/* * Copyright (c) 2015-2016 The Khronos Group Inc. * Copyright (c) 2015-2016 Valve Corporation * Copyright (c) 2015-2016 LunarG, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and/or associated documentation files (the "Materials"), to * deal in the Materials without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Materials, and to permit persons to whom the Materials are * furnished to do so, subject to the following conditions: * * The above copyright notice(s) and this permission notice shall be included in * all copies or substantial portions of the Materials. * * THE MATERIALS ARE PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE MATERIALS OR THE * USE OR OTHER DEALINGS IN THE MATERIALS. * * Author: Chia-I Wu * Author: Courtney Goeltzenleuchter * Author: Ian Elliott * Author: Jon Ashburn */ #define _GNU_SOURCE #include #include #include #include #include #include #ifdef _WIN32 #pragma comment(linker, "/subsystem:windows") #define APP_NAME_STR_LEN 80 #endif // _WIN32 #include #include #include "linmath.h" #define DEMO_TEXTURE_COUNT 1 #define APP_SHORT_NAME "cube" #define APP_LONG_NAME "The Vulkan Cube Demo Program" #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #if defined(NDEBUG) && defined(__GNUC__) #define U_ASSERT_ONLY __attribute__((unused)) #else #define U_ASSERT_ONLY #endif #ifdef _WIN32 #define ERR_EXIT(err_msg, err_class) \ do { \ MessageBox(NULL, err_msg, err_class, MB_OK); \ exit(1); \ } while (0) #else // _WIN32 #define ERR_EXIT(err_msg, err_class) \ do { \ printf(err_msg); \ fflush(stdout); \ exit(1); \ } while (0) #endif // _WIN32 #define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \ { \ demo->fp##entrypoint = \ (PFN_vk##entrypoint)vkGetInstanceProcAddr(inst, "vk" #entrypoint); \ if (demo->fp##entrypoint == NULL) { \ ERR_EXIT("vkGetInstanceProcAddr failed to find vk" #entrypoint, \ "vkGetInstanceProcAddr Failure"); \ } \ } static PFN_vkGetDeviceProcAddr g_gdpa = NULL; #define GET_DEVICE_PROC_ADDR(dev, entrypoint) \ { \ if (!g_gdpa) \ g_gdpa = (PFN_vkGetDeviceProcAddr)vkGetInstanceProcAddr( \ demo->inst, "vkGetDeviceProcAddr"); \ demo->fp##entrypoint = \ (PFN_vk##entrypoint)g_gdpa(dev, "vk" #entrypoint); \ if (demo->fp##entrypoint == NULL) { \ ERR_EXIT("vkGetDeviceProcAddr failed to find vk" #entrypoint, \ "vkGetDeviceProcAddr Failure"); \ } \ } /* * structure to track all objects related to a texture. */ struct texture_object { VkSampler sampler; VkImage image; VkImageLayout imageLayout; VkMemoryAllocateInfo mem_alloc; VkDeviceMemory mem; VkImageView view; int32_t tex_width, tex_height; }; static char *tex_files[] = {"lunarg.ppm"}; static int validation_error = 0; struct vkcube_vs_uniform { // Must start with MVP float mvp[4][4]; float position[12 * 3][4]; float color[12 * 3][4]; }; struct vktexcube_vs_uniform { // Must start with MVP float mvp[4][4]; float position[12 * 3][4]; float attr[12 * 3][4]; }; //-------------------------------------------------------------------------------------- // Mesh and VertexFormat Data //-------------------------------------------------------------------------------------- // clang-format off struct Vertex { float posX, posY, posZ, posW; // Position data float r, g, b, a; // Color }; struct VertexPosTex { float posX, posY, posZ, posW; // Position data float u, v, s, t; // Texcoord }; #define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f #define UV(_u_, _v_) (_u_), (_v_), 0.f, 1.f static const float g_vertex_buffer_data[] = { -1.0f,-1.0f,-1.0f, // -X side -1.0f,-1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, // -Z side 1.0f, 1.0f,-1.0f, 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, -1.0f,-1.0f,-1.0f, // -Y side 1.0f,-1.0f,-1.0f, 1.0f,-1.0f, 1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f, 1.0f, -1.0f,-1.0f, 1.0f, -1.0f, 1.0f,-1.0f, // +Y side -1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, // +X side 1.0f, 1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f,-1.0f,-1.0f, 1.0f, 1.0f,-1.0f, -1.0f, 1.0f, 1.0f, // +Z side -1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, -1.0f,-1.0f, 1.0f, 1.0f,-1.0f, 1.0f, 1.0f, 1.0f, 1.0f, }; static const float g_uv_buffer_data[] = { 0.0f, 0.0f, // -X side 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, // -Z side 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 1.0f, // -Y side 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, // +Y side 0.0f, 1.0f, 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, // +X side 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f, // +Z side 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f, 1.0f, 1.0f, }; // clang-format on void dumpMatrix(const char *note, mat4x4 MVP) { int i; printf("%s: \n", note); for (i = 0; i < 4; i++) { printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]); } printf("\n"); fflush(stdout); } void dumpVec4(const char *note, vec4 vector) { printf("%s: \n", note); printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]); printf("\n"); fflush(stdout); } VKAPI_ATTR VkBool32 VKAPI_CALL dbgFunc(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType, uint64_t srcObject, size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg, void *pUserData) { char *message = (char *)malloc(strlen(pMsg) + 100); assert(message); if (msgFlags & VK_DEBUG_REPORT_ERROR_BIT_EXT) { sprintf(message, "ERROR: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else if (msgFlags & VK_DEBUG_REPORT_WARNING_BIT_EXT) { // We know that we're submitting queues without fences, ignore this // warning if (strstr(pMsg, "vkQueueSubmit parameter, VkFence fence, is null pointer")) { return false; } sprintf(message, "WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg); validation_error = 1; } else { validation_error = 1; return false; } #ifdef _WIN32 MessageBox(NULL, message, "Alert", MB_OK); #else printf("%s\n", message); fflush(stdout); #endif free(message); /* * false indicates that layer should not bail-out of an * API call that had validation failures. This may mean that the * app dies inside the driver due to invalid parameter(s). * That's what would happen without validation layers, so we'll * keep that behavior here. */ return false; } VkBool32 BreakCallback(VkFlags msgFlags, VkDebugReportObjectTypeEXT objType, uint64_t srcObject, size_t location, int32_t msgCode, const char *pLayerPrefix, const char *pMsg, void *pUserData) { #ifndef WIN32 raise(SIGTRAP); #else DebugBreak(); #endif return false; } typedef struct _SwapchainBuffers { VkImage image; VkCommandBuffer cmd; VkImageView view; } SwapchainBuffers; struct demo { #ifdef _WIN32 #define APP_NAME_STR_LEN 80 HINSTANCE connection; // hInstance - Windows Instance char name[APP_NAME_STR_LEN]; // Name to put on the window/icon HWND window; // hWnd - window handle #else // _WIN32 xcb_connection_t *connection; xcb_screen_t *screen; xcb_window_t window; xcb_intern_atom_reply_t *atom_wm_delete_window; #endif // _WIN32 VkSurfaceKHR surface; bool prepared; bool use_staging_buffer; VkInstance inst; VkPhysicalDevice gpu; VkDevice device; VkQueue queue; uint32_t graphics_queue_node_index; VkPhysicalDeviceProperties gpu_props; VkQueueFamilyProperties *queue_props; VkPhysicalDeviceMemoryProperties memory_properties; uint32_t enabled_extension_count; uint32_t enabled_layer_count; char *extension_names[64]; char *device_validation_layers[64]; int width, height; VkFormat format; VkColorSpaceKHR color_space; PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR; PFN_vkGetPhysicalDeviceSurfaceCapabilitiesKHR fpGetPhysicalDeviceSurfaceCapabilitiesKHR; PFN_vkGetPhysicalDeviceSurfaceFormatsKHR fpGetPhysicalDeviceSurfaceFormatsKHR; PFN_vkGetPhysicalDeviceSurfacePresentModesKHR fpGetPhysicalDeviceSurfacePresentModesKHR; PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR; PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR; PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR; PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR; PFN_vkQueuePresentKHR fpQueuePresentKHR; uint32_t swapchainImageCount; VkSwapchainKHR swapchain; SwapchainBuffers *buffers; VkCommandPool cmd_pool; struct { VkFormat format; VkImage image; VkMemoryAllocateInfo mem_alloc; VkDeviceMemory mem; VkImageView view; } depth; struct texture_object textures[DEMO_TEXTURE_COUNT]; struct { VkBuffer buf; VkMemoryAllocateInfo mem_alloc; VkDeviceMemory mem; VkDescriptorBufferInfo buffer_info; } uniform_data; VkCommandBuffer cmd; // Buffer for initialization commands VkPipelineLayout pipeline_layout; VkDescriptorSetLayout desc_layout; VkPipelineCache pipelineCache; VkRenderPass render_pass; VkPipeline pipeline; mat4x4 projection_matrix; mat4x4 view_matrix; mat4x4 model_matrix; float spin_angle; float spin_increment; bool pause; VkShaderModule vert_shader_module; VkShaderModule frag_shader_module; VkDescriptorPool desc_pool; VkDescriptorSet desc_set; VkFramebuffer *framebuffers; bool quit; int32_t curFrame; int32_t frameCount; bool validate; bool use_break; PFN_vkCreateDebugReportCallbackEXT CreateDebugReportCallback; PFN_vkDestroyDebugReportCallbackEXT DestroyDebugReportCallback; VkDebugReportCallbackEXT msg_callback; PFN_vkDebugReportMessageEXT DebugReportMessage; uint32_t current_buffer; uint32_t queue_count; }; // Forward declaration: static void demo_resize(struct demo *demo); static bool memory_type_from_properties(struct demo *demo, uint32_t typeBits, VkFlags requirements_mask, uint32_t *typeIndex) { // Search memtypes to find first index with those properties for (uint32_t i = 0; i < 32; i++) { if ((typeBits & 1) == 1) { // Type is available, does it match user properties? if ((demo->memory_properties.memoryTypes[i].propertyFlags & requirements_mask) == requirements_mask) { *typeIndex = i; return true; } } typeBits >>= 1; } // No memory types matched, return failure return false; } static void demo_flush_init_cmd(struct demo *demo) { VkResult U_ASSERT_ONLY err; if (demo->cmd == VK_NULL_HANDLE) return; err = vkEndCommandBuffer(demo->cmd); assert(!err); const VkCommandBuffer cmd_bufs[] = {demo->cmd}; VkFence nullFence = VK_NULL_HANDLE; VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pNext = NULL, .waitSemaphoreCount = 0, .pWaitSemaphores = NULL, .pWaitDstStageMask = NULL, .commandBufferCount = 1, .pCommandBuffers = cmd_bufs, .signalSemaphoreCount = 0, .pSignalSemaphores = NULL}; err = vkQueueSubmit(demo->queue, 1, &submit_info, nullFence); assert(!err); err = vkQueueWaitIdle(demo->queue); assert(!err); vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, cmd_bufs); demo->cmd = VK_NULL_HANDLE; } static void demo_set_image_layout(struct demo *demo, VkImage image, VkImageAspectFlags aspectMask, VkImageLayout old_image_layout, VkImageLayout new_image_layout, VkAccessFlagBits srcAccessMask) { VkResult U_ASSERT_ONLY err; if (demo->cmd == VK_NULL_HANDLE) { const VkCommandBufferAllocateInfo cmd = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext = NULL, .commandPool = demo->cmd_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->cmd); assert(!err); VkCommandBufferInheritanceInfo cmd_buf_hinfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, .pNext = NULL, .renderPass = VK_NULL_HANDLE, .subpass = 0, .framebuffer = VK_NULL_HANDLE, .occlusionQueryEnable = VK_FALSE, .queryFlags = 0, .pipelineStatistics = 0, }; VkCommandBufferBeginInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext = NULL, .flags = 0, .pInheritanceInfo = &cmd_buf_hinfo, }; err = vkBeginCommandBuffer(demo->cmd, &cmd_buf_info); assert(!err); } VkImageMemoryBarrier image_memory_barrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .pNext = NULL, .srcAccessMask = srcAccessMask, .dstAccessMask = 0, .oldLayout = old_image_layout, .newLayout = new_image_layout, .image = image, .subresourceRange = {aspectMask, 0, 1, 0, 1}}; if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL) { /* Make sure anything that was copying from this image has completed */ image_memory_barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT; } if (new_image_layout == VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) { image_memory_barrier.dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; } if (new_image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL) { image_memory_barrier.dstAccessMask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; } if (new_image_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) { /* Make sure any Copy or CPU writes to image are flushed */ image_memory_barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; } VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier; VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; vkCmdPipelineBarrier(demo->cmd, src_stages, dest_stages, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); } static void demo_draw_build_cmd(struct demo *demo, VkCommandBuffer cmd_buf) { VkCommandBufferInheritanceInfo cmd_buf_hinfo = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO, .pNext = NULL, .renderPass = VK_NULL_HANDLE, .subpass = 0, .framebuffer = VK_NULL_HANDLE, .occlusionQueryEnable = VK_FALSE, .queryFlags = 0, .pipelineStatistics = 0, }; const VkCommandBufferBeginInfo cmd_buf_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, .pNext = NULL, .flags = 0, .pInheritanceInfo = &cmd_buf_hinfo, }; const VkClearValue clear_values[2] = { [0] = {.color.float32 = {0.2f, 0.2f, 0.2f, 0.2f}}, [1] = {.depthStencil = {1.0f, 0}}, }; const VkRenderPassBeginInfo rp_begin = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, .pNext = NULL, .renderPass = demo->render_pass, .framebuffer = demo->framebuffers[demo->current_buffer], .renderArea.offset.x = 0, .renderArea.offset.y = 0, .renderArea.extent.width = demo->width, .renderArea.extent.height = demo->height, .clearValueCount = 2, .pClearValues = clear_values, }; VkResult U_ASSERT_ONLY err; err = vkBeginCommandBuffer(cmd_buf, &cmd_buf_info); assert(!err); vkCmdBeginRenderPass(cmd_buf, &rp_begin, VK_SUBPASS_CONTENTS_INLINE); vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline); vkCmdBindDescriptorSets(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline_layout, 0, 1, &demo->desc_set, 0, NULL); VkViewport viewport; memset(&viewport, 0, sizeof(viewport)); viewport.height = (float)demo->height; viewport.width = (float)demo->width; viewport.minDepth = (float)0.0f; viewport.maxDepth = (float)1.0f; vkCmdSetViewport(cmd_buf, 0, 1, &viewport); VkRect2D scissor; memset(&scissor, 0, sizeof(scissor)); scissor.extent.width = demo->width; scissor.extent.height = demo->height; scissor.offset.x = 0; scissor.offset.y = 0; vkCmdSetScissor(cmd_buf, 0, 1, &scissor); vkCmdDraw(cmd_buf, 12 * 3, 1, 0, 0); vkCmdEndRenderPass(cmd_buf); VkImageMemoryBarrier prePresentBarrier = { .sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, .pNext = NULL, .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, .dstAccessMask = VK_ACCESS_MEMORY_READ_BIT, .oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, .newLayout = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, .srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED, .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}}; prePresentBarrier.image = demo->buffers[demo->current_buffer].image; VkImageMemoryBarrier *pmemory_barrier = &prePresentBarrier; vkCmdPipelineBarrier(cmd_buf, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, NULL, 0, NULL, 1, pmemory_barrier); err = vkEndCommandBuffer(cmd_buf); assert(!err); } void demo_update_data_buffer(struct demo *demo) { mat4x4 MVP, Model, VP; int matrixSize = sizeof(MVP); uint8_t *pData; VkResult U_ASSERT_ONLY err; mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix); // Rotate 22.5 degrees around the Y axis mat4x4_dup(Model, demo->model_matrix); mat4x4_rotate(demo->model_matrix, Model, 0.0f, 1.0f, 0.0f, (float)degreesToRadians(demo->spin_angle)); mat4x4_mul(MVP, VP, demo->model_matrix); err = vkMapMemory(demo->device, demo->uniform_data.mem, 0, demo->uniform_data.mem_alloc.allocationSize, 0, (void **)&pData); assert(!err); memcpy(pData, (const void *)&MVP[0][0], matrixSize); vkUnmapMemory(demo->device, demo->uniform_data.mem); } static void demo_draw(struct demo *demo) { VkResult U_ASSERT_ONLY err; VkSemaphore presentCompleteSemaphore; VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = { .sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO, .pNext = NULL, .flags = 0, }; VkFence nullFence = VK_NULL_HANDLE; err = vkCreateSemaphore(demo->device, &presentCompleteSemaphoreCreateInfo, NULL, &presentCompleteSemaphore); assert(!err); // Get the index of the next available swapchain image: err = demo->fpAcquireNextImageKHR(demo->device, demo->swapchain, UINT64_MAX, presentCompleteSemaphore, (VkFence)0, // TODO: Show use of fence &demo->current_buffer); if (err == VK_ERROR_OUT_OF_DATE_KHR) { // demo->swapchain is out of date (e.g. the window was resized) and // must be recreated: demo_resize(demo); demo_draw(demo); vkDestroySemaphore(demo->device, presentCompleteSemaphore, NULL); return; } else if (err == VK_SUBOPTIMAL_KHR) { // demo->swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. } else { assert(!err); } // Assume the command buffer has been run on current_buffer before so // we need to set the image layout back to COLOR_ATTACHMENT_OPTIMAL demo_set_image_layout(demo, demo->buffers[demo->current_buffer].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, 0); demo_flush_init_cmd(demo); // Wait for the present complete semaphore to be signaled to ensure // that the image won't be rendered to until the presentation // engine has fully released ownership to the application, and it is // okay to render to the image. // FIXME/TODO: DEAL WITH VK_IMAGE_LAYOUT_PRESENT_SRC_KHR VkPipelineStageFlags pipe_stage_flags = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; VkSubmitInfo submit_info = {.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO, .pNext = NULL, .waitSemaphoreCount = 1, .pWaitSemaphores = &presentCompleteSemaphore, .pWaitDstStageMask = &pipe_stage_flags, .commandBufferCount = 1, .pCommandBuffers = &demo->buffers[demo->current_buffer].cmd, .signalSemaphoreCount = 0, .pSignalSemaphores = NULL}; err = vkQueueSubmit(demo->queue, 1, &submit_info, nullFence); assert(!err); VkPresentInfoKHR present = { .sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, .pNext = NULL, .swapchainCount = 1, .pSwapchains = &demo->swapchain, .pImageIndices = &demo->current_buffer, }; // TBD/TODO: SHOULD THE "present" PARAMETER BE "const" IN THE HEADER? err = demo->fpQueuePresentKHR(demo->queue, &present); if (err == VK_ERROR_OUT_OF_DATE_KHR) { // demo->swapchain is out of date (e.g. the window was resized) and // must be recreated: demo_resize(demo); } else if (err == VK_SUBOPTIMAL_KHR) { // demo->swapchain is not as optimal as it could be, but the platform's // presentation engine will still present the image correctly. } else { assert(!err); } err = vkQueueWaitIdle(demo->queue); assert(err == VK_SUCCESS); vkDestroySemaphore(demo->device, presentCompleteSemaphore, NULL); } static void demo_prepare_buffers(struct demo *demo) { VkResult U_ASSERT_ONLY err; VkSwapchainKHR oldSwapchain = demo->swapchain; // Check the surface capabilities and formats VkSurfaceCapabilitiesKHR surfCapabilities; err = demo->fpGetPhysicalDeviceSurfaceCapabilitiesKHR( demo->gpu, demo->surface, &surfCapabilities); assert(!err); uint32_t presentModeCount; err = demo->fpGetPhysicalDeviceSurfacePresentModesKHR( demo->gpu, demo->surface, &presentModeCount, NULL); assert(!err); VkPresentModeKHR *presentModes = (VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR)); assert(presentModes); err = demo->fpGetPhysicalDeviceSurfacePresentModesKHR( demo->gpu, demo->surface, &presentModeCount, presentModes); assert(!err); VkExtent2D swapchainExtent; // width and height are either both -1, or both not -1. if (surfCapabilities.currentExtent.width == (uint32_t)-1) { // If the surface size is undefined, the size is set to // the size of the images requested. swapchainExtent.width = demo->width; swapchainExtent.height = demo->height; } else { // If the surface size is defined, the swap chain size must match swapchainExtent = surfCapabilities.currentExtent; demo->width = surfCapabilities.currentExtent.width; demo->height = surfCapabilities.currentExtent.height; } // If mailbox mode is available, use it, as is the lowest-latency non- // tearing mode. If not, try IMMEDIATE which will usually be available, // and is fastest (though it tears). If not, fall back to FIFO which is // always available. VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR; for (size_t i = 0; i < presentModeCount; i++) { if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) { swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR; break; } if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) && (presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR)) { swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR; } } // Determine the number of VkImage's to use in the swap chain (we desire to // own only 1 image at a time, besides the images being displayed and // queued for display): uint32_t desiredNumberOfSwapchainImages = surfCapabilities.minImageCount + 1; if ((surfCapabilities.maxImageCount > 0) && (desiredNumberOfSwapchainImages > surfCapabilities.maxImageCount)) { // Application must settle for fewer images than desired: desiredNumberOfSwapchainImages = surfCapabilities.maxImageCount; } VkSurfaceTransformFlagsKHR preTransform; if (surfCapabilities.supportedTransforms & VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR) { preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR; } else { preTransform = surfCapabilities.currentTransform; } const VkSwapchainCreateInfoKHR swapchain = { .sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR, .pNext = NULL, .surface = demo->surface, .minImageCount = desiredNumberOfSwapchainImages, .imageFormat = demo->format, .imageColorSpace = demo->color_space, .imageExtent = { .width = swapchainExtent.width, .height = swapchainExtent.height, }, .imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT, .preTransform = preTransform, .compositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR, .imageArrayLayers = 1, .imageSharingMode = VK_SHARING_MODE_EXCLUSIVE, .queueFamilyIndexCount = 0, .pQueueFamilyIndices = NULL, .presentMode = swapchainPresentMode, .oldSwapchain = oldSwapchain, .clipped = true, }; uint32_t i; err = demo->fpCreateSwapchainKHR(demo->device, &swapchain, NULL, &demo->swapchain); assert(!err); // If we just re-created an existing swapchain, we should destroy the old // swapchain at this point. // Note: destroying the swapchain also cleans up all its associated // presentable images once the platform is done with them. if (oldSwapchain != VK_NULL_HANDLE) { demo->fpDestroySwapchainKHR(demo->device, oldSwapchain, NULL); } err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swapchain, &demo->swapchainImageCount, NULL); assert(!err); VkImage *swapchainImages = (VkImage *)malloc(demo->swapchainImageCount * sizeof(VkImage)); assert(swapchainImages); err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swapchain, &demo->swapchainImageCount, swapchainImages); assert(!err); demo->buffers = (SwapchainBuffers *)malloc(sizeof(SwapchainBuffers) * demo->swapchainImageCount); assert(demo->buffers); for (i = 0; i < demo->swapchainImageCount; i++) { VkImageViewCreateInfo color_image_view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .format = demo->format, .components = { .r = VK_COMPONENT_SWIZZLE_R, .g = VK_COMPONENT_SWIZZLE_G, .b = VK_COMPONENT_SWIZZLE_B, .a = VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}, .viewType = VK_IMAGE_VIEW_TYPE_2D, .flags = 0, }; demo->buffers[i].image = swapchainImages[i]; // Render loop will expect image to have been used before and in // VK_IMAGE_LAYOUT_PRESENT_SRC_KHR // layout and will change to COLOR_ATTACHMENT_OPTIMAL, so init the image // to that state demo_set_image_layout( demo, demo->buffers[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, 0); color_image_view.image = demo->buffers[i].image; err = vkCreateImageView(demo->device, &color_image_view, NULL, &demo->buffers[i].view); assert(!err); } if (NULL != presentModes) { free(presentModes); } } static void demo_prepare_depth(struct demo *demo) { const VkFormat depth_format = VK_FORMAT_D16_UNORM; const VkImageCreateInfo image = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = NULL, .imageType = VK_IMAGE_TYPE_2D, .format = depth_format, .extent = {demo->width, demo->height, 1}, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = VK_IMAGE_TILING_OPTIMAL, .usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, .flags = 0, }; VkImageViewCreateInfo view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .image = VK_NULL_HANDLE, .format = depth_format, .subresourceRange = {.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT, .baseMipLevel = 0, .levelCount = 1, .baseArrayLayer = 0, .layerCount = 1}, .flags = 0, .viewType = VK_IMAGE_VIEW_TYPE_2D, }; VkMemoryRequirements mem_reqs; VkResult U_ASSERT_ONLY err; bool U_ASSERT_ONLY pass; demo->depth.format = depth_format; /* create image */ err = vkCreateImage(demo->device, &image, NULL, &demo->depth.image); assert(!err); vkGetImageMemoryRequirements(demo->device, demo->depth.image, &mem_reqs); assert(!err); demo->depth.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; demo->depth.mem_alloc.pNext = NULL; demo->depth.mem_alloc.allocationSize = mem_reqs.size; demo->depth.mem_alloc.memoryTypeIndex = 0; pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, 0, /* No requirements */ &demo->depth.mem_alloc.memoryTypeIndex); assert(pass); /* allocate memory */ err = vkAllocateMemory(demo->device, &demo->depth.mem_alloc, NULL, &demo->depth.mem); assert(!err); /* bind memory */ err = vkBindImageMemory(demo->device, demo->depth.image, demo->depth.mem, 0); assert(!err); demo_set_image_layout(demo, demo->depth.image, VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, 0); /* create image view */ view.image = demo->depth.image; err = vkCreateImageView(demo->device, &view, NULL, &demo->depth.view); assert(!err); } /* Load a ppm file into memory */ bool loadTexture(const char *filename, uint8_t *rgba_data, VkSubresourceLayout *layout, int32_t *width, int32_t *height) { FILE *fPtr = fopen(filename, "rb"); char header[256], *cPtr, *tmp; if (!fPtr) return false; cPtr = fgets(header, 256, fPtr); // P6 if (cPtr == NULL || strncmp(header, "P6\n", 3)) { fclose(fPtr); return false; } do { cPtr = fgets(header, 256, fPtr); if (cPtr == NULL) { fclose(fPtr); return false; } } while (!strncmp(header, "#", 1)); sscanf(header, "%u %u", height, width); if (rgba_data == NULL) { fclose(fPtr); return true; } tmp = fgets(header, 256, fPtr); // Format (void)tmp; if (cPtr == NULL || strncmp(header, "255\n", 3)) { fclose(fPtr); return false; } for (int y = 0; y < *height; y++) { uint8_t *rowPtr = rgba_data; for (int x = 0; x < *width; x++) { size_t s = fread(rowPtr, 3, 1, fPtr); (void)s; rowPtr[3] = 255; /* Alpha of 1 */ rowPtr += 4; } rgba_data += layout->rowPitch; } fclose(fPtr); return true; } static void demo_prepare_texture_image(struct demo *demo, const char *filename, struct texture_object *tex_obj, VkImageTiling tiling, VkImageUsageFlags usage, VkFlags required_props) { const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM; int32_t tex_width; int32_t tex_height; VkResult U_ASSERT_ONLY err; bool U_ASSERT_ONLY pass; if (!loadTexture(filename, NULL, NULL, &tex_width, &tex_height)) { printf("Failed to load textures\n"); fflush(stdout); exit(1); } tex_obj->tex_width = tex_width; tex_obj->tex_height = tex_height; const VkImageCreateInfo image_create_info = { .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO, .pNext = NULL, .imageType = VK_IMAGE_TYPE_2D, .format = tex_format, .extent = {tex_width, tex_height, 1}, .mipLevels = 1, .arrayLayers = 1, .samples = VK_SAMPLE_COUNT_1_BIT, .tiling = tiling, .usage = usage, .flags = 0, .initialLayout = VK_IMAGE_LAYOUT_PREINITIALIZED, }; VkMemoryRequirements mem_reqs; err = vkCreateImage(demo->device, &image_create_info, NULL, &tex_obj->image); assert(!err); vkGetImageMemoryRequirements(demo->device, tex_obj->image, &mem_reqs); tex_obj->mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; tex_obj->mem_alloc.pNext = NULL; tex_obj->mem_alloc.allocationSize = mem_reqs.size; tex_obj->mem_alloc.memoryTypeIndex = 0; pass = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, required_props, &tex_obj->mem_alloc.memoryTypeIndex); assert(pass); /* allocate memory */ err = vkAllocateMemory(demo->device, &tex_obj->mem_alloc, NULL, &(tex_obj->mem)); assert(!err); /* bind memory */ err = vkBindImageMemory(demo->device, tex_obj->image, tex_obj->mem, 0); assert(!err); if (required_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) { const VkImageSubresource subres = { .aspectMask = VK_IMAGE_ASPECT_COLOR_BIT, .mipLevel = 0, .arrayLayer = 0, }; VkSubresourceLayout layout; void *data; vkGetImageSubresourceLayout(demo->device, tex_obj->image, &subres, &layout); err = vkMapMemory(demo->device, tex_obj->mem, 0, tex_obj->mem_alloc.allocationSize, 0, &data); assert(!err); if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) { fprintf(stderr, "Error loading texture: %s\n", filename); } vkUnmapMemory(demo->device, tex_obj->mem); } tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL; demo_set_image_layout(demo, tex_obj->image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_PREINITIALIZED, tex_obj->imageLayout, VK_ACCESS_HOST_WRITE_BIT); /* setting the image layout does not reference the actual memory so no need * to add a mem ref */ } static void demo_destroy_texture_image(struct demo *demo, struct texture_object *tex_objs) { /* clean up staging resources */ vkFreeMemory(demo->device, tex_objs->mem, NULL); vkDestroyImage(demo->device, tex_objs->image, NULL); } static void demo_prepare_textures(struct demo *demo) { const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM; VkFormatProperties props; uint32_t i; vkGetPhysicalDeviceFormatProperties(demo->gpu, tex_format, &props); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { VkResult U_ASSERT_ONLY err; if ((props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) && !demo->use_staging_buffer) { /* Device can texture using linear textures */ demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); } else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) { /* Must use staging buffer to copy linear texture to optimized */ struct texture_object staging_texture; memset(&staging_texture, 0, sizeof(staging_texture)); demo_prepare_texture_image(demo, tex_files[i], &staging_texture, VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_SRC_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT); demo_prepare_texture_image( demo, tex_files[i], &demo->textures[i], VK_IMAGE_TILING_OPTIMAL, (VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT), VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT); demo_set_image_layout(demo, staging_texture.image, VK_IMAGE_ASPECT_COLOR_BIT, staging_texture.imageLayout, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, 0); demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, demo->textures[i].imageLayout, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 0); VkImageCopy copy_region = { .srcSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, .srcOffset = {0, 0, 0}, .dstSubresource = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1}, .dstOffset = {0, 0, 0}, .extent = {staging_texture.tex_width, staging_texture.tex_height, 1}, }; vkCmdCopyImage( demo->cmd, staging_texture.image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, demo->textures[i].image, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, ©_region); demo_set_image_layout(demo, demo->textures[i].image, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, demo->textures[i].imageLayout, 0); demo_flush_init_cmd(demo); demo_destroy_texture_image(demo, &staging_texture); } else { /* Can't support VK_FORMAT_R8G8B8A8_UNORM !? */ assert(!"No support for R8G8B8A8_UNORM as texture image format"); } const VkSamplerCreateInfo sampler = { .sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO, .pNext = NULL, .magFilter = VK_FILTER_NEAREST, .minFilter = VK_FILTER_NEAREST, .mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST, .addressModeU = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeV = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .addressModeW = VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE, .mipLodBias = 0.0f, .anisotropyEnable = VK_FALSE, .maxAnisotropy = 1, .compareOp = VK_COMPARE_OP_NEVER, .minLod = 0.0f, .maxLod = 0.0f, .borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE, .unnormalizedCoordinates = VK_FALSE, }; VkImageViewCreateInfo view = { .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO, .pNext = NULL, .image = VK_NULL_HANDLE, .viewType = VK_IMAGE_VIEW_TYPE_2D, .format = tex_format, .components = { VK_COMPONENT_SWIZZLE_R, VK_COMPONENT_SWIZZLE_G, VK_COMPONENT_SWIZZLE_B, VK_COMPONENT_SWIZZLE_A, }, .subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1}, .flags = 0, }; /* create sampler */ err = vkCreateSampler(demo->device, &sampler, NULL, &demo->textures[i].sampler); assert(!err); /* create image view */ view.image = demo->textures[i].image; err = vkCreateImageView(demo->device, &view, NULL, &demo->textures[i].view); assert(!err); } } void demo_prepare_cube_data_buffer(struct demo *demo) { VkBufferCreateInfo buf_info; VkMemoryRequirements mem_reqs; uint8_t *pData; int i; mat4x4 MVP, VP; VkResult U_ASSERT_ONLY err; bool U_ASSERT_ONLY pass; struct vktexcube_vs_uniform data; mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix); mat4x4_mul(MVP, VP, demo->model_matrix); memcpy(data.mvp, MVP, sizeof(MVP)); // dumpMatrix("MVP", MVP); for (i = 0; i < 12 * 3; i++) { data.position[i][0] = g_vertex_buffer_data[i * 3]; data.position[i][1] = g_vertex_buffer_data[i * 3 + 1]; data.position[i][2] = g_vertex_buffer_data[i * 3 + 2]; data.position[i][3] = 1.0f; data.attr[i][0] = g_uv_buffer_data[2 * i]; data.attr[i][1] = g_uv_buffer_data[2 * i + 1]; data.attr[i][2] = 0; data.attr[i][3] = 0; } memset(&buf_info, 0, sizeof(buf_info)); buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO; buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT; buf_info.size = sizeof(data); err = vkCreateBuffer(demo->device, &buf_info, NULL, &demo->uniform_data.buf); assert(!err); vkGetBufferMemoryRequirements(demo->device, demo->uniform_data.buf, &mem_reqs); demo->uniform_data.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO; demo->uniform_data.mem_alloc.pNext = NULL; demo->uniform_data.mem_alloc.allocationSize = mem_reqs.size; demo->uniform_data.mem_alloc.memoryTypeIndex = 0; pass = memory_type_from_properties( demo, mem_reqs.memoryTypeBits, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT, &demo->uniform_data.mem_alloc.memoryTypeIndex); assert(pass); err = vkAllocateMemory(demo->device, &demo->uniform_data.mem_alloc, NULL, &(demo->uniform_data.mem)); assert(!err); err = vkMapMemory(demo->device, demo->uniform_data.mem, 0, demo->uniform_data.mem_alloc.allocationSize, 0, (void **)&pData); assert(!err); memcpy(pData, &data, sizeof data); vkUnmapMemory(demo->device, demo->uniform_data.mem); err = vkBindBufferMemory(demo->device, demo->uniform_data.buf, demo->uniform_data.mem, 0); assert(!err); demo->uniform_data.buffer_info.buffer = demo->uniform_data.buf; demo->uniform_data.buffer_info.offset = 0; demo->uniform_data.buffer_info.range = sizeof(data); } static void demo_prepare_descriptor_layout(struct demo *demo) { const VkDescriptorSetLayoutBinding layout_bindings[2] = { [0] = { .binding = 0, .descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, .stageFlags = VK_SHADER_STAGE_VERTEX_BIT, .pImmutableSamplers = NULL, }, [1] = { .binding = 1, .descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = DEMO_TEXTURE_COUNT, .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT, .pImmutableSamplers = NULL, }, }; const VkDescriptorSetLayoutCreateInfo descriptor_layout = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, .pNext = NULL, .bindingCount = 2, .pBindings = layout_bindings, }; VkResult U_ASSERT_ONLY err; err = vkCreateDescriptorSetLayout(demo->device, &descriptor_layout, NULL, &demo->desc_layout); assert(!err); const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = { .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, .pNext = NULL, .setLayoutCount = 1, .pSetLayouts = &demo->desc_layout, }; err = vkCreatePipelineLayout(demo->device, &pPipelineLayoutCreateInfo, NULL, &demo->pipeline_layout); assert(!err); } static void demo_prepare_render_pass(struct demo *demo) { const VkAttachmentDescription attachments[2] = { [0] = { .format = demo->format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_STORE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, .finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }, [1] = { .format = demo->depth.format, .samples = VK_SAMPLE_COUNT_1_BIT, .loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR, .storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE, .stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE, .initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, .finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }, }; const VkAttachmentReference color_reference = { .attachment = 0, .layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, }; const VkAttachmentReference depth_reference = { .attachment = 1, .layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, }; const VkSubpassDescription subpass = { .pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS, .flags = 0, .inputAttachmentCount = 0, .pInputAttachments = NULL, .colorAttachmentCount = 1, .pColorAttachments = &color_reference, .pResolveAttachments = NULL, .pDepthStencilAttachment = &depth_reference, .preserveAttachmentCount = 0, .pPreserveAttachments = NULL, }; const VkRenderPassCreateInfo rp_info = { .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, .pNext = NULL, .attachmentCount = 2, .pAttachments = attachments, .subpassCount = 1, .pSubpasses = &subpass, .dependencyCount = 0, .pDependencies = NULL, }; VkResult U_ASSERT_ONLY err; err = vkCreateRenderPass(demo->device, &rp_info, NULL, &demo->render_pass); assert(!err); } static VkShaderModule demo_prepare_shader_module(struct demo *demo, const void *code, size_t size) { VkShaderModule module; VkShaderModuleCreateInfo moduleCreateInfo; VkResult U_ASSERT_ONLY err; moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO; moduleCreateInfo.pNext = NULL; moduleCreateInfo.codeSize = size; moduleCreateInfo.pCode = code; moduleCreateInfo.flags = 0; err = vkCreateShaderModule(demo->device, &moduleCreateInfo, NULL, &module); assert(!err); return module; } char *demo_read_spv(const char *filename, size_t *psize) { long int size; size_t U_ASSERT_ONLY retval; void *shader_code; FILE *fp = fopen(filename, "rb"); if (!fp) return NULL; fseek(fp, 0L, SEEK_END); size = ftell(fp); fseek(fp, 0L, SEEK_SET); shader_code = malloc(size); retval = fread(shader_code, size, 1, fp); assert(retval == 1); *psize = size; fclose(fp); return shader_code; } static VkShaderModule demo_prepare_vs(struct demo *demo) { void *vertShaderCode; size_t size; vertShaderCode = demo_read_spv("cube-vert.spv", &size); demo->vert_shader_module = demo_prepare_shader_module(demo, vertShaderCode, size); free(vertShaderCode); return demo->vert_shader_module; } static VkShaderModule demo_prepare_fs(struct demo *demo) { void *fragShaderCode; size_t size; fragShaderCode = demo_read_spv("cube-frag.spv", &size); demo->frag_shader_module = demo_prepare_shader_module(demo, fragShaderCode, size); free(fragShaderCode); return demo->frag_shader_module; } static void demo_prepare_pipeline(struct demo *demo) { VkGraphicsPipelineCreateInfo pipeline; VkPipelineCacheCreateInfo pipelineCache; VkPipelineVertexInputStateCreateInfo vi; VkPipelineInputAssemblyStateCreateInfo ia; VkPipelineRasterizationStateCreateInfo rs; VkPipelineColorBlendStateCreateInfo cb; VkPipelineDepthStencilStateCreateInfo ds; VkPipelineViewportStateCreateInfo vp; VkPipelineMultisampleStateCreateInfo ms; VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_RANGE_SIZE]; VkPipelineDynamicStateCreateInfo dynamicState; VkResult U_ASSERT_ONLY err; memset(dynamicStateEnables, 0, sizeof dynamicStateEnables); memset(&dynamicState, 0, sizeof dynamicState); dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO; dynamicState.pDynamicStates = dynamicStateEnables; memset(&pipeline, 0, sizeof(pipeline)); pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO; pipeline.layout = demo->pipeline_layout; memset(&vi, 0, sizeof(vi)); vi.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO; memset(&ia, 0, sizeof(ia)); ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO; ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST; memset(&rs, 0, sizeof(rs)); rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO; rs.polygonMode = VK_POLYGON_MODE_FILL; rs.cullMode = VK_CULL_MODE_BACK_BIT; rs.frontFace = VK_FRONT_FACE_COUNTER_CLOCKWISE; rs.depthClampEnable = VK_FALSE; rs.rasterizerDiscardEnable = VK_FALSE; rs.depthBiasEnable = VK_FALSE; memset(&cb, 0, sizeof(cb)); cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO; VkPipelineColorBlendAttachmentState att_state[1]; memset(att_state, 0, sizeof(att_state)); att_state[0].colorWriteMask = 0xf; att_state[0].blendEnable = VK_FALSE; cb.attachmentCount = 1; cb.pAttachments = att_state; memset(&vp, 0, sizeof(vp)); vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO; vp.viewportCount = 1; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT; vp.scissorCount = 1; dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR; memset(&ds, 0, sizeof(ds)); ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO; ds.depthTestEnable = VK_TRUE; ds.depthWriteEnable = VK_TRUE; ds.depthCompareOp = VK_COMPARE_OP_LESS_OR_EQUAL; ds.depthBoundsTestEnable = VK_FALSE; ds.back.failOp = VK_STENCIL_OP_KEEP; ds.back.passOp = VK_STENCIL_OP_KEEP; ds.back.compareOp = VK_COMPARE_OP_ALWAYS; ds.stencilTestEnable = VK_FALSE; ds.front = ds.back; memset(&ms, 0, sizeof(ms)); ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO; ms.pSampleMask = NULL; ms.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT; // Two stages: vs and fs pipeline.stageCount = 2; VkPipelineShaderStageCreateInfo shaderStages[2]; memset(&shaderStages, 0, 2 * sizeof(VkPipelineShaderStageCreateInfo)); shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStages[0].stage = VK_SHADER_STAGE_VERTEX_BIT; shaderStages[0].module = demo_prepare_vs(demo); shaderStages[0].pName = "main"; shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT_BIT; shaderStages[1].module = demo_prepare_fs(demo); shaderStages[1].pName = "main"; memset(&pipelineCache, 0, sizeof(pipelineCache)); pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO; err = vkCreatePipelineCache(demo->device, &pipelineCache, NULL, &demo->pipelineCache); assert(!err); pipeline.pVertexInputState = &vi; pipeline.pInputAssemblyState = &ia; pipeline.pRasterizationState = &rs; pipeline.pColorBlendState = &cb; pipeline.pMultisampleState = &ms; pipeline.pViewportState = &vp; pipeline.pDepthStencilState = &ds; pipeline.pStages = shaderStages; pipeline.renderPass = demo->render_pass; pipeline.pDynamicState = &dynamicState; pipeline.renderPass = demo->render_pass; err = vkCreateGraphicsPipelines(demo->device, demo->pipelineCache, 1, &pipeline, NULL, &demo->pipeline); assert(!err); vkDestroyShaderModule(demo->device, demo->frag_shader_module, NULL); vkDestroyShaderModule(demo->device, demo->vert_shader_module, NULL); } static void demo_prepare_descriptor_pool(struct demo *demo) { const VkDescriptorPoolSize type_counts[2] = { [0] = { .type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, .descriptorCount = 1, }, [1] = { .type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, .descriptorCount = DEMO_TEXTURE_COUNT, }, }; const VkDescriptorPoolCreateInfo descriptor_pool = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, .pNext = NULL, .maxSets = 1, .poolSizeCount = 2, .pPoolSizes = type_counts, }; VkResult U_ASSERT_ONLY err; err = vkCreateDescriptorPool(demo->device, &descriptor_pool, NULL, &demo->desc_pool); assert(!err); } static void demo_prepare_descriptor_set(struct demo *demo) { VkDescriptorImageInfo tex_descs[DEMO_TEXTURE_COUNT]; VkWriteDescriptorSet writes[2]; VkResult U_ASSERT_ONLY err; uint32_t i; VkDescriptorSetAllocateInfo alloc_info = { .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, .pNext = NULL, .descriptorPool = demo->desc_pool, .descriptorSetCount = 1, .pSetLayouts = &demo->desc_layout}; err = vkAllocateDescriptorSets(demo->device, &alloc_info, &demo->desc_set); assert(!err); memset(&tex_descs, 0, sizeof(tex_descs)); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { tex_descs[i].sampler = demo->textures[i].sampler; tex_descs[i].imageView = demo->textures[i].view; tex_descs[i].imageLayout = VK_IMAGE_LAYOUT_GENERAL; } memset(&writes, 0, sizeof(writes)); writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[0].dstSet = demo->desc_set; writes[0].descriptorCount = 1; writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER; writes[0].pBufferInfo = &demo->uniform_data.buffer_info; writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET; writes[1].dstSet = demo->desc_set; writes[1].dstBinding = 1; writes[1].descriptorCount = DEMO_TEXTURE_COUNT; writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER; writes[1].pImageInfo = tex_descs; vkUpdateDescriptorSets(demo->device, 2, writes, 0, NULL); } static void demo_prepare_framebuffers(struct demo *demo) { VkImageView attachments[2]; attachments[1] = demo->depth.view; const VkFramebufferCreateInfo fb_info = { .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, .pNext = NULL, .renderPass = demo->render_pass, .attachmentCount = 2, .pAttachments = attachments, .width = demo->width, .height = demo->height, .layers = 1, }; VkResult U_ASSERT_ONLY err; uint32_t i; demo->framebuffers = (VkFramebuffer *)malloc(demo->swapchainImageCount * sizeof(VkFramebuffer)); assert(demo->framebuffers); for (i = 0; i < demo->swapchainImageCount; i++) { attachments[0] = demo->buffers[i].view; err = vkCreateFramebuffer(demo->device, &fb_info, NULL, &demo->framebuffers[i]); assert(!err); } } static void demo_prepare(struct demo *demo) { VkResult U_ASSERT_ONLY err; const VkCommandPoolCreateInfo cmd_pool_info = { .sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, .pNext = NULL, .queueFamilyIndex = demo->graphics_queue_node_index, .flags = 0, }; err = vkCreateCommandPool(demo->device, &cmd_pool_info, NULL, &demo->cmd_pool); assert(!err); const VkCommandBufferAllocateInfo cmd = { .sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, .pNext = NULL, .commandPool = demo->cmd_pool, .level = VK_COMMAND_BUFFER_LEVEL_PRIMARY, .commandBufferCount = 1, }; demo_prepare_buffers(demo); demo_prepare_depth(demo); demo_prepare_textures(demo); demo_prepare_cube_data_buffer(demo); demo_prepare_descriptor_layout(demo); demo_prepare_render_pass(demo); demo_prepare_pipeline(demo); for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { err = vkAllocateCommandBuffers(demo->device, &cmd, &demo->buffers[i].cmd); assert(!err); } demo_prepare_descriptor_pool(demo); demo_prepare_descriptor_set(demo); demo_prepare_framebuffers(demo); for (uint32_t i = 0; i < demo->swapchainImageCount; i++) { demo->current_buffer = i; demo_draw_build_cmd(demo, demo->buffers[i].cmd); } /* * Prepare functions above may generate pipeline commands * that need to be flushed before beginning the render loop. */ demo_flush_init_cmd(demo); demo->current_buffer = 0; demo->prepared = true; } static void demo_cleanup(struct demo *demo) { uint32_t i; demo->prepared = false; for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyFramebuffer(demo->device, demo->framebuffers[i], NULL); } free(demo->framebuffers); vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL); vkDestroyPipeline(demo->device, demo->pipeline, NULL); vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL); vkDestroyRenderPass(demo->device, demo->render_pass, NULL); vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL); vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { vkDestroyImageView(demo->device, demo->textures[i].view, NULL); vkDestroyImage(demo->device, demo->textures[i].image, NULL); vkFreeMemory(demo->device, demo->textures[i].mem, NULL); vkDestroySampler(demo->device, demo->textures[i].sampler, NULL); } demo->fpDestroySwapchainKHR(demo->device, demo->swapchain, NULL); vkDestroyImageView(demo->device, demo->depth.view, NULL); vkDestroyImage(demo->device, demo->depth.image, NULL); vkFreeMemory(demo->device, demo->depth.mem, NULL); vkDestroyBuffer(demo->device, demo->uniform_data.buf, NULL); vkFreeMemory(demo->device, demo->uniform_data.mem, NULL); for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyImageView(demo->device, demo->buffers[i].view, NULL); vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->buffers[i].cmd); } free(demo->buffers); free(demo->queue_props); vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL); vkDestroyDevice(demo->device, NULL); if (demo->validate) { demo->DestroyDebugReportCallback(demo->inst, demo->msg_callback, NULL); } vkDestroySurfaceKHR(demo->inst, demo->surface, NULL); vkDestroyInstance(demo->inst, NULL); #ifndef _WIN32 xcb_destroy_window(demo->connection, demo->window); xcb_disconnect(demo->connection); free(demo->atom_wm_delete_window); #endif // _WIN32 } static void demo_resize(struct demo *demo) { uint32_t i; // Don't react to resize until after first initialization. if (!demo->prepared) { return; } // In order to properly resize the window, we must re-create the swapchain // AND redo the command buffers, etc. // // First, perform part of the demo_cleanup() function: demo->prepared = false; for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyFramebuffer(demo->device, demo->framebuffers[i], NULL); } free(demo->framebuffers); vkDestroyDescriptorPool(demo->device, demo->desc_pool, NULL); vkDestroyPipeline(demo->device, demo->pipeline, NULL); vkDestroyPipelineCache(demo->device, demo->pipelineCache, NULL); vkDestroyRenderPass(demo->device, demo->render_pass, NULL); vkDestroyPipelineLayout(demo->device, demo->pipeline_layout, NULL); vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout, NULL); for (i = 0; i < DEMO_TEXTURE_COUNT; i++) { vkDestroyImageView(demo->device, demo->textures[i].view, NULL); vkDestroyImage(demo->device, demo->textures[i].image, NULL); vkFreeMemory(demo->device, demo->textures[i].mem, NULL); vkDestroySampler(demo->device, demo->textures[i].sampler, NULL); } vkDestroyImageView(demo->device, demo->depth.view, NULL); vkDestroyImage(demo->device, demo->depth.image, NULL); vkFreeMemory(demo->device, demo->depth.mem, NULL); vkDestroyBuffer(demo->device, demo->uniform_data.buf, NULL); vkFreeMemory(demo->device, demo->uniform_data.mem, NULL); for (i = 0; i < demo->swapchainImageCount; i++) { vkDestroyImageView(demo->device, demo->buffers[i].view, NULL); vkFreeCommandBuffers(demo->device, demo->cmd_pool, 1, &demo->buffers[i].cmd); } vkDestroyCommandPool(demo->device, demo->cmd_pool, NULL); free(demo->buffers); // Second, re-perform the demo_prepare() function, which will re-create the // swapchain: demo_prepare(demo); } // On MS-Windows, make this a global, so it's available to WndProc() struct demo demo; #ifdef _WIN32 static void demo_run(struct demo *demo) { if (!demo->prepared) return; // Wait for work to finish before updating MVP. vkDeviceWaitIdle(demo->device); demo_update_data_buffer(demo); demo_draw(demo); // Wait for work to finish before updating MVP. vkDeviceWaitIdle(demo->device); demo->curFrame++; if (demo->frameCount != INT_MAX && demo->curFrame == demo->frameCount) { demo->quit = true; demo_cleanup(demo); ExitProcess(0); } } // MS-Windows event handling function: LRESULT CALLBACK WndProc(HWND hWnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CLOSE: PostQuitMessage(validation_error); break; case WM_PAINT: demo_run(&demo); break; case WM_SIZE: // Resize the application to the new window size, except when // it was minimized. Vulkan doesn't support images or swapchains // with width=0 and height=0. if (wParam != SIZE_MINIMIZED) { demo.width = lParam & 0xffff; demo.height = lParam & 0xffff0000 >> 16; demo_resize(&demo); } break; default: break; } return (DefWindowProc(hWnd, uMsg, wParam, lParam)); } static void demo_create_window(struct demo *demo) { WNDCLASSEX win_class; // Initialize the window class structure: win_class.cbSize = sizeof(WNDCLASSEX); win_class.style = CS_HREDRAW | CS_VREDRAW; win_class.lpfnWndProc = WndProc; win_class.cbClsExtra = 0; win_class.cbWndExtra = 0; win_class.hInstance = demo->connection; // hInstance win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION); win_class.hCursor = LoadCursor(NULL, IDC_ARROW); win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH); win_class.lpszMenuName = NULL; win_class.lpszClassName = demo->name; win_class.hIconSm = LoadIcon(NULL, IDI_WINLOGO); // Register window class: if (!RegisterClassEx(&win_class)) { // It didn't work, so try to give a useful error: printf("Unexpected error trying to start the application!\n"); fflush(stdout); exit(1); } // Create window with the registered class: RECT wr = {0, 0, demo->width, demo->height}; AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE); demo->window = CreateWindowEx(0, demo->name, // class name demo->name, // app name WS_OVERLAPPEDWINDOW | // window style WS_VISIBLE | WS_SYSMENU, 100, 100, // x/y coords wr.right - wr.left, // width wr.bottom - wr.top, // height NULL, // handle to parent NULL, // handle to menu demo->connection, // hInstance NULL); // no extra parameters if (!demo->window) { // It didn't work, so try to give a useful error: printf("Cannot create a window in which to draw!\n"); fflush(stdout); exit(1); } } #else // _WIN32 static void demo_handle_event(struct demo *demo, const xcb_generic_event_t *event) { uint8_t event_code = event->response_type & 0x7f; switch (event_code) { case XCB_EXPOSE: // TODO: Resize window break; case XCB_CLIENT_MESSAGE: if ((*(xcb_client_message_event_t *)event).data.data32[0] == (*demo->atom_wm_delete_window).atom) { demo->quit = true; } break; case XCB_KEY_RELEASE: { const xcb_key_release_event_t *key = (const xcb_key_release_event_t *)event; switch (key->detail) { case 0x9: // Escape demo->quit = true; break; case 0x71: // left arrow key demo->spin_angle += demo->spin_increment; break; case 0x72: // right arrow key demo->spin_angle -= demo->spin_increment; break; case 0x41: demo->pause = !demo->pause; break; } } break; case XCB_CONFIGURE_NOTIFY: { const xcb_configure_notify_event_t *cfg = (const xcb_configure_notify_event_t *)event; if ((demo->width != cfg->width) || (demo->height != cfg->height)) { demo->width = cfg->width; demo->height = cfg->height; demo_resize(demo); } } break; default: break; } } static void demo_run(struct demo *demo) { xcb_flush(demo->connection); while (!demo->quit) { xcb_generic_event_t *event; if (demo->pause) { event = xcb_wait_for_event(demo->connection); } else { event = xcb_poll_for_event(demo->connection); } if (event) { demo_handle_event(demo, event); free(event); } // Wait for work to finish before updating MVP. vkDeviceWaitIdle(demo->device); demo_update_data_buffer(demo); demo_draw(demo); // Wait for work to finish before updating MVP. vkDeviceWaitIdle(demo->device); demo->curFrame++; if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount) demo->quit = true; } } static void demo_create_window(struct demo *demo) { uint32_t value_mask, value_list[32]; demo->window = xcb_generate_id(demo->connection); value_mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK; value_list[0] = demo->screen->black_pixel; value_list[1] = XCB_EVENT_MASK_KEY_RELEASE | XCB_EVENT_MASK_EXPOSURE | XCB_EVENT_MASK_STRUCTURE_NOTIFY; xcb_create_window(demo->connection, XCB_COPY_FROM_PARENT, demo->window, demo->screen->root, 0, 0, demo->width, demo->height, 0, XCB_WINDOW_CLASS_INPUT_OUTPUT, demo->screen->root_visual, value_mask, value_list); /* Magic code that will send notification when window is destroyed */ xcb_intern_atom_cookie_t cookie = xcb_intern_atom(demo->connection, 1, 12, "WM_PROTOCOLS"); xcb_intern_atom_reply_t *reply = xcb_intern_atom_reply(demo->connection, cookie, 0); xcb_intern_atom_cookie_t cookie2 = xcb_intern_atom(demo->connection, 0, 16, "WM_DELETE_WINDOW"); demo->atom_wm_delete_window = xcb_intern_atom_reply(demo->connection, cookie2, 0); xcb_change_property(demo->connection, XCB_PROP_MODE_REPLACE, demo->window, (*reply).atom, 4, 32, 1, &(*demo->atom_wm_delete_window).atom); free(reply); xcb_map_window(demo->connection, demo->window); // Force the x/y coordinates to 100,100 results are identical in consecutive // runs const uint32_t coords[] = {100, 100}; xcb_configure_window(demo->connection, demo->window, XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y, coords); } #endif // _WIN32 /* * Return 1 (true) if all layer names specified in check_names * can be found in given layer properties. */ static VkBool32 demo_check_layers(uint32_t check_count, char **check_names, uint32_t layer_count, VkLayerProperties *layers) { for (uint32_t i = 0; i < check_count; i++) { VkBool32 found = 0; for (uint32_t j = 0; j < layer_count; j++) { if (!strcmp(check_names[i], layers[j].layerName)) { found = 1; break; } } if (!found) { fprintf(stderr, "Cannot find layer: %s\n", check_names[i]); return 0; } } return 1; } static void demo_init_vk(struct demo *demo) { VkResult err; char *extension_names[64]; uint32_t instance_extension_count = 0; uint32_t instance_layer_count = 0; uint32_t device_validation_layer_count = 0; uint32_t enabled_extension_count = 0; uint32_t enabled_layer_count = 0; char *instance_validation_layers[] = { "VK_LAYER_GOOGLE_threading", "VK_LAYER_LUNARG_parameter_validation", "VK_LAYER_LUNARG_device_limits", "VK_LAYER_LUNARG_object_tracker", "VK_LAYER_LUNARG_image", "VK_LAYER_LUNARG_core_validation", "VK_LAYER_LUNARG_swapchain", "VK_LAYER_GOOGLE_unique_objects" }; demo->device_validation_layers[0] = "VK_LAYER_GOOGLE_threading"; demo->device_validation_layers[1] = "VK_LAYER_LUNARG_parameter_validation"; demo->device_validation_layers[2] = "VK_LAYER_LUNARG_device_limits"; demo->device_validation_layers[3] = "VK_LAYER_LUNARG_object_tracker"; demo->device_validation_layers[4] = "VK_LAYER_LUNARG_image"; demo->device_validation_layers[5] = "VK_LAYER_LUNARG_core_validation"; demo->device_validation_layers[6] = "VK_LAYER_LUNARG_swapchain"; demo->device_validation_layers[7] = "VK_LAYER_GOOGLE_unique_objects"; device_validation_layer_count = 8; /* Look for validation layers */ VkBool32 validation_found = 0; err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL); assert(!err); if (instance_layer_count > 0) { VkLayerProperties *instance_layers = malloc(sizeof(VkLayerProperties) * instance_layer_count); err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers); assert(!err); if (demo->validate) { validation_found = demo_check_layers( ARRAY_SIZE(instance_validation_layers), instance_validation_layers, instance_layer_count, instance_layers); enabled_layer_count = ARRAY_SIZE(instance_validation_layers); } free(instance_layers); } if (demo->validate && !validation_found) { ERR_EXIT("vkEnumerateInstanceLayerProperties failed to find" "required validation layer.\n\n" "Please look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); } /* Look for instance extensions */ VkBool32 surfaceExtFound = 0; VkBool32 platformSurfaceExtFound = 0; memset(extension_names, 0, sizeof(extension_names)); err = vkEnumerateInstanceExtensionProperties( NULL, &instance_extension_count, NULL); assert(!err); if (instance_extension_count > 0) { VkExtensionProperties *instance_extensions = malloc(sizeof(VkExtensionProperties) * instance_extension_count); err = vkEnumerateInstanceExtensionProperties( NULL, &instance_extension_count, instance_extensions); assert(!err); for (uint32_t i = 0; i < instance_extension_count; i++) { if (!strcmp(VK_KHR_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { surfaceExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_SURFACE_EXTENSION_NAME; } #ifdef _WIN32 if (!strcmp(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_WIN32_SURFACE_EXTENSION_NAME; } #else // _WIN32 if (!strcmp(VK_KHR_XCB_SURFACE_EXTENSION_NAME, instance_extensions[i].extensionName)) { platformSurfaceExtFound = 1; extension_names[enabled_extension_count++] = VK_KHR_XCB_SURFACE_EXTENSION_NAME; } #endif // _WIN32 if (!strcmp(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extensionName)) { if (demo->validate) { extension_names[enabled_extension_count++] = VK_EXT_DEBUG_REPORT_EXTENSION_NAME; } } assert(enabled_extension_count < 64); } free(instance_extensions); } if (!surfaceExtFound) { ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); } if (!platformSurfaceExtFound) { #ifdef _WIN32 ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_WIN32_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #else // _WIN32 ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find " "the " VK_KHR_XCB_SURFACE_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); #endif // _WIN32 } const VkApplicationInfo app = { .sType = VK_STRUCTURE_TYPE_APPLICATION_INFO, .pNext = NULL, .pApplicationName = APP_SHORT_NAME, .applicationVersion = 0, .pEngineName = APP_SHORT_NAME, .engineVersion = 0, .apiVersion = VK_API_VERSION_1_0, }; VkInstanceCreateInfo inst_info = { .sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, .pNext = NULL, .pApplicationInfo = &app, .enabledLayerCount = enabled_layer_count, .ppEnabledLayerNames = (const char *const *)((demo->validate) ? instance_validation_layers : NULL), .enabledExtensionCount = enabled_extension_count, .ppEnabledExtensionNames = (const char *const *)extension_names, }; uint32_t gpu_count; err = vkCreateInstance(&inst_info, NULL, &demo->inst); if (err == VK_ERROR_INCOMPATIBLE_DRIVER) { ERR_EXIT("Cannot find a compatible Vulkan installable client driver " "(ICD).\n\nPlease look at the Getting Started guide for " "additional information.\n", "vkCreateInstance Failure"); } else if (err == VK_ERROR_EXTENSION_NOT_PRESENT) { ERR_EXIT("Cannot find a specified extension library" ".\nMake sure your layers path is set appropriately.\n", "vkCreateInstance Failure"); } else if (err) { ERR_EXIT("vkCreateInstance failed.\n\nDo you have a compatible Vulkan " "installable client driver (ICD) installed?\nPlease look at " "the Getting Started guide for additional information.\n", "vkCreateInstance Failure"); } /* Make initial call to query gpu_count, then second call for gpu info*/ err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, NULL); assert(!err && gpu_count > 0); if (gpu_count > 0) { VkPhysicalDevice *physical_devices = malloc(sizeof(VkPhysicalDevice) * gpu_count); err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, physical_devices); assert(!err); /* For cube demo we just grab the first physical device */ demo->gpu = physical_devices[0]; free(physical_devices); } else { ERR_EXIT("vkEnumeratePhysicalDevices reported zero accessible devices.\n\n" "Do you have a compatible Vulkan installable client driver (ICD) " "installed?\nPlease look at the Getting Started guide for " "additional information.\n", "vkEnumeratePhysicalDevices Failure"); } /* Look for validation layers */ validation_found = 0; demo->enabled_layer_count = 0; uint32_t device_layer_count = 0; err = vkEnumerateDeviceLayerProperties(demo->gpu, &device_layer_count, NULL); assert(!err); if (device_layer_count > 0) { VkLayerProperties *device_layers = malloc(sizeof(VkLayerProperties) * device_layer_count); err = vkEnumerateDeviceLayerProperties(demo->gpu, &device_layer_count, device_layers); assert(!err); if (demo->validate) { validation_found = demo_check_layers(device_validation_layer_count, demo->device_validation_layers, device_layer_count, device_layers); demo->enabled_layer_count = device_validation_layer_count; } free(device_layers); } if (demo->validate && !validation_found) { ERR_EXIT("vkEnumerateDeviceLayerProperties failed to find" "a required validation layer.\n\n" "Please look at the Getting Started guide for additional " "information.\n", "vkCreateDevice Failure"); } /* Look for device extensions */ uint32_t device_extension_count = 0; VkBool32 swapchainExtFound = 0; demo->enabled_extension_count = 0; memset(extension_names, 0, sizeof(extension_names)); err = vkEnumerateDeviceExtensionProperties(demo->gpu, NULL, &device_extension_count, NULL); assert(!err); if (device_extension_count > 0) { VkExtensionProperties *device_extensions = malloc(sizeof(VkExtensionProperties) * device_extension_count); err = vkEnumerateDeviceExtensionProperties( demo->gpu, NULL, &device_extension_count, device_extensions); assert(!err); for (uint32_t i = 0; i < device_extension_count; i++) { if (!strcmp(VK_KHR_SWAPCHAIN_EXTENSION_NAME, device_extensions[i].extensionName)) { swapchainExtFound = 1; demo->extension_names[demo->enabled_extension_count++] = VK_KHR_SWAPCHAIN_EXTENSION_NAME; } assert(demo->enabled_extension_count < 64); } free(device_extensions); } if (!swapchainExtFound) { ERR_EXIT("vkEnumerateDeviceExtensionProperties failed to find " "the " VK_KHR_SWAPCHAIN_EXTENSION_NAME " extension.\n\nDo you have a compatible " "Vulkan installable client driver (ICD) installed?\nPlease " "look at the Getting Started guide for additional " "information.\n", "vkCreateInstance Failure"); } if (demo->validate) { demo->CreateDebugReportCallback = (PFN_vkCreateDebugReportCallbackEXT)vkGetInstanceProcAddr( demo->inst, "vkCreateDebugReportCallbackEXT"); demo->DestroyDebugReportCallback = (PFN_vkDestroyDebugReportCallbackEXT)vkGetInstanceProcAddr( demo->inst, "vkDestroyDebugReportCallbackEXT"); if (!demo->CreateDebugReportCallback) { ERR_EXIT( "GetProcAddr: Unable to find vkCreateDebugReportCallbackEXT\n", "vkGetProcAddr Failure"); } if (!demo->DestroyDebugReportCallback) { ERR_EXIT( "GetProcAddr: Unable to find vkDestroyDebugReportCallbackEXT\n", "vkGetProcAddr Failure"); } demo->DebugReportMessage = (PFN_vkDebugReportMessageEXT)vkGetInstanceProcAddr( demo->inst, "vkDebugReportMessageEXT"); if (!demo->DebugReportMessage) { ERR_EXIT("GetProcAddr: Unable to find vkDebugReportMessageEXT\n", "vkGetProcAddr Failure"); } PFN_vkDebugReportCallbackEXT callback; if (!demo->use_break) { callback = dbgFunc; } else { callback = dbgFunc; // TODO add a break callback defined locally since there is no // longer // one included in the loader } VkDebugReportCallbackCreateInfoEXT dbgCreateInfo; dbgCreateInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT; dbgCreateInfo.pNext = NULL; dbgCreateInfo.pfnCallback = callback; dbgCreateInfo.pUserData = NULL; dbgCreateInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT; err = demo->CreateDebugReportCallback(demo->inst, &dbgCreateInfo, NULL, &demo->msg_callback); switch (err) { case VK_SUCCESS: break; case VK_ERROR_OUT_OF_HOST_MEMORY: ERR_EXIT("CreateDebugReportCallback: out of host memory\n", "CreateDebugReportCallback Failure"); break; default: ERR_EXIT("CreateDebugReportCallback: unknown failure\n", "CreateDebugReportCallback Failure"); break; } } vkGetPhysicalDeviceProperties(demo->gpu, &demo->gpu_props); /* Call with NULL data to get count */ vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_count, NULL); assert(demo->queue_count >= 1); demo->queue_props = (VkQueueFamilyProperties *)malloc( demo->queue_count * sizeof(VkQueueFamilyProperties)); vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_count, demo->queue_props); // Find a queue that supports gfx uint32_t gfx_queue_idx = 0; for (gfx_queue_idx = 0; gfx_queue_idx < demo->queue_count; gfx_queue_idx++) { if (demo->queue_props[gfx_queue_idx].queueFlags & VK_QUEUE_GRAPHICS_BIT) break; } assert(gfx_queue_idx < demo->queue_count); // Query fine-grained feature support for this device. // If app has specific feature requirements it should check supported // features based on this query VkPhysicalDeviceFeatures physDevFeatures; vkGetPhysicalDeviceFeatures(demo->gpu, &physDevFeatures); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceSupportKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceCapabilitiesKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceFormatsKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfacePresentModesKHR); GET_INSTANCE_PROC_ADDR(demo->inst, GetSwapchainImagesKHR); } static void demo_create_device(struct demo *demo) { VkResult U_ASSERT_ONLY err; float queue_priorities[1] = {0.0}; const VkDeviceQueueCreateInfo queue = { .sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, .pNext = NULL, .queueFamilyIndex = demo->graphics_queue_node_index, .queueCount = 1, .pQueuePriorities = queue_priorities}; VkDeviceCreateInfo device = { .sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, .pNext = NULL, .queueCreateInfoCount = 1, .pQueueCreateInfos = &queue, .enabledLayerCount = demo->enabled_layer_count, .ppEnabledLayerNames = (const char *const *)((demo->validate) ? demo->device_validation_layers : NULL), .enabledExtensionCount = demo->enabled_extension_count, .ppEnabledExtensionNames = (const char *const *)demo->extension_names, .pEnabledFeatures = NULL, // If specific features are required, pass them in here }; err = vkCreateDevice(demo->gpu, &device, NULL, &demo->device); assert(!err); } static void demo_init_vk_swapchain(struct demo *demo) { VkResult U_ASSERT_ONLY err; uint32_t i; // Create a WSI surface for the window: #ifdef _WIN32 VkWin32SurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.hinstance = demo->connection; createInfo.hwnd = demo->window; err = vkCreateWin32SurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #else // _WIN32 VkXcbSurfaceCreateInfoKHR createInfo; createInfo.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR; createInfo.pNext = NULL; createInfo.flags = 0; createInfo.connection = demo->connection; createInfo.window = demo->window; err = vkCreateXcbSurfaceKHR(demo->inst, &createInfo, NULL, &demo->surface); #endif // _WIN32 // Iterate over each queue to learn whether it supports presenting: VkBool32 *supportsPresent = (VkBool32 *)malloc(demo->queue_count * sizeof(VkBool32)); for (i = 0; i < demo->queue_count; i++) { demo->fpGetPhysicalDeviceSurfaceSupportKHR(demo->gpu, i, demo->surface, &supportsPresent[i]); } // Search for a graphics and a present queue in the array of queue // families, try to find one that supports both uint32_t graphicsQueueNodeIndex = UINT32_MAX; uint32_t presentQueueNodeIndex = UINT32_MAX; for (i = 0; i < demo->queue_count; i++) { if ((demo->queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) { if (graphicsQueueNodeIndex == UINT32_MAX) { graphicsQueueNodeIndex = i; } if (supportsPresent[i] == VK_TRUE) { graphicsQueueNodeIndex = i; presentQueueNodeIndex = i; break; } } } if (presentQueueNodeIndex == UINT32_MAX) { // If didn't find a queue that supports both graphics and present, then // find a separate present queue. for (uint32_t i = 0; i < demo->queue_count; ++i) { if (supportsPresent[i] == VK_TRUE) { presentQueueNodeIndex = i; break; } } } free(supportsPresent); // Generate error if could not find both a graphics and a present queue if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX) { ERR_EXIT("Could not find a graphics and a present queue\n", "Swapchain Initialization Failure"); } // TODO: Add support for separate queues, including presentation, // synchronization, and appropriate tracking for QueueSubmit. // NOTE: While it is possible for an application to use a separate graphics // and a present queues, this demo program assumes it is only using // one: if (graphicsQueueNodeIndex != presentQueueNodeIndex) { ERR_EXIT("Could not find a common graphics and a present queue\n", "Swapchain Initialization Failure"); } demo->graphics_queue_node_index = graphicsQueueNodeIndex; demo_create_device(demo); GET_DEVICE_PROC_ADDR(demo->device, CreateSwapchainKHR); GET_DEVICE_PROC_ADDR(demo->device, DestroySwapchainKHR); GET_DEVICE_PROC_ADDR(demo->device, GetSwapchainImagesKHR); GET_DEVICE_PROC_ADDR(demo->device, AcquireNextImageKHR); GET_DEVICE_PROC_ADDR(demo->device, QueuePresentKHR); vkGetDeviceQueue(demo->device, demo->graphics_queue_node_index, 0, &demo->queue); // Get the list of VkFormat's that are supported: uint32_t formatCount; err = demo->fpGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface, &formatCount, NULL); assert(!err); VkSurfaceFormatKHR *surfFormats = (VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR)); err = demo->fpGetPhysicalDeviceSurfaceFormatsKHR(demo->gpu, demo->surface, &formatCount, surfFormats); assert(!err); // If the format list includes just one entry of VK_FORMAT_UNDEFINED, // the surface has no preferred format. Otherwise, at least one // supported format will be returned. if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED) { demo->format = VK_FORMAT_B8G8R8A8_UNORM; } else { assert(formatCount >= 1); demo->format = surfFormats[0].format; } demo->color_space = surfFormats[0].colorSpace; demo->quit = false; demo->curFrame = 0; // Get Memory information and properties vkGetPhysicalDeviceMemoryProperties(demo->gpu, &demo->memory_properties); } static void demo_init_connection(struct demo *demo) { #ifndef _WIN32 const xcb_setup_t *setup; xcb_screen_iterator_t iter; int scr; demo->connection = xcb_connect(NULL, &scr); if (demo->connection == NULL) { printf("Cannot find a compatible Vulkan installable client driver " "(ICD).\nExiting ...\n"); fflush(stdout); exit(1); } setup = xcb_get_setup(demo->connection); iter = xcb_setup_roots_iterator(setup); while (scr-- > 0) xcb_screen_next(&iter); demo->screen = iter.data; #endif // _WIN32 } static void demo_init(struct demo *demo, int argc, char **argv) { vec3 eye = {0.0f, 3.0f, 5.0f}; vec3 origin = {0, 0, 0}; vec3 up = {0.0f, 1.0f, 0.0}; memset(demo, 0, sizeof(*demo)); demo->frameCount = INT32_MAX; for (int i = 1; i < argc; i++) { if (strcmp(argv[i], "--use_staging") == 0) { demo->use_staging_buffer = true; continue; } if (strcmp(argv[i], "--break") == 0) { demo->use_break = true; continue; } if (strcmp(argv[i], "--validate") == 0) { demo->validate = true; continue; } if (strcmp(argv[i], "--c") == 0 && demo->frameCount == INT32_MAX && i < argc - 1 && sscanf(argv[i + 1], "%d", &demo->frameCount) == 1 && demo->frameCount >= 0) { i++; continue; } fprintf(stderr, "Usage:\n %s [--use_staging] [--validate] [--break] " "[--c ]\n", APP_SHORT_NAME); fflush(stderr); exit(1); } demo_init_connection(demo); demo_init_vk(demo); demo->width = 500; demo->height = 500; demo->spin_angle = 0.01f; demo->spin_increment = 0.01f; demo->pause = false; mat4x4_perspective(demo->projection_matrix, (float)degreesToRadians(45.0f), 1.0f, 0.1f, 100.0f); mat4x4_look_at(demo->view_matrix, eye, origin, up); mat4x4_identity(demo->model_matrix); } #ifdef _WIN32 // Include header required for parsing the command line options. #include int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR pCmdLine, int nCmdShow) { MSG msg; // message bool done; // flag saying when app is complete int argc; char **argv; // Use the CommandLine functions to get the command line arguments. // Unfortunately, Microsoft outputs // this information as wide characters for Unicode, and we simply want the // Ascii version to be compatible // with the non-Windows side. So, we have to convert the information to // Ascii character strings. LPWSTR *commandLineArgs = CommandLineToArgvW(GetCommandLineW(), &argc); if (NULL == commandLineArgs) { argc = 0; } if (argc > 0) { argv = (char **)malloc(sizeof(char *) * argc); if (argv == NULL) { argc = 0; } else { for (int iii = 0; iii < argc; iii++) { size_t wideCharLen = wcslen(commandLineArgs[iii]); size_t numConverted = 0; argv[iii] = (char *)malloc(sizeof(char) * (wideCharLen + 1)); if (argv[iii] != NULL) { wcstombs_s(&numConverted, argv[iii], wideCharLen + 1, commandLineArgs[iii], wideCharLen + 1); } } } } else { argv = NULL; } demo_init(&demo, argc, argv); // Free up the items we had to allocate for the command line arguments. if (argc > 0 && argv != NULL) { for (int iii = 0; iii < argc; iii++) { if (argv[iii] != NULL) { free(argv[iii]); } } free(argv); } demo.connection = hInstance; strncpy(demo.name, "cube", APP_NAME_STR_LEN); demo_create_window(&demo); demo_init_vk_swapchain(&demo); demo_prepare(&demo); done = false; // initialize loop condition variable // main message loop while (!done) { PeekMessage(&msg, NULL, 0, 0, PM_REMOVE); if (msg.message == WM_QUIT) // check for a quit message { done = true; // if found, quit app } else { /* Translate and dispatch to event queue*/ TranslateMessage(&msg); DispatchMessage(&msg); } RedrawWindow(demo.window, NULL, NULL, RDW_INTERNALPAINT); } demo_cleanup(&demo); return (int)msg.wParam; } #else // _WIN32 int main(int argc, char **argv) { struct demo demo; demo_init(&demo, argc, argv); demo_create_window(&demo); demo_init_vk_swapchain(&demo); demo_prepare(&demo); demo_run(&demo); demo_cleanup(&demo); return validation_error; } #endif // _WIN32