // Move argv into the correct register. __ mov(s1, a2); } else { // Compute the argv pointer in a callee-saved register. __ dsll(s1, a0, kPointerSizeLog2); __ Daddu(s1, sp, s1); __ Dsubu(s1, s1, kPointerSize); } // Enter the exit frame that transitions from JavaScript to C++. FrameScope scope(masm, StackFrame::MANUAL); __ EnterExitFrame(save_doubles()); // s0: number of arguments including receiver (C callee-saved) // s1: pointer to first argument (C callee-saved) // s2: pointer to builtin function (C callee-saved) // Prepare arguments for C routine. // a0 = argc __ mov(s0, a0); __ mov(s2, a1); // a1 = argv (set in the delay slot after find_ra below). // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We // also need to reserve the 4 argument slots on the stack. __ AssertStackIsAligned(); __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); // To let the GC traverse the return address of the exit frames, we need to // know where the return address is. The CEntryStub is unmovable, so // we can store the address on the stack to be able to find it again and // we never have to restore it, because it will not change. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); // This branch-and-link sequence is needed to find the current PC on mips, // saved to the ra register. // Use masm-> here instead of the double-underscore macro since extra // coverage code can interfere with the proper calculation of ra. Label find_ra; masm->bal(&find_ra); // bal exposes branch delay slot. masm->mov(a1, s1); masm->bind(&find_ra); // Adjust the value in ra to point to the correct return location, 2nd // instruction past the real call into C code (the jalr(t9)), and push it. // This is the return address of the exit frame. const int kNumInstructionsToJump = 5; masm->Daddu(ra, ra, kNumInstructionsToJump * kInt32Size); masm->sd(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame. // Stack space reservation moved to the branch delay slot below. // Stack is still aligned. // Call the C routine. masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. masm->jalr(t9); // Set up sp in the delay slot. masm->daddiu(sp, sp, -kCArgsSlotsSize); // Make sure the stored 'ra' points to this position. DCHECK_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra)); } // Check result for exception sentinel. Label exception_returned; __ LoadRoot(a4, Heap::kExceptionRootIndex); __ Branch(&exception_returned, eq, a4, Operand(v0)); // Check that there is no pending exception, otherwise we // should have returned the exception sentinel. if (FLAG_debug_code) { Label okay; ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, isolate()); __ li(a2, Operand(pending_exception_address)); __ ld(a2, MemOperand(a2)); __ LoadRoot(a4, Heap::kTheHoleValueRootIndex); // Cannot use check here as it attempts to generate call into runtime. __ Branch(&okay, eq, a4, Operand(a2)); __ stop("Unexpected pending exception"); __ bind(&okay); } // Exit C frame and return. // v0:v1: result // sp: stack pointer // fp: frame pointer Register argc; if (argv_in_register()) { // We don't want to pop arguments so set argc to no_reg. argc = no_reg; } else { // s0: still holds argc (callee-saved). argc = s0; } __ LeaveExitFrame(save_doubles(), argc, true, EMIT_RETURN); // Handling of exception. __ bind(&exception_returned); ExternalReference pending_handler_context_address( Isolate::kPendingHandlerContextAddress, isolate()); ExternalReference pending_handler_code_address( Isolate::kPendingHandlerCodeAddress, isolate()); ExternalReference pending_handler_offset_address( Isolate::kPendingHandlerOffsetAddress, isolate()); ExternalReference pending_handler_fp_address( Isolate::kPendingHandlerFPAddress, isolate()); ExternalReference pending_handler_sp_address( Isolate::kPendingHandlerSPAddress, isolate()); // Ask the runtime for help to determine the handler. This will set v0 to // contain the current pending exception, don't clobber it. ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, isolate()); { FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(3, 0, a0); __ mov(a0, zero_reg); __ mov(a1, zero_reg); __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); __ CallCFunction(find_handler, 3); } // Retrieve the handler context, SP and FP. __ li(cp, Operand(pending_handler_context_address)); __ ld(cp, MemOperand(cp)); __ li(sp, Operand(pending_handler_sp_address)); __ ld(sp, MemOperand(sp)); __ li(fp, Operand(pending_handler_fp_address)); __ ld(fp, MemOperand(fp)); // If the handler is a JS frame, restore the context to the frame. Note that // the context will be set to (cp == 0) for non-JS frames. Label zero; __ Branch(&zero, eq, cp, Operand(zero_reg)); __ sd(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ bind(&zero); // Compute the handler entry address and jump to it. __ li(a1, Operand(pending_handler_code_address)); __ ld(a1, MemOperand(a1)); __ li(a2, Operand(pending_handler_offset_address)); __ ld(a2, MemOperand(a2)); __ Daddu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Daddu(t9, a1, a2); __ Jump(t9); } void JSEntryStub::Generate(MacroAssembler* masm) { Label invoke, handler_entry, exit; Isolate* isolate = masm->isolate(); // TODO(plind): unify the ABI description here. // Registers: // a0: entry address // a1: function // a2: receiver // a3: argc // a4 (a4): on mips64 // Stack: // 0 arg slots on mips64 (4 args slots on mips) // args -- in a4/a4 on mips64, on stack on mips ProfileEntryHookStub::MaybeCallEntryHook(masm); // Save callee saved registers on the stack. __ MultiPush(kCalleeSaved | ra.bit()); // Save callee-saved FPU registers. __ MultiPushFPU(kCalleeSavedFPU); // Set up the reserved register for 0.0. __ Move(kDoubleRegZero, 0.0); // Load argv in s0 register. if (kMipsAbi == kN64) { __ mov(s0, a4); // 5th parameter in mips64 a4 (a4) register. } else { // Abi O32. // 5th parameter on stack for O32 abi. int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; offset_to_argv += kNumCalleeSavedFPU * kDoubleSize; __ ld(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize)); } __ InitializeRootRegister(); // We build an EntryFrame. __ li(a7, Operand(-1)); // Push a bad frame pointer to fail if it is used. int marker = type(); __ li(a6, Operand(Smi::FromInt(marker))); __ li(a5, Operand(Smi::FromInt(marker))); ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, isolate); __ li(a4, Operand(c_entry_fp)); __ ld(a4, MemOperand(a4)); __ Push(a7, a6, a5, a4); // Set up frame pointer for the frame to be pushed. __ daddiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); // Registers: // a0: entry_address // a1: function // a2: receiver_pointer // a3: argc // s0: argv // // Stack: // caller fp | // function slot | entry frame // context slot | // bad fp (0xff...f) | // callee saved registers + ra // [ O32: 4 args slots] // args // If this is the outermost JS call, set js_entry_sp value. Label non_outermost_js; ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate); __ li(a5, Operand(ExternalReference(js_entry_sp))); __ ld(a6, MemOperand(a5)); __ Branch(&non_outermost_js, ne, a6, Operand(zero_reg)); __ sd(fp, MemOperand(a5)); __ li(a4, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); Label cont; __ b(&cont); __ nop(); // Branch delay slot nop. __ bind(&non_outermost_js); __ li(a4, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); __ bind(&cont); __ push(a4); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. Coming in here the // fp will be invalid because the PushStackHandler below sets it to 0 to // signal the existence of the JSEntry frame. __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ sd(v0, MemOperand(a4)); // We come back from 'invoke'. result is in v0. __ LoadRoot(v0, Heap::kExceptionRootIndex); __ b(&exit); // b exposes branch delay slot. __ nop(); // Branch delay slot nop. // Invoke: Link this frame into the handler chain. __ bind(&invoke); __ PushStackHandler(); // If an exception not caught by another handler occurs, this handler // returns control to the code after the bal(&invoke) above, which // restores all kCalleeSaved registers (including cp and fp) to their // saved values before returning a failure to C. // Clear any pending exceptions. __ LoadRoot(a5, Heap::kTheHoleValueRootIndex); __ li(a4, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate))); __ sd(a5, MemOperand(a4)); // Invoke the function by calling through JS entry trampoline builtin. // Notice that we cannot store a reference to the trampoline code directly in // this stub, because runtime stubs are not traversed when doing GC. // Registers: // a0: entry_address // a1: function // a2: receiver_pointer // a3: argc // s0: argv // // Stack: // handler frame // entry frame // callee saved registers + ra // [ O32: 4 args slots] // args if (type() == StackFrame::ENTRY_CONSTRUCT) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, isolate); __ li(a4, Operand(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate()); __ li(a4, Operand(entry)); } __ ld(t9, MemOperand(a4)); // Deref address. // Call JSEntryTrampoline. __ daddiu(t9, t9, Code::kHeaderSize - kHeapObjectTag); __ Call(t9); // Unlink this frame from the handler chain. __ PopStackHandler(); __ bind(&exit); // v0 holds result // Check if the current stack frame is marked as the outermost JS frame. Label non_outermost_js_2; __ pop(a5); __ Branch(&non_outermost_js_2, ne, a5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ li(a5, Operand(ExternalReference(js_entry_sp))); __ sd(zero_reg, MemOperand(a5)); __ bind(&non_outermost_js_2); // Restore the top frame descriptors from the stack. __ pop(a5); __ li(a4, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate))); __ sd(a5, MemOperand(a4)); // Reset the stack to the callee saved registers. __ daddiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); // Restore callee-saved fpu registers. __ MultiPopFPU(kCalleeSavedFPU); // Restore callee saved registers from the stack. __ MultiPop(kCalleeSaved | ra.bit()); // Return. __ Jump(ra); } void LoadIndexedStringStub::Generate(MacroAssembler* masm) { // Return address is in ra. Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); Register index = LoadDescriptor::NameRegister(); Register scratch = a5; Register result = v0; DCHECK(!scratch.is(receiver) && !scratch.is(index)); DCHECK(!scratch.is(LoadWithVectorDescriptor::VectorRegister())); StringCharAtGenerator char_at_generator(receiver, index, scratch, result, &miss, // When not a string. &miss, // When not a number. &miss, // When index out of range. STRING_INDEX_IS_ARRAY_INDEX, RECEIVER_IS_STRING); char_at_generator.GenerateFast(masm); __ Ret(); StubRuntimeCallHelper call_helper; char_at_generator.GenerateSlow(masm, PART_OF_IC_HANDLER, call_helper); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); } void InstanceOfStub::Generate(MacroAssembler* masm) { Register const object = a1; // Object (lhs). Register const function = a0; // Function (rhs). Register const object_map = a2; // Map of {object}. Register const function_map = a3; // Map of {function}. Register const function_prototype = a4; // Prototype of {function}. Register const scratch = a5; DCHECK(object.is(InstanceOfDescriptor::LeftRegister())); DCHECK(function.is(InstanceOfDescriptor::RightRegister())); // Check if {object} is a smi. Label object_is_smi; __ JumpIfSmi(object, &object_is_smi); // Lookup the {function} and the {object} map in the global instanceof cache. // Note: This is safe because we clear the global instanceof cache whenever // we change the prototype of any object. Label fast_case, slow_case; __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex); __ Branch(&fast_case, ne, function, Operand(at)); __ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex); __ Branch(&fast_case, ne, object_map, Operand(at)); __ Ret(USE_DELAY_SLOT); __ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex); // In delay slot. // If {object} is a smi we can safely return false if {function} is a JS // function, otherwise we have to miss to the runtime and throw an exception. __ bind(&object_is_smi); __ JumpIfSmi(function, &slow_case); __ GetObjectType(function, function_map, scratch); __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE)); __ Ret(USE_DELAY_SLOT); __ LoadRoot(v0, Heap::kFalseValueRootIndex); // In delay slot. // Fast-case: The {function} must be a valid JSFunction. __ bind(&fast_case); __ JumpIfSmi(function, &slow_case); __ GetObjectType(function, function_map, scratch); __ Branch(&slow_case, ne, scratch, Operand(JS_FUNCTION_TYPE)); // Ensure that {function} has an instance prototype. __ lbu(scratch, FieldMemOperand(function_map, Map::kBitFieldOffset)); __ And(at, scratch, Operand(1 << Map::kHasNonInstancePrototype)); __ Branch(&slow_case, ne, at, Operand(zero_reg)); // Get the "prototype" (or initial map) of the {function}. __ ld(function_prototype, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); __ AssertNotSmi(function_prototype); // Resolve the prototype if the {function} has an initial map. Afterwards the // {function_prototype} will be either the JSReceiver prototype object or the // hole value, which means that no instances of the {function} were created so // far and hence we should return false. Label function_prototype_valid; __ GetObjectType(function_prototype, scratch, scratch); __ Branch(&function_prototype_valid, ne, scratch, Operand(MAP_TYPE)); __ ld(function_prototype, FieldMemOperand(function_prototype, Map::kPrototypeOffset)); __ bind(&function_prototype_valid); __ AssertNotSmi(function_prototype); // Update the global instanceof cache with the current {object} map and // {function}. The cached answer will be set when it is known below. __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); __ StoreRoot(object_map, Heap::kInstanceofCacheMapRootIndex); // Loop through the prototype chain looking for the {function} prototype. // Assume true, and change to false if not found. Register const object_instance_type = function_map; Register const map_bit_field = function_map; Register const null = scratch; Register const result = v0; Label done, loop, fast_runtime_fallback; __ LoadRoot(result, Heap::kTrueValueRootIndex); __ LoadRoot(null, Heap::kNullValueRootIndex); __ bind(&loop); // Check if the object needs to be access checked. __ lbu(map_bit_field, FieldMemOperand(object_map, Map::kBitFieldOffset)); __ And(map_bit_field, map_bit_field, Operand(1 << Map::kIsAccessCheckNeeded)); __ Branch(&fast_runtime_fallback, ne, map_bit_field, Operand(zero_reg)); // Check if the current object is a Proxy. __ lbu(object_instance_type, FieldMemOperand(object_map, Map::kInstanceTypeOffset)); __ Branch(&fast_runtime_fallback, eq, object_instance_type, Operand(JS_PROXY_TYPE)); __ ld(object, FieldMemOperand(object_map, Map::kPrototypeOffset)); __ Branch(&done, eq, object, Operand(function_prototype)); __ Branch(USE_DELAY_SLOT, &loop, ne, object, Operand(null)); __ ld(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); // In delay slot. __ LoadRoot(result, Heap::kFalseValueRootIndex); __ bind(&done); __ Ret(USE_DELAY_SLOT); __ StoreRoot(result, Heap::kInstanceofCacheAnswerRootIndex); // In delay slot. // Found Proxy or access check needed: Call the runtime __ bind(&fast_runtime_fallback); __ Push(object, function_prototype); // Invalidate the instanceof cache. DCHECK(Smi::FromInt(0) == 0); __ StoreRoot(zero_reg, Heap::kInstanceofCacheFunctionRootIndex); __ TailCallRuntime(Runtime::kHasInPrototypeChain); // Slow-case: Call the %InstanceOf runtime function. __ bind(&slow_case); __ Push(object, function); __ TailCallRuntime(Runtime::kInstanceOf); } void FunctionPrototypeStub::Generate(MacroAssembler* masm) { Label miss; Register receiver = LoadDescriptor::ReceiverRegister(); // Ensure that the vector and slot registers won't be clobbered before // calling the miss handler. DCHECK(!AreAliased(a4, a5, LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister())); NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, a4, a5, &miss); __ bind(&miss); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The displacement is the offset of the last parameter (if any) // relative to the frame pointer. const int kDisplacement = StandardFrameConstants::kCallerSPOffset - kPointerSize; DCHECK(a1.is(ArgumentsAccessReadDescriptor::index())); DCHECK(a0.is(ArgumentsAccessReadDescriptor::parameter_count())); // Check that the key is a smiGenerateReadElement. Label slow; __ JumpIfNotSmi(a1, &slow); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ ld(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); __ Branch(&adaptor, eq, a3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Check index (a1) against formal parameters count limit passed in // through register a0. Use unsigned comparison to get negative // check for free. __ Branch(&slow, hs, a1, Operand(a0)); // Read the argument from the stack and return it. __ dsubu(a3, a0, a1); __ SmiScale(a7, a3, kPointerSizeLog2); __ Daddu(a3, fp, Operand(a7)); __ Ret(USE_DELAY_SLOT); __ ld(v0, MemOperand(a3, kDisplacement)); // Arguments adaptor case: Check index (a1) against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ ld(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ Branch(&slow, Ugreater_equal, a1, Operand(a0)); // Read the argument from the adaptor frame and return it. __ dsubu(a3, a0, a1); __ SmiScale(a7, a3, kPointerSizeLog2); __ Daddu(a3, a2, Operand(a7)); __ Ret(USE_DELAY_SLOT); __ ld(v0, MemOperand(a3, kDisplacement)); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ push(a1); __ TailCallRuntime(Runtime::kArguments); } void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { // a1 : function // a2 : number of parameters (tagged) // a3 : parameters pointer DCHECK(a1.is(ArgumentsAccessNewDescriptor::function())); DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count())); DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer())); // Check if the calling frame is an arguments adaptor frame. Label runtime; __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset)); __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Patch the arguments.length and the parameters pointer in the current frame. __ ld(a2, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiScale(a7, a2, kPointerSizeLog2); __ Daddu(a4, a4, Operand(a7)); __ daddiu(a3, a4, StandardFrameConstants::kCallerSPOffset); __ bind(&runtime); __ Push(a1, a3, a2); __ TailCallRuntime(Runtime::kNewSloppyArguments); } void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { // a1 : function // a2 : number of parameters (tagged) // a3 : parameters pointer // Registers used over whole function: // a5 : arguments count (tagged) // a6 : mapped parameter count (tagged) DCHECK(a1.is(ArgumentsAccessNewDescriptor::function())); DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count())); DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer())); // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset)); __ Branch(&adaptor_frame, eq, a0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // No adaptor, parameter count = argument count. __ mov(a5, a2); __ Branch(USE_DELAY_SLOT, &try_allocate); __ mov(a6, a2); // In delay slot. // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ ld(a5, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiScale(t2, a5, kPointerSizeLog2); __ Daddu(a4, a4, Operand(t2)); __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset)); // a5 = argument count (tagged) // a6 = parameter count (tagged) // Compute the mapped parameter count = min(a6, a5) in a6. __ mov(a6, a2); __ Branch(&try_allocate, le, a6, Operand(a5)); __ mov(a6, a5); __ bind(&try_allocate); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; // If there are no mapped parameters, we do not need the parameter_map. Label param_map_size; DCHECK_EQ(static_cast(0), Smi::FromInt(0)); __ Branch(USE_DELAY_SLOT, ¶m_map_size, eq, a6, Operand(zero_reg)); __ mov(t1, zero_reg); // In delay slot: param map size = 0 when a6 == 0. __ SmiScale(t1, a6, kPointerSizeLog2); __ daddiu(t1, t1, kParameterMapHeaderSize); __ bind(¶m_map_size); // 2. Backing store. __ SmiScale(t2, a5, kPointerSizeLog2); __ Daddu(t1, t1, Operand(t2)); __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize)); // 3. Arguments object. __ Daddu(t1, t1, Operand(Heap::kSloppyArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ Allocate(t1, v0, t1, a4, &runtime, TAG_OBJECT); // v0 = address of new object(s) (tagged) // a2 = argument count (smi-tagged) // Get the arguments boilerplate from the current native context into a4. const int kNormalOffset = Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); const int kAliasedOffset = Context::SlotOffset(Context::FAST_ALIASED_ARGUMENTS_MAP_INDEX); __ ld(a4, NativeContextMemOperand()); Label skip2_ne, skip2_eq; __ Branch(&skip2_ne, ne, a6, Operand(zero_reg)); __ ld(a4, MemOperand(a4, kNormalOffset)); __ bind(&skip2_ne); __ Branch(&skip2_eq, eq, a6, Operand(zero_reg)); __ ld(a4, MemOperand(a4, kAliasedOffset)); __ bind(&skip2_eq); // v0 = address of new object (tagged) // a2 = argument count (smi-tagged) // a4 = address of arguments map (tagged) // a6 = mapped parameter count (tagged) __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset)); __ LoadRoot(t1, Heap::kEmptyFixedArrayRootIndex); __ sd(t1, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sd(t1, FieldMemOperand(v0, JSObject::kElementsOffset)); // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ AssertNotSmi(a1); const int kCalleeOffset = JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize; __ sd(a1, FieldMemOperand(v0, kCalleeOffset)); // Use the length (smi tagged) and set that as an in-object property too. __ AssertSmi(a5); STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); const int kLengthOffset = JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize; __ sd(a5, FieldMemOperand(v0, kLengthOffset)); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, a4 will point there, otherwise // it will point to the backing store. __ Daddu(a4, v0, Operand(Heap::kSloppyArgumentsObjectSize)); __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset)); // v0 = address of new object (tagged) // a2 = argument count (tagged) // a4 = address of parameter map or backing store (tagged) // a6 = mapped parameter count (tagged) // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; Label skip3; __ Branch(&skip3, ne, a6, Operand(Smi::FromInt(0))); // Move backing store address to a1, because it is // expected there when filling in the unmapped arguments. __ mov(a1, a4); __ bind(&skip3); __ Branch(&skip_parameter_map, eq, a6, Operand(Smi::FromInt(0))); __ LoadRoot(a5, Heap::kSloppyArgumentsElementsMapRootIndex); __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset)); __ Daddu(a5, a6, Operand(Smi::FromInt(2))); __ sd(a5, FieldMemOperand(a4, FixedArray::kLengthOffset)); __ sd(cp, FieldMemOperand(a4, FixedArray::kHeaderSize + 0 * kPointerSize)); __ SmiScale(t2, a6, kPointerSizeLog2); __ Daddu(a5, a4, Operand(t2)); __ Daddu(a5, a5, Operand(kParameterMapHeaderSize)); __ sd(a5, FieldMemOperand(a4, FixedArray::kHeaderSize + 1 * kPointerSize)); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ mov(a5, a6); __ Daddu(t1, a2, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ Dsubu(t1, t1, Operand(a6)); __ LoadRoot(a7, Heap::kTheHoleValueRootIndex); __ SmiScale(t2, a5, kPointerSizeLog2); __ Daddu(a1, a4, Operand(t2)); __ Daddu(a1, a1, Operand(kParameterMapHeaderSize)); // a1 = address of backing store (tagged) // a4 = address of parameter map (tagged) // a0 = temporary scratch (a.o., for address calculation) // t1 = loop variable (tagged) // a7 = the hole value __ jmp(¶meters_test); __ bind(¶meters_loop); __ Dsubu(a5, a5, Operand(Smi::FromInt(1))); __ SmiScale(a0, a5, kPointerSizeLog2); __ Daddu(a0, a0, Operand(kParameterMapHeaderSize - kHeapObjectTag)); __ Daddu(t2, a4, a0); __ sd(t1, MemOperand(t2)); __ Dsubu(a0, a0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); __ Daddu(t2, a1, a0); __ sd(a7, MemOperand(t2)); __ Daddu(t1, t1, Operand(Smi::FromInt(1))); __ bind(¶meters_test); __ Branch(¶meters_loop, ne, a5, Operand(Smi::FromInt(0))); // Restore t1 = argument count (tagged). __ ld(a5, FieldMemOperand(v0, kLengthOffset)); __ bind(&skip_parameter_map); // v0 = address of new object (tagged) // a1 = address of backing store (tagged) // a5 = argument count (tagged) // a6 = mapped parameter count (tagged) // t1 = scratch // Copy arguments header and remaining slots (if there are any). __ LoadRoot(t1, Heap::kFixedArrayMapRootIndex); __ sd(t1, FieldMemOperand(a1, FixedArray::kMapOffset)); __ sd(a5, FieldMemOperand(a1, FixedArray::kLengthOffset)); Label arguments_loop, arguments_test; __ SmiScale(t2, a6, kPointerSizeLog2); __ Dsubu(a3, a3, Operand(t2)); __ jmp(&arguments_test); __ bind(&arguments_loop); __ Dsubu(a3, a3, Operand(kPointerSize)); __ ld(a4, MemOperand(a3, 0)); __ SmiScale(t2, a6, kPointerSizeLog2); __ Daddu(t1, a1, Operand(t2)); __ sd(a4, FieldMemOperand(t1, FixedArray::kHeaderSize)); __ Daddu(a6, a6, Operand(Smi::FromInt(1))); __ bind(&arguments_test); __ Branch(&arguments_loop, lt, a6, Operand(a5)); // Return. __ Ret(); // Do the runtime call to allocate the arguments object. // a5 = argument count (tagged) __ bind(&runtime); __ Push(a1, a3, a5); __ TailCallRuntime(Runtime::kNewSloppyArguments); } void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) { // Return address is in ra. Label slow; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); // Check that the key is an array index, that is Uint32. __ And(t0, key, Operand(kSmiTagMask | kSmiSignMask)); __ Branch(&slow, ne, t0, Operand(zero_reg)); // Everything is fine, call runtime. __ Push(receiver, key); // Receiver, key. // Perform tail call to the entry. __ TailCallRuntime(Runtime::kLoadElementWithInterceptor); __ bind(&slow); PropertyAccessCompiler::TailCallBuiltin( masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // a1 : function // a2 : number of parameters (tagged) // a3 : parameters pointer DCHECK(a1.is(ArgumentsAccessNewDescriptor::function())); DCHECK(a2.is(ArgumentsAccessNewDescriptor::parameter_count())); DCHECK(a3.is(ArgumentsAccessNewDescriptor::parameter_pointer())); // Check if the calling frame is an arguments adaptor frame. Label try_allocate, runtime; __ ld(a4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(a0, MemOperand(a4, StandardFrameConstants::kContextOffset)); __ Branch(&try_allocate, ne, a0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Patch the arguments.length and the parameters pointer. __ ld(a2, MemOperand(a4, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiScale(at, a2, kPointerSizeLog2); __ Daddu(a4, a4, Operand(at)); __ Daddu(a3, a4, Operand(StandardFrameConstants::kCallerSPOffset)); // Try the new space allocation. Start out with computing the size // of the arguments object and the elements array in words. Label add_arguments_object; __ bind(&try_allocate); __ SmiUntag(t1, a2); __ Branch(&add_arguments_object, eq, a2, Operand(zero_reg)); __ Daddu(t1, t1, Operand(FixedArray::kHeaderSize / kPointerSize)); __ bind(&add_arguments_object); __ Daddu(t1, t1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); // Do the allocation of both objects in one go. __ Allocate(t1, v0, a4, a5, &runtime, static_cast(TAG_OBJECT | SIZE_IN_WORDS)); // Get the arguments boilerplate from the current native context. __ LoadNativeContextSlot(Context::STRICT_ARGUMENTS_MAP_INDEX, a4); __ sd(a4, FieldMemOperand(v0, JSObject::kMapOffset)); __ LoadRoot(a5, Heap::kEmptyFixedArrayRootIndex); __ sd(a5, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ sd(a5, FieldMemOperand(v0, JSObject::kElementsOffset)); // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ AssertSmi(a2); __ sd(a2, FieldMemOperand(v0, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize)); Label done; __ Branch(&done, eq, a2, Operand(zero_reg)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ Daddu(a4, v0, Operand(Heap::kStrictArgumentsObjectSize)); __ sd(a4, FieldMemOperand(v0, JSObject::kElementsOffset)); __ LoadRoot(a5, Heap::kFixedArrayMapRootIndex); __ sd(a5, FieldMemOperand(a4, FixedArray::kMapOffset)); __ sd(a2, FieldMemOperand(a4, FixedArray::kLengthOffset)); __ SmiUntag(a2); // Copy the fixed array slots. Label loop; // Set up a4 to point to the first array slot. __ Daddu(a4, a4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ bind(&loop); // Pre-decrement a3 with kPointerSize on each iteration. // Pre-decrement in order to skip receiver. __ Daddu(a3, a3, Operand(-kPointerSize)); __ ld(a5, MemOperand(a3)); // Post-increment a4 with kPointerSize on each iteration. __ sd(a5, MemOperand(a4)); __ Daddu(a4, a4, Operand(kPointerSize)); __ Dsubu(a2, a2, Operand(1)); __ Branch(&loop, ne, a2, Operand(zero_reg)); // Return. __ bind(&done); __ Ret(); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ Push(a1, a3, a2); __ TailCallRuntime(Runtime::kNewStrictArguments); } void RestParamAccessStub::GenerateNew(MacroAssembler* masm) { // a2 : number of parameters (tagged) // a3 : parameters pointer // a4 : rest parameter index (tagged) // Check if the calling frame is an arguments adaptor frame. Label runtime; __ ld(a0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ ld(a5, MemOperand(a0, StandardFrameConstants::kContextOffset)); __ Branch(&runtime, ne, a5, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Patch the arguments.length and the parameters pointer. __ ld(a2, MemOperand(a0, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiScale(at, a2, kPointerSizeLog2); __ Daddu(a3, a0, Operand(at)); __ Daddu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset)); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ Push(a2, a3, a4); __ TailCallRuntime(Runtime::kNewRestParam); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // sp[0]: last_match_info (expected JSArray) // sp[4]: previous index // sp[8]: subject string // sp[12]: JSRegExp object const int kLastMatchInfoOffset = 0 * kPointerSize; const int kPreviousIndexOffset = 1 * kPointerSize; const int kSubjectOffset = 2 * kPointerSize; const int kJSRegExpOffset = 3 * kPointerSize; Label runtime; // Allocation of registers for this function. These are in callee save // registers and will be preserved by the call to the native RegExp code, as // this code is called using the normal C calling convention. When calling // directly from generated code the native RegExp code will not do a GC and // therefore the content of these registers are safe to use after the call. // MIPS - using s0..s2, since we are not using CEntry Stub. Register subject = s0; Register regexp_data = s1; Register last_match_info_elements = s2; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address( isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(isolate()); __ li(a0, Operand(address_of_regexp_stack_memory_size)); __ ld(a0, MemOperand(a0, 0)); __ Branch(&runtime, eq, a0, Operand(zero_reg)); // Check that the first argument is a JSRegExp object. __ ld(a0, MemOperand(sp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(a0, &runtime); __ GetObjectType(a0, a1, a1); __ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE)); // Check that the RegExp has been compiled (data contains a fixed array). __ ld(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ SmiTst(regexp_data, a4); __ Check(nz, kUnexpectedTypeForRegExpDataFixedArrayExpected, a4, Operand(zero_reg)); __ GetObjectType(regexp_data, a0, a0); __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected, a0, Operand(FIXED_ARRAY_TYPE)); } // regexp_data: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ ld(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); __ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); // regexp_data: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ ld(a2, FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Check (number_of_captures + 1) * 2 <= offsets vector size // Or number_of_captures * 2 <= offsets vector size - 2 // Or number_of_captures <= offsets vector size / 2 - 1 // Multiplying by 2 comes for free since a2 is smi-tagged. STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); int temp = Isolate::kJSRegexpStaticOffsetsVectorSize / 2 - 1; __ Branch(&runtime, hi, a2, Operand(Smi::FromInt(temp))); // Reset offset for possibly sliced string. __ mov(t0, zero_reg); __ ld(subject, MemOperand(sp, kSubjectOffset)); __ JumpIfSmi(subject, &runtime); __ mov(a3, subject); // Make a copy of the original subject string. __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); // subject: subject string // a3: subject string // a0: subject string instance type // regexp_data: RegExp data (FixedArray) // Handle subject string according to its encoding and representation: // (1) Sequential string? If yes, go to (5). // (2) Anything but sequential or cons? If yes, go to (6). // (3) Cons string. If the string is flat, replace subject with first string. // Otherwise bailout. // (4) Is subject external? If yes, go to (7). // (5) Sequential string. Load regexp code according to encoding. // (E) Carry on. /// [...] // Deferred code at the end of the stub: // (6) Not a long external string? If yes, go to (8). // (7) External string. Make it, offset-wise, look like a sequential string. // Go to (5). // (8) Short external string or not a string? If yes, bail out to runtime. // (9) Sliced string. Replace subject with parent. Go to (4). Label check_underlying; // (4) Label seq_string; // (5) Label not_seq_nor_cons; // (6) Label external_string; // (7) Label not_long_external; // (8) // (1) Sequential string? If yes, go to (5). __ And(a1, a0, Operand(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); __ Branch(&seq_string, eq, a1, Operand(zero_reg)); // Go to (5). // (2) Anything but sequential or cons? If yes, go to (6). STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); // Go to (6). __ Branch(¬_seq_nor_cons, ge, a1, Operand(kExternalStringTag)); // (3) Cons string. Check that it's flat. // Replace subject with first string and reload instance type. __ ld(a0, FieldMemOperand(subject, ConsString::kSecondOffset)); __ LoadRoot(a1, Heap::kempty_stringRootIndex); __ Branch(&runtime, ne, a0, Operand(a1)); __ ld(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); // (4) Is subject external? If yes, go to (7). __ bind(&check_underlying); __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSeqStringTag == 0); __ And(at, a0, Operand(kStringRepresentationMask)); // The underlying external string is never a short external string. STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); __ Branch(&external_string, ne, at, Operand(zero_reg)); // Go to (7). // (5) Sequential string. Load regexp code according to encoding. __ bind(&seq_string); // subject: sequential subject string (or look-alike, external string) // a3: original subject string // Load previous index and check range before a3 is overwritten. We have to // use a3 instead of subject here because subject might have been only made // to look like a sequential string when it actually is an external string. __ ld(a1, MemOperand(sp, kPreviousIndexOffset)); __ JumpIfNotSmi(a1, &runtime); __ ld(a3, FieldMemOperand(a3, String::kLengthOffset)); __ Branch(&runtime, ls, a3, Operand(a1)); __ SmiUntag(a1); STATIC_ASSERT(kStringEncodingMask == 4); STATIC_ASSERT(kOneByteStringTag == 4); STATIC_ASSERT(kTwoByteStringTag == 0); __ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for one_byte. __ ld(t9, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset)); __ dsra(a3, a0, 2); // a3 is 1 for one_byte, 0 for UC16 (used below). __ ld(a5, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); __ Movz(t9, a5, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset. // (E) Carry on. String handling is done. // t9: irregexp code // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(t9, &runtime); // a1: previous index // a3: encoding of subject string (1 if one_byte, 0 if two_byte); // t9: code // subject: Subject string // regexp_data: RegExp data (FixedArray) // All checks done. Now push arguments for native regexp code. __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, a0, a2); // Isolates: note we add an additional parameter here (isolate pointer). const int kRegExpExecuteArguments = 9; const int kParameterRegisters = (kMipsAbi == kN64) ? 8 : 4; __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); // Stack pointer now points to cell where return address is to be written. // Arguments are before that on the stack or in registers, meaning we // treat the return address as argument 5. Thus every argument after that // needs to be shifted back by 1. Since DirectCEntryStub will handle // allocating space for the c argument slots, we don't need to calculate // that into the argument positions on the stack. This is how the stack will // look (sp meaning the value of sp at this moment): // Abi n64: // [sp + 1] - Argument 9 // [sp + 0] - saved ra // Abi O32: // [sp + 5] - Argument 9 // [sp + 4] - Argument 8 // [sp + 3] - Argument 7 // [sp + 2] - Argument 6 // [sp + 1] - Argument 5 // [sp + 0] - saved ra if (kMipsAbi == kN64) { // Argument 9: Pass current isolate address. __ li(a0, Operand(ExternalReference::isolate_address(isolate()))); __ sd(a0, MemOperand(sp, 1 * kPointerSize)); // Argument 8: Indicate that this is a direct call from JavaScript. __ li(a7, Operand(1)); // Argument 7: Start (high end) of backtracking stack memory area. __ li(a0, Operand(address_of_regexp_stack_memory_address)); __ ld(a0, MemOperand(a0, 0)); __ li(a2, Operand(address_of_regexp_stack_memory_size)); __ ld(a2, MemOperand(a2, 0)); __ daddu(a6, a0, a2); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(a5, zero_reg); // Argument 5: static offsets vector buffer. __ li(a4, Operand( ExternalReference::address_of_static_offsets_vector(isolate()))); } else { // O32. DCHECK(kMipsAbi == kO32); // Argument 9: Pass current isolate address. // CFunctionArgumentOperand handles MIPS stack argument slots. __ li(a0, Operand(ExternalReference::isolate_address(isolate()))); __ sd(a0, MemOperand(sp, 5 * kPointerSize)); // Argument 8: Indicate that this is a direct call from JavaScript. __ li(a0, Operand(1)); __ sd(a0, MemOperand(sp, 4 * kPointerSize)); // Argument 7: Start (high end) of backtracking stack memory area. __ li(a0, Operand(address_of_regexp_stack_memory_address)); __ ld(a0, MemOperand(a0, 0)); __ li(a2, Operand(address_of_regexp_stack_memory_size)); __ ld(a2, MemOperand(a2, 0)); __ daddu(a0, a0, a2); __ sd(a0, MemOperand(sp, 3 * kPointerSize)); // Argument 6: Set the number of capture registers to zero to force global // regexps to behave as non-global. This does not affect non-global regexps. __ mov(a0, zero_reg); __ sd(a0, MemOperand(sp, 2 * kPointerSize)); // Argument 5: static offsets vector buffer. __ li(a0, Operand( ExternalReference::address_of_static_offsets_vector(isolate()))); __ sd(a0, MemOperand(sp, 1 * kPointerSize)); } // For arguments 4 and 3 get string length, calculate start of string data // and calculate the shift of the index (0 for one_byte and 1 for two byte). __ Daddu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); __ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte. // Load the length from the original subject string from the previous stack // frame. Therefore we have to use fp, which points exactly to two pointer // sizes below the previous sp. (Because creating a new stack frame pushes // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) __ ld(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); // If slice offset is not 0, load the length from the original sliced string. // Argument 4, a3: End of string data // Argument 3, a2: Start of string data // Prepare start and end index of the input. __ dsllv(t1, t0, a3); __ daddu(t0, t2, t1); __ dsllv(t1, a1, a3); __ daddu(a2, t0, t1); __ ld(t2, FieldMemOperand(subject, String::kLengthOffset)); __ SmiUntag(t2); __ dsllv(t1, t2, a3); __ daddu(a3, t0, t1); // Argument 2 (a1): Previous index. // Already there // Argument 1 (a0): Subject string. __ mov(a0, subject); // Locate the code entry and call it. __ Daddu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag)); DirectCEntryStub stub(isolate()); stub.GenerateCall(masm, t9); __ LeaveExitFrame(false, no_reg, true); // v0: result // subject: subject string (callee saved) // regexp_data: RegExp data (callee saved) // last_match_info_elements: Last match info elements (callee saved) // Check the result. Label success; __ Branch(&success, eq, v0, Operand(1)); // We expect exactly one result since we force the called regexp to behave // as non-global. Label failure; __ Branch(&failure, eq, v0, Operand(NativeRegExpMacroAssembler::FAILURE)); // If not exception it can only be retry. Handle that in the runtime system. __ Branch(&runtime, ne, v0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. __ li(a1, Operand(isolate()->factory()->the_hole_value())); __ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, isolate()))); __ ld(v0, MemOperand(a2, 0)); __ Branch(&runtime, eq, v0, Operand(a1)); // For exception, throw the exception again. __ TailCallRuntime(Runtime::kRegExpExecReThrow); __ bind(&failure); // For failure and exception return null. __ li(v0, Operand(isolate()->factory()->null_value())); __ DropAndRet(4); // Process the result from the native regexp code. __ bind(&success); __ lw(a1, UntagSmiFieldMemOperand( regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. __ Daddu(a1, a1, Operand(1)); __ dsll(a1, a1, 1); // Multiply by 2. __ ld(a0, MemOperand(sp, kLastMatchInfoOffset)); __ JumpIfSmi(a0, &runtime); __ GetObjectType(a0, a2, a2); __ Branch(&runtime, ne, a2, Operand(JS_ARRAY_TYPE)); // Check that the JSArray is in fast case. __ ld(last_match_info_elements, FieldMemOperand(a0, JSArray::kElementsOffset)); __ ld(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); __ Branch(&runtime, ne, a0, Operand(at)); // Check that the last match info has space for the capture registers and the // additional information. __ ld(a0, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); __ Daddu(a2, a1, Operand(RegExpImpl::kLastMatchOverhead)); __ SmiUntag(at, a0); __ Branch(&runtime, gt, a2, Operand(at)); // a1: number of capture registers // subject: subject string // Store the capture count. __ SmiTag(a2, a1); // To smi. __ sd(a2, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastCaptureCountOffset)); // Store last subject and last input. __ sd(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastSubjectOffset)); __ mov(a2, subject); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset, subject, a7, kRAHasNotBeenSaved, kDontSaveFPRegs); __ mov(subject, a2); __ sd(subject, FieldMemOperand(last_match_info_elements, RegExpImpl::kLastInputOffset)); __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset, subject, a7, kRAHasNotBeenSaved, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(isolate()); __ li(a2, Operand(address_of_static_offsets_vector)); // a1: number of capture registers // a2: offsets vector Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wrapping after zero. __ Daddu(a0, last_match_info_elements, Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); __ bind(&next_capture); __ Dsubu(a1, a1, Operand(1)); __ Branch(&done, lt, a1, Operand(zero_reg)); // Read the value from the static offsets vector buffer. __ lw(a3, MemOperand(a2, 0)); __ daddiu(a2, a2, kIntSize); // Store the smi value in the last match info. __ SmiTag(a3); __ sd(a3, MemOperand(a0, 0)); __ Branch(&next_capture, USE_DELAY_SLOT); __ daddiu(a0, a0, kPointerSize); // In branch delay slot. __ bind(&done); // Return last match info. __ ld(v0, MemOperand(sp, kLastMatchInfoOffset)); __ DropAndRet(4); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec); // Deferred code for string handling. // (6) Not a long external string? If yes, go to (8). __ bind(¬_seq_nor_cons); // Go to (8). __ Branch(¬_long_external, gt, a1, Operand(kExternalStringTag)); // (7) External string. Make it, offset-wise, look like a sequential string. __ bind(&external_string); __ ld(a0, FieldMemOperand(subject, HeapObject::kMapOffset)); __ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ And(at, a0, Operand(kIsIndirectStringMask)); __ Assert(eq, kExternalStringExpectedButNotFound, at, Operand(zero_reg)); } __ ld(subject, FieldMemOperand(subject, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ Dsubu(subject, subject, SeqTwoByteString::kHeaderSize - kHeapObjectTag); __ jmp(&seq_string); // Go to (5). // (8) Short external string or not a string? If yes, bail out to runtime. __ bind(¬_long_external); STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask)); __ Branch(&runtime, ne, at, Operand(zero_reg)); // (9) Sliced string. Replace subject with parent. Go to (4). // Load offset into t0 and replace subject string with parent. __ ld(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset)); __ SmiUntag(t0); __ ld(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); __ jmp(&check_underlying); // Go to (4). #endif // V8_INTERPRETED_REGEXP } static void CallStubInRecordCallTarget(MacroAssembler* masm, CodeStub* stub) { // a0 : number of arguments to the construct function // a2 : feedback vector // a3 : slot in feedback vector (Smi) // a1 : the function to call FrameScope scope(masm, StackFrame::INTERNAL); const RegList kSavedRegs = 1 << 4 | // a0 1 << 5 | // a1 1 << 6 | // a2 1 << 7; // a3 // Number-of-arguments register must be smi-tagged to call out. __ SmiTag(a0); __ MultiPush(kSavedRegs); __ CallStub(stub); __ MultiPop(kSavedRegs); __ SmiUntag(a0); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a feedback vector slot. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // a0 : number of arguments to the construct function // a1 : the function to call // a2 : feedback vector // a3 : slot in feedback vector (Smi) Label initialize, done, miss, megamorphic, not_array_function; DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()), masm->isolate()->heap()->megamorphic_symbol()); DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()), masm->isolate()->heap()->uninitialized_symbol()); // Load the cache state into a5. __ dsrl(a5, a3, 32 - kPointerSizeLog2); __ Daddu(a5, a2, Operand(a5)); __ ld(a5, FieldMemOperand(a5, FixedArray::kHeaderSize)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. // We don't know if a5 is a WeakCell or a Symbol, but it's harmless to read at // this position in a symbol (see static asserts in type-feedback-vector.h). Label check_allocation_site; Register feedback_map = a6; Register weak_value = t0; __ ld(weak_value, FieldMemOperand(a5, WeakCell::kValueOffset)); __ Branch(&done, eq, a1, Operand(weak_value)); __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ Branch(&done, eq, a5, Operand(at)); __ ld(feedback_map, FieldMemOperand(a5, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kWeakCellMapRootIndex); __ Branch(&check_allocation_site, ne, feedback_map, Operand(at)); // If the weak cell is cleared, we have a new chance to become monomorphic. __ JumpIfSmi(weak_value, &initialize); __ jmp(&megamorphic); __ bind(&check_allocation_site); // If we came here, we need to see if we are the array function. // If we didn't have a matching function, and we didn't find the megamorph // sentinel, then we have in the slot either some other function or an // AllocationSite. __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Branch(&miss, ne, feedback_map, Operand(at)); // Make sure the function is the Array() function __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5); __ Branch(&megamorphic, ne, a1, Operand(a5)); __ jmp(&done); __ bind(&miss); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex); __ Branch(&initialize, eq, a5, Operand(at)); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ bind(&megamorphic); __ dsrl(a5, a3, 32 - kPointerSizeLog2); __ Daddu(a5, a2, Operand(a5)); __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ sd(at, FieldMemOperand(a5, FixedArray::kHeaderSize)); __ jmp(&done); // An uninitialized cache is patched with the function. __ bind(&initialize); // Make sure the function is the Array() function. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a5); __ Branch(¬_array_function, ne, a1, Operand(a5)); // The target function is the Array constructor, // Create an AllocationSite if we don't already have it, store it in the // slot. CreateAllocationSiteStub create_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &create_stub); __ Branch(&done); __ bind(¬_array_function); CreateWeakCellStub weak_cell_stub(masm->isolate()); CallStubInRecordCallTarget(masm, &weak_cell_stub); __ bind(&done); } void CallConstructStub::Generate(MacroAssembler* masm) { // a0 : number of arguments // a1 : the function to call // a2 : feedback vector // a3 : slot in feedback vector (Smi, for RecordCallTarget) Label non_function; // Check that the function is not a smi. __ JumpIfSmi(a1, &non_function); // Check that the function is a JSFunction. __ GetObjectType(a1, a5, a5); __ Branch(&non_function, ne, a5, Operand(JS_FUNCTION_TYPE)); GenerateRecordCallTarget(masm); __ dsrl(at, a3, 32 - kPointerSizeLog2); __ Daddu(a5, a2, at); Label feedback_register_initialized; // Put the AllocationSite from the feedback vector into a2, or undefined. __ ld(a2, FieldMemOperand(a5, FixedArray::kHeaderSize)); __ ld(a5, FieldMemOperand(a2, AllocationSite::kMapOffset)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Branch(&feedback_register_initialized, eq, a5, Operand(at)); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ bind(&feedback_register_initialized); __ AssertUndefinedOrAllocationSite(a2, a5); // Pass function as new target. __ mov(a3, a1); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ ld(a4, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); __ ld(a4, FieldMemOperand(a4, SharedFunctionInfo::kConstructStubOffset)); __ Daddu(at, a4, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(at); __ bind(&non_function); __ mov(a3, a1); __ Jump(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } // StringCharCodeAtGenerator. void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { DCHECK(!a4.is(index_)); DCHECK(!a4.is(result_)); DCHECK(!a4.is(object_)); // If the receiver is a smi trigger the non-string case. if (check_mode_ == RECEIVER_IS_UNKNOWN) { __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ And(a4, result_, Operand(kIsNotStringMask)); __ Branch(receiver_not_string_, ne, a4, Operand(zero_reg)); } // If the index is non-smi trigger the non-smi case. __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ ld(a4, FieldMemOperand(object_, String::kLengthOffset)); __ Branch(index_out_of_range_, ls, a4, Operand(index_)); __ SmiUntag(index_); StringCharLoadGenerator::Generate(masm, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void CallICStub::HandleArrayCase(MacroAssembler* masm, Label* miss) { // a1 - function // a3 - slot id // a2 - vector // a4 - allocation site (loaded from vector[slot]) __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, at); __ Branch(miss, ne, a1, Operand(at)); __ li(a0, Operand(arg_count())); // Increment the call count for monomorphic function calls. __ dsrl(t0, a3, 32 - kPointerSizeLog2); __ Daddu(a3, a2, Operand(t0)); __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize)); __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement))); __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize)); __ mov(a2, a4); __ mov(a3, a1); ArrayConstructorStub stub(masm->isolate(), arg_count()); __ TailCallStub(&stub); } void CallICStub::Generate(MacroAssembler* masm) { // a1 - function // a3 - slot id (Smi) // a2 - vector Label extra_checks_or_miss, call, call_function; int argc = arg_count(); ParameterCount actual(argc); // The checks. First, does r1 match the recorded monomorphic target? __ dsrl(a4, a3, 32 - kPointerSizeLog2); __ Daddu(a4, a2, Operand(a4)); __ ld(a4, FieldMemOperand(a4, FixedArray::kHeaderSize)); // We don't know that we have a weak cell. We might have a private symbol // or an AllocationSite, but the memory is safe to examine. // AllocationSite::kTransitionInfoOffset - contains a Smi or pointer to // FixedArray. // WeakCell::kValueOffset - contains a JSFunction or Smi(0) // Symbol::kHashFieldSlot - if the low bit is 1, then the hash is not // computed, meaning that it can't appear to be a pointer. If the low bit is // 0, then hash is computed, but the 0 bit prevents the field from appearing // to be a pointer. STATIC_ASSERT(WeakCell::kSize >= kPointerSize); STATIC_ASSERT(AllocationSite::kTransitionInfoOffset == WeakCell::kValueOffset && WeakCell::kValueOffset == Symbol::kHashFieldSlot); __ ld(a5, FieldMemOperand(a4, WeakCell::kValueOffset)); __ Branch(&extra_checks_or_miss, ne, a1, Operand(a5)); // The compare above could have been a SMI/SMI comparison. Guard against this // convincing us that we have a monomorphic JSFunction. __ JumpIfSmi(a1, &extra_checks_or_miss); // Increment the call count for monomorphic function calls. __ dsrl(t0, a3, 32 - kPointerSizeLog2); __ Daddu(a3, a2, Operand(t0)); __ ld(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize)); __ Daddu(t0, t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement))); __ sd(t0, FieldMemOperand(a3, FixedArray::kHeaderSize + kPointerSize)); __ bind(&call_function); __ Jump(masm->isolate()->builtins()->CallFunction(convert_mode()), RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), USE_DELAY_SLOT); __ li(a0, Operand(argc)); // In delay slot. __ bind(&extra_checks_or_miss); Label uninitialized, miss, not_allocation_site; __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ Branch(&call, eq, a4, Operand(at)); // Verify that a4 contains an AllocationSite __ ld(a5, FieldMemOperand(a4, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Branch(¬_allocation_site, ne, a5, Operand(at)); HandleArrayCase(masm, &miss); __ bind(¬_allocation_site); // The following cases attempt to handle MISS cases without going to the // runtime. if (FLAG_trace_ic) { __ Branch(&miss); } __ LoadRoot(at, Heap::kuninitialized_symbolRootIndex); __ Branch(&uninitialized, eq, a4, Operand(at)); // We are going megamorphic. If the feedback is a JSFunction, it is fine // to handle it here. More complex cases are dealt with in the runtime. __ AssertNotSmi(a4); __ GetObjectType(a4, a5, a5); __ Branch(&miss, ne, a5, Operand(JS_FUNCTION_TYPE)); __ dsrl(a4, a3, 32 - kPointerSizeLog2); __ Daddu(a4, a2, Operand(a4)); __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ sd(at, FieldMemOperand(a4, FixedArray::kHeaderSize)); __ bind(&call); __ Jump(masm->isolate()->builtins()->Call(convert_mode()), RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg), USE_DELAY_SLOT); __ li(a0, Operand(argc)); // In delay slot. __ bind(&uninitialized); // We are going monomorphic, provided we actually have a JSFunction. __ JumpIfSmi(a1, &miss); // Goto miss case if we do not have a function. __ GetObjectType(a1, a4, a4); __ Branch(&miss, ne, a4, Operand(JS_FUNCTION_TYPE)); // Make sure the function is not the Array() function, which requires special // behavior on MISS. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, a4); __ Branch(&miss, eq, a1, Operand(a4)); // Make sure the function belongs to the same native context. __ ld(t0, FieldMemOperand(a1, JSFunction::kContextOffset)); __ ld(t0, ContextMemOperand(t0, Context::NATIVE_CONTEXT_INDEX)); __ ld(t1, NativeContextMemOperand()); __ Branch(&miss, ne, t0, Operand(t1)); // Initialize the call counter. __ dsrl(at, a3, 32 - kPointerSizeLog2); __ Daddu(at, a2, Operand(at)); __ li(t0, Operand(Smi::FromInt(CallICNexus::kCallCountIncrement))); __ sd(t0, FieldMemOperand(at, FixedArray::kHeaderSize + kPointerSize)); // Store the function. Use a stub since we need a frame for allocation. // a2 - vector // a3 - slot // a1 - function { FrameScope scope(masm, StackFrame::INTERNAL); CreateWeakCellStub create_stub(masm->isolate()); __ Push(a1); __ CallStub(&create_stub); __ Pop(a1); } __ Branch(&call_function); // We are here because tracing is on or we encountered a MISS case we can't // handle here. __ bind(&miss); GenerateMiss(masm); __ Branch(&call); } void CallICStub::GenerateMiss(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); // Push the receiver and the function and feedback info. __ Push(a1, a2, a3); // Call the entry. __ CallRuntime(Runtime::kCallIC_Miss); // Move result to a1 and exit the internal frame. __ mov(a1, v0); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, EmbedMode embed_mode, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); // Consumed by runtime conversion function: if (embed_mode == PART_OF_IC_HANDLER) { __ Push(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_, index_); } else { __ Push(object_, index_); } if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero); } else { DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi); } // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ Move(index_, v0); if (embed_mode == PART_OF_IC_HANDLER) { __ Pop(LoadWithVectorDescriptor::VectorRegister(), LoadWithVectorDescriptor::SlotRegister(), object_); } else { __ pop(object_); } // Reload the instance type. __ ld(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); __ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ Branch(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ SmiTag(index_); __ Push(object_, index_); __ CallRuntime(Runtime::kStringCharCodeAtRT); __ Move(result_, v0); call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. __ JumpIfNotSmi(code_, &slow_case_); __ Branch(&slow_case_, hi, code_, Operand(Smi::FromInt(String::kMaxOneByteCharCode))); __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); // At this point code register contains smi tagged one_byte char code. __ SmiScale(at, code_, kPointerSizeLog2); __ Daddu(result_, result_, at); __ ld(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&slow_case_, eq, result_, Operand(at)); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kStringCharFromCode); __ Move(result_, v0); call_helper.AfterCall(masm); __ Branch(&exit_); __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); } enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 }; void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, String::Encoding encoding) { if (FLAG_debug_code) { // Check that destination is word aligned. __ And(scratch, dest, Operand(kPointerAlignmentMask)); __ Check(eq, kDestinationOfCopyNotAligned, scratch, Operand(zero_reg)); } // Assumes word reads and writes are little endian. // Nothing to do for zero characters. Label done; if (encoding == String::TWO_BYTE_ENCODING) { __ Daddu(count, count, count); } Register limit = count; // Read until dest equals this. __ Daddu(limit, dest, Operand(count)); Label loop_entry, loop; // Copy bytes from src to dest until dest hits limit. __ Branch(&loop_entry); __ bind(&loop); __ lbu(scratch, MemOperand(src)); __ daddiu(src, src, 1); __ sb(scratch, MemOperand(dest)); __ daddiu(dest, dest, 1); __ bind(&loop_entry); __ Branch(&loop, lt, dest, Operand(limit)); __ bind(&done); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // ra: return address // sp[0]: to // sp[4]: from // sp[8]: string // This stub is called from the native-call %_SubString(...), so // nothing can be assumed about the arguments. It is tested that: // "string" is a sequential string, // both "from" and "to" are smis, and // 0 <= from <= to <= string.length. // If any of these assumptions fail, we call the runtime system. const int kToOffset = 0 * kPointerSize; const int kFromOffset = 1 * kPointerSize; const int kStringOffset = 2 * kPointerSize; __ ld(a2, MemOperand(sp, kToOffset)); __ ld(a3, MemOperand(sp, kFromOffset)); STATIC_ASSERT(kSmiTag == 0); // Utilize delay slots. SmiUntag doesn't emit a jump, everything else is // safe in this case. __ JumpIfNotSmi(a2, &runtime); __ JumpIfNotSmi(a3, &runtime); // Both a2 and a3 are untagged integers. __ SmiUntag(a2, a2); __ SmiUntag(a3, a3); __ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0. __ Branch(&runtime, gt, a3, Operand(a2)); // Fail if from > to. __ Dsubu(a2, a2, a3); // Make sure first argument is a string. __ ld(v0, MemOperand(sp, kStringOffset)); __ JumpIfSmi(v0, &runtime); __ ld(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); __ And(a4, a1, Operand(kIsNotStringMask)); __ Branch(&runtime, ne, a4, Operand(zero_reg)); Label single_char; __ Branch(&single_char, eq, a2, Operand(1)); // Short-cut for the case of trivial substring. Label return_v0; // v0: original string // a2: result string length __ ld(a4, FieldMemOperand(v0, String::kLengthOffset)); __ SmiUntag(a4); // Return original string. __ Branch(&return_v0, eq, a2, Operand(a4)); // Longer than original string's length or negative: unsafe arguments. __ Branch(&runtime, hi, a2, Operand(a4)); // Shorter than original string's length: an actual substring. // Deal with different string types: update the index if necessary // and put the underlying string into a5. // v0: original string // a1: instance type // a2: length // a3: from index (untagged) Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ And(a4, a1, Operand(kIsIndirectStringMask)); __ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, a4, Operand(zero_reg)); // a4 is used as a scratch register and can be overwritten in either case. __ And(a4, a1, Operand(kSlicedNotConsMask)); __ Branch(&sliced_string, ne, a4, Operand(zero_reg)); // Cons string. Check whether it is flat, then fetch first part. __ ld(a5, FieldMemOperand(v0, ConsString::kSecondOffset)); __ LoadRoot(a4, Heap::kempty_stringRootIndex); __ Branch(&runtime, ne, a5, Operand(a4)); __ ld(a5, FieldMemOperand(v0, ConsString::kFirstOffset)); // Update instance type. __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&sliced_string); // Sliced string. Fetch parent and correct start index by offset. __ ld(a5, FieldMemOperand(v0, SlicedString::kParentOffset)); __ ld(a4, FieldMemOperand(v0, SlicedString::kOffsetOffset)); __ SmiUntag(a4); // Add offset to index. __ Daddu(a3, a3, a4); // Update instance type. __ ld(a1, FieldMemOperand(a5, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mov(a5, v0); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // a5: underlying subject string // a1: instance type of underlying subject string // a2: length // a3: adjusted start index (untagged) // Short slice. Copy instead of slicing. __ Branch(©_routine, lt, a2, Operand(SlicedString::kMinLength)); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ And(a4, a1, Operand(kStringEncodingMask)); __ Branch(&two_byte_slice, eq, a4, Operand(zero_reg)); __ AllocateOneByteSlicedString(v0, a2, a6, a7, &runtime); __ jmp(&set_slice_header); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(v0, a2, a6, a7, &runtime); __ bind(&set_slice_header); __ SmiTag(a3); __ sd(a5, FieldMemOperand(v0, SlicedString::kParentOffset)); __ sd(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset)); __ jmp(&return_v0); __ bind(©_routine); } // a5: underlying subject string // a1: instance type of underlying subject string // a2: length // a3: adjusted start index (untagged) Label two_byte_sequential, sequential_string, allocate_result; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ And(a4, a1, Operand(kExternalStringTag)); __ Branch(&sequential_string, eq, a4, Operand(zero_reg)); // Handle external string. // Rule out short external strings. STATIC_ASSERT(kShortExternalStringTag != 0); __ And(a4, a1, Operand(kShortExternalStringTag)); __ Branch(&runtime, ne, a4, Operand(zero_reg)); __ ld(a5, FieldMemOperand(a5, ExternalString::kResourceDataOffset)); // a5 already points to the first character of underlying string. __ jmp(&allocate_result); __ bind(&sequential_string); // Locate first character of underlying subject string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); __ Daddu(a5, a5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ bind(&allocate_result); // Sequential acii string. Allocate the result. STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); __ And(a4, a1, Operand(kStringEncodingMask)); __ Branch(&two_byte_sequential, eq, a4, Operand(zero_reg)); // Allocate and copy the resulting one_byte string. __ AllocateOneByteString(v0, a2, a4, a6, a7, &runtime); // Locate first character of substring to copy. __ Daddu(a5, a5, a3); // Locate first character of result. __ Daddu(a1, v0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); // v0: result string // a1: first character of result string // a2: result string length // a5: first character of substring to copy STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharacters( masm, a1, a5, a2, a3, String::ONE_BYTE_ENCODING); __ jmp(&return_v0); // Allocate and copy the resulting two-byte string. __ bind(&two_byte_sequential); __ AllocateTwoByteString(v0, a2, a4, a6, a7, &runtime); // Locate first character of substring to copy. STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); __ dsll(a4, a3, 1); __ Daddu(a5, a5, a4); // Locate first character of result. __ Daddu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // v0: result string. // a1: first character of result. // a2: result length. // a5: first character of substring to copy. STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); StringHelper::GenerateCopyCharacters( masm, a1, a5, a2, a3, String::TWO_BYTE_ENCODING); __ bind(&return_v0); Counters* counters = isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1, a3, a4); __ DropAndRet(3); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString); __ bind(&single_char); // v0: original string // a1: instance type // a2: length // a3: from index (untagged) __ SmiTag(a3); StringCharAtGenerator generator(v0, a3, a2, v0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER, RECEIVER_IS_STRING); generator.GenerateFast(masm); __ DropAndRet(3); generator.SkipSlow(masm, &runtime); } void ToNumberStub::Generate(MacroAssembler* masm) { // The ToNumber stub takes one argument in a0. Label not_smi; __ JumpIfNotSmi(a0, ¬_smi); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(¬_smi); Label not_heap_number; __ ld(a1, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset)); // a0: object // a1: instance type. __ Branch(¬_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE)); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(¬_heap_number); Label not_string, slow_string; __ Branch(¬_string, hs, a1, Operand(FIRST_NONSTRING_TYPE)); // Check if string has a cached array index. __ lwu(a2, FieldMemOperand(a0, String::kHashFieldOffset)); __ And(at, a2, Operand(String::kContainsCachedArrayIndexMask)); __ Branch(&slow_string, ne, at, Operand(zero_reg)); __ IndexFromHash(a2, a0); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(&slow_string); __ push(a0); // Push argument. __ TailCallRuntime(Runtime::kStringToNumber); __ bind(¬_string); Label not_oddball; __ Branch(¬_oddball, ne, a1, Operand(ODDBALL_TYPE)); __ Ret(USE_DELAY_SLOT); __ ld(v0, FieldMemOperand(a0, Oddball::kToNumberOffset)); __ bind(¬_oddball); __ push(a0); // Push argument. __ TailCallRuntime(Runtime::kToNumber); } void ToLengthStub::Generate(MacroAssembler* masm) { // The ToLength stub takes on argument in a0. Label not_smi, positive_smi; __ JumpIfNotSmi(a0, ¬_smi); STATIC_ASSERT(kSmiTag == 0); __ Branch(&positive_smi, ge, a0, Operand(zero_reg)); __ mov(a0, zero_reg); __ bind(&positive_smi); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(¬_smi); __ push(a0); // Push argument. __ TailCallRuntime(Runtime::kToLength); } void ToStringStub::Generate(MacroAssembler* masm) { // The ToString stub takes on argument in a0. Label is_number; __ JumpIfSmi(a0, &is_number); Label not_string; __ GetObjectType(a0, a1, a1); // a0: receiver // a1: receiver instance type __ Branch(¬_string, ge, a1, Operand(FIRST_NONSTRING_TYPE)); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); __ bind(¬_string); Label not_heap_number; __ Branch(¬_heap_number, ne, a1, Operand(HEAP_NUMBER_TYPE)); __ bind(&is_number); NumberToStringStub stub(isolate()); __ TailCallStub(&stub); __ bind(¬_heap_number); Label not_oddball; __ Branch(¬_oddball, ne, a1, Operand(ODDBALL_TYPE)); __ Ret(USE_DELAY_SLOT); __ ld(v0, FieldMemOperand(a0, Oddball::kToStringOffset)); __ bind(¬_oddball); __ push(a0); // Push argument. __ TailCallRuntime(Runtime::kToString); } void StringHelper::GenerateFlatOneByteStringEquals( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ ld(length, FieldMemOperand(left, String::kLengthOffset)); __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Branch(&check_zero_length, eq, length, Operand(scratch2)); __ bind(&strings_not_equal); // Can not put li in delayslot, it has multi instructions. __ li(v0, Operand(Smi::FromInt(NOT_EQUAL))); __ Ret(); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ Branch(&compare_chars, ne, length, Operand(zero_reg)); DCHECK(is_int16((intptr_t)Smi::FromInt(EQUAL))); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(EQUAL))); // Compare characters. __ bind(&compare_chars); GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3, v0, &strings_not_equal); // Characters are equal. __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(EQUAL))); } void StringHelper::GenerateCompareFlatOneByteStrings( MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3, Register scratch4) { Label result_not_equal, compare_lengths; // Find minimum length and length difference. __ ld(scratch1, FieldMemOperand(left, String::kLengthOffset)); __ ld(scratch2, FieldMemOperand(right, String::kLengthOffset)); __ Dsubu(scratch3, scratch1, Operand(scratch2)); Register length_delta = scratch3; __ slt(scratch4, scratch2, scratch1); __ Movn(scratch1, scratch2, scratch4); Register min_length = scratch1; STATIC_ASSERT(kSmiTag == 0); __ Branch(&compare_lengths, eq, min_length, Operand(zero_reg)); // Compare loop. GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, scratch4, v0, &result_not_equal); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); DCHECK(Smi::FromInt(EQUAL) == static_cast(0)); // Use length_delta as result if it's zero. __ mov(scratch2, length_delta); __ mov(scratch4, zero_reg); __ mov(v0, zero_reg); __ bind(&result_not_equal); // Conditionally update the result based either on length_delta or // the last comparion performed in the loop above. Label ret; __ Branch(&ret, eq, scratch2, Operand(scratch4)); __ li(v0, Operand(Smi::FromInt(GREATER))); __ Branch(&ret, gt, scratch2, Operand(scratch4)); __ li(v0, Operand(Smi::FromInt(LESS))); __ bind(&ret); __ Ret(); } void StringHelper::GenerateOneByteCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch1, Register scratch2, Register scratch3, Label* chars_not_equal) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ Daddu(scratch1, length, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); __ Daddu(left, left, Operand(scratch1)); __ Daddu(right, right, Operand(scratch1)); __ Dsubu(length, zero_reg, length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ Daddu(scratch3, left, index); __ lbu(scratch1, MemOperand(scratch3)); __ Daddu(scratch3, right, index); __ lbu(scratch2, MemOperand(scratch3)); __ Branch(chars_not_equal, ne, scratch1, Operand(scratch2)); __ Daddu(index, index, 1); __ Branch(&loop, ne, index, Operand(zero_reg)); } void StringCompareStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a1 : left // -- a0 : right // -- ra : return address // ----------------------------------- __ AssertString(a1); __ AssertString(a0); Label not_same; __ Branch(¬_same, ne, a0, Operand(a1)); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a1, a2); __ Ret(); __ bind(¬_same); // Check that both objects are sequential one-byte strings. Label runtime; __ JumpIfNotBothSequentialOneByteStrings(a1, a0, a2, a3, &runtime); // Compare flat ASCII strings natively. __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, a2, a3); StringHelper::GenerateCompareFlatOneByteStrings(masm, a1, a0, a2, a3, t0, t1); __ bind(&runtime); __ Push(a1, a0); __ TailCallRuntime(Runtime::kStringCompare); } void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a1 : left // -- a0 : right // -- ra : return address // ----------------------------------- // Load a2 with the allocation site. We stick an undefined dummy value here // and replace it with the real allocation site later when we instantiate this // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). __ li(a2, handle(isolate()->heap()->undefined_value())); // Make sure that we actually patched the allocation site. if (FLAG_debug_code) { __ And(at, a2, Operand(kSmiTagMask)); __ Assert(ne, kExpectedAllocationSite, at, Operand(zero_reg)); __ ld(a4, FieldMemOperand(a2, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite, a4, Operand(at)); } // Tail call into the stub that handles binary operations with allocation // sites. BinaryOpWithAllocationSiteStub stub(isolate(), state()); __ TailCallStub(&stub); } void CompareICStub::GenerateBooleans(MacroAssembler* masm) { DCHECK_EQ(CompareICState::BOOLEAN, state()); Label miss; __ CheckMap(a1, a2, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); __ CheckMap(a0, a3, Heap::kBooleanMapRootIndex, &miss, DO_SMI_CHECK); if (op() != Token::EQ_STRICT && is_strong(strength())) { __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion); } else { if (!Token::IsEqualityOp(op())) { __ ld(a1, FieldMemOperand(a1, Oddball::kToNumberOffset)); __ AssertSmi(a1); __ ld(a0, FieldMemOperand(a0, Oddball::kToNumberOffset)); __ AssertSmi(a0); } __ Ret(USE_DELAY_SLOT); __ Dsubu(v0, a1, a0); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateSmis(MacroAssembler* masm) { DCHECK(state() == CompareICState::SMI); Label miss; __ Or(a2, a1, a0); __ JumpIfNotSmi(a2, &miss); if (GetCondition() == eq) { // For equality we do not care about the sign of the result. __ Ret(USE_DELAY_SLOT); __ Dsubu(v0, a0, a1); } else { // Untag before subtracting to avoid handling overflow. __ SmiUntag(a1); __ SmiUntag(a0); __ Ret(USE_DELAY_SLOT); __ Dsubu(v0, a1, a0); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateNumbers(MacroAssembler* masm) { DCHECK(state() == CompareICState::NUMBER); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; if (left() == CompareICState::SMI) { __ JumpIfNotSmi(a1, &miss); } if (right() == CompareICState::SMI) { __ JumpIfNotSmi(a0, &miss); } // Inlining the double comparison and falling back to the general compare // stub if NaN is involved. // Load left and right operand. Label done, left, left_smi, right_smi; __ JumpIfSmi(a0, &right_smi); __ CheckMap(a0, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, DONT_DO_SMI_CHECK); __ Dsubu(a2, a0, Operand(kHeapObjectTag)); __ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset)); __ Branch(&left); __ bind(&right_smi); __ SmiUntag(a2, a0); // Can't clobber a0 yet. FPURegister single_scratch = f6; __ mtc1(a2, single_scratch); __ cvt_d_w(f2, single_scratch); __ bind(&left); __ JumpIfSmi(a1, &left_smi); __ CheckMap(a1, a2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, DONT_DO_SMI_CHECK); __ Dsubu(a2, a1, Operand(kHeapObjectTag)); __ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset)); __ Branch(&done); __ bind(&left_smi); __ SmiUntag(a2, a1); // Can't clobber a1 yet. single_scratch = f8; __ mtc1(a2, single_scratch); __ cvt_d_w(f0, single_scratch); __ bind(&done); // Return a result of -1, 0, or 1, or use CompareStub for NaNs. Label fpu_eq, fpu_lt; // Test if equal, and also handle the unordered/NaN case. __ BranchF(&fpu_eq, &unordered, eq, f0, f2); // Test if less (unordered case is already handled). __ BranchF(&fpu_lt, NULL, lt, f0, f2); // Otherwise it's greater, so just fall thru, and return. DCHECK(is_int16(GREATER) && is_int16(EQUAL) && is_int16(LESS)); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(GREATER)); __ bind(&fpu_eq); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(EQUAL)); __ bind(&fpu_lt); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(LESS)); __ bind(&unordered); __ bind(&generic_stub); CompareICStub stub(isolate(), op(), strength(), CompareICState::GENERIC, CompareICState::GENERIC, CompareICState::GENERIC); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&miss, ne, a0, Operand(at)); __ JumpIfSmi(a1, &unordered); __ GetObjectType(a1, a2, a2); __ Branch(&maybe_undefined2, ne, a2, Operand(HEAP_NUMBER_TYPE)); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&unordered, eq, a1, Operand(at)); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::INTERNALIZED_STRING); Label miss; // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are internalized strings. __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); __ Or(tmp1, tmp1, Operand(tmp2)); __ And(at, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); __ Branch(&miss, ne, at, Operand(zero_reg)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(a0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ mov(v0, right); // Internalized strings are compared by identity. __ Ret(ne, left, Operand(right)); DCHECK(is_int16(EQUAL)); __ Ret(USE_DELAY_SLOT); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { DCHECK(state() == CompareICState::UNIQUE_NAME); DCHECK(GetCondition() == eq); Label miss; // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are unique names. This leaves the instance // types loaded in tmp1 and tmp2. __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(tmp1, &miss); __ JumpIfNotUniqueNameInstanceType(tmp2, &miss); // Use a0 as result __ mov(v0, a0); // Unique names are compared by identity. Label done; __ Branch(&done, ne, left, Operand(right)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(a0)); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ li(v0, Operand(Smi::FromInt(EQUAL))); __ bind(&done); __ Ret(); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateStrings(MacroAssembler* masm) { DCHECK(state() == CompareICState::STRING); Label miss; bool equality = Token::IsEqualityOp(op()); // Registers containing left and right operands respectively. Register left = a1; Register right = a0; Register tmp1 = a2; Register tmp2 = a3; Register tmp3 = a4; Register tmp4 = a5; Register tmp5 = a6; // Check that both operands are heap objects. __ JumpIfEitherSmi(left, right, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ ld(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); __ ld(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); __ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kNotStringTag != 0); __ Or(tmp3, tmp1, tmp2); __ And(tmp5, tmp3, Operand(kIsNotStringMask)); __ Branch(&miss, ne, tmp5, Operand(zero_reg)); // Fast check for identical strings. Label left_ne_right; STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Branch(&left_ne_right, ne, left, Operand(right)); __ Ret(USE_DELAY_SLOT); __ mov(v0, zero_reg); // In the delay slot. __ bind(&left_ne_right); // Handle not identical strings. // Check that both strings are internalized strings. If they are, we're done // because we already know they are not identical. We know they are both // strings. if (equality) { DCHECK(GetCondition() == eq); STATIC_ASSERT(kInternalizedTag == 0); __ Or(tmp3, tmp1, Operand(tmp2)); __ And(tmp5, tmp3, Operand(kIsNotInternalizedMask)); Label is_symbol; __ Branch(&is_symbol, ne, tmp5, Operand(zero_reg)); // Make sure a0 is non-zero. At this point input operands are // guaranteed to be non-zero. DCHECK(right.is(a0)); __ Ret(USE_DELAY_SLOT); __ mov(v0, a0); // In the delay slot. __ bind(&is_symbol); } // Check that both strings are sequential one_byte. Label runtime; __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, &runtime); // Compare flat one_byte strings. Returns when done. if (equality) { StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2, tmp3); } else { StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, tmp2, tmp3, tmp4); } // Handle more complex cases in runtime. __ bind(&runtime); __ Push(left, right); if (equality) { __ TailCallRuntime(Runtime::kStringEquals); } else { __ TailCallRuntime(Runtime::kStringCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateReceivers(MacroAssembler* masm) { DCHECK_EQ(CompareICState::RECEIVER, state()); Label miss; __ And(a2, a1, Operand(a0)); __ JumpIfSmi(a2, &miss); STATIC_ASSERT(LAST_TYPE == LAST_JS_RECEIVER_TYPE); __ GetObjectType(a0, a2, a2); __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE)); __ GetObjectType(a1, a2, a2); __ Branch(&miss, lt, a2, Operand(FIRST_JS_RECEIVER_TYPE)); DCHECK_EQ(eq, GetCondition()); __ Ret(USE_DELAY_SLOT); __ dsubu(v0, a0, a1); __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateKnownReceivers(MacroAssembler* masm) { Label miss; Handle cell = Map::WeakCellForMap(known_map_); __ And(a2, a1, a0); __ JumpIfSmi(a2, &miss); __ GetWeakValue(a4, cell); __ ld(a2, FieldMemOperand(a0, HeapObject::kMapOffset)); __ ld(a3, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Branch(&miss, ne, a2, Operand(a4)); __ Branch(&miss, ne, a3, Operand(a4)); if (Token::IsEqualityOp(op())) { __ Ret(USE_DELAY_SLOT); __ dsubu(v0, a0, a1); } else if (is_strong(strength())) { __ TailCallRuntime(Runtime::kThrowStrongModeImplicitConversion); } else { if (op() == Token::LT || op() == Token::LTE) { __ li(a2, Operand(Smi::FromInt(GREATER))); } else { __ li(a2, Operand(Smi::FromInt(LESS))); } __ Push(a1, a0, a2); __ TailCallRuntime(Runtime::kCompare); } __ bind(&miss); GenerateMiss(masm); } void CompareICStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. FrameScope scope(masm, StackFrame::INTERNAL); __ Push(a1, a0); __ Push(ra, a1, a0); __ li(a4, Operand(Smi::FromInt(op()))); __ daddiu(sp, sp, -kPointerSize); __ CallRuntime(Runtime::kCompareIC_Miss, 3, kDontSaveFPRegs, USE_DELAY_SLOT); __ sd(a4, MemOperand(sp)); // In the delay slot. // Compute the entry point of the rewritten stub. __ Daddu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Restore registers. __ Pop(a1, a0, ra); } __ Jump(a2); } void DirectCEntryStub::Generate(MacroAssembler* masm) { // Make place for arguments to fit C calling convention. Most of the callers // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame // so they handle stack restoring and we don't have to do that here. // Any caller of DirectCEntryStub::GenerateCall must take care of dropping // kCArgsSlotsSize stack space after the call. __ daddiu(sp, sp, -kCArgsSlotsSize); // Place the return address on the stack, making the call // GC safe. The RegExp backend also relies on this. __ sd(ra, MemOperand(sp, kCArgsSlotsSize)); __ Call(t9); // Call the C++ function. __ ld(t9, MemOperand(sp, kCArgsSlotsSize)); if (FLAG_debug_code && FLAG_enable_slow_asserts) { // In case of an error the return address may point to a memory area // filled with kZapValue by the GC. // Dereference the address and check for this. __ Uld(a4, MemOperand(t9)); __ Assert(ne, kReceivedInvalidReturnAddress, a4, Operand(reinterpret_cast(kZapValue))); } __ Jump(t9); } void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { intptr_t loc = reinterpret_cast(GetCode().location()); __ Move(t9, target); __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE); __ Call(at); } void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register receiver, Register properties, Handle name, Register scratch0) { DCHECK(name->IsUniqueName()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // scratch0 points to properties hash. // Compute the masked index: (hash + i + i * i) & mask. Register index = scratch0; // Capacity is smi 2^n. __ SmiLoadUntag(index, FieldMemOperand(properties, kCapacityOffset)); __ Dsubu(index, index, Operand(1)); __ And(index, index, Operand(name->Hash() + NameDictionary::GetProbeOffset(i))); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); __ dsll(at, index, 1); __ Daddu(index, index, at); // index *= 3. Register entity_name = scratch0; // Having undefined at this place means the name is not contained. STATIC_ASSERT(kSmiTagSize == 1); Register tmp = properties; __ dsll(scratch0, index, kPointerSizeLog2); __ Daddu(tmp, properties, scratch0); __ ld(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); DCHECK(!tmp.is(entity_name)); __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); __ Branch(done, eq, entity_name, Operand(tmp)); // Load the hole ready for use below: __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); // Stop if found the property. __ Branch(miss, eq, entity_name, Operand(Handle(name))); Label good; __ Branch(&good, eq, entity_name, Operand(tmp)); // Check if the entry name is not a unique name. __ ld(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); __ lbu(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entity_name, miss); __ bind(&good); // Restore the properties. __ ld(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); } const int spill_mask = (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()); __ MultiPush(spill_mask); __ ld(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); __ li(a1, Operand(Handle(name))); NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); __ CallStub(&stub); __ mov(at, v0); __ MultiPop(spill_mask); __ Branch(done, eq, at, Operand(zero_reg)); __ Branch(miss, ne, at, Operand(zero_reg)); } // Probe the name dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found. Jump to // the |miss| label otherwise. // If lookup was successful |scratch2| will be equal to elements + 4 * index. void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register scratch1, Register scratch2) { DCHECK(!elements.is(scratch1)); DCHECK(!elements.is(scratch2)); DCHECK(!name.is(scratch1)); DCHECK(!name.is(scratch2)); __ AssertName(name); // Compute the capacity mask. __ ld(scratch1, FieldMemOperand(elements, kCapacityOffset)); __ SmiUntag(scratch1); __ Dsubu(scratch1, scratch1, Operand(1)); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ lwu(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ Daddu(scratch2, scratch2, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } __ dsrl(scratch2, scratch2, Name::kHashShift); __ And(scratch2, scratch1, scratch2); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); // scratch2 = scratch2 * 3. __ dsll(at, scratch2, 1); __ Daddu(scratch2, scratch2, at); // Check if the key is identical to the name. __ dsll(at, scratch2, kPointerSizeLog2); __ Daddu(scratch2, elements, at); __ ld(at, FieldMemOperand(scratch2, kElementsStartOffset)); __ Branch(done, eq, name, Operand(at)); } const int spill_mask = (ra.bit() | a6.bit() | a5.bit() | a4.bit() | a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) & ~(scratch1.bit() | scratch2.bit()); __ MultiPush(spill_mask); if (name.is(a0)) { DCHECK(!elements.is(a1)); __ Move(a1, name); __ Move(a0, elements); } else { __ Move(a0, elements); __ Move(a1, name); } NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); __ CallStub(&stub); __ mov(scratch2, a2); __ mov(at, v0); __ MultiPop(spill_mask); __ Branch(done, ne, at, Operand(zero_reg)); __ Branch(miss, eq, at, Operand(zero_reg)); } void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Registers: // result: NameDictionary to probe // a1: key // dictionary: NameDictionary to probe. // index: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Register result = v0; Register dictionary = a0; Register key = a1; Register index = a2; Register mask = a3; Register hash = a4; Register undefined = a5; Register entry_key = a6; Label in_dictionary, maybe_in_dictionary, not_in_dictionary; __ ld(mask, FieldMemOperand(dictionary, kCapacityOffset)); __ SmiUntag(mask); __ Dsubu(mask, mask, Operand(1)); __ lwu(hash, FieldMemOperand(key, Name::kHashFieldOffset)); __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. // Capacity is smi 2^n. if (i > 0) { // Add the probe offset (i + i * i) left shifted to avoid right shifting // the hash in a separate instruction. The value hash + i + i * i is right // shifted in the following and instruction. DCHECK(NameDictionary::GetProbeOffset(i) < 1 << (32 - Name::kHashFieldOffset)); __ Daddu(index, hash, Operand( NameDictionary::GetProbeOffset(i) << Name::kHashShift)); } else { __ mov(index, hash); } __ dsrl(index, index, Name::kHashShift); __ And(index, mask, index); // Scale the index by multiplying by the entry size. STATIC_ASSERT(NameDictionary::kEntrySize == 3); // index *= 3. __ mov(at, index); __ dsll(index, index, 1); __ Daddu(index, index, at); STATIC_ASSERT(kSmiTagSize == 1); __ dsll(index, index, kPointerSizeLog2); __ Daddu(index, index, dictionary); __ ld(entry_key, FieldMemOperand(index, kElementsStartOffset)); // Having undefined at this place means the name is not contained. __ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined)); // Stop if found the property. __ Branch(&in_dictionary, eq, entry_key, Operand(key)); if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { // Check if the entry name is not a unique name. __ ld(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); __ lbu(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode() == POSITIVE_LOOKUP) { __ Ret(USE_DELAY_SLOT); __ mov(result, zero_reg); } __ bind(&in_dictionary); __ Ret(USE_DELAY_SLOT); __ li(result, 1); __ bind(¬_in_dictionary); __ Ret(USE_DELAY_SLOT); __ mov(result, zero_reg); } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( Isolate* isolate) { StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); stub1.GetCode(); // Hydrogen code stubs need stub2 at snapshot time. StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); stub2.GetCode(); } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two branch+nop instructions are generated with labels so as to // get the offset fixed up correctly by the bind(Label*) call. We patch it // back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this // position) and the "beq zero_reg, zero_reg, ..." when we start and stop // incremental heap marking. // See RecordWriteStub::Patch for details. __ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting); __ nop(); __ beq(zero_reg, zero_reg, &skip_to_incremental_compacting); __ nop(); if (remembered_set_action() == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } __ Ret(); __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. PatchBranchIntoNop(masm, 0); PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action() == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm); regs_.Restore(masm); __ Ret(); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); Register address = a0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); DCHECK(!address.is(regs_.object())); DCHECK(!address.is(a0)); __ Move(address, regs_.address()); __ Move(a0, regs_.object()); __ Move(a1, address); __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); AllowExternalCallThatCantCauseGC scope(masm); __ CallCFunction( ExternalReference::incremental_marking_record_write_function(isolate()), argument_count); regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label on_black; Label need_incremental; Label need_incremental_pop_scratch; __ And(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask)); __ ld(regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ Dsubu(regs_.scratch1(), regs_.scratch1(), Operand(1)); __ sd(regs_.scratch1(), MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); __ Branch(&need_incremental, lt, regs_.scratch1(), Operand(zero_reg)); // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&on_black); // Get the value from the slot. __ ld(regs_.scratch0(), MemOperand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, eq, &ensure_not_white); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, &need_incremental); __ bind(&ensure_not_white); } // We need extra registers for this, so we push the object and the address // register temporarily. __ Push(regs_.object(), regs_.address()); __ JumpIfWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. regs_.address(), // Scratch. &need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), MacroAssembler::kReturnAtEnd); } else { __ Ret(); } __ bind(&need_incremental_pop_scratch); __ Pop(regs_.object(), regs_.address()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { CEntryStub ces(isolate(), 1, kSaveFPRegs); __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); int parameter_count_offset = StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; __ ld(a1, MemOperand(fp, parameter_count_offset)); if (function_mode() == JS_FUNCTION_STUB_MODE) { __ Daddu(a1, a1, Operand(1)); } masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); __ dsll(a1, a1, kPointerSizeLog2); __ Ret(USE_DELAY_SLOT); __ Daddu(sp, sp, a1); } void LoadICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister()); LoadICStub stub(isolate(), state()); stub.GenerateForTrampoline(masm); } void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(LoadWithVectorDescriptor::VectorRegister()); KeyedLoadICStub stub(isolate(), state()); stub.GenerateForTrampoline(masm); } void CallICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(a2); CallICStub stub(isolate(), state()); __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void LoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); } void LoadICStub::GenerateForTrampoline(MacroAssembler* masm) { GenerateImpl(masm, true); } static void HandleArrayCases(MacroAssembler* masm, Register feedback, Register receiver_map, Register scratch1, Register scratch2, bool is_polymorphic, Label* miss) { // feedback initially contains the feedback array Label next_loop, prepare_next; Label start_polymorphic; Register cached_map = scratch1; __ ld(cached_map, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(0))); __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset)); __ Branch(&start_polymorphic, ne, receiver_map, Operand(cached_map)); // found, now call handler. Register handler = feedback; __ ld(handler, FieldMemOperand(feedback, FixedArray::OffsetOfElementAt(1))); __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t9); Register length = scratch2; __ bind(&start_polymorphic); __ ld(length, FieldMemOperand(feedback, FixedArray::kLengthOffset)); if (!is_polymorphic) { // If the IC could be monomorphic we have to make sure we don't go past the // end of the feedback array. __ Branch(miss, eq, length, Operand(Smi::FromInt(2))); } Register too_far = length; Register pointer_reg = feedback; // +-----+------+------+-----+-----+ ... ----+ // | map | len | wm0 | h0 | wm1 | hN | // +-----+------+------+-----+-----+ ... ----+ // 0 1 2 len-1 // ^ ^ // | | // pointer_reg too_far // aka feedback scratch2 // also need receiver_map // use cached_map (scratch1) to look in the weak map values. __ SmiScale(too_far, length, kPointerSizeLog2); __ Daddu(too_far, feedback, Operand(too_far)); __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ Daddu(pointer_reg, feedback, Operand(FixedArray::OffsetOfElementAt(2) - kHeapObjectTag)); __ bind(&next_loop); __ ld(cached_map, MemOperand(pointer_reg)); __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset)); __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map)); __ ld(handler, MemOperand(pointer_reg, kPointerSize)); __ Daddu(t9, handler, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t9); __ bind(&prepare_next); __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 2)); __ Branch(&next_loop, lt, pointer_reg, Operand(too_far)); // We exhausted our array of map handler pairs. __ Branch(miss); } static void HandleMonomorphicCase(MacroAssembler* masm, Register receiver, Register receiver_map, Register feedback, Register vector, Register slot, Register scratch, Label* compare_map, Label* load_smi_map, Label* try_array) { __ JumpIfSmi(receiver, load_smi_map); __ ld(receiver_map, FieldMemOperand(receiver, HeapObject::kMapOffset)); __ bind(compare_map); Register cached_map = scratch; // Move the weak map into the weak_cell register. __ ld(cached_map, FieldMemOperand(feedback, WeakCell::kValueOffset)); __ Branch(try_array, ne, cached_map, Operand(receiver_map)); Register handler = feedback; __ SmiScale(handler, slot, kPointerSizeLog2); __ Daddu(handler, vector, Operand(handler)); __ ld(handler, FieldMemOperand(handler, FixedArray::kHeaderSize + kPointerSize)); __ Daddu(t9, handler, Code::kHeaderSize - kHeapObjectTag); __ Jump(t9); } void LoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // a1 Register name = LoadWithVectorDescriptor::NameRegister(); // a2 Register vector = LoadWithVectorDescriptor::VectorRegister(); // a3 Register slot = LoadWithVectorDescriptor::SlotRegister(); // a0 Register feedback = a4; Register receiver_map = a5; Register scratch1 = a6; __ SmiScale(feedback, slot, kPointerSizeLog2); __ Daddu(feedback, vector, Operand(feedback)); __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize)); // Try to quickly handle the monomorphic case without knowing for sure // if we have a weak cell in feedback. We do know it's safe to look // at WeakCell::kValueOffset. Label try_array, load_smi_map, compare_map; Label not_array, miss; HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot, scratch1, &compare_map, &load_smi_map, &try_array); // Is it a fixed array? __ bind(&try_array); __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); __ Branch(¬_array, ne, scratch1, Operand(at)); HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss); __ bind(¬_array); __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ Branch(&miss, ne, feedback, Operand(at)); Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::LOAD_IC)); masm->isolate()->stub_cache()->GenerateProbe(masm, Code::LOAD_IC, code_flags, receiver, name, feedback, receiver_map, scratch1, a7); __ bind(&miss); LoadIC::GenerateMiss(masm); __ bind(&load_smi_map); __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); __ Branch(&compare_map); } void KeyedLoadICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); } void KeyedLoadICStub::GenerateForTrampoline(MacroAssembler* masm) { GenerateImpl(masm, true); } void KeyedLoadICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { Register receiver = LoadWithVectorDescriptor::ReceiverRegister(); // a1 Register key = LoadWithVectorDescriptor::NameRegister(); // a2 Register vector = LoadWithVectorDescriptor::VectorRegister(); // a3 Register slot = LoadWithVectorDescriptor::SlotRegister(); // a0 Register feedback = a4; Register receiver_map = a5; Register scratch1 = a6; __ SmiScale(feedback, slot, kPointerSizeLog2); __ Daddu(feedback, vector, Operand(feedback)); __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize)); // Try to quickly handle the monomorphic case without knowing for sure // if we have a weak cell in feedback. We do know it's safe to look // at WeakCell::kValueOffset. Label try_array, load_smi_map, compare_map; Label not_array, miss; HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot, scratch1, &compare_map, &load_smi_map, &try_array); __ bind(&try_array); // Is it a fixed array? __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kFixedArrayMapRootIndex); __ Branch(¬_array, ne, scratch1, Operand(at)); // We have a polymorphic element handler. __ JumpIfNotSmi(key, &miss); Label polymorphic, try_poly_name; __ bind(&polymorphic); HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, true, &miss); __ bind(¬_array); // Is it generic? __ LoadRoot(at, Heap::kmegamorphic_symbolRootIndex); __ Branch(&try_poly_name, ne, feedback, Operand(at)); Handle megamorphic_stub = KeyedLoadIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState()); __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET); __ bind(&try_poly_name); // We might have a name in feedback, and a fixed array in the next slot. __ Branch(&miss, ne, key, Operand(feedback)); // If the name comparison succeeded, we know we have a fixed array with // at least one map/handler pair. __ SmiScale(feedback, slot, kPointerSizeLog2); __ Daddu(feedback, vector, Operand(feedback)); __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize)); HandleArrayCases(masm, feedback, receiver_map, scratch1, a7, false, &miss); __ bind(&miss); KeyedLoadIC::GenerateMiss(masm); __ bind(&load_smi_map); __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); __ Branch(&compare_map); } void VectorStoreICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister()); VectorStoreICStub stub(isolate(), state()); stub.GenerateForTrampoline(masm); } void VectorKeyedStoreICTrampolineStub::Generate(MacroAssembler* masm) { __ EmitLoadTypeFeedbackVector(VectorStoreICDescriptor::VectorRegister()); VectorKeyedStoreICStub stub(isolate(), state()); stub.GenerateForTrampoline(masm); } void VectorStoreICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); } void VectorStoreICStub::GenerateForTrampoline(MacroAssembler* masm) { GenerateImpl(masm, true); } void VectorStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // a1 Register key = VectorStoreICDescriptor::NameRegister(); // a2 Register vector = VectorStoreICDescriptor::VectorRegister(); // a3 Register slot = VectorStoreICDescriptor::SlotRegister(); // a4 DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0)); // a0 Register feedback = a5; Register receiver_map = a6; Register scratch1 = a7; __ SmiScale(scratch1, slot, kPointerSizeLog2); __ Daddu(feedback, vector, Operand(scratch1)); __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize)); // Try to quickly handle the monomorphic case without knowing for sure // if we have a weak cell in feedback. We do know it's safe to look // at WeakCell::kValueOffset. Label try_array, load_smi_map, compare_map; Label not_array, miss; HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot, scratch1, &compare_map, &load_smi_map, &try_array); // Is it a fixed array? __ bind(&try_array); __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset)); __ Branch(¬_array, ne, scratch1, Heap::kFixedArrayMapRootIndex); Register scratch2 = t0; HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, true, &miss); __ bind(¬_array); __ Branch(&miss, ne, feedback, Heap::kmegamorphic_symbolRootIndex); Code::Flags code_flags = Code::RemoveTypeAndHolderFromFlags( Code::ComputeHandlerFlags(Code::STORE_IC)); masm->isolate()->stub_cache()->GenerateProbe( masm, Code::STORE_IC, code_flags, receiver, key, feedback, receiver_map, scratch1, scratch2); __ bind(&miss); StoreIC::GenerateMiss(masm); __ bind(&load_smi_map); __ Branch(USE_DELAY_SLOT, &compare_map); __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot. } void VectorKeyedStoreICStub::Generate(MacroAssembler* masm) { GenerateImpl(masm, false); } void VectorKeyedStoreICStub::GenerateForTrampoline(MacroAssembler* masm) { GenerateImpl(masm, true); } static void HandlePolymorphicStoreCase(MacroAssembler* masm, Register feedback, Register receiver_map, Register scratch1, Register scratch2, Label* miss) { // feedback initially contains the feedback array Label next_loop, prepare_next; Label start_polymorphic; Label transition_call; Register cached_map = scratch1; Register too_far = scratch2; Register pointer_reg = feedback; __ ld(too_far, FieldMemOperand(feedback, FixedArray::kLengthOffset)); // +-----+------+------+-----+-----+-----+ ... ----+ // | map | len | wm0 | wt0 | h0 | wm1 | hN | // +-----+------+------+-----+-----+ ----+ ... ----+ // 0 1 2 len-1 // ^ ^ // | | // pointer_reg too_far // aka feedback scratch2 // also need receiver_map // use cached_map (scratch1) to look in the weak map values. __ SmiScale(too_far, too_far, kPointerSizeLog2); __ Daddu(too_far, feedback, Operand(too_far)); __ Daddu(too_far, too_far, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ Daddu(pointer_reg, feedback, Operand(FixedArray::OffsetOfElementAt(0) - kHeapObjectTag)); __ bind(&next_loop); __ ld(cached_map, MemOperand(pointer_reg)); __ ld(cached_map, FieldMemOperand(cached_map, WeakCell::kValueOffset)); __ Branch(&prepare_next, ne, receiver_map, Operand(cached_map)); // Is it a transitioning store? __ ld(too_far, MemOperand(pointer_reg, kPointerSize)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&transition_call, ne, too_far, Operand(at)); __ ld(pointer_reg, MemOperand(pointer_reg, kPointerSize * 2)); __ Daddu(t9, pointer_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t9); __ bind(&transition_call); __ ld(too_far, FieldMemOperand(too_far, WeakCell::kValueOffset)); __ JumpIfSmi(too_far, miss); __ ld(receiver_map, MemOperand(pointer_reg, kPointerSize * 2)); // Load the map into the correct register. DCHECK(feedback.is(VectorStoreTransitionDescriptor::MapRegister())); __ Move(feedback, too_far); __ Daddu(t9, receiver_map, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(t9); __ bind(&prepare_next); __ Daddu(pointer_reg, pointer_reg, Operand(kPointerSize * 3)); __ Branch(&next_loop, lt, pointer_reg, Operand(too_far)); // We exhausted our array of map handler pairs. __ Branch(miss); } void VectorKeyedStoreICStub::GenerateImpl(MacroAssembler* masm, bool in_frame) { Register receiver = VectorStoreICDescriptor::ReceiverRegister(); // a1 Register key = VectorStoreICDescriptor::NameRegister(); // a2 Register vector = VectorStoreICDescriptor::VectorRegister(); // a3 Register slot = VectorStoreICDescriptor::SlotRegister(); // a4 DCHECK(VectorStoreICDescriptor::ValueRegister().is(a0)); // a0 Register feedback = a5; Register receiver_map = a6; Register scratch1 = a7; __ SmiScale(scratch1, slot, kPointerSizeLog2); __ Daddu(feedback, vector, Operand(scratch1)); __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize)); // Try to quickly handle the monomorphic case without knowing for sure // if we have a weak cell in feedback. We do know it's safe to look // at WeakCell::kValueOffset. Label try_array, load_smi_map, compare_map; Label not_array, miss; HandleMonomorphicCase(masm, receiver, receiver_map, feedback, vector, slot, scratch1, &compare_map, &load_smi_map, &try_array); __ bind(&try_array); // Is it a fixed array? __ ld(scratch1, FieldMemOperand(feedback, HeapObject::kMapOffset)); __ Branch(¬_array, ne, scratch1, Heap::kFixedArrayMapRootIndex); // We have a polymorphic element handler. Label try_poly_name; Register scratch2 = t0; HandlePolymorphicStoreCase(masm, feedback, receiver_map, scratch1, scratch2, &miss); __ bind(¬_array); // Is it generic? __ Branch(&try_poly_name, ne, feedback, Heap::kmegamorphic_symbolRootIndex); Handle megamorphic_stub = KeyedStoreIC::ChooseMegamorphicStub(masm->isolate(), GetExtraICState()); __ Jump(megamorphic_stub, RelocInfo::CODE_TARGET); __ bind(&try_poly_name); // We might have a name in feedback, and a fixed array in the next slot. __ Branch(&miss, ne, key, Operand(feedback)); // If the name comparison succeeded, we know we have a fixed array with // at least one map/handler pair. __ SmiScale(scratch1, slot, kPointerSizeLog2); __ Daddu(feedback, vector, Operand(scratch1)); __ ld(feedback, FieldMemOperand(feedback, FixedArray::kHeaderSize + kPointerSize)); HandleArrayCases(masm, feedback, receiver_map, scratch1, scratch2, false, &miss); __ bind(&miss); KeyedStoreIC::GenerateMiss(masm); __ bind(&load_smi_map); __ Branch(USE_DELAY_SLOT, &compare_map); __ LoadRoot(receiver_map, Heap::kHeapNumberMapRootIndex); // In delay slot. } void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { if (masm->isolate()->function_entry_hook() != NULL) { ProfileEntryHookStub stub(masm->isolate()); __ push(ra); __ CallStub(&stub); __ pop(ra); } } void ProfileEntryHookStub::Generate(MacroAssembler* masm) { // The entry hook is a "push ra" instruction, followed by a call. // Note: on MIPS "push" is 2 instruction const int32_t kReturnAddressDistanceFromFunctionStart = Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize); // This should contain all kJSCallerSaved registers. const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. s5.bit(); // Saved stack pointer. // We also save ra, so the count here is one higher than the mask indicates. const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; // Save all caller-save registers as this may be called from anywhere. __ MultiPush(kSavedRegs | ra.bit()); // Compute the function's address for the first argument. __ Dsubu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart)); // The caller's return address is above the saved temporaries. // Grab that for the second argument to the hook. __ Daddu(a1, sp, Operand(kNumSavedRegs * kPointerSize)); // Align the stack if necessary. int frame_alignment = masm->ActivationFrameAlignment(); if (frame_alignment > kPointerSize) { __ mov(s5, sp); DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); __ And(sp, sp, Operand(-frame_alignment)); } __ Dsubu(sp, sp, kCArgsSlotsSize); #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64) int64_t entry_hook = reinterpret_cast(isolate()->function_entry_hook()); __ li(t9, Operand(entry_hook)); #else // Under the simulator we need to indirect the entry hook through a // trampoline function at a known address. // It additionally takes an isolate as a third parameter. __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); __ li(t9, Operand(ExternalReference(&dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); #endif // Call C function through t9 to conform ABI for PIC. __ Call(t9); // Restore the stack pointer if needed. if (frame_alignment > kPointerSize) { __ mov(sp, s5); } else { __ Daddu(sp, sp, kCArgsSlotsSize); } // Also pop ra to get Ret(0). __ MultiPop(kSavedRegs | ra.bit()); __ Ret(); } template static void CreateArrayDispatch(MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (mode == DISABLE_ALLOCATION_SITES) { T stub(masm->isolate(), GetInitialFastElementsKind(), mode); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(masm->isolate(), kind); __ TailCallStub(&stub, eq, a3, Operand(kind)); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } static void CreateArrayDispatchOneArgument(MacroAssembler* masm, AllocationSiteOverrideMode mode) { // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) // a3 - kind (if mode != DISABLE_ALLOCATION_SITES) // a0 - number of arguments // a1 - constructor? // sp[0] - last argument Label normal_sequence; if (mode == DONT_OVERRIDE) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); STATIC_ASSERT(FAST_DOUBLE_ELEMENTS == 4); STATIC_ASSERT(FAST_HOLEY_DOUBLE_ELEMENTS == 5); // is the low bit set? If so, we are holey and that is good. __ And(at, a3, Operand(1)); __ Branch(&normal_sequence, ne, at, Operand(zero_reg)); } // look at the first argument __ ld(a5, MemOperand(sp, 0)); __ Branch(&normal_sequence, eq, a5, Operand(zero_reg)); if (mode == DISABLE_ALLOCATION_SITES) { ElementsKind initial = GetInitialFastElementsKind(); ElementsKind holey_initial = GetHoleyElementsKind(initial); ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub_holey); __ bind(&normal_sequence); ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, DISABLE_ALLOCATION_SITES); __ TailCallStub(&stub); } else if (mode == DONT_OVERRIDE) { // We are going to create a holey array, but our kind is non-holey. // Fix kind and retry (only if we have an allocation site in the slot). __ Daddu(a3, a3, Operand(1)); if (FLAG_debug_code) { __ ld(a5, FieldMemOperand(a2, 0)); __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); __ Assert(eq, kExpectedAllocationSite, a5, Operand(at)); } // Save the resulting elements kind in type info. We can't just store a3 // in the AllocationSite::transition_info field because elements kind is // restricted to a portion of the field...upper bits need to be left alone. STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ ld(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset)); __ Daddu(a4, a4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); __ sd(a4, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset)); __ bind(&normal_sequence); int last_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= last_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); __ TailCallStub(&stub, eq, a3, Operand(kind)); } // If we reached this point there is a problem. __ Abort(kUnexpectedElementsKindInArrayConstructor); } else { UNREACHABLE(); } } template static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { int to_index = GetSequenceIndexFromFastElementsKind( TERMINAL_FAST_ELEMENTS_KIND); for (int i = 0; i <= to_index; ++i) { ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); T stub(isolate, kind); stub.GetCode(); if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); stub1.GetCode(); } } } void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); ArrayConstructorStubAheadOfTimeHelper( isolate); } void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( Isolate* isolate) { ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; for (int i = 0; i < 2; i++) { // For internal arrays we only need a few things. InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); stubh1.GetCode(); InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); stubh2.GetCode(); InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); stubh3.GetCode(); } } void ArrayConstructorStub::GenerateDispatchToArrayStub( MacroAssembler* masm, AllocationSiteOverrideMode mode) { if (argument_count() == ANY) { Label not_zero_case, not_one_case; __ And(at, a0, a0); __ Branch(¬_zero_case, ne, at, Operand(zero_reg)); CreateArrayDispatch(masm, mode); __ bind(¬_zero_case); __ Branch(¬_one_case, gt, a0, Operand(1)); CreateArrayDispatchOneArgument(masm, mode); __ bind(¬_one_case); CreateArrayDispatch(masm, mode); } else if (argument_count() == NONE) { CreateArrayDispatch(masm, mode); } else if (argument_count() == ONE) { CreateArrayDispatchOneArgument(masm, mode); } else if (argument_count() == MORE_THAN_ONE) { CreateArrayDispatch(masm, mode); } else { UNREACHABLE(); } } void ArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc (only if argument_count() == ANY) // -- a1 : constructor // -- a2 : AllocationSite or undefined // -- a3 : new target // -- sp[0] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ld(a4, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ SmiTst(a4, at); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, at, Operand(zero_reg)); __ GetObjectType(a4, a4, a5); __ Assert(eq, kUnexpectedInitialMapForArrayFunction, a5, Operand(MAP_TYPE)); // We should either have undefined in a2 or a valid AllocationSite __ AssertUndefinedOrAllocationSite(a2, a4); } // Enter the context of the Array function. __ ld(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); Label subclassing; __ Branch(&subclassing, ne, a1, Operand(a3)); Label no_info; // Get the elements kind and case on that. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&no_info, eq, a2, Operand(at)); __ ld(a3, FieldMemOperand(a2, AllocationSite::kTransitionInfoOffset)); __ SmiUntag(a3); STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask)); GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); __ bind(&no_info); GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); // Subclassing. __ bind(&subclassing); switch (argument_count()) { case ANY: case MORE_THAN_ONE: __ dsll(at, a0, kPointerSizeLog2); __ Daddu(at, sp, at); __ sd(a1, MemOperand(at)); __ li(at, Operand(3)); __ Daddu(a0, a0, at); break; case NONE: __ sd(a1, MemOperand(sp, 0 * kPointerSize)); __ li(a0, Operand(3)); break; case ONE: __ sd(a1, MemOperand(sp, 1 * kPointerSize)); __ li(a0, Operand(4)); break; } __ Push(a3, a2); __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); } void InternalArrayConstructorStub::GenerateCase( MacroAssembler* masm, ElementsKind kind) { InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); __ TailCallStub(&stub0, lo, a0, Operand(1)); InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); __ TailCallStub(&stubN, hi, a0, Operand(1)); if (IsFastPackedElementsKind(kind)) { // We might need to create a holey array // look at the first argument. __ ld(at, MemOperand(sp, 0)); InternalArraySingleArgumentConstructorStub stub1_holey(isolate(), GetHoleyElementsKind(kind)); __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg)); } InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); __ TailCallStub(&stub1); } void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- a0 : argc // -- a1 : constructor // -- sp[0] : return address // -- sp[4] : last argument // ----------------------------------- if (FLAG_debug_code) { // The array construct code is only set for the global and natives // builtin Array functions which always have maps. // Initial map for the builtin Array function should be a map. __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. __ SmiTst(a3, at); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, at, Operand(zero_reg)); __ GetObjectType(a3, a3, a4); __ Assert(eq, kUnexpectedInitialMapForArrayFunction, a4, Operand(MAP_TYPE)); } // Figure out the right elements kind. __ ld(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); // Load the map's "bit field 2" into a3. We only need the first byte, // but the following bit field extraction takes care of that anyway. __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); // Retrieve elements_kind from bit field 2. __ DecodeField(a3); if (FLAG_debug_code) { Label done; __ Branch(&done, eq, a3, Operand(FAST_ELEMENTS)); __ Assert( eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray, a3, Operand(FAST_HOLEY_ELEMENTS)); __ bind(&done); } Label fast_elements_case; __ Branch(&fast_elements_case, eq, a3, Operand(FAST_ELEMENTS)); GenerateCase(masm, FAST_HOLEY_ELEMENTS); __ bind(&fast_elements_case); GenerateCase(masm, FAST_ELEMENTS); } void LoadGlobalViaContextStub::Generate(MacroAssembler* masm) { Register context_reg = cp; Register slot_reg = a2; Register result_reg = v0; Label slow_case; // Go up context chain to the script context. for (int i = 0; i < depth(); ++i) { __ ld(result_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX)); context_reg = result_reg; } // Load the PropertyCell value at the specified slot. __ dsll(at, slot_reg, kPointerSizeLog2); __ Daddu(at, at, Operand(context_reg)); __ ld(result_reg, ContextMemOperand(at, 0)); __ ld(result_reg, FieldMemOperand(result_reg, PropertyCell::kValueOffset)); // Check that value is not the_hole. __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Branch(&slow_case, eq, result_reg, Operand(at)); __ Ret(); // Fallback to the runtime. __ bind(&slow_case); __ SmiTag(slot_reg); __ Push(slot_reg); __ TailCallRuntime(Runtime::kLoadGlobalViaContext); } void StoreGlobalViaContextStub::Generate(MacroAssembler* masm) { Register context_reg = cp; Register slot_reg = a2; Register value_reg = a0; Register cell_reg = a4; Register cell_value_reg = a5; Register cell_details_reg = a6; Label fast_heapobject_case, fast_smi_case, slow_case; if (FLAG_debug_code) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ Check(ne, kUnexpectedValue, value_reg, Operand(at)); } // Go up context chain to the script context. for (int i = 0; i < depth(); ++i) { __ ld(cell_reg, ContextMemOperand(context_reg, Context::PREVIOUS_INDEX)); context_reg = cell_reg; } // Load the PropertyCell at the specified slot. __ dsll(at, slot_reg, kPointerSizeLog2); __ Daddu(at, at, Operand(context_reg)); __ ld(cell_reg, ContextMemOperand(at, 0)); // Load PropertyDetails for the cell (actually only the cell_type and kind). __ ld(cell_details_reg, FieldMemOperand(cell_reg, PropertyCell::kDetailsOffset)); __ SmiUntag(cell_details_reg); __ And(cell_details_reg, cell_details_reg, PropertyDetails::PropertyCellTypeField::kMask | PropertyDetails::KindField::kMask | PropertyDetails::kAttributesReadOnlyMask); // Check if PropertyCell holds mutable data. Label not_mutable_data; __ Branch(¬_mutable_data, ne, cell_details_reg, Operand(PropertyDetails::PropertyCellTypeField::encode( PropertyCellType::kMutable) | PropertyDetails::KindField::encode(kData))); __ JumpIfSmi(value_reg, &fast_smi_case); __ bind(&fast_heapobject_case); __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset)); __ RecordWriteField(cell_reg, PropertyCell::kValueOffset, value_reg, cell_details_reg, kRAHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); // RecordWriteField clobbers the value register, so we need to reload. __ Ret(USE_DELAY_SLOT); __ ld(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset)); __ bind(¬_mutable_data); // Check if PropertyCell value matches the new value (relevant for Constant, // ConstantType and Undefined cells). Label not_same_value; __ ld(cell_value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset)); __ Branch(¬_same_value, ne, value_reg, Operand(cell_value_reg)); // Make sure the PropertyCell is not marked READ_ONLY. __ And(at, cell_details_reg, PropertyDetails::kAttributesReadOnlyMask); __ Branch(&slow_case, ne, at, Operand(zero_reg)); if (FLAG_debug_code) { Label done; // This can only be true for Constant, ConstantType and Undefined cells, // because we never store the_hole via this stub. __ Branch(&done, eq, cell_details_reg, Operand(PropertyDetails::PropertyCellTypeField::encode( PropertyCellType::kConstant) | PropertyDetails::KindField::encode(kData))); __ Branch(&done, eq, cell_details_reg, Operand(PropertyDetails::PropertyCellTypeField::encode( PropertyCellType::kConstantType) | PropertyDetails::KindField::encode(kData))); __ Check(eq, kUnexpectedValue, cell_details_reg, Operand(PropertyDetails::PropertyCellTypeField::encode( PropertyCellType::kUndefined) | PropertyDetails::KindField::encode(kData))); __ bind(&done); } __ Ret(); __ bind(¬_same_value); // Check if PropertyCell contains data with constant type (and is not // READ_ONLY). __ Branch(&slow_case, ne, cell_details_reg, Operand(PropertyDetails::PropertyCellTypeField::encode( PropertyCellType::kConstantType) | PropertyDetails::KindField::encode(kData))); // Now either both old and new values must be SMIs or both must be heap // objects with same map. Label value_is_heap_object; __ JumpIfNotSmi(value_reg, &value_is_heap_object); __ JumpIfNotSmi(cell_value_reg, &slow_case); // Old and new values are SMIs, no need for a write barrier here. __ bind(&fast_smi_case); __ Ret(USE_DELAY_SLOT); __ sd(value_reg, FieldMemOperand(cell_reg, PropertyCell::kValueOffset)); __ bind(&value_is_heap_object); __ JumpIfSmi(cell_value_reg, &slow_case); Register cell_value_map_reg = cell_value_reg; __ ld(cell_value_map_reg, FieldMemOperand(cell_value_reg, HeapObject::kMapOffset)); __ Branch(&fast_heapobject_case, eq, cell_value_map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset)); // Fallback to the runtime. __ bind(&slow_case); __ SmiTag(slot_reg); __ Push(slot_reg, value_reg); __ TailCallRuntime(is_strict(language_mode()) ? Runtime::kStoreGlobalViaContext_Strict : Runtime::kStoreGlobalViaContext_Sloppy); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { int64_t offset = (ref0.address() - ref1.address()); DCHECK(static_cast(offset) == offset); return static_cast(offset); } // Calls an API function. Allocates HandleScope, extracts returned value // from handle and propagates exceptions. Restores context. stack_space // - space to be unwound on exit (includes the call JS arguments space and // the additional space allocated for the fast call). static void CallApiFunctionAndReturn( MacroAssembler* masm, Register function_address, ExternalReference thunk_ref, int stack_space, int32_t stack_space_offset, MemOperand return_value_operand, MemOperand* context_restore_operand) { Isolate* isolate = masm->isolate(); ExternalReference next_address = ExternalReference::handle_scope_next_address(isolate); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(isolate), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(isolate), next_address); DCHECK(function_address.is(a1) || function_address.is(a2)); Label profiler_disabled; Label end_profiler_check; __ li(t9, Operand(ExternalReference::is_profiling_address(isolate))); __ lb(t9, MemOperand(t9, 0)); __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg)); // Additional parameter is the address of the actual callback. __ li(t9, Operand(thunk_ref)); __ jmp(&end_profiler_check); __ bind(&profiler_disabled); __ mov(t9, function_address); __ bind(&end_profiler_check); // Allocate HandleScope in callee-save registers. __ li(s3, Operand(next_address)); __ ld(s0, MemOperand(s3, kNextOffset)); __ ld(s1, MemOperand(s3, kLimitOffset)); __ lw(s2, MemOperand(s3, kLevelOffset)); __ Addu(s2, s2, Operand(1)); __ sw(s2, MemOperand(s3, kLevelOffset)); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, a0); __ li(a0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_enter_external_function(isolate), 1); __ PopSafepointRegisters(); } // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub(isolate); stub.GenerateCall(masm, t9); if (FLAG_log_timer_events) { FrameScope frame(masm, StackFrame::MANUAL); __ PushSafepointRegisters(); __ PrepareCallCFunction(1, a0); __ li(a0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::log_leave_external_function(isolate), 1); __ PopSafepointRegisters(); } Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; Label return_value_loaded; // Load value from ReturnValue. __ ld(v0, return_value_operand); __ bind(&return_value_loaded); // No more valid handles (the result handle was the last one). Restore // previous handle scope. __ sd(s0, MemOperand(s3, kNextOffset)); if (__ emit_debug_code()) { __ lw(a1, MemOperand(s3, kLevelOffset)); __ Check(eq, kUnexpectedLevelAfterReturnFromApiCall, a1, Operand(s2)); } __ Subu(s2, s2, Operand(1)); __ sw(s2, MemOperand(s3, kLevelOffset)); __ ld(at, MemOperand(s3, kLimitOffset)); __ Branch(&delete_allocated_handles, ne, s1, Operand(at)); // Leave the API exit frame. __ bind(&leave_exit_frame); bool restore_context = context_restore_operand != NULL; if (restore_context) { __ ld(cp, *context_restore_operand); } if (stack_space_offset != kInvalidStackOffset) { DCHECK(kCArgsSlotsSize == 0); __ ld(s0, MemOperand(sp, stack_space_offset)); } else { __ li(s0, Operand(stack_space)); } __ LeaveExitFrame(false, s0, !restore_context, NO_EMIT_RETURN, stack_space_offset != kInvalidStackOffset); // Check if the function scheduled an exception. __ LoadRoot(a4, Heap::kTheHoleValueRootIndex); __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate))); __ ld(a5, MemOperand(at)); __ Branch(&promote_scheduled_exception, ne, a4, Operand(a5)); __ Ret(); // Re-throw by promoting a scheduled exception. __ bind(&promote_scheduled_exception); __ TailCallRuntime(Runtime::kPromoteScheduledException); // HandleScope limit has changed. Delete allocated extensions. __ bind(&delete_allocated_handles); __ sd(s1, MemOperand(s3, kLimitOffset)); __ mov(s0, v0); __ mov(a0, v0); __ PrepareCallCFunction(1, s1); __ li(a0, Operand(ExternalReference::isolate_address(isolate))); __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), 1); __ mov(v0, s0); __ jmp(&leave_exit_frame); } static void CallApiFunctionStubHelper(MacroAssembler* masm, const ParameterCount& argc, bool return_first_arg, bool call_data_undefined) { // ----------- S t a t e ------------- // -- a0 : callee // -- a4 : call_data // -- a2 : holder // -- a1 : api_function_address // -- a3 : number of arguments if argc is a register // -- cp : context // -- // -- sp[0] : last argument // -- ... // -- sp[(argc - 1)* 8] : first argument // -- sp[argc * 8] : receiver // ----------------------------------- Register callee = a0; Register call_data = a4; Register holder = a2; Register api_function_address = a1; Register context = cp; typedef FunctionCallbackArguments FCA; STATIC_ASSERT(FCA::kContextSaveIndex == 6); STATIC_ASSERT(FCA::kCalleeIndex == 5); STATIC_ASSERT(FCA::kDataIndex == 4); STATIC_ASSERT(FCA::kReturnValueOffset == 3); STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); STATIC_ASSERT(FCA::kIsolateIndex == 1); STATIC_ASSERT(FCA::kHolderIndex == 0); STATIC_ASSERT(FCA::kArgsLength == 7); DCHECK(argc.is_immediate() || a3.is(argc.reg())); // Save context, callee and call data. __ Push(context, callee, call_data); // Load context from callee. __ ld(context, FieldMemOperand(callee, JSFunction::kContextOffset)); Register scratch = call_data; if (!call_data_undefined) { __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); } // Push return value and default return value. __ Push(scratch, scratch); __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate()))); // Push isolate and holder. __ Push(scratch, holder); // Prepare arguments. __ mov(scratch, sp); // Allocate the v8::Arguments structure in the arguments' space since // it's not controlled by GC. const int kApiStackSpace = 4; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); DCHECK(!api_function_address.is(a0) && !scratch.is(a0)); // a0 = FunctionCallbackInfo& // Arguments is after the return address. __ Daddu(a0, sp, Operand(1 * kPointerSize)); // FunctionCallbackInfo::implicit_args_ __ sd(scratch, MemOperand(a0, 0 * kPointerSize)); if (argc.is_immediate()) { // FunctionCallbackInfo::values_ __ Daddu(at, scratch, Operand((FCA::kArgsLength - 1 + argc.immediate()) * kPointerSize)); __ sd(at, MemOperand(a0, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc // Stored as int field, 32-bit integers within struct on stack always left // justified by n64 ABI. __ li(at, Operand(argc.immediate())); __ sw(at, MemOperand(a0, 2 * kPointerSize)); // FunctionCallbackInfo::is_construct_call_ = 0 __ sw(zero_reg, MemOperand(a0, 2 * kPointerSize + kIntSize)); } else { // FunctionCallbackInfo::values_ __ dsll(at, argc.reg(), kPointerSizeLog2); __ Daddu(at, at, scratch); __ Daddu(at, at, Operand((FCA::kArgsLength - 1) * kPointerSize)); __ sd(at, MemOperand(a0, 1 * kPointerSize)); // FunctionCallbackInfo::length_ = argc // Stored as int field, 32-bit integers within struct on stack always left // justified by n64 ABI. __ sw(argc.reg(), MemOperand(a0, 2 * kPointerSize)); // FunctionCallbackInfo::is_construct_call_ __ Daddu(argc.reg(), argc.reg(), Operand(FCA::kArgsLength + 1)); __ dsll(at, argc.reg(), kPointerSizeLog2); __ sw(at, MemOperand(a0, 2 * kPointerSize + kIntSize)); } ExternalReference thunk_ref = ExternalReference::invoke_function_callback(masm->isolate()); AllowExternalCallThatCantCauseGC scope(masm); MemOperand context_restore_operand( fp, (2 + FCA::kContextSaveIndex) * kPointerSize); // Stores return the first js argument. int return_value_offset = 0; if (return_first_arg) { return_value_offset = 2 + FCA::kArgsLength; } else { return_value_offset = 2 + FCA::kReturnValueOffset; } MemOperand return_value_operand(fp, return_value_offset * kPointerSize); int stack_space = 0; int32_t stack_space_offset = 4 * kPointerSize; if (argc.is_immediate()) { stack_space = argc.immediate() + FCA::kArgsLength + 1; stack_space_offset = kInvalidStackOffset; } CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, stack_space_offset, return_value_operand, &context_restore_operand); } void CallApiFunctionStub::Generate(MacroAssembler* masm) { bool call_data_undefined = this->call_data_undefined(); CallApiFunctionStubHelper(masm, ParameterCount(a3), false, call_data_undefined); } void CallApiAccessorStub::Generate(MacroAssembler* masm) { bool is_store = this->is_store(); int argc = this->argc(); bool call_data_undefined = this->call_data_undefined(); CallApiFunctionStubHelper(masm, ParameterCount(argc), is_store, call_data_undefined); } void CallApiGetterStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- sp[0] : name // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object // -- ... // -- a2 : api_function_address // ----------------------------------- Register api_function_address = ApiGetterDescriptor::function_address(); DCHECK(api_function_address.is(a2)); __ mov(a0, sp); // a0 = Handle __ Daddu(a1, a0, Operand(1 * kPointerSize)); // a1 = PCA const int kApiStackSpace = 1; FrameScope frame_scope(masm, StackFrame::MANUAL); __ EnterExitFrame(false, kApiStackSpace); // Create PropertyAccessorInfo instance on the stack above the exit frame with // a1 (internal::Object** args_) as the data. __ sd(a1, MemOperand(sp, 1 * kPointerSize)); __ Daddu(a1, sp, Operand(1 * kPointerSize)); // a1 = AccessorInfo& const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; ExternalReference thunk_ref = ExternalReference::invoke_accessor_getter_callback(isolate()); CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, kStackUnwindSpace, kInvalidStackOffset, MemOperand(fp, 6 * kPointerSize), NULL); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_MIPS64