/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef RENDERNODEPROPERTIES_H #define RENDERNODEPROPERTIES_H #include "Caches.h" #include "DeviceInfo.h" #include "Rect.h" #include "RevealClip.h" #include "Outline.h" #include "utils/MathUtils.h" #include #include #include #include #include #include #include #include #include #include class SkBitmap; class SkColorFilter; class SkPaint; namespace android { namespace uirenderer { class Matrix4; class RenderNode; class RenderProperties; // The __VA_ARGS__ will be executed if a & b are not equal #define RP_SET(a, b, ...) (a != b ? (a = b, ##__VA_ARGS__, true) : false) #define RP_SET_AND_DIRTY(a, b) RP_SET(a, b, mPrimitiveFields.mMatrixOrPivotDirty = true) // Keep in sync with View.java:LAYER_TYPE_* enum class LayerType { None = 0, // Although we cannot build the software layer directly (must be done at // record time), this information is used when applying alpha. Software = 1, RenderLayer = 2, // TODO: LayerTypeSurfaceTexture? Maybe? }; enum ClippingFlags { CLIP_TO_BOUNDS = 0x1 << 0, CLIP_TO_CLIP_BOUNDS = 0x1 << 1, }; class ANDROID_API LayerProperties { public: bool setType(LayerType type) { if (RP_SET(mType, type)) { reset(); return true; } return false; } bool setOpaque(bool opaque) { return RP_SET(mOpaque, opaque); } bool opaque() const { return mOpaque; } bool setAlpha(uint8_t alpha) { return RP_SET(mAlpha, alpha); } uint8_t alpha() const { return mAlpha; } bool setXferMode(SkXfermode::Mode mode) { return RP_SET(mMode, mode); } SkXfermode::Mode xferMode() const { return mMode; } bool setColorFilter(SkColorFilter* filter); SkColorFilter* colorFilter() const { return mColorFilter; } // Sets alpha, xfermode, and colorfilter from an SkPaint // paint may be NULL, in which case defaults will be set bool setFromPaint(const SkPaint* paint); bool needsBlending() const { return !opaque() || alpha() < 255; } LayerProperties& operator=(const LayerProperties& other); private: LayerProperties(); ~LayerProperties(); void reset(); // Private since external users should go through properties().effectiveLayerType() LayerType type() const { return mType; } friend class RenderProperties; LayerType mType = LayerType::None; // Whether or not that Layer's content is opaque, doesn't include alpha bool mOpaque; uint8_t mAlpha; SkXfermode::Mode mMode; SkColorFilter* mColorFilter = nullptr; }; /* * Data structure that holds the properties for a RenderNode */ class ANDROID_API RenderProperties { public: RenderProperties(); virtual ~RenderProperties(); static bool setFlag(int flag, bool newValue, int* outFlags) { if (newValue) { if (!(flag & *outFlags)) { *outFlags |= flag; return true; } return false; } else { if (flag & *outFlags) { *outFlags &= ~flag; return true; } return false; } } /** * Set internal layer state based on whether this layer * * Additionally, returns true if child RenderNodes with functors will need to use a layer * to support clipping. */ bool prepareForFunctorPresence(bool willHaveFunctor, bool ancestorDictatesFunctorsNeedLayer) { // parent may have already dictated that a descendant layer is needed bool functorsNeedLayer = ancestorDictatesFunctorsNeedLayer // Round rect clipping forces layer for functors || CC_UNLIKELY(getOutline().willRoundRectClip()) || CC_UNLIKELY(getRevealClip().willClip()) // Complex matrices forces layer, due to stencil clipping || CC_UNLIKELY(getTransformMatrix() && !getTransformMatrix()->isScaleTranslate()) || CC_UNLIKELY(getAnimationMatrix() && !getAnimationMatrix()->isScaleTranslate()) || CC_UNLIKELY(getStaticMatrix() && !getStaticMatrix()->isScaleTranslate()); mComputedFields.mNeedLayerForFunctors = (willHaveFunctor && functorsNeedLayer); // If on a layer, will have consumed the need for isolating functors from stencil. // Thus, it's safe to reset the flag until some descendent sets it. return CC_LIKELY(effectiveLayerType() == LayerType::None) && functorsNeedLayer; } RenderProperties& operator=(const RenderProperties& other); bool setClipToBounds(bool clipToBounds) { return setFlag(CLIP_TO_BOUNDS, clipToBounds, &mPrimitiveFields.mClippingFlags); } bool setClipBounds(const Rect& clipBounds) { bool ret = setFlag(CLIP_TO_CLIP_BOUNDS, true, &mPrimitiveFields.mClippingFlags); return RP_SET(mPrimitiveFields.mClipBounds, clipBounds) || ret; } bool setClipBoundsEmpty() { return setFlag(CLIP_TO_CLIP_BOUNDS, false, &mPrimitiveFields.mClippingFlags); } bool setProjectBackwards(bool shouldProject) { return RP_SET(mPrimitiveFields.mProjectBackwards, shouldProject); } bool setProjectionReceiver(bool shouldReceive) { return RP_SET(mPrimitiveFields.mProjectionReceiver, shouldReceive); } bool isProjectionReceiver() const { return mPrimitiveFields.mProjectionReceiver; } bool setStaticMatrix(const SkMatrix* matrix) { delete mStaticMatrix; if (matrix) { mStaticMatrix = new SkMatrix(*matrix); } else { mStaticMatrix = nullptr; } return true; } // Can return NULL const SkMatrix* getStaticMatrix() const { return mStaticMatrix; } bool setAnimationMatrix(const SkMatrix* matrix) { delete mAnimationMatrix; if (matrix) { mAnimationMatrix = new SkMatrix(*matrix); } else { mAnimationMatrix = nullptr; } return true; } bool setAlpha(float alpha) { alpha = MathUtils::clampAlpha(alpha); return RP_SET(mPrimitiveFields.mAlpha, alpha); } float getAlpha() const { return mPrimitiveFields.mAlpha; } bool setHasOverlappingRendering(bool hasOverlappingRendering) { return RP_SET(mPrimitiveFields.mHasOverlappingRendering, hasOverlappingRendering); } bool hasOverlappingRendering() const { return mPrimitiveFields.mHasOverlappingRendering; } bool setElevation(float elevation) { return RP_SET(mPrimitiveFields.mElevation, elevation); // Don't dirty matrix/pivot, since they don't respect Z } float getElevation() const { return mPrimitiveFields.mElevation; } bool setTranslationX(float translationX) { return RP_SET_AND_DIRTY(mPrimitiveFields.mTranslationX, translationX); } float getTranslationX() const { return mPrimitiveFields.mTranslationX; } bool setTranslationY(float translationY) { return RP_SET_AND_DIRTY(mPrimitiveFields.mTranslationY, translationY); } float getTranslationY() const { return mPrimitiveFields.mTranslationY; } bool setTranslationZ(float translationZ) { return RP_SET(mPrimitiveFields.mTranslationZ, translationZ); // mMatrixOrPivotDirty not set, since matrix doesn't respect Z } float getTranslationZ() const { return mPrimitiveFields.mTranslationZ; } // Animation helper bool setX(float value) { return setTranslationX(value - getLeft()); } // Animation helper float getX() const { return getLeft() + getTranslationX(); } // Animation helper bool setY(float value) { return setTranslationY(value - getTop()); } // Animation helper float getY() const { return getTop() + getTranslationY(); } // Animation helper bool setZ(float value) { return setTranslationZ(value - getElevation()); } float getZ() const { return getElevation() + getTranslationZ(); } bool setRotation(float rotation) { return RP_SET_AND_DIRTY(mPrimitiveFields.mRotation, rotation); } float getRotation() const { return mPrimitiveFields.mRotation; } bool setRotationX(float rotationX) { return RP_SET_AND_DIRTY(mPrimitiveFields.mRotationX, rotationX); } float getRotationX() const { return mPrimitiveFields.mRotationX; } bool setRotationY(float rotationY) { return RP_SET_AND_DIRTY(mPrimitiveFields.mRotationY, rotationY); } float getRotationY() const { return mPrimitiveFields.mRotationY; } bool setScaleX(float scaleX) { return RP_SET_AND_DIRTY(mPrimitiveFields.mScaleX, scaleX); } float getScaleX() const { return mPrimitiveFields.mScaleX; } bool setScaleY(float scaleY) { return RP_SET_AND_DIRTY(mPrimitiveFields.mScaleY, scaleY); } float getScaleY() const { return mPrimitiveFields.mScaleY; } bool setPivotX(float pivotX) { if (RP_SET(mPrimitiveFields.mPivotX, pivotX) || !mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; mPrimitiveFields.mPivotExplicitlySet = true; return true; } return false; } /* Note that getPivotX and getPivotY are adjusted by updateMatrix(), * so the value returned may be stale if the RenderProperties has been * modified since the last call to updateMatrix() */ float getPivotX() const { return mPrimitiveFields.mPivotX; } bool setPivotY(float pivotY) { if (RP_SET(mPrimitiveFields.mPivotY, pivotY) || !mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; mPrimitiveFields.mPivotExplicitlySet = true; return true; } return false; } float getPivotY() const { return mPrimitiveFields.mPivotY; } bool isPivotExplicitlySet() const { return mPrimitiveFields.mPivotExplicitlySet; } bool setCameraDistance(float distance) { if (distance != getCameraDistance()) { mPrimitiveFields.mMatrixOrPivotDirty = true; mComputedFields.mTransformCamera.setCameraLocation(0, 0, distance); return true; } return false; } float getCameraDistance() const { // TODO: update getCameraLocationZ() to be const return const_cast(&mComputedFields.mTransformCamera)->getCameraLocationZ(); } bool setLeft(int left) { if (RP_SET(mPrimitiveFields.mLeft, left)) { mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft; if (!mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; } return true; } return false; } int getLeft() const { return mPrimitiveFields.mLeft; } bool setTop(int top) { if (RP_SET(mPrimitiveFields.mTop, top)) { mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop; if (!mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; } return true; } return false; } int getTop() const { return mPrimitiveFields.mTop; } bool setRight(int right) { if (RP_SET(mPrimitiveFields.mRight, right)) { mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft; if (!mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; } return true; } return false; } int getRight() const { return mPrimitiveFields.mRight; } bool setBottom(int bottom) { if (RP_SET(mPrimitiveFields.mBottom, bottom)) { mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop; if (!mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; } return true; } return false; } int getBottom() const { return mPrimitiveFields.mBottom; } bool setLeftTop(int left, int top) { bool leftResult = setLeft(left); bool topResult = setTop(top); return leftResult || topResult; } bool setLeftTopRightBottom(int left, int top, int right, int bottom) { if (left != mPrimitiveFields.mLeft || top != mPrimitiveFields.mTop || right != mPrimitiveFields.mRight || bottom != mPrimitiveFields.mBottom) { mPrimitiveFields.mLeft = left; mPrimitiveFields.mTop = top; mPrimitiveFields.mRight = right; mPrimitiveFields.mBottom = bottom; mPrimitiveFields.mWidth = mPrimitiveFields.mRight - mPrimitiveFields.mLeft; mPrimitiveFields.mHeight = mPrimitiveFields.mBottom - mPrimitiveFields.mTop; if (!mPrimitiveFields.mPivotExplicitlySet) { mPrimitiveFields.mMatrixOrPivotDirty = true; } return true; } return false; } bool offsetLeftRight(int offset) { if (offset != 0) { mPrimitiveFields.mLeft += offset; mPrimitiveFields.mRight += offset; return true; } return false; } bool offsetTopBottom(int offset) { if (offset != 0) { mPrimitiveFields.mTop += offset; mPrimitiveFields.mBottom += offset; return true; } return false; } int getWidth() const { return mPrimitiveFields.mWidth; } int getHeight() const { return mPrimitiveFields.mHeight; } const SkMatrix* getAnimationMatrix() const { return mAnimationMatrix; } bool hasTransformMatrix() const { return getTransformMatrix() && !getTransformMatrix()->isIdentity(); } // May only call this if hasTransformMatrix() is true bool isTransformTranslateOnly() const { return getTransformMatrix()->getType() == SkMatrix::kTranslate_Mask; } const SkMatrix* getTransformMatrix() const { LOG_ALWAYS_FATAL_IF(mPrimitiveFields.mMatrixOrPivotDirty, "Cannot get a dirty matrix!"); return mComputedFields.mTransformMatrix; } int getClippingFlags() const { return mPrimitiveFields.mClippingFlags; } bool getClipToBounds() const { return mPrimitiveFields.mClippingFlags & CLIP_TO_BOUNDS; } const Rect& getClipBounds() const { return mPrimitiveFields.mClipBounds; } void getClippingRectForFlags(uint32_t flags, Rect* outRect) const { if (flags & CLIP_TO_BOUNDS) { outRect->set(0, 0, getWidth(), getHeight()); if (flags & CLIP_TO_CLIP_BOUNDS) { outRect->doIntersect(mPrimitiveFields.mClipBounds); } } else { outRect->set(mPrimitiveFields.mClipBounds); } } bool getHasOverlappingRendering() const { return mPrimitiveFields.mHasOverlappingRendering; } const Outline& getOutline() const { return mPrimitiveFields.mOutline; } const RevealClip& getRevealClip() const { return mPrimitiveFields.mRevealClip; } bool getProjectBackwards() const { return mPrimitiveFields.mProjectBackwards; } void debugOutputProperties(const int level) const; void updateMatrix(); Outline& mutableOutline() { return mPrimitiveFields.mOutline; } RevealClip& mutableRevealClip() { return mPrimitiveFields.mRevealClip; } const LayerProperties& layerProperties() const { return mLayerProperties; } LayerProperties& mutateLayerProperties() { return mLayerProperties; } // Returns true if damage calculations should be clipped to bounds // TODO: Figure out something better for getZ(), as children should still be // clipped to this RP's bounds. But as we will damage -INT_MAX to INT_MAX // for this RP's getZ() anyway, this can be optimized when we have a // Z damage estimate instead of INT_MAX bool getClipDamageToBounds() const { return getClipToBounds() && (getZ() <= 0 || getOutline().isEmpty()); } bool hasShadow() const { return getZ() > 0.0f && getOutline().getPath() != nullptr && getOutline().getAlpha() != 0.0f; } bool fitsOnLayer() const { const DeviceInfo* deviceInfo = DeviceInfo::get(); return mPrimitiveFields.mWidth <= deviceInfo->maxTextureSize() && mPrimitiveFields.mHeight <= deviceInfo->maxTextureSize(); } bool promotedToLayer() const { return mLayerProperties.mType == LayerType::None && fitsOnLayer() && (mComputedFields.mNeedLayerForFunctors || (!MathUtils::isZero(mPrimitiveFields.mAlpha) && mPrimitiveFields.mAlpha < 1 && mPrimitiveFields.mHasOverlappingRendering)); } LayerType effectiveLayerType() const { return CC_UNLIKELY(promotedToLayer()) ? LayerType::RenderLayer : mLayerProperties.mType; } private: // Rendering properties struct PrimitiveFields { int mLeft = 0, mTop = 0, mRight = 0, mBottom = 0; int mWidth = 0, mHeight = 0; int mClippingFlags = CLIP_TO_BOUNDS; float mAlpha = 1; float mTranslationX = 0, mTranslationY = 0, mTranslationZ = 0; float mElevation = 0; float mRotation = 0, mRotationX = 0, mRotationY = 0; float mScaleX = 1, mScaleY = 1; float mPivotX = 0, mPivotY = 0; bool mHasOverlappingRendering = false; bool mPivotExplicitlySet = false; bool mMatrixOrPivotDirty = false; bool mProjectBackwards = false; bool mProjectionReceiver = false; Rect mClipBounds; Outline mOutline; RevealClip mRevealClip; } mPrimitiveFields; SkMatrix* mStaticMatrix; SkMatrix* mAnimationMatrix; LayerProperties mLayerProperties; /** * These fields are all generated from other properties and are not set directly. */ struct ComputedFields { ComputedFields(); ~ComputedFields(); /** * Stores the total transformation of the DisplayList based upon its scalar * translate/rotate/scale properties. * * In the common translation-only case, the matrix isn't necessarily allocated, * and the mTranslation properties are used directly. */ SkMatrix* mTransformMatrix; Sk3DView mTransformCamera; // Force layer on for functors to enable render features they don't yet support (clipping) bool mNeedLayerForFunctors = false; } mComputedFields; }; } /* namespace uirenderer */ } /* namespace android */ #endif /* RENDERNODEPROPERTIES_H */