/* * Author: Jon Trulson * Copyright (c) 2015 Intel Corporation. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include "hmtrp.h" using namespace upm; using namespace std; static const int defaultDelay = 100; // max wait time for read // protocol start code const uint8_t HMTRP_START1 = 0xaa; const uint8_t HMTRP_START2 = 0xfa; HMTRP::HMTRP(int uart) { m_ttyFd = -1; if ( !(m_uart = mraa_uart_init(uart)) ) { throw std::invalid_argument(std::string(__FUNCTION__) + ": mraa_uart_init() failed"); return; } // This requires a recent MRAA (1/2015) const char *devPath = mraa_uart_get_dev_path(m_uart); if (!devPath) { throw std::runtime_error(std::string(__FUNCTION__) + ": mraa_uart_get_dev_path() failed"); return; } // now open the tty if ( (m_ttyFd = open(devPath, O_RDWR)) == -1) { throw std::runtime_error(std::string(__FUNCTION__) + ": open of " + string(devPath) + " failed: " + string(strerror(errno))); return; } } HMTRP::~HMTRP() { if (m_ttyFd != -1) close(m_ttyFd); } bool HMTRP::dataAvailable(unsigned int millis) { if (m_ttyFd == -1) return false; struct timeval timeout; timeout.tv_sec = 0; timeout.tv_usec = millis * 1000; int nfds; fd_set readfds; FD_ZERO(&readfds); FD_SET(m_ttyFd, &readfds); if (select(m_ttyFd + 1, &readfds, NULL, NULL, &timeout) > 0) return true; // data is ready else return false; } int HMTRP::readData(char *buffer, int len, int millis) { if (m_ttyFd == -1) return(-1); // if specified, wait to see if input shows up, otherwise block if (millis >= 0) { if (!dataAvailable(millis)) return 0; // timed out } int rv = read(m_ttyFd, buffer, len); if (rv < 0) { throw std::runtime_error(std::string(__FUNCTION__) + ": read() failed: " + string(strerror(errno))); return rv; } return rv; } int HMTRP::writeData(char *buffer, int len) { if (m_ttyFd == -1) return(-1); int rv = write(m_ttyFd, buffer, len); if (rv < 0) { throw std::runtime_error(std::string(__FUNCTION__) + ": write() failed: " + string(strerror(errno))); return rv; } tcdrain(m_ttyFd); return rv; } bool HMTRP::setupTty(speed_t baud) { if (m_ttyFd == -1) return(false); struct termios termio; // get current modes tcgetattr(m_ttyFd, &termio); // setup for a 'raw' mode. 81N, no echo or special character // handling, such as flow control. cfmakeraw(&termio); // set our baud rates cfsetispeed(&termio, baud); cfsetospeed(&termio, baud); // make it so if (tcsetattr(m_ttyFd, TCSAFLUSH, &termio) < 0) { throw std::runtime_error(std::string(__FUNCTION__) + ": tcsetattr() failed: " + string(strerror(errno))); return false; } return true; } bool HMTRP::checkOK() { char buf[4]; int rv = readData(buf, 4, defaultDelay); if (rv != 4) { cerr << __FUNCTION__ << ": failed to receive OK response, rv = " << rv << ", expected 4" << endl; return false; } // looking for "OK\r\n" if (buf[0] == 'O' && buf[1] == 'K' && buf[2] == '\r' && buf[3] == '\n') return true; else return false; } bool HMTRP::reset() { char pkt[3]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = RESET; writeData(pkt, 3); return checkOK(); } bool HMTRP::getConfig(uint32_t *freq, uint32_t *dataRate, uint16_t *rxBandwidth, uint8_t *modulation, uint8_t *txPower, uint32_t *uartBaud) { char pkt[3]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = GET_CONFIG; writeData(pkt, 3); usleep(100000); // now read back a 16 byte response char buf[16]; int rv = readData(buf, 16, defaultDelay); if (rv != 16) { cerr << __FUNCTION__ << ": failed to receive correct response: rv = " << rv << ", expected 16" << endl; return false; } // now decode if (freq) { *freq = ( ((buf[0] & 0xff) << 24) | ((buf[1] & 0xff) << 16) | ((buf[2] & 0xff) << 8) | (buf[3] & 0xff) ); } if (dataRate) { *dataRate = ( ((buf[4] & 0xff) << 24) | ((buf[5] & 0xff) << 16) | ((buf[6] & 0xff) << 8) | (buf[7] & 0xff) ); } if (rxBandwidth) { *rxBandwidth = ( ((buf[8] & 0xff) << 8) | (buf[9] & 0xff) ); } if (modulation) { *modulation = buf[10] & 0xff; } if (txPower) { *txPower = buf[11] & 0xff; } if (uartBaud) { *uartBaud = ( ((buf[12] & 0xff) << 24) | ((buf[13] & 0xff) << 16) | ((buf[14] & 0xff) << 8) | (buf[15] & 0xff) ); } return true; } bool HMTRP::setFrequency(uint32_t freq) { char pkt[7]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = SET_FREQUENCY; pkt[3] = ( ((freq & 0xff000000) >> 24) & 0xff ); pkt[4] = ( ((freq & 0x00ff0000) >> 16) & 0xff ); pkt[5] = ( ((freq & 0x0000ff00) >> 8) & 0xff ); pkt[6] = ( (freq & 0x000000ff) & 0xff ); writeData(pkt, 7); return checkOK(); } bool HMTRP::setRFDataRate(uint32_t rate) { // Valid values are between 1200-115200 if (rate < 1200 || rate > 115200) { throw std::out_of_range(std::string(__FUNCTION__) + ": Valid rate values are between 1200-115200"); return false; } char pkt[7]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = SET_RF_DATARATE; pkt[3] = ( ((rate & 0xff000000) >> 24) & 0xff ); pkt[4] = ( ((rate & 0x00ff0000) >> 16) & 0xff ); pkt[5] = ( ((rate & 0x0000ff00) >> 8) & 0xff ); pkt[6] = ( (rate & 0x000000ff) & 0xff ); writeData(pkt, 7); return checkOK(); } bool HMTRP::setRXBandwidth(uint16_t rxBand) { // Valid values are between 30-620 (in Khz) if (rxBand < 30 || rxBand > 620) { throw std::out_of_range(std::string(__FUNCTION__) + ": Valid rxBand values are between 30-620"); return false; } char pkt[5]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = SET_RX_BW; pkt[3] = ( ((rxBand & 0xff00) >> 8) & 0xff ); pkt[4] = ( rxBand & 0xff ); writeData(pkt, 5); return checkOK(); } bool HMTRP::setFrequencyModulation(uint8_t modulation) { // Valid values are between 10-160 (in Khz) if (modulation < 10 || modulation > 160) { throw std::out_of_range(std::string(__FUNCTION__) + ": Valid modulation values are between 10-160"); return false; } char pkt[4]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = SET_FREQ_MODULATION; pkt[3] = modulation; writeData(pkt, 4); return checkOK(); } bool HMTRP::setTransmitPower(uint8_t power) { // Valid values are between 0-7 if (power > 7) { throw std::out_of_range(std::string(__FUNCTION__) + ": Valid power values are between 0-7"); return false; } char pkt[4]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = SET_TX_POWER; pkt[3] = power; writeData(pkt, 4); return checkOK(); } bool HMTRP::setUARTSpeed(uint32_t speed) { // Valid values are between 1200-115200 if (speed < 1200 || speed > 115200) { throw std::out_of_range(std::string(__FUNCTION__) + ": Valid speed values are between 1200-115200"); return false; } char pkt[7]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = SET_UART_SPEED; pkt[3] = ( ((speed & 0xff000000) >> 24) & 0xff ); pkt[4] = ( ((speed & 0x00ff0000) >> 16) & 0xff ); pkt[5] = ( ((speed & 0x0000ff00) >> 8) & 0xff ); pkt[6] = ( (speed & 0x000000ff) & 0xff ); writeData(pkt, 7); return checkOK(); } bool HMTRP::getRFSignalStrength(uint8_t *strength) { if (!strength) return false; *strength = 0; char pkt[3]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = GET_RF_SIGNAL_STR; writeData(pkt, 3); usleep(100000); // now read back a 1 byte response char buf; int rv = readData(&buf, 1, defaultDelay); if (rv != 1) { cerr << __FUNCTION__ << ": failed to receive correct response: rv = " << rv << ", expected 1" << endl; return false; } // now decode *strength = (uint8_t)buf; return true; } bool HMTRP::getModSignalStrength(uint8_t *strength) { if (!strength) return false; *strength = 0; char pkt[3]; pkt[0] = HMTRP_START1; pkt[1] = HMTRP_START2; pkt[2] = GET_MOD_SIGNAL_STR; writeData(pkt, 3); usleep(100000); // now read back a 1 byte response char buf; int rv = readData(&buf, 1, defaultDelay); if (rv != 1) { cerr << __FUNCTION__ << ": failed to receive correct response: rv = " << rv << ", expected 1" << endl; return false; } // now decode *strength = (uint8_t)buf; return true; }