// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_X64 #include "src/code-factory.h" #include "src/codegen.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- rax : number of arguments excluding receiver // -- rdi : target // -- rdx : new.target // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[8 * argc] : first argument // -- rsp[8 * (argc + 1)] : receiver // ----------------------------------- __ AssertFunction(rdi); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // Insert extra arguments. int num_extra_args = 0; if (extra_args != BuiltinExtraArguments::kNone) { __ PopReturnAddressTo(kScratchRegister); if (extra_args & BuiltinExtraArguments::kTarget) { ++num_extra_args; __ Push(rdi); } if (extra_args & BuiltinExtraArguments::kNewTarget) { ++num_extra_args; __ Push(rdx); } __ PushReturnAddressFrom(kScratchRegister); } // JumpToExternalReference expects rax to contain the number of arguments // including the receiver and the extra arguments. __ addp(rax, Immediate(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } static void CallRuntimePassFunction( MacroAssembler* masm, Runtime::FunctionId function_id) { // ----------- S t a t e ------------- // -- rdx : new target (preserved for callee) // -- rdi : target function (preserved for callee) // ----------------------------------- FrameScope scope(masm, StackFrame::INTERNAL); // Push a copy of the target function and the new target. __ Push(rdi); __ Push(rdx); // Function is also the parameter to the runtime call. __ Push(rdi); __ CallRuntime(function_id, 1); // Restore target function and new target. __ Pop(rdx); __ Pop(rdi); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ movp(kScratchRegister, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(kScratchRegister, FieldOperand(kScratchRegister, SharedFunctionInfo::kCodeOffset)); __ leap(kScratchRegister, FieldOperand(kScratchRegister, Code::kHeaderSize)); __ jmp(kScratchRegister); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ leap(rax, FieldOperand(rax, Code::kHeaderSize)); __ jmp(rax); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function, bool create_implicit_receiver) { // ----------- S t a t e ------------- // -- rax: number of arguments // -- rdi: constructor function // -- rbx: allocation site or undefined // -- rdx: new target // ----------------------------------- // Enter a construct frame. { FrameScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ AssertUndefinedOrAllocationSite(rbx); __ Push(rbx); __ Integer32ToSmi(rcx, rax); __ Push(rcx); if (create_implicit_receiver) { // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { // Verify that the new target is a JSFunction. __ CmpObjectType(rdx, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &rt_call); // Load the initial map and verify that it is in fact a map. // rdx: new target __ movp(rax, FieldOperand(rdx, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi DCHECK(kSmiTag == 0); __ JumpIfSmi(rax, &rt_call); // rdi: constructor // rax: initial map (if proven valid below) __ CmpObjectType(rax, MAP_TYPE, rbx); __ j(not_equal, &rt_call); // Fall back to runtime if the expected base constructor and base // constructor differ. __ cmpp(rdi, FieldOperand(rax, Map::kConstructorOrBackPointerOffset)); __ j(not_equal, &rt_call); // Now allocate the JSObject on the heap. __ movzxbp(r9, FieldOperand(rax, Map::kInstanceSizeOffset)); __ shlp(r9, Immediate(kPointerSizeLog2)); // r9: size of new object __ Allocate(r9, rbx, r9, no_reg, &rt_call, NO_ALLOCATION_FLAGS); // Allocated the JSObject, now initialize the fields. // rdi: constructor // rdx: new target // rax: initial map // rbx: JSObject (not HeapObject tagged - the actual address). // r9: start of next object __ movp(Operand(rbx, JSObject::kMapOffset), rax); __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); __ movp(Operand(rbx, JSObject::kPropertiesOffset), rcx); __ movp(Operand(rbx, JSObject::kElementsOffset), rcx); __ leap(rcx, Operand(rbx, JSObject::kHeaderSize)); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. __ orp(rbx, Immediate(kHeapObjectTag)); // Fill all the in-object properties with the appropriate filler. // rbx: JSObject (tagged) // rcx: First in-object property of JSObject (not tagged) __ LoadRoot(r11, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // The code below relies on these assumptions. STATIC_ASSERT(Map::kNoSlackTracking == 0); STATIC_ASSERT(Map::ConstructionCounter::kNext == 32); // Check if slack tracking is enabled. __ movl(rsi, FieldOperand(rax, Map::kBitField3Offset)); __ shrl(rsi, Immediate(Map::ConstructionCounter::kShift)); __ j(zero, &no_inobject_slack_tracking); // Map::kNoSlackTracking __ Push(rsi); // Save allocation count value. // Decrease generous allocation count. __ subl(FieldOperand(rax, Map::kBitField3Offset), Immediate(1 << Map::ConstructionCounter::kShift)); // Allocate object with a slack. __ movzxbp(rsi, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset)); __ negp(rsi); __ leap(rsi, Operand(r9, rsi, times_pointer_size, 0)); // rsi: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ cmpp(rcx, rsi); __ Assert(less_equal, kUnexpectedNumberOfPreAllocatedPropertyFields); } __ InitializeFieldsWithFiller(rcx, rsi, r11); // To allow truncation fill the remaining fields with one pointer // filler map. __ LoadRoot(r11, Heap::kOnePointerFillerMapRootIndex); __ InitializeFieldsWithFiller(rcx, r9, r11); __ Pop(rsi); // Restore allocation count value before decreasing. __ cmpl(rsi, Immediate(Map::kSlackTrackingCounterEnd)); __ j(not_equal, &allocated); // Push the constructor, new_target and the object to the stack, // and then the initial map as an argument to the runtime call. __ Push(rdi); __ Push(rdx); __ Push(rbx); __ Push(rax); // initial map __ CallRuntime(Runtime::kFinalizeInstanceSize); __ Pop(rbx); __ Pop(rdx); __ Pop(rdi); // Continue with JSObject being successfully allocated. // rdi: constructor // rdx: new target // rbx: JSObject (tagged) __ jmp(&allocated); __ bind(&no_inobject_slack_tracking); } __ InitializeFieldsWithFiller(rcx, r9, r11); // Continue with JSObject being successfully allocated // rdi: constructor // rdx: new target // rbx: JSObject (tagged) __ jmp(&allocated); } // Allocate the new receiver object using the runtime call. // rdi: constructor // rdx: new target __ bind(&rt_call); // Must restore rsi (context) before calling runtime. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Push the constructor and new_target twice, second pair as arguments // to the runtime call. __ Push(rdi); __ Push(rdx); __ Push(rdi); // constructor function __ Push(rdx); // new target __ CallRuntime(Runtime::kNewObject); __ movp(rbx, rax); // store result in rbx __ Pop(rdx); __ Pop(rdi); // Receiver for constructor call allocated. // rdi: constructor // rdx: new target // rbx: newly allocated object __ bind(&allocated); // Retrieve smi-tagged arguments count from the stack. __ movp(rax, Operand(rsp, 0)); __ SmiToInteger32(rax, rax); } if (create_implicit_receiver) { // Push the allocated receiver to the stack. We need two copies // because we may have to return the original one and the calling // conventions dictate that the called function pops the receiver. __ Push(rbx); __ Push(rbx); } else { __ PushRoot(Heap::kTheHoleValueRootIndex); } // Set up pointer to last argument. __ leap(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. Label loop, entry; __ movp(rcx, rax); __ jmp(&entry); __ bind(&loop); __ Push(Operand(rbx, rcx, times_pointer_size, 0)); __ bind(&entry); __ decp(rcx); __ j(greater_equal, &loop); // Call the function. if (is_api_function) { __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(rax); __ InvokeFunction(rdi, rdx, actual, CALL_FUNCTION, CheckDebugStepCallWrapper()); } // Store offset of return address for deoptimizer. if (create_implicit_receiver && !is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); if (create_implicit_receiver) { // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. __ JumpIfSmi(rax, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rax, FIRST_JS_RECEIVER_TYPE, rcx); __ j(above_equal, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ movp(rax, Operand(rsp, 0)); // Restore the arguments count and leave the construct frame. The // arguments count is stored below the receiver. __ bind(&exit); __ movp(rbx, Operand(rsp, 1 * kPointerSize)); } else { __ movp(rbx, Operand(rsp, 0)); } // Leave construct frame. } // Remove caller arguments from the stack and return. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); if (create_implicit_receiver) { Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->constructed_objects(), 1); } __ ret(0); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, true); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true, true); } void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false, false); } void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructedNonConstructable); } enum IsTagged { kRaxIsSmiTagged, kRaxIsUntaggedInt }; // Clobbers rcx, r11, kScratchRegister; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, IsTagged rax_is_tagged) { // rax : the number of items to be pushed to the stack // // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movp(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subp(rcx, kScratchRegister); // Make r11 the space we need for the array when it is unrolled onto the // stack. if (rax_is_tagged == kRaxIsSmiTagged) { __ PositiveSmiTimesPowerOfTwoToInteger64(r11, rax, kPointerSizeLog2); } else { DCHECK(rax_is_tagged == kRaxIsUntaggedInt); __ movp(r11, rax); __ shlq(r11, Immediate(kPointerSizeLog2)); } // Check if the arguments will overflow the stack. __ cmpp(rcx, r11); __ j(greater, &okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { ProfileEntryHookStub::MaybeCallEntryHook(masm); // Expects five C++ function parameters. // - Object* new_target // - JSFunction* function // - Object* receiver // - int argc // - Object*** argv // (see Handle::Invoke in execution.cc). // Open a C++ scope for the FrameScope. { // Platform specific argument handling. After this, the stack contains // an internal frame and the pushed function and receiver, and // register rax and rbx holds the argument count and argument array, // while rdi holds the function pointer, rsi the context, and rdx the // new.target. #ifdef _WIN64 // MSVC parameters in: // rcx : new_target // rdx : function // r8 : receiver // r9 : argc // [rsp+0x20] : argv // Clear the context before we push it when entering the internal frame. __ Set(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ movp(rsi, masm->ExternalOperand(context_address)); // Push the function and the receiver onto the stack. __ Push(rdx); __ Push(r8); // Load the number of arguments and setup pointer to the arguments. __ movp(rax, r9); // Load the previous frame pointer to access C argument on stack __ movp(kScratchRegister, Operand(rbp, 0)); __ movp(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); // Load the function pointer into rdi. __ movp(rdi, rdx); // Load the new.target into rdx. __ movp(rdx, rcx); #else // _WIN64 // GCC parameters in: // rdi : new_target // rsi : function // rdx : receiver // rcx : argc // r8 : argv __ movp(r11, rdi); __ movp(rdi, rsi); // rdi : function // r11 : new_target // Clear the context before we push it when entering the internal frame. __ Set(rsi, 0); // Enter an internal frame. FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ movp(rsi, masm->ExternalOperand(context_address)); // Push the function and receiver onto the stack. __ Push(rdi); __ Push(rdx); // Load the number of arguments and setup pointer to the arguments. __ movp(rax, rcx); __ movp(rbx, r8); // Load the new.target into rdx. __ movp(rdx, r11); #endif // _WIN64 // Current stack contents: // [rsp + 2 * kPointerSize ... ] : Internal frame // [rsp + kPointerSize] : function // [rsp] : receiver // Current register contents: // rax : argc // rbx : argv // rsi : context // rdi : function // rdx : new.target // Check if we have enough stack space to push all arguments. // Expects argument count in rax. Clobbers rcx, r11. Generate_CheckStackOverflow(masm, kRaxIsUntaggedInt); // Copy arguments to the stack in a loop. // Register rbx points to array of pointers to handle locations. // Push the values of these handles. Label loop, entry; __ Set(rcx, 0); // Set loop variable to 0. __ jmp(&entry, Label::kNear); __ bind(&loop); __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ Push(Operand(kScratchRegister, 0)); // dereference handle __ addp(rcx, Immediate(1)); __ bind(&entry); __ cmpp(rcx, rax); __ j(not_equal, &loop); // Invoke the builtin code. Handle builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the internal frame. Notice that this also removes the empty // context and the function left on the stack by the code // invocation. } // TODO(X64): Is argument correct? Is there a receiver to remove? __ ret(1 * kPointerSize); // Remove receiver. } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o rdi: the JS function object being called // o rdx: the new target // o rsi: our context // o rbp: the caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. // TODO(rmcilroy): We will need to include the current bytecode pointer in the // frame. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS function. __ Push(rdx); // Callee's new target. // Push zero for bytecode array offset. __ Push(Immediate(0)); // Get the bytecode array from the function object and load the pointer to the // first entry into edi (InterpreterBytecodeRegister). __ movp(rax, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(kInterpreterBytecodeArrayRegister, FieldOperand(rax, SharedFunctionInfo::kFunctionDataOffset)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rax); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ movl(rcx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ movp(rdx, rsp); __ subp(rdx, rcx); __ CompareRoot(rdx, Heap::kRealStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(always, &loop_check); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ Push(rdx); // Continue loop if not done. __ bind(&loop_check); __ subp(rcx, Immediate(kPointerSize)); __ j(greater_equal, &loop_header, Label::kNear); } // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's prologue: // - Support profiler (specifically profiling_counter). // - Call ProfileEntryHookStub when isolate has a function_entry_hook. // - Allow simulator stop operations if FLAG_stop_at is set. // - Code aging of the BytecodeArray object. // Perform stack guard check. { Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); __ Push(kInterpreterBytecodeArrayRegister); __ CallRuntime(Runtime::kStackGuard); __ Pop(kInterpreterBytecodeArrayRegister); __ bind(&ok); } // Load accumulator, register file, bytecode offset, dispatch table into // registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ movp(kInterpreterRegisterFileRegister, rbp); __ addp(kInterpreterRegisterFileRegister, Immediate(InterpreterFrameConstants::kRegisterFilePointerFromFp)); __ movp(kInterpreterBytecodeOffsetRegister, Immediate(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ LoadRoot(kInterpreterDispatchTableRegister, Heap::kInterpreterTableRootIndex); __ addp(kInterpreterDispatchTableRegister, Immediate(FixedArray::kHeaderSize - kHeapObjectTag)); // Dispatch to the first bytecode handler for the function. __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx, times_pointer_size, 0)); // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging // and header removal. __ addp(rbx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(rbx); } void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) { // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's EmitReturnSequence. // - Supporting FLAG_trace for Runtime::TraceExit. // - Support profiler (specifically decrementing profiling_counter // appropriately and calling out to HandleInterrupts if necessary). // The return value is in accumulator, which is already in rax. // Leave the frame (also dropping the register file). __ leave(); // Drop receiver + arguments and return. __ movl(rbx, FieldOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kParameterSizeOffset)); __ PopReturnAddressTo(rcx); __ addp(rsp, rbx); __ PushReturnAddressFrom(rcx); __ ret(0); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, bool push_receiver) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- // Find the address of the last argument. __ movp(rcx, rax); if (push_receiver) { __ addp(rcx, Immediate(1)); // Add one for receiver. } __ shlp(rcx, Immediate(kPointerSizeLog2)); __ negp(rcx); __ addp(rcx, rbx); // Push the arguments. Label loop_header, loop_check; __ j(always, &loop_check); __ bind(&loop_header); __ Push(Operand(rbx, 0)); __ subp(rbx, Immediate(kPointerSize)); __ bind(&loop_check); __ cmpp(rbx, rcx); __ j(greater, &loop_header, Label::kNear); } // static void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- rdi : the target to call (can be any Object). // ----------------------------------- // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); Generate_InterpreterPushArgs(masm, true); // Call the target. __ PushReturnAddressFrom(kScratchRegister); // Re-push return address. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // -- rbx : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // ----------------------------------- // Pop return address to allow tail-call after pushing arguments. __ PopReturnAddressTo(kScratchRegister); // Push slot for the receiver to be constructed. __ Push(Immediate(0)); Generate_InterpreterPushArgs(masm, false); // Push return address in preparation for the tail-call. __ PushReturnAddressFrom(kScratchRegister); // Call the constructor (rax, rdx, rdi passed on). __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } static void Generate_InterpreterNotifyDeoptimizedHelper( MacroAssembler* masm, Deoptimizer::BailoutType type) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(kInterpreterAccumulatorRegister); // Save accumulator register. // Pass the deoptimization type to the runtime system. __ Push(Smi::FromInt(static_cast(type))); __ CallRuntime(Runtime::kNotifyDeoptimized); __ Pop(kInterpreterAccumulatorRegister); // Restore accumulator register. // Tear down internal frame. } // Drop state (we don't use these for interpreter deopts) and push PC at top // of stack (to simulate initial call to bytecode handler in interpreter entry // trampoline). __ Pop(rbx); __ Drop(1); __ Push(rbx); // Initialize register file register and dispatch table register. __ movp(kInterpreterRegisterFileRegister, rbp); __ addp(kInterpreterRegisterFileRegister, Immediate(InterpreterFrameConstants::kRegisterFilePointerFromFp)); __ LoadRoot(kInterpreterDispatchTableRegister, Heap::kInterpreterTableRootIndex); __ addp(kInterpreterDispatchTableRegister, Immediate(FixedArray::kHeaderSize - kHeapObjectTag)); // Get the context from the frame. // TODO(rmcilroy): Update interpreter frame to expect current context at the // context slot instead of the function context. __ movp(kContextRegister, Operand(kInterpreterRegisterFileRegister, InterpreterFrameConstants::kContextFromRegisterPointer)); // Get the bytecode array pointer from the frame. __ movp(rbx, Operand(kInterpreterRegisterFileRegister, InterpreterFrameConstants::kFunctionFromRegisterPointer)); __ movp(rbx, FieldOperand(rbx, JSFunction::kSharedFunctionInfoOffset)); __ movp(kInterpreterBytecodeArrayRegister, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ AssertNotSmi(kInterpreterBytecodeArrayRegister); __ CmpObjectType(kInterpreterBytecodeArrayRegister, BYTECODE_ARRAY_TYPE, rbx); __ Assert(equal, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Get the target bytecode offset from the frame. __ movp( kInterpreterBytecodeOffsetRegister, Operand(kInterpreterRegisterFileRegister, InterpreterFrameConstants::kBytecodeOffsetFromRegisterPointer)); __ SmiToInteger32(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister); // Dispatch to the target bytecode. __ movzxbp(rbx, Operand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister, times_1, 0)); __ movp(rbx, Operand(kInterpreterDispatchTableRegister, rbx, times_pointer_size, 0)); __ addp(rbx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rbx); } void Builtins::Generate_InterpreterNotifyDeoptimized(MacroAssembler* masm) { Generate_InterpreterNotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_InterpreterNotifySoftDeoptimized(MacroAssembler* masm) { Generate_InterpreterNotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_InterpreterNotifyLazyDeoptimized(MacroAssembler* masm) { Generate_InterpreterNotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileOptimized_NotConcurrent); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileOptimized_Concurrent); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Re-execute the code that was patched back to the young age when // the stub returns. __ subp(Operand(rsp, 0), Immediate(5)); __ Pushad(); __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate())); __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); } __ Popad(); __ ret(0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. __ Pushad(); __ Move(arg_reg_2, ExternalReference::isolate_address(masm->isolate())); __ movp(arg_reg_1, Operand(rsp, kNumSafepointRegisters * kPointerSize)); __ subp(arg_reg_1, Immediate(Assembler::kShortCallInstructionLength)); { // NOLINT FrameScope scope(masm, StackFrame::MANUAL); __ PrepareCallCFunction(2); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); } __ Popad(); // Perform prologue operations usually performed by the young code stub. __ PopReturnAddressTo(kScratchRegister); __ pushq(rbp); // Caller's frame pointer. __ movp(rbp, rsp); __ Push(rsi); // Callee's context. __ Push(rdi); // Callee's JS Function. __ PushReturnAddressFrom(kScratchRegister); // Jump to point after the code-age stub. __ ret(0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ Pushad(); __ CallRuntime(Runtime::kNotifyStubFailure, save_doubles); __ Popad(); // Tear down internal frame. } __ DropUnderReturnAddress(1); // Ignore state offset __ ret(0); // Return to IC Miss stub, continuation still on stack. } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Pass the deoptimization type to the runtime system. __ Push(Smi::FromInt(static_cast(type))); __ CallRuntime(Runtime::kNotifyDeoptimized); // Tear down internal frame. } // Get the full codegen state from the stack and untag it. __ SmiToInteger32(kScratchRegister, Operand(rsp, kPCOnStackSize)); // Switch on the state. Label not_no_registers, not_tos_rax; __ cmpp(kScratchRegister, Immediate(FullCodeGenerator::NO_REGISTERS)); __ j(not_equal, ¬_no_registers, Label::kNear); __ ret(1 * kPointerSize); // Remove state. __ bind(¬_no_registers); __ movp(rax, Operand(rsp, kPCOnStackSize + kPointerSize)); __ cmpp(kScratchRegister, Immediate(FullCodeGenerator::TOS_REG)); __ j(not_equal, ¬_tos_rax, Label::kNear); __ ret(2 * kPointerSize); // Remove state, rax. __ bind(¬_tos_rax); __ Abort(kNoCasesLeft); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } // static void Builtins::Generate_DatePrototype_GetField(MacroAssembler* masm, int field_index) { // ----------- S t a t e ------------- // -- rsp[0] : return address // -- rsp[8] : receiver // ----------------------------------- // 1. Load receiver into rax and check that it's actually a JSDate object. Label receiver_not_date; { StackArgumentsAccessor args(rsp, 0); __ movp(rax, args.GetReceiverOperand()); __ JumpIfSmi(rax, &receiver_not_date); __ CmpObjectType(rax, JS_DATE_TYPE, rbx); __ j(not_equal, &receiver_not_date); } // 2. Load the specified date field, falling back to the runtime as necessary. if (field_index == JSDate::kDateValue) { __ movp(rax, FieldOperand(rax, JSDate::kValueOffset)); } else { if (field_index < JSDate::kFirstUncachedField) { Label stamp_mismatch; __ Load(rdx, ExternalReference::date_cache_stamp(masm->isolate())); __ cmpp(rdx, FieldOperand(rax, JSDate::kCacheStampOffset)); __ j(not_equal, &stamp_mismatch, Label::kNear); __ movp(rax, FieldOperand( rax, JSDate::kValueOffset + field_index * kPointerSize)); __ ret(1 * kPointerSize); __ bind(&stamp_mismatch); } FrameScope scope(masm, StackFrame::INTERNAL); __ PrepareCallCFunction(2); __ Move(arg_reg_1, rax); __ Move(arg_reg_2, Smi::FromInt(field_index)); __ CallCFunction( ExternalReference::get_date_field_function(masm->isolate()), 2); } __ ret(1 * kPointerSize); // 3. Raise a TypeError if the receiver is not a date. __ bind(&receiver_not_date); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowNotDateError); } } // static void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : argArray // -- rsp[16] : thisArg // -- rsp[24] : receiver // ----------------------------------- // 1. Load receiver into rdi, argArray into rax (if present), remove all // arguments from the stack (including the receiver), and push thisArg (if // present) instead. { Label no_arg_array, no_this_arg; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ movp(rbx, rdx); __ movp(rdi, args.GetReceiverOperand()); __ testp(rax, rax); __ j(zero, &no_this_arg, Label::kNear); { __ movp(rdx, args.GetArgumentOperand(1)); __ cmpp(rax, Immediate(1)); __ j(equal, &no_arg_array, Label::kNear); __ movp(rbx, args.GetArgumentOperand(2)); __ bind(&no_arg_array); } __ bind(&no_this_arg); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ Push(rdx); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // ----------- S t a t e ------------- // -- rax : argArray // -- rdi : receiver // -- rsp[0] : return address // -- rsp[8] : thisArg // ----------------------------------- // 2. Make sure the receiver is actually callable. Label receiver_not_callable; __ JumpIfSmi(rdi, &receiver_not_callable, Label::kNear); __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &receiver_not_callable, Label::kNear); // 3. Tail call with no arguments if argArray is null or undefined. Label no_arguments; __ JumpIfRoot(rax, Heap::kNullValueRootIndex, &no_arguments, Label::kNear); __ JumpIfRoot(rax, Heap::kUndefinedValueRootIndex, &no_arguments, Label::kNear); // 4a. Apply the receiver to the given argArray (passing undefined for // new.target). __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The argArray is either null or undefined, so we tail call without any // arguments to the receiver. __ bind(&no_arguments); { __ Set(rax, 0); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // 4c. The receiver is not callable, throw an appropriate TypeError. __ bind(&receiver_not_callable); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdi); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } // static void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { // Stack Layout: // rsp[0] : Return address // rsp[8] : Argument n // rsp[16] : Argument n-1 // ... // rsp[8 * n] : Argument 1 // rsp[8 * (n + 1)] : Receiver (callable to call) // // rax contains the number of arguments, n, not counting the receiver. // // 1. Make sure we have at least one argument. { Label done; __ testp(rax, rax); __ j(not_zero, &done, Label::kNear); __ PopReturnAddressTo(rbx); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(rbx); __ incp(rax); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. { StackArgumentsAccessor args(rsp, rax); __ movp(rdi, args.GetReceiverOperand()); } // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. { Label loop; __ movp(rcx, rax); StackArgumentsAccessor args(rsp, rcx); __ bind(&loop); __ movp(rbx, args.GetArgumentOperand(1)); __ movp(args.GetArgumentOperand(0), rbx); __ decp(rcx); __ j(not_zero, &loop); // While non-zero. __ DropUnderReturnAddress(1, rbx); // Drop one slot under return address. __ decp(rax); // One fewer argument (first argument is new receiver). } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : argumentsList // -- rsp[16] : thisArgument // -- rsp[24] : target // -- rsp[32] : receiver // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rax (if present), // remove all arguments from the stack (including the receiver), and push // thisArgument (if present) instead. { Label done; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movp(rdx, rdi); __ movp(rbx, rdi); __ cmpp(rax, Immediate(1)); __ j(below, &done, Label::kNear); __ movp(rdi, args.GetArgumentOperand(1)); // target __ j(equal, &done, Label::kNear); __ movp(rdx, args.GetArgumentOperand(2)); // thisArgument __ cmpp(rax, Immediate(3)); __ j(below, &done, Label::kNear); __ movp(rbx, args.GetArgumentOperand(3)); // argumentsList __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ Push(rdx); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // ----------- S t a t e ------------- // -- rax : argumentsList // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : thisArgument // ----------------------------------- // 2. Make sure the target is actually callable. Label target_not_callable; __ JumpIfSmi(rdi, &target_not_callable, Label::kNear); __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &target_not_callable, Label::kNear); // 3a. Apply the target to the given argumentsList (passing undefined for // new.target). __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 3b. The target is not callable, throw an appropriate TypeError. __ bind(&target_not_callable); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdi); __ TailCallRuntime(Runtime::kThrowApplyNonFunction); } } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : new.target (optional) // -- rsp[16] : argumentsList // -- rsp[24] : target // -- rsp[32] : receiver // ----------------------------------- // 1. Load target into rdi (if present), argumentsList into rax (if present), // new.target into rdx (if present, otherwise use target), remove all // arguments from the stack (including the receiver), and push thisArgument // (if present) instead. { Label done; StackArgumentsAccessor args(rsp, rax); __ LoadRoot(rdi, Heap::kUndefinedValueRootIndex); __ movp(rdx, rdi); __ movp(rbx, rdi); __ cmpp(rax, Immediate(1)); __ j(below, &done, Label::kNear); __ movp(rdi, args.GetArgumentOperand(1)); // target __ movp(rdx, rdi); // new.target defaults to target __ j(equal, &done, Label::kNear); __ movp(rbx, args.GetArgumentOperand(2)); // argumentsList __ cmpp(rax, Immediate(3)); __ j(below, &done, Label::kNear); __ movp(rdx, args.GetArgumentOperand(3)); // new.target __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushRoot(Heap::kUndefinedValueRootIndex); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // ----------- S t a t e ------------- // -- rax : argumentsList // -- rdx : new.target // -- rdi : target // -- rsp[0] : return address // -- rsp[8] : receiver (undefined) // ----------------------------------- // 2. Make sure the target is actually a constructor. Label target_not_constructor; __ JumpIfSmi(rdi, &target_not_constructor, Label::kNear); __ movp(rcx, FieldOperand(rdi, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &target_not_constructor, Label::kNear); // 3. Make sure the target is actually a constructor. Label new_target_not_constructor; __ JumpIfSmi(rdx, &new_target_not_constructor, Label::kNear); __ movp(rcx, FieldOperand(rdx, HeapObject::kMapOffset)); __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &new_target_not_constructor, Label::kNear); // 4a. Construct the target with the given new.target and argumentsList. __ Jump(masm->isolate()->builtins()->Apply(), RelocInfo::CODE_TARGET); // 4b. The target is not a constructor, throw an appropriate TypeError. __ bind(&target_not_constructor); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdi); __ TailCallRuntime(Runtime::kThrowCalledNonCallable); } // 4c. The new.target is not a constructor, throw an appropriate TypeError. __ bind(&new_target_not_constructor); { StackArgumentsAccessor args(rsp, 0); __ movp(args.GetReceiverOperand(), rdx); __ TailCallRuntime(Runtime::kThrowCalledNonCallable); } } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the InternalArray function. __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, rdi); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, kUnexpectedInitialMapForInternalArrayFunction); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argc // -- rsp[0] : return address // -- rsp[8] : last argument // ----------------------------------- Label generic_array_code; // Get the Array function. __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, rdi); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ movp(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); // Will both indicate a NULL and a Smi. STATIC_ASSERT(kSmiTag == 0); Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); __ Check(not_smi, kUnexpectedInitialMapForArrayFunction); __ CmpObjectType(rbx, MAP_TYPE, rcx); __ Check(equal, kUnexpectedInitialMapForArrayFunction); } __ movp(rdx, rdi); // Run the native code for the Array function called as a normal function. // tail call a stub __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_NumberConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Load the first argument into rax and get rid of the rest (including the // receiver). Label no_arguments; { StackArgumentsAccessor args(rsp, rax); __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // 2a. Convert the first argument to a number. ToNumberStub stub(masm->isolate()); __ TailCallStub(&stub); // 2b. No arguments, return +0 (already in rax). __ bind(&no_arguments); __ ret(1 * kPointerSize); } // static void Builtins::Generate_NumberConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rdx : new target // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // 2. Load the first argument into rbx and get rid of the rest (including the // receiver). { StackArgumentsAccessor args(rsp, rax); Label no_arguments, done; __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ Move(rbx, Smi::FromInt(0)); __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); } // 3. Make sure rbx is a number. { Label done_convert; __ JumpIfSmi(rbx, &done_convert); __ CompareRoot(FieldOperand(rbx, HeapObject::kMapOffset), Heap::kHeapNumberMapRootIndex); __ j(equal, &done_convert); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdx); __ Push(rdi); __ Move(rax, rbx); ToNumberStub stub(masm->isolate()); __ CallStub(&stub); __ Move(rbx, rax); __ Pop(rdi); __ Pop(rdx); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label new_object; __ cmpp(rdx, rdi); __ j(not_equal, &new_object); // 5. Allocate a JSValue wrapper for the number. __ AllocateJSValue(rax, rdi, rbx, rcx, &new_object); __ Ret(); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rbx); // the first argument __ Push(rdi); // constructor function __ Push(rdx); // new target __ CallRuntime(Runtime::kNewObject); __ Pop(FieldOperand(rax, JSValue::kValueOffset)); } __ Ret(); } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Load the first argument into rax and get rid of the rest (including the // receiver). Label no_arguments; { StackArgumentsAccessor args(rsp, rax); __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); __ movp(rax, rbx); } // 2a. At least one argument, return rax if it's a string, otherwise // dispatch to appropriate conversion. Label to_string, symbol_descriptive_string; { __ JumpIfSmi(rax, &to_string, Label::kNear); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx); __ j(above, &to_string, Label::kNear); __ j(equal, &symbol_descriptive_string, Label::kNear); __ Ret(); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(rax, Heap::kempty_stringRootIndex); __ ret(1 * kPointerSize); } // 3a. Convert rax to a string. __ bind(&to_string); { ToStringStub stub(masm->isolate()); __ TailCallStub(&stub); } // 3b. Convert symbol in rax to a string. __ bind(&symbol_descriptive_string); { __ PopReturnAddressTo(rcx); __ Push(rax); __ PushReturnAddressFrom(rcx); __ TailCallRuntime(Runtime::kSymbolDescriptiveString); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments // -- rdi : constructor function // -- rdx : new target // -- rsp[0] : return address // -- rsp[(argc - n) * 8] : arg[n] (zero-based) // -- rsp[(argc + 1) * 8] : receiver // ----------------------------------- // 1. Make sure we operate in the context of the called function. __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // 2. Load the first argument into rbx and get rid of the rest (including the // receiver). { StackArgumentsAccessor args(rsp, rax); Label no_arguments, done; __ testp(rax, rax); __ j(zero, &no_arguments, Label::kNear); __ movp(rbx, args.GetArgumentOperand(1)); __ jmp(&done, Label::kNear); __ bind(&no_arguments); __ LoadRoot(rbx, Heap::kempty_stringRootIndex); __ bind(&done); __ PopReturnAddressTo(rcx); __ leap(rsp, Operand(rsp, rax, times_pointer_size, kPointerSize)); __ PushReturnAddressFrom(rcx); } // 3. Make sure rbx is a string. { Label convert, done_convert; __ JumpIfSmi(rbx, &convert, Label::kNear); __ CmpObjectType(rbx, FIRST_NONSTRING_TYPE, rcx); __ j(below, &done_convert); __ bind(&convert); { FrameScope scope(masm, StackFrame::INTERNAL); ToStringStub stub(masm->isolate()); __ Push(rdx); __ Push(rdi); __ Move(rax, rbx); __ CallStub(&stub); __ Move(rbx, rax); __ Pop(rdi); __ Pop(rdx); } __ bind(&done_convert); } // 4. Check if new target and constructor differ. Label new_object; __ cmpp(rdx, rdi); __ j(not_equal, &new_object); // 5. Allocate a JSValue wrapper for the string. __ AllocateJSValue(rax, rdi, rbx, rcx, &new_object); __ Ret(); // 6. Fallback to the runtime to create new object. __ bind(&new_object); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rbx); // the first argument __ Push(rdi); // constructor function __ Push(rdx); // new target __ CallRuntime(Runtime::kNewObject); __ Pop(FieldOperand(rax, JSValue::kValueOffset)); } __ Ret(); } static void ArgumentsAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : new target (passed through to callee) // -- rdi : function (passed through to callee) // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r8, Heap::kRealStackLimitRootIndex); __ movp(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subp(rcx, r8); // Make r8 the space we need for the array when it is unrolled onto the // stack. __ movp(r8, rbx); __ shlp(r8, Immediate(kPointerSizeLog2)); // Check if the arguments will overflow the stack. __ cmpp(rcx, r8); __ j(less_equal, stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ pushq(rbp); __ movp(rbp, rsp); // Store the arguments adaptor context sentinel. __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); // Push the function on the stack. __ Push(rdi); // Preserve the number of arguments on the stack. Must preserve rax, // rbx and rcx because these registers are used when copying the // arguments and the receiver. __ Integer32ToSmi(r8, rax); __ Push(r8); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // Retrieve the number of arguments from the stack. Number is a Smi. __ movp(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); // Leave the frame. __ movp(rsp, rbp); __ popq(rbp); // Remove caller arguments from the stack. __ PopReturnAddressTo(rcx); SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); __ leap(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); __ PushReturnAddressFrom(rcx); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : actual number of arguments // -- rbx : expected number of arguments // -- rdx : new target (passed through to callee) // -- rdi : function (passed through to callee) // ----------------------------------- Label invoke, dont_adapt_arguments, stack_overflow; Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->arguments_adaptors(), 1); Label enough, too_few; __ cmpp(rax, rbx); __ j(less, &too_few); __ cmpp(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ j(equal, &dont_adapt_arguments); { // Enough parameters: Actual >= expected. __ bind(&enough); EnterArgumentsAdaptorFrame(masm); ArgumentsAdaptorStackCheck(masm, &stack_overflow); // Copy receiver and all expected arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ leap(rax, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incp(r8); __ Push(Operand(rax, 0)); __ subp(rax, Immediate(kPointerSize)); __ cmpp(r8, rbx); __ j(less, ©); __ jmp(&invoke); } { // Too few parameters: Actual < expected. __ bind(&too_few); // If the function is strong we need to throw an error. Label no_strong_error; __ movp(kScratchRegister, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(kScratchRegister, SharedFunctionInfo::kStrongModeByteOffset), Immediate(1 << SharedFunctionInfo::kStrongModeBitWithinByte)); __ j(equal, &no_strong_error, Label::kNear); // What we really care about is the required number of arguments. if (kPointerSize == kInt32Size) { __ movp( kScratchRegister, FieldOperand(kScratchRegister, SharedFunctionInfo::kLengthOffset)); __ SmiToInteger32(kScratchRegister, kScratchRegister); } else { // See comment near kLengthOffset in src/objects.h __ movsxlq( kScratchRegister, FieldOperand(kScratchRegister, SharedFunctionInfo::kLengthOffset)); __ shrq(kScratchRegister, Immediate(1)); } __ cmpp(rax, kScratchRegister); __ j(greater_equal, &no_strong_error, Label::kNear); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments); } __ bind(&no_strong_error); EnterArgumentsAdaptorFrame(masm); ArgumentsAdaptorStackCheck(masm, &stack_overflow); // Copy receiver and all actual arguments. const int offset = StandardFrameConstants::kCallerSPOffset; __ leap(rdi, Operand(rbp, rax, times_pointer_size, offset)); __ Set(r8, -1); // account for receiver Label copy; __ bind(©); __ incp(r8); __ Push(Operand(rdi, 0)); __ subp(rdi, Immediate(kPointerSize)); __ cmpp(r8, rax); __ j(less, ©); // Fill remaining expected arguments with undefined values. Label fill; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ bind(&fill); __ incp(r8); __ Push(kScratchRegister); __ cmpp(r8, rbx); __ j(less, &fill); // Restore function pointer. __ movp(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // Call the entry point. __ bind(&invoke); __ movp(rax, rbx); // rax : expected number of arguments // rdx : new target (passed through to callee) // rdi : function (passed through to callee) __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ call(rcx); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Leave frame and return. LeaveArgumentsAdaptorFrame(masm); __ ret(0); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ movp(rcx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); __ jmp(rcx); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); __ CallRuntime(Runtime::kThrowStackOverflow); __ int3(); } } // static void Builtins::Generate_Apply(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : argumentsList // -- rdi : target // -- rdx : new.target (checked to be constructor or undefined) // -- rsp[0] : return address. // -- rsp[8] : thisArgument // ----------------------------------- // Create the list of arguments from the array-like argumentsList. { Label create_arguments, create_array, create_runtime, done_create; __ JumpIfSmi(rax, &create_runtime); // Load the map of argumentsList into rcx. __ movp(rcx, FieldOperand(rax, HeapObject::kMapOffset)); // Load native context into rbx. __ movp(rbx, NativeContextOperand()); // Check if argumentsList is an (unmodified) arguments object. __ cmpp(rcx, ContextOperand(rbx, Context::SLOPPY_ARGUMENTS_MAP_INDEX)); __ j(equal, &create_arguments); __ cmpp(rcx, ContextOperand(rbx, Context::STRICT_ARGUMENTS_MAP_INDEX)); __ j(equal, &create_arguments); // Check if argumentsList is a fast JSArray. __ CmpInstanceType(rcx, JS_ARRAY_TYPE); __ j(equal, &create_array); // Ask the runtime to create the list (actually a FixedArray). __ bind(&create_runtime); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ Push(rdx); __ Push(rax); __ CallRuntime(Runtime::kCreateListFromArrayLike); __ Pop(rdx); __ Pop(rdi); __ SmiToInteger32(rbx, FieldOperand(rax, FixedArray::kLengthOffset)); } __ jmp(&done_create); // Try to create the list from an arguments object. __ bind(&create_arguments); __ movp(rbx, FieldOperand(rax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize)); __ movp(rcx, FieldOperand(rax, JSObject::kElementsOffset)); __ cmpp(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ j(not_equal, &create_runtime); __ SmiToInteger32(rbx, rbx); __ movp(rax, rcx); __ jmp(&done_create); // Try to create the list from a JSArray object. __ bind(&create_array); __ movzxbp(rcx, FieldOperand(rcx, Map::kBitField2Offset)); __ DecodeField(rcx); STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); __ cmpl(rcx, Immediate(FAST_ELEMENTS)); __ j(above, &create_runtime); __ cmpl(rcx, Immediate(FAST_HOLEY_SMI_ELEMENTS)); __ j(equal, &create_runtime); __ SmiToInteger32(rbx, FieldOperand(rax, JSArray::kLengthOffset)); __ movp(rax, FieldOperand(rax, JSArray::kElementsOffset)); __ bind(&done_create); } // Check for stack overflow. { // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack limit". Label done; __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); __ movp(rcx, rsp); // Make rcx the space we have left. The stack might already be overflowed // here which will cause rcx to become negative. __ subp(rcx, kScratchRegister); __ sarp(rcx, Immediate(kPointerSizeLog2)); // Check if the arguments will overflow the stack. __ cmpp(rcx, rbx); __ j(greater, &done, Label::kNear); // Signed comparison. __ TailCallRuntime(Runtime::kThrowStackOverflow); __ bind(&done); } // ----------- S t a t e ------------- // -- rdi : target // -- rax : args (a FixedArray built from argumentsList) // -- rbx : len (number of elements to push from args) // -- rdx : new.target (checked to be constructor or undefined) // -- rsp[0] : return address. // -- rsp[8] : thisArgument // ----------------------------------- // Push arguments onto the stack (thisArgument is already on the stack). { __ PopReturnAddressTo(r8); __ Set(rcx, 0); Label done, loop; __ bind(&loop); __ cmpl(rcx, rbx); __ j(equal, &done, Label::kNear); __ Push( FieldOperand(rax, rcx, times_pointer_size, FixedArray::kHeaderSize)); __ incl(rcx); __ jmp(&loop); __ bind(&done); __ PushReturnAddressFrom(r8); __ Move(rax, rcx); } // Dispatch to Call or Construct depending on whether new.target is undefined. { __ CompareRoot(rdx, Heap::kUndefinedValueRootIndex); __ j(equal, masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); } } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); __ AssertFunction(rdi); // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ testb(FieldOperand(rdx, SharedFunctionInfo::kFunctionKindByteOffset), Immediate(SharedFunctionInfo::kClassConstructorBitsWithinByte)); __ j(not_zero, &class_constructor); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // ----------------------------------- // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ testb(FieldOperand(rdx, SharedFunctionInfo::kNativeByteOffset), Immediate((1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte))); __ j(not_zero, &done_convert); { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } else { Label convert_to_object, convert_receiver; __ movp(rcx, args.GetReceiverOperand()); __ JumpIfSmi(rcx, &convert_to_object, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(rcx, FIRST_JS_RECEIVER_TYPE, rbx); __ j(above_equal, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(rcx, Heap::kUndefinedValueRootIndex, &convert_global_proxy, Label::kNear); __ JumpIfNotRoot(rcx, Heap::kNullValueRootIndex, &convert_to_object, Label::kNear); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(rcx); } __ jmp(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameScope scope(masm, StackFrame::INTERNAL); __ Integer32ToSmi(rax, rax); __ Push(rax); __ Push(rdi); __ movp(rax, rcx); ToObjectStub stub(masm->isolate()); __ CallStub(&stub); __ movp(rcx, rax); __ Pop(rdi); __ Pop(rax); __ SmiToInteger32(rax, rax); } __ movp(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ movp(args.GetReceiverOperand(), rcx); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the shared function info. // -- rdi : the function to call (checked to be a JSFunction) // -- rsi : the function context. // ----------------------------------- __ LoadSharedFunctionInfoSpecialField( rbx, rdx, SharedFunctionInfo::kFormalParameterCountOffset); ParameterCount actual(rax); ParameterCount expected(rbx); __ InvokeFunctionCode(rdi, no_reg, expected, actual, JUMP_FUNCTION, CheckDebugStepCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowConstructorNonCallableError); } } namespace { void Generate_PushBoundArguments(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // ----------------------------------- // Load [[BoundArguments]] into rcx and length of that into rbx. Label no_bound_arguments; __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ testl(rbx, rbx); __ j(zero, &no_bound_arguments); { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : new.target (only in case of [[Construct]]) // -- rdi : target (checked to be a JSBoundFunction) // -- rcx : the [[BoundArguments]] (implemented as FixedArray) // -- rbx : the number of [[BoundArguments]] (checked to be non-zero) // ----------------------------------- // Reserve stack space for the [[BoundArguments]]. { Label done; __ leap(kScratchRegister, Operand(rbx, times_pointer_size, 0)); __ subp(rsp, kScratchRegister); // Check the stack for overflow. We are not trying to catch interruptions // (i.e. debug break and preemption) here, so check the "real stack // limit". __ CompareRoot(rsp, Heap::kRealStackLimitRootIndex); __ j(greater, &done, Label::kNear); // Signed comparison. // Restore the stack pointer. __ leap(rsp, Operand(rsp, rbx, times_pointer_size, 0)); { FrameScope scope(masm, StackFrame::MANUAL); __ EnterFrame(StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowStackOverflow); } __ bind(&done); } // Adjust effective number of arguments to include return address. __ incl(rax); // Relocate arguments and return address down the stack. { Label loop; __ Set(rcx, 0); __ leap(rbx, Operand(rsp, rbx, times_pointer_size, 0)); __ bind(&loop); __ movp(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); __ movp(Operand(rsp, rcx, times_pointer_size, 0), kScratchRegister); __ incl(rcx); __ cmpl(rcx, rax); __ j(less, &loop); } // Copy [[BoundArguments]] to the stack (below the arguments). { Label loop; __ movp(rcx, FieldOperand(rdi, JSBoundFunction::kBoundArgumentsOffset)); __ SmiToInteger32(rbx, FieldOperand(rcx, FixedArray::kLengthOffset)); __ bind(&loop); __ decl(rbx); __ movp(kScratchRegister, FieldOperand(rcx, rbx, times_pointer_size, FixedArray::kHeaderSize)); __ movp(Operand(rsp, rax, times_pointer_size, 0), kScratchRegister); __ leal(rax, Operand(rax, 1)); __ j(greater, &loop); } // Adjust effective number of arguments (rax contains the number of // arguments from the call plus return address plus the number of // [[BoundArguments]]), so we need to subtract one for the return address. __ decl(rax); } __ bind(&no_bound_arguments); } } // namespace // static void Builtins::Generate_CallBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the function to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(rdi); // Patch the receiver to [[BoundThis]]. StackArgumentsAccessor args(rsp, rax); __ movp(rbx, FieldOperand(rdi, JSBoundFunction::kBoundThisOffset)); __ movp(args.GetReceiverOperand(), rbx); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Call the [[BoundTargetFunction]] via the Call builtin. __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Load(rcx, ExternalReference(Builtins::kCall_ReceiverIsAny, masm->isolate())); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the target to call (can be any Object) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); Label non_callable, non_function, non_smi; __ JumpIfSmi(rdi, &non_callable); __ bind(&non_smi); __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(equal, masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET); __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->CallBoundFunction(), RelocInfo::CODE_TARGET); __ CmpInstanceType(rcx, JS_PROXY_TYPE); __ j(not_equal, &non_function); // 1. Runtime fallback for Proxy [[Call]]. __ PopReturnAddressTo(kScratchRegister); __ Push(rdi); __ PushReturnAddressFrom(kScratchRegister); // Increase the arguments size to include the pushed function and the // existing receiver on the stack. __ addp(rax, Immediate(2)); // Tail-call to the runtime. __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyCall, masm->isolate())); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Check if target has a [[Call]] internal method. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsCallable)); __ j(zero, &non_callable, Label::kNear); // Overwrite the original receiver with the (original) target. __ movp(args.GetReceiverOperand(), rdi); // Let the "call_as_function_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, rdi); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(rdi); __ CallRuntime(Runtime::kThrowCalledNonCallable); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(rdi); // Calling convention for function specific ConstructStubs require // rbx to contain either an AllocationSite or undefined. __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ movp(rcx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rcx, FieldOperand(rcx, SharedFunctionInfo::kConstructStubOffset)); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } // static void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (checked to be a constructor) // -- rdi : the constructor to call (checked to be a JSBoundFunction) // ----------------------------------- __ AssertBoundFunction(rdi); // Push the [[BoundArguments]] onto the stack. Generate_PushBoundArguments(masm); // Patch new.target to [[BoundTargetFunction]] if new.target equals target. { Label done; __ cmpp(rdi, rdx); __ j(not_equal, &done, Label::kNear); __ movp(rdx, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ bind(&done); } // Construct the [[BoundTargetFunction]] via the Construct builtin. __ movp(rdi, FieldOperand(rdi, JSBoundFunction::kBoundTargetFunctionOffset)); __ Load(rcx, ExternalReference(Builtins::kConstruct, masm->isolate())); __ leap(rcx, FieldOperand(rcx, Code::kHeaderSize)); __ jmp(rcx); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdi : the constructor to call (checked to be a JSProxy) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Call into the Runtime for Proxy [[Construct]]. __ PopReturnAddressTo(kScratchRegister); __ Push(rdi); __ Push(rdx); __ PushReturnAddressFrom(kScratchRegister); // Include the pushed new_target, constructor and the receiver. __ addp(rax, Immediate(3)); __ JumpToExternalReference( ExternalReference(Runtime::kJSProxyConstruct, masm->isolate())); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : the number of arguments (not including the receiver) // -- rdx : the new target (either the same as the constructor or // the JSFunction on which new was invoked initially) // -- rdi : the constructor to call (can be any Object) // ----------------------------------- StackArgumentsAccessor args(rsp, rax); // Check if target is a Smi. Label non_constructor; __ JumpIfSmi(rdi, &non_constructor, Label::kNear); // Dispatch based on instance type. __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); __ j(equal, masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET); // Check if target has a [[Construct]] internal method. __ testb(FieldOperand(rcx, Map::kBitFieldOffset), Immediate(1 << Map::kIsConstructor)); __ j(zero, &non_constructor, Label::kNear); // Only dispatch to bound functions after checking whether they are // constructors. __ CmpInstanceType(rcx, JS_BOUND_FUNCTION_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructBoundFunction(), RelocInfo::CODE_TARGET); // Only dispatch to proxies after checking whether they are constructors. __ CmpInstanceType(rcx, JS_PROXY_TYPE); __ j(equal, masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ movp(args.GetReceiverOperand(), rdi); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, rdi); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); __ Jump(masm->isolate()->builtins()->ConstructedNonConstructable(), RelocInfo::CODE_TARGET); } static void CompatibleReceiverCheck(MacroAssembler* masm, Register receiver, Register function_template_info, Register scratch0, Register scratch1, Register scratch2, Label* receiver_check_failed) { Register signature = scratch0; Register map = scratch1; Register constructor = scratch2; // If there is no signature, return the holder. __ movp(signature, FieldOperand(function_template_info, FunctionTemplateInfo::kSignatureOffset)); __ CompareRoot(signature, Heap::kUndefinedValueRootIndex); Label receiver_check_passed; __ j(equal, &receiver_check_passed, Label::kNear); // Walk the prototype chain. __ movp(map, FieldOperand(receiver, HeapObject::kMapOffset)); Label prototype_loop_start; __ bind(&prototype_loop_start); // Get the constructor, if any. __ GetMapConstructor(constructor, map, kScratchRegister); __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE); Label next_prototype; __ j(not_equal, &next_prototype, Label::kNear); // Get the constructor's signature. Register type = constructor; __ movp(type, FieldOperand(constructor, JSFunction::kSharedFunctionInfoOffset)); __ movp(type, FieldOperand(type, SharedFunctionInfo::kFunctionDataOffset)); // Loop through the chain of inheriting function templates. Label function_template_loop; __ bind(&function_template_loop); // If the signatures match, we have a compatible receiver. __ cmpp(signature, type); __ j(equal, &receiver_check_passed, Label::kNear); // If the current type is not a FunctionTemplateInfo, load the next prototype // in the chain. __ JumpIfSmi(type, &next_prototype, Label::kNear); __ CmpObjectType(type, FUNCTION_TEMPLATE_INFO_TYPE, kScratchRegister); __ j(not_equal, &next_prototype, Label::kNear); // Otherwise load the parent function template and iterate. __ movp(type, FieldOperand(type, FunctionTemplateInfo::kParentTemplateOffset)); __ jmp(&function_template_loop, Label::kNear); // Load the next prototype. __ bind(&next_prototype); __ movp(receiver, FieldOperand(map, Map::kPrototypeOffset)); // End if the prototype is null or not hidden. __ CompareRoot(receiver, Heap::kNullValueRootIndex); __ j(equal, receiver_check_failed); __ movp(map, FieldOperand(receiver, HeapObject::kMapOffset)); __ testq(FieldOperand(map, Map::kBitField3Offset), Immediate(Map::IsHiddenPrototype::kMask)); __ j(zero, receiver_check_failed); // Iterate. __ jmp(&prototype_loop_start, Label::kNear); __ bind(&receiver_check_passed); } void Builtins::Generate_HandleFastApiCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- rax : number of arguments (not including the receiver) // -- rdi : callee // -- rsi : context // -- rsp[0] : return address // -- rsp[8] : last argument // -- ... // -- rsp[rax * 8] : first argument // -- rsp[(rax + 1) * 8] : receiver // ----------------------------------- StackArgumentsAccessor args(rsp, rax); // Load the FunctionTemplateInfo. __ movp(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); __ movp(rbx, FieldOperand(rbx, SharedFunctionInfo::kFunctionDataOffset)); // Do the compatible receiver check. Label receiver_check_failed; __ movp(rcx, args.GetReceiverOperand()); CompatibleReceiverCheck(masm, rcx, rbx, rdx, r8, r9, &receiver_check_failed); // Get the callback offset from the FunctionTemplateInfo, and jump to the // beginning of the code. __ movp(rdx, FieldOperand(rbx, FunctionTemplateInfo::kCallCodeOffset)); __ movp(rdx, FieldOperand(rdx, CallHandlerInfo::kFastHandlerOffset)); __ addp(rdx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ jmp(rdx); // Compatible receiver check failed: pop return address, arguments and // receiver and throw an Illegal Invocation exception. __ bind(&receiver_check_failed); __ PopReturnAddressTo(rbx); __ leap(rax, Operand(rax, times_pointer_size, 1 * kPointerSize)); __ addp(rsp, rax); __ PushReturnAddressFrom(rbx); { FrameScope scope(masm, StackFrame::INTERNAL); __ TailCallRuntime(Runtime::kThrowIllegalInvocation); } } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ movp(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); { FrameScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ Push(rax); __ CallRuntime(Runtime::kCompileForOnStackReplacement); } Label skip; // If the code object is null, just return to the unoptimized code. __ cmpp(rax, Immediate(0)); __ j(not_equal, &skip, Label::kNear); __ ret(0); __ bind(&skip); // Load deoptimization data from the code object. __ movp(rbx, Operand(rax, Code::kDeoptimizationDataOffset - kHeapObjectTag)); // Load the OSR entrypoint offset from the deoptimization data. __ SmiToInteger32(rbx, Operand(rbx, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag)); // Compute the target address = code_obj + header_size + osr_offset __ leap(rax, Operand(rax, rbx, times_1, Code::kHeaderSize - kHeapObjectTag)); // Overwrite the return address on the stack. __ movq(StackOperandForReturnAddress(0), rax); // And "return" to the OSR entry point of the function. __ ret(0); } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok); { FrameScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard); } __ jmp(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ ret(0); } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_X64