/* * Copyright (C) 2010 The Android Open Source Project * Copyright (C) 2012-2014, The Linux Foundation All rights reserved. * * Not a Contribution, Apache license notifications and license are retained * for attribution purposes only. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG (ATRACE_TAG_GRAPHICS | ATRACE_TAG_HAL) #define HWC_UTILS_DEBUG 0 #include #include #include #include #include #include #include #include #include #include #include #include "hwc_utils.h" #include "hwc_mdpcomp.h" #include "hwc_fbupdate.h" #include "hwc_ad.h" #include "mdp_version.h" #include "hwc_copybit.h" #include "hwc_dump_layers.h" #include "hdmi.h" #include "hwc_qclient.h" #include "QService.h" #include "comptype.h" #include "hwc_virtual.h" #include "qd_utils.h" #include #include using namespace qClient; using namespace qService; using namespace android; using namespace overlay; using namespace overlay::utils; namespace ovutils = overlay::utils; #ifdef QCOM_BSP #ifdef __cplusplus extern "C" { #endif EGLAPI EGLBoolean eglGpuPerfHintQCOM(EGLDisplay dpy, EGLContext ctx, EGLint *attrib_list); #define EGL_GPU_HINT_1 0x32D0 #define EGL_GPU_HINT_2 0x32D1 #define EGL_GPU_LEVEL_0 0x0 #define EGL_GPU_LEVEL_1 0x1 #define EGL_GPU_LEVEL_2 0x2 #define EGL_GPU_LEVEL_3 0x3 #define EGL_GPU_LEVEL_4 0x4 #define EGL_GPU_LEVEL_5 0x5 #ifdef __cplusplus } #endif #endif #define PROP_DEFAULT_APPBUFFER "ro.sf.default_app_buffer" #define MAX_RAM_SIZE 512*1024*1024 #define qHD_WIDTH 540 namespace qhwc { // Std refresh rates for digital videos- 24p, 30p, 48p and 60p uint32_t stdRefreshRates[] = { 30, 24, 48, 60 }; bool isValidResolution(hwc_context_t *ctx, uint32_t xres, uint32_t yres) { return !((xres > qdutils::MDPVersion::getInstance().getMaxPipeWidth() && !isDisplaySplit(ctx, HWC_DISPLAY_PRIMARY)) || (xres < MIN_DISPLAY_XRES || yres < MIN_DISPLAY_YRES)); } void changeResolution(hwc_context_t *ctx, int xres_orig, int yres_orig, int width, int height) { //Store original display resolution. ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres_new = xres_orig; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres_new = yres_orig; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].customFBSize = false; char property[PROPERTY_VALUE_MAX] = {'\0'}; char *yptr = NULL; if (property_get("debug.hwc.fbsize", property, NULL) > 0) { yptr = strcasestr(property,"x"); if(yptr) { int xres_new = atoi(property); int yres_new = atoi(yptr + 1); if (isValidResolution(ctx,xres_new,yres_new) && xres_new != xres_orig && yres_new != yres_orig) { ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres_new = xres_new; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres_new = yres_new; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].customFBSize = true; //Caluculate DPI according to changed resolution. float xdpi = ((float)xres_new * 25.4f) / (float)width; float ydpi = ((float)yres_new * 25.4f) / (float)height; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xdpi = xdpi; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].ydpi = ydpi; } } } } // Initialize hdmi display attributes based on // hdmi display class state void updateDisplayInfo(hwc_context_t* ctx, int dpy) { ctx->dpyAttr[dpy].fd = ctx->mHDMIDisplay->getFd(); ctx->dpyAttr[dpy].xres = ctx->mHDMIDisplay->getWidth(); ctx->dpyAttr[dpy].yres = ctx->mHDMIDisplay->getHeight(); ctx->dpyAttr[dpy].mMDPScalingMode = ctx->mHDMIDisplay->getMDPScalingMode(); ctx->dpyAttr[dpy].vsync_period = ctx->mHDMIDisplay->getVsyncPeriod(); //FIXME: for now assume HDMI as secure //Will need to read the HDCP status from the driver //and update this accordingly ctx->dpyAttr[dpy].secure = true; ctx->mViewFrame[dpy].left = 0; ctx->mViewFrame[dpy].top = 0; ctx->mViewFrame[dpy].right = ctx->dpyAttr[dpy].xres; ctx->mViewFrame[dpy].bottom = ctx->dpyAttr[dpy].yres; } // Reset hdmi display attributes and list stats structures void resetDisplayInfo(hwc_context_t* ctx, int dpy) { memset(&(ctx->dpyAttr[dpy]), 0, sizeof(ctx->dpyAttr[dpy])); memset(&(ctx->listStats[dpy]), 0, sizeof(ctx->listStats[dpy])); // We reset the fd to -1 here but External display class is responsible // for it when the display is disconnected. This is handled as part of // EXTERNAL_OFFLINE event. ctx->dpyAttr[dpy].fd = -1; } // Initialize composition resources void initCompositionResources(hwc_context_t* ctx, int dpy) { ctx->mFBUpdate[dpy] = IFBUpdate::getObject(ctx, dpy); ctx->mMDPComp[dpy] = MDPComp::getObject(ctx, dpy); } void destroyCompositionResources(hwc_context_t* ctx, int dpy) { if(ctx->mFBUpdate[dpy]) { delete ctx->mFBUpdate[dpy]; ctx->mFBUpdate[dpy] = NULL; } if(ctx->mMDPComp[dpy]) { delete ctx->mMDPComp[dpy]; ctx->mMDPComp[dpy] = NULL; } } static int openFramebufferDevice(hwc_context_t *ctx) { struct fb_fix_screeninfo finfo; struct fb_var_screeninfo info; int fb_fd = openFb(HWC_DISPLAY_PRIMARY); if(fb_fd < 0) { ALOGE("%s: Error Opening FB : %s", __FUNCTION__, strerror(errno)); return -errno; } if (ioctl(fb_fd, FBIOGET_VSCREENINFO, &info) == -1) { ALOGE("%s:Error in ioctl FBIOGET_VSCREENINFO: %s", __FUNCTION__, strerror(errno)); close(fb_fd); return -errno; } if (int(info.width) <= 0 || int(info.height) <= 0) { // the driver doesn't return that information // default to 160 dpi info.width = (int)(((float)info.xres * 25.4f)/160.0f + 0.5f); info.height = (int)(((float)info.yres * 25.4f)/160.0f + 0.5f); } float xdpi = ((float)info.xres * 25.4f) / (float)info.width; float ydpi = ((float)info.yres * 25.4f) / (float)info.height; #ifdef MSMFB_METADATA_GET struct msmfb_metadata metadata; memset(&metadata, 0 , sizeof(metadata)); metadata.op = metadata_op_frame_rate; if (ioctl(fb_fd, MSMFB_METADATA_GET, &metadata) == -1) { ALOGE("%s:Error retrieving panel frame rate: %s", __FUNCTION__, strerror(errno)); close(fb_fd); return -errno; } float fps = (float)metadata.data.panel_frame_rate; #else //XXX: Remove reserved field usage on all baselines //The reserved[3] field is used to store FPS by the driver. float fps = info.reserved[3] & 0xFF; #endif if (ioctl(fb_fd, FBIOGET_FSCREENINFO, &finfo) == -1) { ALOGE("%s:Error in ioctl FBIOGET_FSCREENINFO: %s", __FUNCTION__, strerror(errno)); close(fb_fd); return -errno; } ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd = fb_fd; //xres, yres may not be 32 aligned ctx->dpyAttr[HWC_DISPLAY_PRIMARY].stride = finfo.line_length /(info.xres/8); ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres = info.xres; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres = info.yres; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xdpi = xdpi; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].ydpi = ydpi; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].refreshRate = (uint32_t)fps; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].dynRefreshRate = (uint32_t)fps; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].secure = true; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period = (uint32_t)(1000000000l / fps); //To change resolution of primary display changeResolution(ctx, info.xres, info.yres, info.width, info.height); //Unblank primary on first boot if(ioctl(fb_fd, FBIOBLANK,FB_BLANK_UNBLANK) < 0) { ALOGE("%s: Failed to unblank display", __FUNCTION__); return -errno; } ctx->dpyAttr[HWC_DISPLAY_PRIMARY].isActive = true; return 0; } static void changeDefaultAppBufferCount() { struct sysinfo info; unsigned long int ramSize = 0; if (!sysinfo(&info)) { ramSize = info.totalram ; } int fb_fd = -1; struct fb_var_screeninfo sInfo ={0}; fb_fd = open("/dev/graphics/fb0", O_RDONLY); if (fb_fd >=0) { ioctl(fb_fd, FBIOGET_VSCREENINFO, &sInfo); close(fb_fd); } if ((ramSize && ramSize < MAX_RAM_SIZE) && (sInfo.xres && sInfo.xres <= qHD_WIDTH )) { property_set(PROP_DEFAULT_APPBUFFER, "2"); } } void initContext(hwc_context_t *ctx) { overlay::Overlay::initOverlay(); ctx->mHDMIDisplay = new HDMIDisplay(); uint32_t priW = 0, priH = 0; // 1. HDMI as Primary // -If HDMI cable is connected, read display configs from edid data // -If HDMI cable is not connected then use default data in vscreeninfo // 2. HDMI as External // -Initialize HDMI class for use with external display // -Use vscreeninfo to populate display configs if(ctx->mHDMIDisplay->isHDMIPrimaryDisplay()) { int connected = ctx->mHDMIDisplay->getConnectedState(); if(connected == 1) { ctx->mHDMIDisplay->configure(); updateDisplayInfo(ctx, HWC_DISPLAY_PRIMARY); ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = true; } else { openFramebufferDevice(ctx); ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = false; } } else { openFramebufferDevice(ctx); ctx->dpyAttr[HWC_DISPLAY_PRIMARY].connected = true; // Send the primary resolution to the hdmi display class // to be used for MDP scaling functionality priW = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres; priH = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres; ctx->mHDMIDisplay->setPrimaryAttributes(priW, priH); } char value[PROPERTY_VALUE_MAX]; ctx->mMDP.version = qdutils::MDPVersion::getInstance().getMDPVersion(); ctx->mMDP.hasOverlay = qdutils::MDPVersion::getInstance().hasOverlay(); ctx->mMDP.panel = qdutils::MDPVersion::getInstance().getPanelType(); ctx->mOverlay = overlay::Overlay::getInstance(); ctx->mRotMgr = RotMgr::getInstance(); ctx->mBWCEnabled = qdutils::MDPVersion::getInstance().supportsBWC(); //default_app_buffer for ferrum if (ctx->mMDP.version == qdutils::MDP_V3_0_5) { changeDefaultAppBufferCount(); } // Initialize composition objects for the primary display initCompositionResources(ctx, HWC_DISPLAY_PRIMARY); // Check if the target supports copybit compostion (dyn/mdp) to // decide if we need to open the copybit module. int compositionType = qdutils::QCCompositionType::getInstance().getCompositionType(); // Only MDP copybit is used if ((compositionType & (qdutils::COMPOSITION_TYPE_DYN | qdutils::COMPOSITION_TYPE_MDP)) && ((qdutils::MDPVersion::getInstance().getMDPVersion() == qdutils::MDP_V3_0_4) || (qdutils::MDPVersion::getInstance().getMDPVersion() == qdutils::MDP_V3_0_5))) { ctx->mCopyBit[HWC_DISPLAY_PRIMARY] = new CopyBit(ctx, HWC_DISPLAY_PRIMARY); } ctx->mHWCVirtual = new HWCVirtualVDS(); ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].isActive = false; ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].connected = false; ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isActive = false; ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].connected = false; ctx->dpyAttr[HWC_DISPLAY_PRIMARY].mMDPScalingMode= false; ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].mMDPScalingMode = false; ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].mMDPScalingMode = false; //Initialize the primary display viewFrame info ctx->mViewFrame[HWC_DISPLAY_PRIMARY].left = 0; ctx->mViewFrame[HWC_DISPLAY_PRIMARY].top = 0; ctx->mViewFrame[HWC_DISPLAY_PRIMARY].right = (int)ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres; ctx->mViewFrame[HWC_DISPLAY_PRIMARY].bottom = (int)ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres; for (uint32_t i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) { ctx->mHwcDebug[i] = new HwcDebug(i); ctx->mLayerRotMap[i] = new LayerRotMap(); ctx->mAnimationState[i] = ANIMATION_STOPPED; ctx->dpyAttr[i].mActionSafePresent = false; ctx->dpyAttr[i].mAsWidthRatio = 0; ctx->dpyAttr[i].mAsHeightRatio = 0; } for (uint32_t i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) { ctx->mPrevHwLayerCount[i] = 0; } MDPComp::init(ctx); ctx->mAD = new AssertiveDisplay(ctx); ctx->vstate.enable = false; ctx->vstate.fakevsync = false; ctx->mExtOrientation = 0; ctx->numActiveDisplays = 1; //Right now hwc starts the service but anybody could do it, or it could be //independent process as well. QService::init(); sp client = new QClient(ctx); android::sp qservice_sp = interface_cast( defaultServiceManager()->getService( String16("display.qservice"))); if (qservice_sp.get()) { qservice_sp->connect(client); } else { ALOGE("%s: Failed to acquire service pointer", __FUNCTION__); return ; } // Initialize device orientation to its default orientation ctx->deviceOrientation = 0; ctx->mBufferMirrorMode = false; property_get("sys.hwc.windowbox_aspect_ratio_tolerance", value, "0"); ctx->mAspectRatioToleranceLevel = (((float)atoi(value)) / 100.0f); ctx->enableABC = false; property_get("debug.sf.hwc.canUseABC", value, "0"); ctx->enableABC = atoi(value) ? true : false; // Initializing boot anim completed check to false ctx->mDefaultModeApplied = false; ctx->mCoolColorTemperatureEnabled = false; // Initialize gpu perfomance hint related parameters property_get("sys.hwc.gpu_perf_mode", value, "0"); #ifdef QCOM_BSP ctx->mGPUHintInfo.mGpuPerfModeEnable = atoi(value)? true : false; ctx->mGPUHintInfo.mEGLDisplay = NULL; ctx->mGPUHintInfo.mEGLContext = NULL; ctx->mGPUHintInfo.mCompositionState = COMPOSITION_STATE_MDP; ctx->mGPUHintInfo.mCurrGPUPerfMode = EGL_GPU_LEVEL_0; #endif // Read the system property to determine if windowboxing feature is enabled. ctx->mWindowboxFeature = false; if(property_get("sys.hwc.windowbox_feature", value, "false") && !strcmp(value, "true")) { ctx->mWindowboxFeature = true; } ctx->mUseMetaDataRefreshRate = true; if(property_get("persist.metadata_dynfps.disable", value, "false") && !strcmp(value, "true")) { ctx->mUseMetaDataRefreshRate = false; } memset(&(ctx->mPtorInfo), 0, sizeof(ctx->mPtorInfo)); ctx->mHPDEnabled = false; ctx->mColorMode = new ColorMode(); ctx->mColorMode->init(); ALOGI("Initializing Qualcomm Hardware Composer"); ALOGI("MDP version: %d", ctx->mMDP.version); } void closeContext(hwc_context_t *ctx) { if(ctx->mOverlay) { delete ctx->mOverlay; ctx->mOverlay = NULL; } if(ctx->mRotMgr) { delete ctx->mRotMgr; ctx->mRotMgr = NULL; } for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) { if(ctx->mCopyBit[i]) { delete ctx->mCopyBit[i]; ctx->mCopyBit[i] = NULL; } } if(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd) { close(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd); ctx->dpyAttr[HWC_DISPLAY_PRIMARY].fd = -1; } if(ctx->mHDMIDisplay) { delete ctx->mHDMIDisplay; ctx->mHDMIDisplay = NULL; } for(int i = 0; i < HWC_NUM_DISPLAY_TYPES; i++) { destroyCompositionResources(ctx, i); if(ctx->mHwcDebug[i]) { delete ctx->mHwcDebug[i]; ctx->mHwcDebug[i] = NULL; } if(ctx->mLayerRotMap[i]) { delete ctx->mLayerRotMap[i]; ctx->mLayerRotMap[i] = NULL; } } if(ctx->mHWCVirtual) { delete ctx->mHWCVirtual; ctx->mHWCVirtual = NULL; } if(ctx->mAD) { delete ctx->mAD; ctx->mAD = NULL; } if(ctx->mColorMode) { ctx->mColorMode->destroy(); delete ctx->mColorMode; ctx->mColorMode = NULL; } } //Helper to roundoff the refreshrates uint32_t roundOff(uint32_t refreshRate) { int count = (int) (sizeof(stdRefreshRates)/sizeof(stdRefreshRates[0])); uint32_t rate = refreshRate; for(int i=0; i< count; i++) { if(abs(stdRefreshRates[i] - refreshRate) < 2) { // Most likely used for video, the fps can fluctuate // Ex: b/w 29 and 30 for 30 fps clip rate = stdRefreshRates[i]; break; } } return rate; } //Helper func to set the dyn fps void setRefreshRate(hwc_context_t* ctx, int dpy, uint32_t refreshRate) { //Update only if different if(!ctx || refreshRate == ctx->dpyAttr[dpy].dynRefreshRate) return; const int fbNum = Overlay::getFbForDpy(dpy); char sysfsPath[qdutils::MAX_SYSFS_FILE_PATH]; snprintf (sysfsPath, sizeof(sysfsPath), "/sys/devices/virtual/graphics/fb%d/dynamic_fps", fbNum); int fd = open(sysfsPath, O_WRONLY); if(fd >= 0) { char str[64]; snprintf(str, sizeof(str), "%d", refreshRate); ssize_t ret = write(fd, str, strlen(str)); if(ret < 0) { ALOGE("%s: Failed to write %d with error %s", __FUNCTION__, refreshRate, strerror(errno)); } else { ctx->dpyAttr[dpy].dynRefreshRate = refreshRate; ALOGD_IF(HWC_UTILS_DEBUG, "%s: Wrote %d to dynamic_fps", __FUNCTION__, refreshRate); } close(fd); } else { ALOGE("%s: Failed to open %s with error %s", __FUNCTION__, sysfsPath, strerror(errno)); } } void dumpsys_log(android::String8& buf, const char* fmt, ...) { va_list varargs; va_start(varargs, fmt); buf.appendFormatV(fmt, varargs); va_end(varargs); } int getExtOrientation(hwc_context_t* ctx) { int extOrient = ctx->mExtOrientation; if(ctx->mBufferMirrorMode) extOrient = getMirrorModeOrientation(ctx); return extOrient; } /* Calculates the destination position based on the action safe rectangle */ void getActionSafePosition(hwc_context_t *ctx, int dpy, hwc_rect_t& rect) { // Position int x = rect.left, y = rect.top; int w = rect.right - rect.left; int h = rect.bottom - rect.top; if(!ctx->dpyAttr[dpy].mActionSafePresent) return; // Read action safe properties int asWidthRatio = ctx->dpyAttr[dpy].mAsWidthRatio; int asHeightRatio = ctx->dpyAttr[dpy].mAsHeightRatio; float wRatio = 1.0; float hRatio = 1.0; float xRatio = 1.0; float yRatio = 1.0; uint32_t fbWidth = ctx->dpyAttr[dpy].xres; uint32_t fbHeight = ctx->dpyAttr[dpy].yres; if(ctx->dpyAttr[dpy].mMDPScalingMode) { // if MDP scaling mode is enabled for external, need to query // the actual width and height, as that is the physical w & h ctx->mHDMIDisplay->getAttributes(fbWidth, fbHeight); } // Since external is rotated 90, need to swap width/height int extOrient = getExtOrientation(ctx); if(extOrient & HWC_TRANSFORM_ROT_90) swap(fbWidth, fbHeight); float asX = 0; float asY = 0; float asW = (float)fbWidth; float asH = (float)fbHeight; // based on the action safe ratio, get the Action safe rectangle asW = ((float)fbWidth * (1.0f - (float)asWidthRatio / 100.0f)); asH = ((float)fbHeight * (1.0f - (float)asHeightRatio / 100.0f)); asX = ((float)fbWidth - asW) / 2; asY = ((float)fbHeight - asH) / 2; // calculate the position ratio xRatio = (float)x/(float)fbWidth; yRatio = (float)y/(float)fbHeight; wRatio = (float)w/(float)fbWidth; hRatio = (float)h/(float)fbHeight; //Calculate the position... x = int((xRatio * asW) + asX); y = int((yRatio * asH) + asY); w = int(wRatio * asW); h = int(hRatio * asH); // Convert it back to hwc_rect_t rect.left = x; rect.top = y; rect.right = w + rect.left; rect.bottom = h + rect.top; return; } // This function gets the destination position for Seconday display // based on the position and aspect ratio with orientation void getAspectRatioPosition(hwc_context_t* ctx, int dpy, int extOrientation, hwc_rect_t& inRect, hwc_rect_t& outRect) { // Physical display resolution float fbWidth = (float)ctx->dpyAttr[dpy].xres; float fbHeight = (float)ctx->dpyAttr[dpy].yres; //display position(x,y,w,h) in correct aspectratio after rotation int xPos = 0; int yPos = 0; float width = fbWidth; float height = fbHeight; // Width/Height used for calculation, after rotation float actualWidth = fbWidth; float actualHeight = fbHeight; float wRatio = 1.0; float hRatio = 1.0; float xRatio = 1.0; float yRatio = 1.0; hwc_rect_t rect = {0, 0, (int)fbWidth, (int)fbHeight}; Dim inPos(inRect.left, inRect.top, inRect.right - inRect.left, inRect.bottom - inRect.top); Dim outPos(outRect.left, outRect.top, outRect.right - outRect.left, outRect.bottom - outRect.top); Whf whf((uint32_t)fbWidth, (uint32_t)fbHeight, 0); eTransform extorient = static_cast(extOrientation); // To calculate the destination co-ordinates in the new orientation preRotateSource(extorient, whf, inPos); if(extOrientation & HAL_TRANSFORM_ROT_90) { // Swap width/height for input position swapWidthHeight(actualWidth, actualHeight); qdutils::getAspectRatioPosition((int)fbWidth, (int)fbHeight, (int)actualWidth, (int)actualHeight, rect); xPos = rect.left; yPos = rect.top; width = float(rect.right - rect.left); height = float(rect.bottom - rect.top); } xRatio = (float)((float)inPos.x/actualWidth); yRatio = (float)((float)inPos.y/actualHeight); wRatio = (float)((float)inPos.w/actualWidth); hRatio = (float)((float)inPos.h/actualHeight); //Calculate the pos9ition... outPos.x = uint32_t((xRatio * width) + (float)xPos); outPos.y = uint32_t((yRatio * height) + (float)yPos); outPos.w = uint32_t(wRatio * width); outPos.h = uint32_t(hRatio * height); ALOGD_IF(HWC_UTILS_DEBUG, "%s: Calculated AspectRatio Position: x = %d," "y = %d w = %d h = %d", __FUNCTION__, outPos.x, outPos.y, outPos.w, outPos.h); // For sidesync, the dest fb will be in portrait orientation, and the crop // will be updated to avoid the black side bands, and it will be upscaled // to fit the dest RB, so recalculate // the position based on the new width and height if ((extOrientation & HWC_TRANSFORM_ROT_90) && isOrientationPortrait(ctx)) { hwc_rect_t r = {0, 0, 0, 0}; //Calculate the position xRatio = (float)(outPos.x - xPos)/width; // GetaspectRatio -- tricky to get the correct aspect ratio // But we need to do this. qdutils::getAspectRatioPosition((int)width, (int)height, (int)width,(int)height, r); xPos = r.left; yPos = r.top; float tempHeight = float(r.bottom - r.top); yRatio = (float)yPos/height; wRatio = (float)outPos.w/width; hRatio = tempHeight/height; //Map the coordinates back to Framebuffer domain outPos.x = uint32_t(xRatio * fbWidth); outPos.y = uint32_t(yRatio * fbHeight); outPos.w = uint32_t(wRatio * fbWidth); outPos.h = uint32_t(hRatio * fbHeight); ALOGD_IF(HWC_UTILS_DEBUG, "%s: Calculated AspectRatio for device in" "portrait: x = %d,y = %d w = %d h = %d", __FUNCTION__, outPos.x, outPos.y, outPos.w, outPos.h); } if(ctx->dpyAttr[dpy].mMDPScalingMode) { uint32_t extW = 0, extH = 0; if(dpy == HWC_DISPLAY_EXTERNAL) { ctx->mHDMIDisplay->getAttributes(extW, extH); } else if(dpy == HWC_DISPLAY_VIRTUAL) { extW = ctx->mHWCVirtual->getScalingWidth(); extH = ctx->mHWCVirtual->getScalingHeight(); } ALOGD_IF(HWC_UTILS_DEBUG, "%s: Scaling mode extW=%d extH=%d", __FUNCTION__, extW, extH); fbWidth = (float)ctx->dpyAttr[dpy].xres; fbHeight = (float)ctx->dpyAttr[dpy].yres; //Calculate the position... xRatio = (float)outPos.x/fbWidth; yRatio = (float)outPos.y/fbHeight; wRatio = (float)outPos.w/fbWidth; hRatio = (float)outPos.h/fbHeight; outPos.x = uint32_t(xRatio * (float)extW); outPos.y = uint32_t(yRatio * (float)extH); outPos.w = uint32_t(wRatio * (float)extW); outPos.h = uint32_t(hRatio * (float)extH); } // Convert Dim to hwc_rect_t outRect.left = outPos.x; outRect.top = outPos.y; outRect.right = outPos.x + outPos.w; outRect.bottom = outPos.y + outPos.h; return; } bool isPrimaryPortrait(hwc_context_t *ctx) { int fbWidth = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres; int fbHeight = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres; if(fbWidth < fbHeight) { return true; } return false; } bool isOrientationPortrait(hwc_context_t *ctx) { if(isPrimaryPortrait(ctx)) { return !(ctx->deviceOrientation & 0x1); } return (ctx->deviceOrientation & 0x1); } void calcExtDisplayPosition(hwc_context_t *ctx, private_handle_t *hnd, int dpy, hwc_rect_t& sourceCrop, hwc_rect_t& displayFrame, int& transform, ovutils::eTransform& orient) { // Swap width and height when there is a 90deg transform int extOrient = getExtOrientation(ctx); if(dpy && ctx->mOverlay->isUIScalingOnExternalSupported()) { if(!isYuvBuffer(hnd)) { if(extOrient & HWC_TRANSFORM_ROT_90) { int dstWidth = ctx->dpyAttr[dpy].xres; int dstHeight = ctx->dpyAttr[dpy].yres;; int srcWidth = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].xres; int srcHeight = ctx->dpyAttr[HWC_DISPLAY_PRIMARY].yres; if(!isPrimaryPortrait(ctx)) { swap(srcWidth, srcHeight); } // Get Aspect Ratio for external qdutils::getAspectRatioPosition(dstWidth, dstHeight, srcWidth, srcHeight, displayFrame); // Crop - this is needed, because for sidesync, the dest fb will // be in portrait orientation, so update the crop to not show the // black side bands. if (isOrientationPortrait(ctx)) { sourceCrop = displayFrame; displayFrame.left = 0; displayFrame.top = 0; displayFrame.right = dstWidth; displayFrame.bottom = dstHeight; } } if(ctx->dpyAttr[dpy].mMDPScalingMode) { uint32_t extW = 0, extH = 0; // if MDP scaling mode is enabled, map the co-ordinates to new // domain(downscaled) float fbWidth = (float)ctx->dpyAttr[dpy].xres; float fbHeight = (float)ctx->dpyAttr[dpy].yres; // query MDP configured attributes if(dpy == HWC_DISPLAY_EXTERNAL) { ctx->mHDMIDisplay->getAttributes(extW, extH); } else if(dpy == HWC_DISPLAY_VIRTUAL) { extW = ctx->mHWCVirtual->getScalingWidth(); extH = ctx->mHWCVirtual->getScalingHeight(); } ALOGD_IF(HWC_UTILS_DEBUG, "%s: Scaling mode extW=%d extH=%d", __FUNCTION__, extW, extH); //Calculate the ratio... float wRatio = ((float)extW)/fbWidth; float hRatio = ((float)extH)/fbHeight; //convert Dim to hwc_rect_t displayFrame.left = int(wRatio*(float)displayFrame.left); displayFrame.top = int(hRatio*(float)displayFrame.top); displayFrame.right = int(wRatio*(float)displayFrame.right); displayFrame.bottom = int(hRatio*(float)displayFrame.bottom); ALOGD_IF(DEBUG_MDPDOWNSCALE, "Calculated external display frame" " for MDPDownscale feature [%d %d %d %d]", displayFrame.left, displayFrame.top, displayFrame.right, displayFrame.bottom); } }else { if(extOrient || ctx->dpyAttr[dpy].mMDPScalingMode) { getAspectRatioPosition(ctx, dpy, extOrient, displayFrame, displayFrame); } } // If there is a external orientation set, use that if(extOrient) { transform = extOrient; orient = static_cast(extOrient); } // Calculate the actionsafe dimensions for External(dpy = 1 or 2) getActionSafePosition(ctx, dpy, displayFrame); } } /* Returns the orientation which needs to be set on External for * SideSync/Buffer Mirrormode */ int getMirrorModeOrientation(hwc_context_t *ctx) { int extOrientation = 0; int deviceOrientation = ctx->deviceOrientation; if(!isPrimaryPortrait(ctx)) deviceOrientation = (deviceOrientation + 1) % 4; if (deviceOrientation == 0) extOrientation = HWC_TRANSFORM_ROT_270; else if (deviceOrientation == 1)//90 extOrientation = 0; else if (deviceOrientation == 2)//180 extOrientation = HWC_TRANSFORM_ROT_90; else if (deviceOrientation == 3)//270 extOrientation = HWC_TRANSFORM_FLIP_V | HWC_TRANSFORM_FLIP_H; return extOrientation; } /* Get External State names */ const char* getExternalDisplayState(uint32_t external_state) { static const char* externalStates[EXTERNAL_MAXSTATES] = {0}; externalStates[EXTERNAL_OFFLINE] = STR(EXTERNAL_OFFLINE); externalStates[EXTERNAL_ONLINE] = STR(EXTERNAL_ONLINE); externalStates[EXTERNAL_PAUSE] = STR(EXTERNAL_PAUSE); externalStates[EXTERNAL_RESUME] = STR(EXTERNAL_RESUME); if(external_state >= EXTERNAL_MAXSTATES) { return "EXTERNAL_INVALID"; } return externalStates[external_state]; } bool isDownscaleRequired(hwc_layer_1_t const* layer) { hwc_rect_t displayFrame = layer->displayFrame; hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf); int dst_w, dst_h, src_w, src_h; dst_w = displayFrame.right - displayFrame.left; dst_h = displayFrame.bottom - displayFrame.top; src_w = sourceCrop.right - sourceCrop.left; src_h = sourceCrop.bottom - sourceCrop.top; if(((src_w > dst_w) || (src_h > dst_h))) return true; return false; } bool needsScaling(hwc_layer_1_t const* layer) { int dst_w, dst_h, src_w, src_h; hwc_rect_t displayFrame = layer->displayFrame; hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf); dst_w = displayFrame.right - displayFrame.left; dst_h = displayFrame.bottom - displayFrame.top; src_w = sourceCrop.right - sourceCrop.left; src_h = sourceCrop.bottom - sourceCrop.top; if(layer->transform & HWC_TRANSFORM_ROT_90) swap(src_w, src_h); if(((src_w != dst_w) || (src_h != dst_h))) return true; return false; } // Checks if layer needs scaling with split bool needsScalingWithSplit(hwc_context_t* ctx, hwc_layer_1_t const* layer, const int& dpy) { int src_width_l, src_height_l; int src_width_r, src_height_r; int dst_width_l, dst_height_l; int dst_width_r, dst_height_r; int hw_w = ctx->dpyAttr[dpy].xres; int hw_h = ctx->dpyAttr[dpy].yres; hwc_rect_t cropL, dstL, cropR, dstR; const int lSplit = getLeftSplit(ctx, dpy); hwc_rect_t sourceCrop = integerizeSourceCrop(layer->sourceCropf); hwc_rect_t displayFrame = layer->displayFrame; private_handle_t *hnd = (private_handle_t *)layer->handle; cropL = sourceCrop; dstL = displayFrame; hwc_rect_t scissorL = { 0, 0, lSplit, hw_h }; scissorL = getIntersection(ctx->mViewFrame[dpy], scissorL); qhwc::calculate_crop_rects(cropL, dstL, scissorL, 0); cropR = sourceCrop; dstR = displayFrame; hwc_rect_t scissorR = { lSplit, 0, hw_w, hw_h }; scissorR = getIntersection(ctx->mViewFrame[dpy], scissorR); qhwc::calculate_crop_rects(cropR, dstR, scissorR, 0); // Sanitize Crop to stitch sanitizeSourceCrop(cropL, cropR, hnd); // Calculate the left dst dst_width_l = dstL.right - dstL.left; dst_height_l = dstL.bottom - dstL.top; src_width_l = cropL.right - cropL.left; src_height_l = cropL.bottom - cropL.top; // check if there is any scaling on the left if(((src_width_l != dst_width_l) || (src_height_l != dst_height_l))) return true; // Calculate the right dst dst_width_r = dstR.right - dstR.left; dst_height_r = dstR.bottom - dstR.top; src_width_r = cropR.right - cropR.left; src_height_r = cropR.bottom - cropR.top; // check if there is any scaling on the right if(((src_width_r != dst_width_r) || (src_height_r != dst_height_r))) return true; return false; } bool isAlphaScaled(hwc_layer_1_t const* layer) { if(needsScaling(layer) && isAlphaPresent(layer)) { return true; } return false; } bool isAlphaPresent(hwc_layer_1_t const* layer) { private_handle_t *hnd = (private_handle_t *)layer->handle; if(hnd) { int format = hnd->format; switch(format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_BGRA_8888: // In any more formats with Alpha go here.. return true; default : return false; } } return false; } static void trimLayer(hwc_context_t *ctx, const int& dpy, const int& transform, hwc_rect_t& crop, hwc_rect_t& dst) { int hw_w = ctx->dpyAttr[dpy].xres; int hw_h = ctx->dpyAttr[dpy].yres; if(dst.left < 0 || dst.top < 0 || dst.right > hw_w || dst.bottom > hw_h) { hwc_rect_t scissor = {0, 0, hw_w, hw_h }; scissor = getIntersection(ctx->mViewFrame[dpy], scissor); qhwc::calculate_crop_rects(crop, dst, scissor, transform); } } static void trimList(hwc_context_t *ctx, hwc_display_contents_1_t *list, const int& dpy) { for(uint32_t i = 0; i < list->numHwLayers - 1; i++) { hwc_layer_1_t *layer = &list->hwLayers[i]; hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf); int transform = (list->hwLayers[i].flags & HWC_COLOR_FILL) ? 0 : list->hwLayers[i].transform; trimLayer(ctx, dpy, transform, (hwc_rect_t&)crop, (hwc_rect_t&)list->hwLayers[i].displayFrame); layer->sourceCropf.left = (float)crop.left; layer->sourceCropf.right = (float)crop.right; layer->sourceCropf.top = (float)crop.top; layer->sourceCropf.bottom = (float)crop.bottom; } } void setListStats(hwc_context_t *ctx, hwc_display_contents_1_t *list, int dpy) { const int prevYuvCount = ctx->listStats[dpy].yuvCount; memset(&ctx->listStats[dpy], 0, sizeof(ListStats)); ctx->listStats[dpy].numAppLayers = (int)list->numHwLayers - 1; ctx->listStats[dpy].fbLayerIndex = (int)list->numHwLayers - 1; ctx->listStats[dpy].skipCount = 0; ctx->listStats[dpy].preMultipliedAlpha = false; ctx->listStats[dpy].isSecurePresent = false; ctx->listStats[dpy].yuvCount = 0; char property[PROPERTY_VALUE_MAX]; ctx->listStats[dpy].isDisplayAnimating = false; ctx->listStats[dpy].secureUI = false; ctx->listStats[dpy].yuv4k2kCount = 0; ctx->dpyAttr[dpy].mActionSafePresent = isActionSafePresent(ctx, dpy); ctx->listStats[dpy].renderBufIndexforABC = -1; ctx->listStats[dpy].secureRGBCount = 0; ctx->listStats[dpy].refreshRateRequest = ctx->dpyAttr[dpy].refreshRate; uint32_t refreshRate = 0; qdutils::MDPVersion& mdpHw = qdutils::MDPVersion::getInstance(); ctx->listStats[dpy].mAIVVideoMode = false; resetROI(ctx, dpy); trimList(ctx, list, dpy); optimizeLayerRects(list); for (size_t i = 0; i < (size_t)ctx->listStats[dpy].numAppLayers; i++) { hwc_layer_1_t const* layer = &list->hwLayers[i]; private_handle_t *hnd = (private_handle_t *)layer->handle; #ifdef QCOM_BSP // Window boxing feature is applicable obly for external display, So // enable mAIVVideoMode only for external display if(ctx->mWindowboxFeature && dpy && isAIVVideoLayer(layer)) { ctx->listStats[dpy].mAIVVideoMode = true; } if (layer->flags & HWC_SCREENSHOT_ANIMATOR_LAYER) { ctx->listStats[dpy].isDisplayAnimating = true; } if(isSecureDisplayBuffer(hnd)) { ctx->listStats[dpy].secureUI = true; } #endif // continue if number of app layers exceeds MAX_NUM_APP_LAYERS if(ctx->listStats[dpy].numAppLayers > MAX_NUM_APP_LAYERS) continue; //reset yuv indices ctx->listStats[dpy].yuvIndices[i] = -1; ctx->listStats[dpy].yuv4k2kIndices[i] = -1; if (isSecureBuffer(hnd)) { ctx->listStats[dpy].isSecurePresent = true; if(not isYuvBuffer(hnd)) { // cache secureRGB layer parameters like we cache for YUV layers int& secureRGBCount = ctx->listStats[dpy].secureRGBCount; ctx->listStats[dpy].secureRGBIndices[secureRGBCount] = (int)i; secureRGBCount++; } } if (isSkipLayer(&list->hwLayers[i])) { ctx->listStats[dpy].skipCount++; } if (UNLIKELY(isYuvBuffer(hnd))) { int& yuvCount = ctx->listStats[dpy].yuvCount; ctx->listStats[dpy].yuvIndices[yuvCount] = (int)i; yuvCount++; if(UNLIKELY(isYUVSplitNeeded(hnd))){ int& yuv4k2kCount = ctx->listStats[dpy].yuv4k2kCount; ctx->listStats[dpy].yuv4k2kIndices[yuv4k2kCount] = (int)i; yuv4k2kCount++; } } if(layer->blending == HWC_BLENDING_PREMULT) ctx->listStats[dpy].preMultipliedAlpha = true; #ifdef DYNAMIC_FPS if (!dpy && mdpHw.isDynFpsSupported() && ctx->mUseMetaDataRefreshRate){ //dyn fps: get refreshrate from metadata //Support multiple refresh rates if they are same //else set to default MetaData_t *mdata = hnd ? (MetaData_t *)hnd->base_metadata : NULL; if (mdata && (mdata->operation & UPDATE_REFRESH_RATE)) { // Valid refreshRate in metadata and within the range uint32_t rate = roundOff(mdata->refreshrate); if((rate >= mdpHw.getMinFpsSupported() && rate <= mdpHw.getMaxFpsSupported())) { if (!refreshRate) { refreshRate = rate; } else if(refreshRate != rate) { // multiple refreshrate requests, set to default refreshRate = ctx->dpyAttr[dpy].refreshRate; } } } } #endif } if(ctx->listStats[dpy].yuvCount > 0) { if (property_get("hw.cabl.yuv", property, NULL) > 0) { if (atoi(property) != 1) { property_set("hw.cabl.yuv", "1"); } } } else { if (property_get("hw.cabl.yuv", property, NULL) > 0) { if (atoi(property) != 0) { property_set("hw.cabl.yuv", "0"); } } } //The marking of video begin/end is useful on some targets where we need //to have a padding round to be able to shift pipes across mixers. if(prevYuvCount != ctx->listStats[dpy].yuvCount) { ctx->mVideoTransFlag = true; } if(dpy == HWC_DISPLAY_PRIMARY) { ctx->mAD->markDoable(ctx, list); //Store the requested fresh rate ctx->listStats[dpy].refreshRateRequest = refreshRate ? refreshRate : ctx->dpyAttr[dpy].refreshRate; } } static void calc_cut(double& leftCutRatio, double& topCutRatio, double& rightCutRatio, double& bottomCutRatio, int orient) { if(orient & HAL_TRANSFORM_FLIP_H) { swap(leftCutRatio, rightCutRatio); } if(orient & HAL_TRANSFORM_FLIP_V) { swap(topCutRatio, bottomCutRatio); } if(orient & HAL_TRANSFORM_ROT_90) { //Anti clock swapping double tmpCutRatio = leftCutRatio; leftCutRatio = topCutRatio; topCutRatio = rightCutRatio; rightCutRatio = bottomCutRatio; bottomCutRatio = tmpCutRatio; } } bool isSecuring(hwc_context_t* ctx, hwc_layer_1_t const* layer) { if((ctx->mMDP.version < qdutils::MDSS_V5) && (ctx->mMDP.version > qdutils::MDP_V3_0) && ctx->mSecuring) { return true; } if (isSecureModePolicy(ctx->mMDP.version)) { private_handle_t *hnd = (private_handle_t *)layer->handle; if(ctx->mSecureMode) { if (! isSecureBuffer(hnd)) { ALOGD_IF(HWC_UTILS_DEBUG,"%s:Securing Turning ON ...", __FUNCTION__); return true; } } else { if (isSecureBuffer(hnd)) { ALOGD_IF(HWC_UTILS_DEBUG,"%s:Securing Turning OFF ...", __FUNCTION__); return true; } } } return false; } bool isSecureModePolicy(int mdpVersion) { if (mdpVersion < qdutils::MDSS_V5) return true; else return false; } bool isRotatorSupportedFormat(private_handle_t *hnd) { // Following rotator src formats are supported by mdp driver // TODO: Add more formats in future, if mdp driver adds support if(hnd != NULL) { switch(hnd->format) { case HAL_PIXEL_FORMAT_RGBA_8888: case HAL_PIXEL_FORMAT_RGBA_5551: case HAL_PIXEL_FORMAT_RGBA_4444: case HAL_PIXEL_FORMAT_RGB_565: case HAL_PIXEL_FORMAT_RGB_888: case HAL_PIXEL_FORMAT_BGRA_8888: return true; default: return false; } } return false; } bool isRotationDoable(hwc_context_t *ctx, private_handle_t *hnd) { // Rotate layers, if it is not secure display buffer and not // for the MDP versions below MDP5 if((!isSecureDisplayBuffer(hnd) && isRotatorSupportedFormat(hnd) && !ctx->mMDP.version < qdutils::MDSS_V5) || isYuvBuffer(hnd)) { return true; } return false; } // returns true if Action safe dimensions are set and target supports Actionsafe bool isActionSafePresent(hwc_context_t *ctx, int dpy) { // if external supports underscan, do nothing // it will be taken care in the driver // Disable Action safe for 8974 due to HW limitation for downscaling // layers with overlapped region // Disable Actionsafe for non HDMI displays. if(!(dpy == HWC_DISPLAY_EXTERNAL) || qdutils::MDPVersion::getInstance().is8x74v2() || ctx->mHDMIDisplay->isCEUnderscanSupported()) { return false; } char value[PROPERTY_VALUE_MAX]; // Read action safe properties property_get("persist.sys.actionsafe.width", value, "0"); ctx->dpyAttr[dpy].mAsWidthRatio = atoi(value); property_get("persist.sys.actionsafe.height", value, "0"); ctx->dpyAttr[dpy].mAsHeightRatio = atoi(value); if(!ctx->dpyAttr[dpy].mAsWidthRatio && !ctx->dpyAttr[dpy].mAsHeightRatio) { //No action safe ratio set, return return false; } return true; } int getBlending(int blending) { switch(blending) { case HWC_BLENDING_NONE: return overlay::utils::OVERLAY_BLENDING_OPAQUE; case HWC_BLENDING_PREMULT: return overlay::utils::OVERLAY_BLENDING_PREMULT; case HWC_BLENDING_COVERAGE : default: return overlay::utils::OVERLAY_BLENDING_COVERAGE; } } //Crops source buffer against destination and FB boundaries void calculate_crop_rects(hwc_rect_t& crop, hwc_rect_t& dst, const hwc_rect_t& scissor, int orient) { int& crop_l = crop.left; int& crop_t = crop.top; int& crop_r = crop.right; int& crop_b = crop.bottom; int crop_w = crop.right - crop.left; int crop_h = crop.bottom - crop.top; int& dst_l = dst.left; int& dst_t = dst.top; int& dst_r = dst.right; int& dst_b = dst.bottom; int dst_w = abs(dst.right - dst.left); int dst_h = abs(dst.bottom - dst.top); const int& sci_l = scissor.left; const int& sci_t = scissor.top; const int& sci_r = scissor.right; const int& sci_b = scissor.bottom; double leftCutRatio = 0.0, rightCutRatio = 0.0, topCutRatio = 0.0, bottomCutRatio = 0.0; if(dst_l < sci_l) { leftCutRatio = (double)(sci_l - dst_l) / (double)dst_w; dst_l = sci_l; } if(dst_r > sci_r) { rightCutRatio = (double)(dst_r - sci_r) / (double)dst_w; dst_r = sci_r; } if(dst_t < sci_t) { topCutRatio = (double)(sci_t - dst_t) / (double)dst_h; dst_t = sci_t; } if(dst_b > sci_b) { bottomCutRatio = (double)(dst_b - sci_b) / (double)dst_h; dst_b = sci_b; } calc_cut(leftCutRatio, topCutRatio, rightCutRatio, bottomCutRatio, orient); crop_l += (int)round((double)crop_w * leftCutRatio); crop_t += (int)round((double)crop_h * topCutRatio); crop_r -= (int)round((double)crop_w * rightCutRatio); crop_b -= (int)round((double)crop_h * bottomCutRatio); } bool areLayersIntersecting(const hwc_layer_1_t* layer1, const hwc_layer_1_t* layer2) { hwc_rect_t irect = getIntersection(layer1->displayFrame, layer2->displayFrame); return isValidRect(irect); } bool isSameRect(const hwc_rect& rect1, const hwc_rect& rect2) { return ((rect1.left == rect2.left) && (rect1.top == rect2.top) && (rect1.right == rect2.right) && (rect1.bottom == rect2.bottom)); } bool isValidRect(const hwc_rect& rect) { return ((rect.bottom > rect.top) && (rect.right > rect.left)) ; } bool operator ==(const hwc_rect_t& lhs, const hwc_rect_t& rhs) { if(lhs.left == rhs.left && lhs.top == rhs.top && lhs.right == rhs.right && lhs.bottom == rhs.bottom ) return true ; return false; } bool layerUpdating(const hwc_layer_1_t* layer) { hwc_region_t surfDamage = layer->surfaceDamage; return ((surfDamage.numRects == 0) || isValidRect(layer->surfaceDamage.rects[0])); } hwc_rect_t moveRect(const hwc_rect_t& rect, const int& x_off, const int& y_off) { hwc_rect_t res; if(!isValidRect(rect)) return (hwc_rect_t){0, 0, 0, 0}; res.left = rect.left + x_off; res.top = rect.top + y_off; res.right = rect.right + x_off; res.bottom = rect.bottom + y_off; return res; } /* computes the intersection of two rects */ hwc_rect_t getIntersection(const hwc_rect_t& rect1, const hwc_rect_t& rect2) { hwc_rect_t res; if(!isValidRect(rect1) || !isValidRect(rect2)){ return (hwc_rect_t){0, 0, 0, 0}; } res.left = max(rect1.left, rect2.left); res.top = max(rect1.top, rect2.top); res.right = min(rect1.right, rect2.right); res.bottom = min(rect1.bottom, rect2.bottom); if(!isValidRect(res)) return (hwc_rect_t){0, 0, 0, 0}; return res; } /* computes the union of two rects */ hwc_rect_t getUnion(const hwc_rect &rect1, const hwc_rect &rect2) { hwc_rect_t res; if(!isValidRect(rect1)){ return rect2; } if(!isValidRect(rect2)){ return rect1; } res.left = min(rect1.left, rect2.left); res.top = min(rect1.top, rect2.top); res.right = max(rect1.right, rect2.right); res.bottom = max(rect1.bottom, rect2.bottom); return res; } /* Not a geometrical rect deduction. Deducts rect2 from rect1 only if it results * a single rect */ hwc_rect_t deductRect(const hwc_rect_t& rect1, const hwc_rect_t& rect2) { hwc_rect_t res = rect1; if((rect1.left == rect2.left) && (rect1.right == rect2.right)) { if((rect1.top == rect2.top) && (rect2.bottom <= rect1.bottom)) res.top = rect2.bottom; else if((rect1.bottom == rect2.bottom)&& (rect2.top >= rect1.top)) res.bottom = rect2.top; } else if((rect1.top == rect2.top) && (rect1.bottom == rect2.bottom)) { if((rect1.left == rect2.left) && (rect2.right <= rect1.right)) res.left = rect2.right; else if((rect1.right == rect2.right)&& (rect2.left >= rect1.left)) res.right = rect2.left; } return res; } void optimizeLayerRects(const hwc_display_contents_1_t *list) { int i= (int)list->numHwLayers-2; while(i > 0) { //see if there is no blending required. //If it is opaque see if we can substract this region from below //layers. if(list->hwLayers[i].blending == HWC_BLENDING_NONE && list->hwLayers[i].planeAlpha == 0xFF) { int j= i-1; hwc_rect_t& topframe = (hwc_rect_t&)list->hwLayers[i].displayFrame; while(j >= 0) { if(!needsScaling(&list->hwLayers[j])) { hwc_layer_1_t* layer = (hwc_layer_1_t*)&list->hwLayers[j]; hwc_rect_t& bottomframe = layer->displayFrame; hwc_rect_t bottomCrop = integerizeSourceCrop(layer->sourceCropf); int transform = (layer->flags & HWC_COLOR_FILL) ? 0 : layer->transform; hwc_rect_t irect = getIntersection(bottomframe, topframe); if(isValidRect(irect)) { hwc_rect_t dest_rect; //if intersection is valid rect, deduct it dest_rect = deductRect(bottomframe, irect); qhwc::calculate_crop_rects(bottomCrop, bottomframe, dest_rect, transform); //Update layer sourceCropf layer->sourceCropf.left =(float)bottomCrop.left; layer->sourceCropf.top = (float)bottomCrop.top; layer->sourceCropf.right = (float)bottomCrop.right; layer->sourceCropf.bottom = (float)bottomCrop.bottom; #ifdef QCOM_BSP //Update layer dirtyRect layer->dirtyRect = getIntersection(bottomCrop, layer->dirtyRect); #endif } } j--; } } i--; } } void getNonWormholeRegion(hwc_display_contents_1_t* list, hwc_rect_t& nwr) { size_t last = list->numHwLayers - 1; hwc_rect_t fbDisplayFrame = list->hwLayers[last].displayFrame; //Initiliaze nwr to first frame nwr.left = list->hwLayers[0].displayFrame.left; nwr.top = list->hwLayers[0].displayFrame.top; nwr.right = list->hwLayers[0].displayFrame.right; nwr.bottom = list->hwLayers[0].displayFrame.bottom; for (size_t i = 1; i < last; i++) { hwc_rect_t displayFrame = list->hwLayers[i].displayFrame; nwr = getUnion(nwr, displayFrame); } //Intersect with the framebuffer nwr = getIntersection(nwr, fbDisplayFrame); } bool isExternalActive(hwc_context_t* ctx) { return ctx->dpyAttr[HWC_DISPLAY_EXTERNAL].isActive; } void closeAcquireFds(hwc_display_contents_1_t* list) { if(LIKELY(list)) { for(uint32_t i = 0; i < list->numHwLayers; i++) { //Close the acquireFenceFds //HWC_FRAMEBUFFER are -1 already by SF, rest we close. if(list->hwLayers[i].acquireFenceFd >= 0) { close(list->hwLayers[i].acquireFenceFd); list->hwLayers[i].acquireFenceFd = -1; } } //Writeback if(list->outbufAcquireFenceFd >= 0) { close(list->outbufAcquireFenceFd); list->outbufAcquireFenceFd = -1; } } } int hwc_sync(hwc_context_t *ctx, hwc_display_contents_1_t* list, int dpy, int fd) { ATRACE_CALL(); int ret = 0; int acquireFd[MAX_NUM_APP_LAYERS]; int count = 0; int releaseFd = -1; int retireFd = -1; int fbFd = -1; bool swapzero = false; struct mdp_buf_sync data; memset(&data, 0, sizeof(data)); data.acq_fen_fd = acquireFd; data.rel_fen_fd = &releaseFd; data.retire_fen_fd = &retireFd; data.flags = MDP_BUF_SYNC_FLAG_RETIRE_FENCE; char property[PROPERTY_VALUE_MAX]; if(property_get("debug.egl.swapinterval", property, "1") > 0) { if(atoi(property) == 0) swapzero = true; } bool isExtAnimating = false; if(dpy) isExtAnimating = ctx->listStats[dpy].isDisplayAnimating; //Send acquireFenceFds to rotator for(uint32_t i = 0; i < ctx->mLayerRotMap[dpy]->getCount(); i++) { int rotFd = ctx->mRotMgr->getRotDevFd(); int rotReleaseFd = -1; overlay::Rotator* currRot = ctx->mLayerRotMap[dpy]->getRot(i); hwc_layer_1_t* currLayer = ctx->mLayerRotMap[dpy]->getLayer(i); if((currRot == NULL) || (currLayer == NULL)) { continue; } struct mdp_buf_sync rotData; memset(&rotData, 0, sizeof(rotData)); rotData.acq_fen_fd = &currLayer->acquireFenceFd; rotData.rel_fen_fd = &rotReleaseFd; //driver to populate this rotData.session_id = currRot->getSessId(); if(currLayer->acquireFenceFd >= 0) { rotData.acq_fen_fd_cnt = 1; //1 ioctl call per rot session } int ret = 0; if(LIKELY(!swapzero) and (not ctx->mLayerRotMap[dpy]->isRotCached(i))) ret = ioctl(rotFd, MSMFB_BUFFER_SYNC, &rotData); if(ret < 0) { ALOGE("%s: ioctl MSMFB_BUFFER_SYNC failed for rot sync, err=%s", __FUNCTION__, strerror(errno)); close(rotReleaseFd); } else { close(currLayer->acquireFenceFd); //For MDP to wait on. currLayer->acquireFenceFd = dup(rotReleaseFd); //A buffer is free to be used by producer as soon as its copied to //rotator currLayer->releaseFenceFd = rotReleaseFd; } } //Accumulate acquireFenceFds for MDP Overlays if(list->outbufAcquireFenceFd >= 0) { //Writeback output buffer if(LIKELY(!swapzero) ) acquireFd[count++] = list->outbufAcquireFenceFd; } for(uint32_t i = 0; i < list->numHwLayers; i++) { if(((isAbcInUse(ctx)== true ) || (list->hwLayers[i].compositionType == HWC_OVERLAY)) && list->hwLayers[i].acquireFenceFd >= 0) { if(LIKELY(!swapzero) ) { // if ABC is enabled for more than one layer. // renderBufIndexforABC will work as FB.Hence // set the acquireFD from fd - which is coming from copybit if(fd >= 0 && (isAbcInUse(ctx) == true)) { if(ctx->listStats[dpy].renderBufIndexforABC ==(int32_t)i) acquireFd[count++] = fd; else continue; } else acquireFd[count++] = list->hwLayers[i].acquireFenceFd; } } if(list->hwLayers[i].compositionType == HWC_FRAMEBUFFER_TARGET) { if(LIKELY(!swapzero) ) { if(fd >= 0) { //set the acquireFD from fd - which is coming from c2d acquireFd[count++] = fd; // Buffer sync IOCTL should be async when using c2d fence is // used data.flags &= ~MDP_BUF_SYNC_FLAG_WAIT; } else if(list->hwLayers[i].acquireFenceFd >= 0) acquireFd[count++] = list->hwLayers[i].acquireFenceFd; } } } if ((fd >= 0) && !dpy && ctx->mPtorInfo.isActive()) { // Acquire c2d fence of Overlap render buffer if(LIKELY(!swapzero) ) acquireFd[count++] = fd; } data.acq_fen_fd_cnt = count; fbFd = ctx->dpyAttr[dpy].fd; //Waits for acquire fences, returns a release fence if(LIKELY(!swapzero)) { ret = ioctl(fbFd, MSMFB_BUFFER_SYNC, &data); } if(ret < 0) { ALOGE("%s: ioctl MSMFB_BUFFER_SYNC failed, err=%s", __FUNCTION__, strerror(errno)); ALOGE("%s: acq_fen_fd_cnt=%d flags=%d fd=%d dpy=%d numHwLayers=%zu", __FUNCTION__, data.acq_fen_fd_cnt, data.flags, fbFd, dpy, list->numHwLayers); close(releaseFd); releaseFd = -1; close(retireFd); retireFd = -1; } for(uint32_t i = 0; i < list->numHwLayers; i++) { if(list->hwLayers[i].compositionType == HWC_OVERLAY || #ifdef QCOM_BSP list->hwLayers[i].compositionType == HWC_BLIT || #endif list->hwLayers[i].compositionType == HWC_FRAMEBUFFER_TARGET) { //Populate releaseFenceFds. if(UNLIKELY(swapzero)) { list->hwLayers[i].releaseFenceFd = -1; } else if(isExtAnimating) { // Release all the app layer fds immediately, // if animation is in progress. list->hwLayers[i].releaseFenceFd = -1; } else if(list->hwLayers[i].releaseFenceFd < 0 ) { #ifdef QCOM_BSP //If rotator has not already populated this field // & if it's a not VPU layer // if ABC is enabled for more than one layer if(fd >= 0 && (isAbcInUse(ctx) == true) && ctx->listStats[dpy].renderBufIndexforABC !=(int32_t)i){ list->hwLayers[i].releaseFenceFd = dup(fd); } else if((list->hwLayers[i].compositionType == HWC_BLIT)&& (isAbcInUse(ctx) == false)){ //For Blit, the app layers should be released when the Blit //is complete. This fd was passed from copybit->draw list->hwLayers[i].releaseFenceFd = dup(fd); } else #endif { list->hwLayers[i].releaseFenceFd = dup(releaseFd); } } } } if(fd >= 0) { close(fd); fd = -1; } if (ctx->mCopyBit[dpy]) { if (!dpy && ctx->mPtorInfo.isActive()) ctx->mCopyBit[dpy]->setReleaseFdSync(releaseFd); else ctx->mCopyBit[dpy]->setReleaseFd(releaseFd); } //Signals when MDP finishes reading rotator buffers. ctx->mLayerRotMap[dpy]->setReleaseFd(releaseFd); close(releaseFd); releaseFd = -1; if(UNLIKELY(swapzero)) { list->retireFenceFd = -1; } else { list->retireFenceFd = retireFd; } return ret; } void setMdpFlags(hwc_context_t *ctx, hwc_layer_1_t *layer, ovutils::eMdpFlags &mdpFlags, int rotDownscale, int transform) { private_handle_t *hnd = (private_handle_t *)layer->handle; MetaData_t *metadata = hnd ? (MetaData_t *)hnd->base_metadata : NULL; if(layer->blending == HWC_BLENDING_PREMULT) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_BLEND_FG_PREMULT); } if(metadata && (metadata->operation & PP_PARAM_INTERLACED) && metadata->interlaced) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_DEINTERLACE); } // Mark MDP flags with SECURE_OVERLAY_SESSION for driver if(isSecureBuffer(hnd)) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SECURE_OVERLAY_SESSION); ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SMP_FORCE_ALLOC); } if(isProtectedBuffer(hnd)) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SMP_FORCE_ALLOC); } if(isSecureDisplayBuffer(hnd)) { // Mark MDP flags with SECURE_DISPLAY_OVERLAY_SESSION for driver ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SECURE_DISPLAY_OVERLAY_SESSION); } //Pre-rotation will be used using rotator. if(has90Transform(layer) && isRotationDoable(ctx, hnd)) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SOURCE_ROTATED_90); } //No 90 component and no rot-downscale then flips done by MDP //If we use rot then it might as well do flips if(!(transform & HWC_TRANSFORM_ROT_90) && !rotDownscale) { if(transform & HWC_TRANSFORM_FLIP_H) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_FLIP_H); } if(transform & HWC_TRANSFORM_FLIP_V) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_FLIP_V); } } if(metadata && ((metadata->operation & PP_PARAM_HSIC) || (metadata->operation & PP_PARAM_IGC) || (metadata->operation & PP_PARAM_SHARP2))) { ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_PP_EN); } } int configRotator(Rotator *rot, Whf& whf, hwc_rect_t& crop, const eMdpFlags& mdpFlags, const eTransform& orient, const int& downscale) { // Fix alignments for TILED format if(whf.format == MDP_Y_CRCB_H2V2_TILE || whf.format == MDP_Y_CBCR_H2V2_TILE) { whf.w = utils::alignup(whf.w, 64); whf.h = utils::alignup(whf.h, 32); } rot->setSource(whf); if (qdutils::MDPVersion::getInstance().getMDPVersion() >= qdutils::MDSS_V5) { Dim rotCrop(crop.left, crop.top, crop.right - crop.left, crop.bottom - crop.top); rot->setCrop(rotCrop); } rot->setFlags(mdpFlags); rot->setTransform(orient); rot->setDownscale(downscale); if(!rot->commit()) return -1; return 0; } int configMdp(Overlay *ov, const PipeArgs& parg, const eTransform& orient, const hwc_rect_t& crop, const hwc_rect_t& pos, const MetaData_t *metadata, const eDest& dest) { ov->setSource(parg, dest); ov->setTransform(orient, dest); int crop_w = crop.right - crop.left; int crop_h = crop.bottom - crop.top; Dim dcrop(crop.left, crop.top, crop_w, crop_h); ov->setCrop(dcrop, dest); int posW = pos.right - pos.left; int posH = pos.bottom - pos.top; Dim position(pos.left, pos.top, posW, posH); ov->setPosition(position, dest); if (metadata) ov->setVisualParams(*metadata, dest); if (!ov->commit(dest)) { return -1; } return 0; } int configColorLayer(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy, eMdpFlags& mdpFlags, eZorder& z, const eDest& dest) { hwc_rect_t dst = layer->displayFrame; trimLayer(ctx, dpy, 0, dst, dst); int w = ctx->dpyAttr[dpy].xres; int h = ctx->dpyAttr[dpy].yres; int dst_w = dst.right - dst.left; int dst_h = dst.bottom - dst.top; uint32_t color = layer->transform; Whf whf(w, h, getMdpFormat(HAL_PIXEL_FORMAT_RGBA_8888)); ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_SOLID_FILL); if (layer->blending == HWC_BLENDING_PREMULT) ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDP_BLEND_FG_PREMULT); PipeArgs parg(mdpFlags, whf, z, static_cast(0), layer->planeAlpha, (ovutils::eBlending) getBlending(layer->blending)); // Configure MDP pipe for Color layer Dim pos(dst.left, dst.top, dst_w, dst_h); ctx->mOverlay->setSource(parg, dest); ctx->mOverlay->setColor(color, dest); ctx->mOverlay->setTransform(0, dest); ctx->mOverlay->setCrop(pos, dest); ctx->mOverlay->setPosition(pos, dest); if (!ctx->mOverlay->commit(dest)) { ALOGE("%s: Configure color layer failed!", __FUNCTION__); return -1; } return 0; } void updateSource(eTransform& orient, Whf& whf, hwc_rect_t& crop, Rotator *rot) { Dim transformedCrop(crop.left, crop.top, crop.right - crop.left, crop.bottom - crop.top); if (qdutils::MDPVersion::getInstance().getMDPVersion() >= qdutils::MDSS_V5) { //B-family rotator internally could modify destination dimensions if //downscaling is supported whf = rot->getDstWhf(); transformedCrop = rot->getDstDimensions(); } else { //A-family rotator rotates entire buffer irrespective of crop, forcing //us to recompute the crop based on transform orient = static_cast(ovutils::getMdpOrient(orient)); preRotateSource(orient, whf, transformedCrop); } crop.left = transformedCrop.x; crop.top = transformedCrop.y; crop.right = transformedCrop.x + transformedCrop.w; crop.bottom = transformedCrop.y + transformedCrop.h; } int getRotDownscale(hwc_context_t *ctx, const hwc_layer_1_t *layer) { if(not qdutils::MDPVersion::getInstance().isRotDownscaleEnabled()) { return 0; } int downscale = 0; hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf); hwc_rect_t dst = layer->displayFrame; private_handle_t *hnd = (private_handle_t *)layer->handle; if(not hnd) { return 0; } MetaData_t *metadata = (MetaData_t *)hnd->base_metadata; bool isInterlaced = metadata && (metadata->operation & PP_PARAM_INTERLACED) && metadata->interlaced; int transform = layer->transform; uint32_t format = ovutils::getMdpFormat(hnd->format, hnd->flags); if(isYuvBuffer(hnd)) { if(ctx->mMDP.version >= qdutils::MDP_V4_2 && ctx->mMDP.version < qdutils::MDSS_V5) { downscale = Rotator::getDownscaleFactor(crop.right - crop.left, crop.bottom - crop.top, dst.right - dst.left, dst.bottom - dst.top, format, isInterlaced); } else { Dim adjCrop(crop.left, crop.top, crop.right - crop.left, crop.bottom - crop.top); Dim pos(dst.left, dst.top, dst.right - dst.left, dst.bottom - dst.top); if(transform & HAL_TRANSFORM_ROT_90) { swap(adjCrop.w, adjCrop.h); } downscale = Rotator::getDownscaleFactor(adjCrop.w, adjCrop.h, pos.w, pos.h, format, isInterlaced); } } return downscale; } bool isZoomModeEnabled(hwc_rect_t crop) { // This does not work for zooming in top left corner of the image return(crop.top > 0 || crop.left > 0); } void updateCropAIVVideoMode(hwc_context_t *ctx, hwc_rect_t& crop, int dpy) { ALOGD_IF(HWC_UTILS_DEBUG, "dpy %d Source crop [%d %d %d %d]", dpy, crop.left, crop.top, crop.right, crop.bottom); if(isZoomModeEnabled(crop)) { Dim srcCrop(crop.left, crop.top, crop.right - crop.left, crop.bottom - crop.top); int extW = ctx->dpyAttr[dpy].xres; int extH = ctx->dpyAttr[dpy].yres; //Crop the original video in order to fit external display aspect ratio if(srcCrop.w * extH < extW * srcCrop.h) { int offset = (srcCrop.h - ((srcCrop.w * extH) / extW)) / 2; crop.top += offset; crop.bottom -= offset; } else { int offset = (srcCrop.w - ((extW * srcCrop.h) / extH)) / 2; crop.left += offset; crop.right -= offset; } ALOGD_IF(HWC_UTILS_DEBUG, "External Resolution [%d %d] dpy %d Modified" " source crop [%d %d %d %d]", extW, extH, dpy, crop.left, crop.top, crop.right, crop.bottom); } } void updateDestAIVVideoMode(hwc_context_t *ctx, hwc_rect_t crop, hwc_rect_t& dst, int dpy) { ALOGD_IF(HWC_UTILS_DEBUG, "dpy %d Destination position [%d %d %d %d]", dpy, dst.left, dst.top, dst.right, dst.bottom); Dim srcCrop(crop.left, crop.top, crop.right - crop.left, crop.bottom - crop.top); int extW = ctx->dpyAttr[dpy].xres; int extH = ctx->dpyAttr[dpy].yres; // Set the destination coordinates of external display to full screen, // when zoom in mode is enabled or the ratio between video aspect ratio // and external display aspect ratio is below the minimum tolerance level // and above maximum tolerance level float videoAspectRatio = ((float)srcCrop.w / (float)srcCrop.h); float extDisplayAspectRatio = ((float)extW / (float)extH); float videoToExternalRatio = videoAspectRatio / extDisplayAspectRatio; if((fabs(1.0f - videoToExternalRatio) <= ctx->mAspectRatioToleranceLevel) || (isZoomModeEnabled(crop))) { dst.left = 0; dst.top = 0; dst.right = extW; dst.bottom = extH; } ALOGD_IF(HWC_UTILS_DEBUG, "External Resolution [%d %d] dpy %d Modified" " Destination position [%d %d %d %d] Source crop [%d %d %d %d]", extW, extH, dpy, dst.left, dst.top, dst.right, dst.bottom, crop.left, crop.top, crop.right, crop.bottom); } void updateCoordinates(hwc_context_t *ctx, hwc_rect_t& crop, hwc_rect_t& dst, int dpy) { updateCropAIVVideoMode(ctx, crop, dpy); updateDestAIVVideoMode(ctx, crop, dst, dpy); } int configureNonSplit(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy, eMdpFlags& mdpFlags, eZorder& z, const eDest& dest, Rotator **rot) { private_handle_t *hnd = (private_handle_t *)layer->handle; if(!hnd) { if (layer->flags & HWC_COLOR_FILL) { // Configure Color layer return configColorLayer(ctx, layer, dpy, mdpFlags, z, dest); } ALOGE("%s: layer handle is NULL", __FUNCTION__); return -1; } MetaData_t *metadata = (MetaData_t *)hnd->base_metadata; hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf); hwc_rect_t dst = layer->displayFrame; int transform = layer->transform; eTransform orient = static_cast(transform); int rotFlags = ovutils::ROT_FLAGS_NONE; uint32_t format = ovutils::getMdpFormat(hnd->format, hnd->flags); Whf whf(getWidth(hnd), getHeight(hnd), format, (uint32_t)hnd->size); // Handle R/B swap if (layer->flags & HWC_FORMAT_RB_SWAP) { if (hnd->format == HAL_PIXEL_FORMAT_RGBA_8888) whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRA_8888); else if (hnd->format == HAL_PIXEL_FORMAT_RGBX_8888) whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRX_8888); } // update source crop and destination position of AIV video layer. if(ctx->listStats[dpy].mAIVVideoMode && isYuvBuffer(hnd)) { updateCoordinates(ctx, crop, dst, dpy); } calcExtDisplayPosition(ctx, hnd, dpy, crop, dst, transform, orient); int downscale = getRotDownscale(ctx, layer); setMdpFlags(ctx, layer, mdpFlags, downscale, transform); //if 90 component or downscale, use rot if((has90Transform(layer) or downscale) and isRotationDoable(ctx, hnd)) { *rot = ctx->mRotMgr->getNext(); if(*rot == NULL) return -1; ctx->mLayerRotMap[dpy]->add(layer, *rot); BwcPM::setBwc(ctx, dpy, hnd, crop, dst, transform, downscale, mdpFlags); //Configure rotator for pre-rotation if(configRotator(*rot, whf, crop, mdpFlags, orient, downscale) < 0) { ALOGE("%s: configRotator failed!", __FUNCTION__); return -1; } updateSource(orient, whf, crop, *rot); rotFlags |= ROT_PREROTATED; } //For the mdp, since either we are pre-rotating or MDP does flips orient = OVERLAY_TRANSFORM_0; transform = 0; PipeArgs parg(mdpFlags, whf, z, static_cast(rotFlags), layer->planeAlpha, (ovutils::eBlending) getBlending(layer->blending)); if(configMdp(ctx->mOverlay, parg, orient, crop, dst, metadata, dest) < 0) { ALOGE("%s: commit failed for low res panel", __FUNCTION__); return -1; } return 0; } //Helper to 1) Ensure crops dont have gaps 2) Ensure L and W are even void sanitizeSourceCrop(hwc_rect_t& cropL, hwc_rect_t& cropR, private_handle_t *hnd) { if(cropL.right - cropL.left) { if(isYuvBuffer(hnd)) { //Always safe to even down left ovutils::even_floor(cropL.left); //If right is even, automatically width is even, since left is //already even ovutils::even_floor(cropL.right); } //Make sure there are no gaps between left and right splits if the layer //is spread across BOTH halves if(cropR.right - cropR.left) { cropR.left = cropL.right; } } if(cropR.right - cropR.left) { if(isYuvBuffer(hnd)) { //Always safe to even down left ovutils::even_floor(cropR.left); //If right is even, automatically width is even, since left is //already even ovutils::even_floor(cropR.right); } } } int configureSplit(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy, eMdpFlags& mdpFlagsL, eZorder& z, const eDest& lDest, const eDest& rDest, Rotator **rot) { private_handle_t *hnd = (private_handle_t *)layer->handle; if(!hnd) { ALOGE("%s: layer handle is NULL", __FUNCTION__); return -1; } MetaData_t *metadata = (MetaData_t *)hnd->base_metadata; int hw_w = ctx->dpyAttr[dpy].xres; int hw_h = ctx->dpyAttr[dpy].yres; hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf); hwc_rect_t dst = layer->displayFrame; int transform = layer->transform; eTransform orient = static_cast(transform); int rotFlags = ROT_FLAGS_NONE; uint32_t format = ovutils::getMdpFormat(hnd->format, hnd->flags); Whf whf(getWidth(hnd), getHeight(hnd), format, (uint32_t)hnd->size); // Handle R/B swap if (layer->flags & HWC_FORMAT_RB_SWAP) { if (hnd->format == HAL_PIXEL_FORMAT_RGBA_8888) whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRA_8888); else if (hnd->format == HAL_PIXEL_FORMAT_RGBX_8888) whf.format = getMdpFormat(HAL_PIXEL_FORMAT_BGRX_8888); } // update source crop and destination position of AIV video layer. if(ctx->listStats[dpy].mAIVVideoMode && isYuvBuffer(hnd)) { updateCoordinates(ctx, crop, dst, dpy); } /* Calculate the external display position based on MDP downscale, ActionSafe, and extorientation features. */ calcExtDisplayPosition(ctx, hnd, dpy, crop, dst, transform, orient); int downscale = getRotDownscale(ctx, layer); setMdpFlags(ctx, layer, mdpFlagsL, downscale, transform); if(lDest != OV_INVALID && rDest != OV_INVALID) { //Enable overfetch setMdpFlags(mdpFlagsL, OV_MDSS_MDP_DUAL_PIPE); } //Will do something only if feature enabled and conditions suitable //hollow call otherwise if(ctx->mAD->prepare(ctx, crop, whf, hnd)) { overlay::Writeback *wb = overlay::Writeback::getInstance(); whf.format = wb->getOutputFormat(); } if((has90Transform(layer) or downscale) and isRotationDoable(ctx, hnd)) { (*rot) = ctx->mRotMgr->getNext(); if((*rot) == NULL) return -1; ctx->mLayerRotMap[dpy]->add(layer, *rot); //Configure rotator for pre-rotation if(configRotator(*rot, whf, crop, mdpFlagsL, orient, downscale) < 0) { ALOGE("%s: configRotator failed!", __FUNCTION__); return -1; } updateSource(orient, whf, crop, *rot); rotFlags |= ROT_PREROTATED; } eMdpFlags mdpFlagsR = mdpFlagsL; setMdpFlags(mdpFlagsR, OV_MDSS_MDP_RIGHT_MIXER); hwc_rect_t tmp_cropL = {0}, tmp_dstL = {0}; hwc_rect_t tmp_cropR = {0}, tmp_dstR = {0}; const int lSplit = getLeftSplit(ctx, dpy); // Calculate Left rects if(dst.left < lSplit) { tmp_cropL = crop; tmp_dstL = dst; hwc_rect_t scissor = {0, 0, lSplit, hw_h }; scissor = getIntersection(ctx->mViewFrame[dpy], scissor); qhwc::calculate_crop_rects(tmp_cropL, tmp_dstL, scissor, 0); } // Calculate Right rects if(dst.right > lSplit) { tmp_cropR = crop; tmp_dstR = dst; hwc_rect_t scissor = {lSplit, 0, hw_w, hw_h }; scissor = getIntersection(ctx->mViewFrame[dpy], scissor); qhwc::calculate_crop_rects(tmp_cropR, tmp_dstR, scissor, 0); } sanitizeSourceCrop(tmp_cropL, tmp_cropR, hnd); //When buffer is H-flipped, contents of mixer config also needs to swapped //Not needed if the layer is confined to one half of the screen. //If rotator has been used then it has also done the flips, so ignore them. if((orient & OVERLAY_TRANSFORM_FLIP_H) && (dst.left < lSplit) && (dst.right > lSplit) && (*rot) == NULL) { hwc_rect_t new_cropR; new_cropR.left = tmp_cropL.left; new_cropR.right = new_cropR.left + (tmp_cropR.right - tmp_cropR.left); hwc_rect_t new_cropL; new_cropL.left = new_cropR.right; new_cropL.right = tmp_cropR.right; tmp_cropL.left = new_cropL.left; tmp_cropL.right = new_cropL.right; tmp_cropR.left = new_cropR.left; tmp_cropR.right = new_cropR.right; } //For the mdp, since either we are pre-rotating or MDP does flips orient = OVERLAY_TRANSFORM_0; transform = 0; //configure left mixer if(lDest != OV_INVALID) { PipeArgs pargL(mdpFlagsL, whf, z, static_cast(rotFlags), layer->planeAlpha, (ovutils::eBlending) getBlending(layer->blending)); if(configMdp(ctx->mOverlay, pargL, orient, tmp_cropL, tmp_dstL, metadata, lDest) < 0) { ALOGE("%s: commit failed for left mixer config", __FUNCTION__); return -1; } } //configure right mixer if(rDest != OV_INVALID) { PipeArgs pargR(mdpFlagsR, whf, z, static_cast(rotFlags), layer->planeAlpha, (ovutils::eBlending) getBlending(layer->blending)); tmp_dstR.right = tmp_dstR.right - lSplit; tmp_dstR.left = tmp_dstR.left - lSplit; if(configMdp(ctx->mOverlay, pargR, orient, tmp_cropR, tmp_dstR, metadata, rDest) < 0) { ALOGE("%s: commit failed for right mixer config", __FUNCTION__); return -1; } } return 0; } int configureSourceSplit(hwc_context_t *ctx, hwc_layer_1_t *layer, const int& dpy, eMdpFlags& mdpFlagsL, eZorder& z, const eDest& lDest, const eDest& rDest, Rotator **rot) { private_handle_t *hnd = (private_handle_t *)layer->handle; if(!hnd) { ALOGE("%s: layer handle is NULL", __FUNCTION__); return -1; } MetaData_t *metadata = (MetaData_t *)hnd->base_metadata; hwc_rect_t crop = integerizeSourceCrop(layer->sourceCropf);; hwc_rect_t dst = layer->displayFrame; int transform = layer->transform; eTransform orient = static_cast(transform); const int downscale = 0; int rotFlags = ROT_FLAGS_NONE; //Splitting only YUV layer on primary panel needs different zorders //for both layers as both the layers are configured to single mixer eZorder lz = z; eZorder rz = (eZorder)(z + 1); Whf whf(getWidth(hnd), getHeight(hnd), getMdpFormat(hnd->format), (uint32_t)hnd->size); // update source crop and destination position of AIV video layer. if(ctx->listStats[dpy].mAIVVideoMode && isYuvBuffer(hnd)) { updateCoordinates(ctx, crop, dst, dpy); } /* Calculate the external display position based on MDP downscale, ActionSafe, and extorientation features. */ calcExtDisplayPosition(ctx, hnd, dpy, crop, dst, transform, orient); setMdpFlags(ctx, layer, mdpFlagsL, 0, transform); trimLayer(ctx, dpy, transform, crop, dst); if(has90Transform(layer) && isRotationDoable(ctx, hnd)) { (*rot) = ctx->mRotMgr->getNext(); if((*rot) == NULL) return -1; ctx->mLayerRotMap[dpy]->add(layer, *rot); //Configure rotator for pre-rotation if(configRotator(*rot, whf, crop, mdpFlagsL, orient, downscale) < 0) { ALOGE("%s: configRotator failed!", __FUNCTION__); return -1; } updateSource(orient, whf, crop, *rot); rotFlags |= ROT_PREROTATED; } eMdpFlags mdpFlagsR = mdpFlagsL; int lSplit = dst.left + (dst.right - dst.left)/2; hwc_rect_t tmp_cropL = {0}, tmp_dstL = {0}; hwc_rect_t tmp_cropR = {0}, tmp_dstR = {0}; if(lDest != OV_INVALID) { tmp_cropL = crop; tmp_dstL = dst; hwc_rect_t scissor = {dst.left, dst.top, lSplit, dst.bottom }; qhwc::calculate_crop_rects(tmp_cropL, tmp_dstL, scissor, 0); } if(rDest != OV_INVALID) { tmp_cropR = crop; tmp_dstR = dst; hwc_rect_t scissor = {lSplit, dst.top, dst.right, dst.bottom }; qhwc::calculate_crop_rects(tmp_cropR, tmp_dstR, scissor, 0); } sanitizeSourceCrop(tmp_cropL, tmp_cropR, hnd); //When buffer is H-flipped, contents of mixer config also needs to swapped //Not needed if the layer is confined to one half of the screen. //If rotator has been used then it has also done the flips, so ignore them. if((orient & OVERLAY_TRANSFORM_FLIP_H) && lDest != OV_INVALID && rDest != OV_INVALID && (*rot) == NULL) { hwc_rect_t new_cropR; new_cropR.left = tmp_cropL.left; new_cropR.right = new_cropR.left + (tmp_cropR.right - tmp_cropR.left); hwc_rect_t new_cropL; new_cropL.left = new_cropR.right; new_cropL.right = tmp_cropR.right; tmp_cropL.left = new_cropL.left; tmp_cropL.right = new_cropL.right; tmp_cropR.left = new_cropR.left; tmp_cropR.right = new_cropR.right; } //For the mdp, since either we are pre-rotating or MDP does flips orient = OVERLAY_TRANSFORM_0; transform = 0; //configure left half if(lDest != OV_INVALID) { PipeArgs pargL(mdpFlagsL, whf, lz, static_cast(rotFlags), layer->planeAlpha, (ovutils::eBlending) getBlending(layer->blending)); if(configMdp(ctx->mOverlay, pargL, orient, tmp_cropL, tmp_dstL, metadata, lDest) < 0) { ALOGE("%s: commit failed for left half config", __FUNCTION__); return -1; } } //configure right half if(rDest != OV_INVALID) { PipeArgs pargR(mdpFlagsR, whf, rz, static_cast(rotFlags), layer->planeAlpha, (ovutils::eBlending) getBlending(layer->blending)); if(configMdp(ctx->mOverlay, pargR, orient, tmp_cropR, tmp_dstR, metadata, rDest) < 0) { ALOGE("%s: commit failed for right half config", __FUNCTION__); return -1; } } return 0; } bool canUseRotator(hwc_context_t *ctx, int dpy) { if(ctx->mOverlay->isDMAMultiplexingSupported() && isSecondaryConnected(ctx) && !ctx->dpyAttr[HWC_DISPLAY_VIRTUAL].isPause) { /* mdss driver on certain targets support multiplexing of DMA pipe * in LINE and BLOCK modes for writeback panels. */ if(dpy == HWC_DISPLAY_PRIMARY) return false; } if((ctx->mMDP.version == qdutils::MDP_V3_0_4) ||(ctx->mMDP.version == qdutils::MDP_V3_0_5)) return false; return true; } int getLeftSplit(hwc_context_t *ctx, const int& dpy) { //Default even split for all displays with high res int lSplit = ctx->dpyAttr[dpy].xres / 2; if(dpy == HWC_DISPLAY_PRIMARY && qdutils::MDPVersion::getInstance().getLeftSplit()) { //Override if split published by driver for primary lSplit = qdutils::MDPVersion::getInstance().getLeftSplit(); } return lSplit; } bool isDisplaySplit(hwc_context_t* ctx, int dpy) { qdutils::MDPVersion& mdpHw = qdutils::MDPVersion::getInstance(); if(ctx->dpyAttr[dpy].xres > mdpHw.getMaxPipeWidth()) { return true; } //For testing we could split primary via device tree values if(dpy == HWC_DISPLAY_PRIMARY && mdpHw.getRightSplit()) { return true; } return false; } //clear prev layer prop flags and realloc for current frame void reset_layer_prop(hwc_context_t* ctx, int dpy, int numAppLayers) { if(ctx->layerProp[dpy]) { delete[] ctx->layerProp[dpy]; ctx->layerProp[dpy] = NULL; } ctx->layerProp[dpy] = new LayerProp[numAppLayers]; } bool isAbcInUse(hwc_context_t *ctx){ return (ctx->enableABC && ctx->listStats[0].renderBufIndexforABC == 0); } void dumpBuffer(private_handle_t *ohnd, char *bufferName) { if (ohnd != NULL && ohnd->base) { char dumpFilename[PATH_MAX]; bool bResult = false; int width = getWidth(ohnd); int height = getHeight(ohnd); int format = ohnd->format; //dummy aligned w & h. int alW = 0, alH = 0; int size = getBufferSizeAndDimensions(width, height, format, alW, alH); snprintf(dumpFilename, sizeof(dumpFilename), "/data/%s.%s.%dx%d.raw", bufferName, overlay::utils::getFormatString(utils::getMdpFormat(format)), width, height); FILE* fp = fopen(dumpFilename, "w+"); if (NULL != fp) { bResult = (bool) fwrite((void*)ohnd->base, size, 1, fp); fclose(fp); } ALOGD("Buffer[%s] Dump to %s: %s", bufferName, dumpFilename, bResult ? "Success" : "Fail"); } } bool isGLESComp(hwc_context_t *ctx, hwc_display_contents_1_t* list) { int numAppLayers = ctx->listStats[HWC_DISPLAY_PRIMARY].numAppLayers; for(int index = 0; index < numAppLayers; index++) { hwc_layer_1_t* layer = &(list->hwLayers[index]); if(layer->compositionType == HWC_FRAMEBUFFER) return true; } return false; } void setGPUHint(hwc_context_t* ctx, hwc_display_contents_1_t* list) { struct gpu_hint_info *gpuHint = &ctx->mGPUHintInfo; if(!gpuHint->mGpuPerfModeEnable || !ctx || !list) return; #ifdef QCOM_BSP /* Set the GPU hint flag to high for MIXED/GPU composition only for first frame after MDP -> GPU/MIXED mode transition. Set the GPU hint to default if the previous composition is GPU or current GPU composition is due to idle fallback */ if(!gpuHint->mEGLDisplay || !gpuHint->mEGLContext) { gpuHint->mEGLDisplay = eglGetCurrentDisplay(); if(!gpuHint->mEGLDisplay) { ALOGW("%s Warning: EGL current display is NULL", __FUNCTION__); return; } gpuHint->mEGLContext = eglGetCurrentContext(); if(!gpuHint->mEGLContext) { ALOGW("%s Warning: EGL current context is NULL", __FUNCTION__); return; } } if(isGLESComp(ctx, list)) { if(gpuHint->mCompositionState != COMPOSITION_STATE_GPU && !MDPComp::isIdleFallback()) { EGLint attr_list[] = {EGL_GPU_HINT_1, EGL_GPU_LEVEL_3, EGL_NONE }; if((gpuHint->mCurrGPUPerfMode != EGL_GPU_LEVEL_3) && !eglGpuPerfHintQCOM(gpuHint->mEGLDisplay, gpuHint->mEGLContext, attr_list)) { ALOGW("eglGpuPerfHintQCOM failed for Built in display"); } else { gpuHint->mCurrGPUPerfMode = EGL_GPU_LEVEL_3; gpuHint->mCompositionState = COMPOSITION_STATE_GPU; } } else { EGLint attr_list[] = {EGL_GPU_HINT_1, EGL_GPU_LEVEL_0, EGL_NONE }; if((gpuHint->mCurrGPUPerfMode != EGL_GPU_LEVEL_0) && !eglGpuPerfHintQCOM(gpuHint->mEGLDisplay, gpuHint->mEGLContext, attr_list)) { ALOGW("eglGpuPerfHintQCOM failed for Built in display"); } else { gpuHint->mCurrGPUPerfMode = EGL_GPU_LEVEL_0; } if(MDPComp::isIdleFallback()) { gpuHint->mCompositionState = COMPOSITION_STATE_IDLE_FALLBACK; } } } else { /* set the GPU hint flag to default for MDP composition */ EGLint attr_list[] = {EGL_GPU_HINT_1, EGL_GPU_LEVEL_0, EGL_NONE }; if((gpuHint->mCurrGPUPerfMode != EGL_GPU_LEVEL_0) && !eglGpuPerfHintQCOM(gpuHint->mEGLDisplay, gpuHint->mEGLContext, attr_list)) { ALOGW("eglGpuPerfHintQCOM failed for Built in display"); } else { gpuHint->mCurrGPUPerfMode = EGL_GPU_LEVEL_0; } gpuHint->mCompositionState = COMPOSITION_STATE_MDP; } #endif } bool isPeripheral(const hwc_rect_t& rect1, const hwc_rect_t& rect2) { // To be peripheral, 3 boundaries should match. uint8_t eqBounds = 0; if (rect1.left == rect2.left) eqBounds++; if (rect1.top == rect2.top) eqBounds++; if (rect1.right == rect2.right) eqBounds++; if (rect1.bottom == rect2.bottom) eqBounds++; return (eqBounds == 3); } void applyDefaultMode(hwc_context_t *ctx) { char value[PROPERTY_VALUE_MAX]; int boot_finished = 0; static int ret = ctx->mColorMode->applyDefaultMode(); if(!ret) { ctx->mDefaultModeApplied = true; return; } // Reading property set on boot finish in SF property_get("service.bootanim.exit", value, "0"); boot_finished = atoi(value); if (!boot_finished) return; ret = ctx->mColorMode->applyDefaultMode(); if (ret) ALOGD("%s: Not able to apply default mode", __FUNCTION__); ctx->mDefaultModeApplied = true; } void BwcPM::setBwc(const hwc_context_t *ctx, const int& dpy, const private_handle_t *hnd, const hwc_rect_t& crop, const hwc_rect_t& dst, const int& transform,const int& downscale, ovutils::eMdpFlags& mdpFlags) { //Target doesnt support Bwc qdutils::MDPVersion& mdpHw = qdutils::MDPVersion::getInstance(); if(not mdpHw.supportsBWC()) { return; } //Disabled at runtime if(not ctx->mBWCEnabled) return; //BWC not supported with rot-downscale if(downscale) return; //Not enabled for secondary displays if(dpy) return; //Not enabled for non-video buffers if(not isYuvBuffer(hnd)) return; int src_w = crop.right - crop.left; int src_h = crop.bottom - crop.top; int dst_w = dst.right - dst.left; int dst_h = dst.bottom - dst.top; if(transform & HAL_TRANSFORM_ROT_90) { swap(src_w, src_h); } //src width > MAX mixer supported dim if(src_w > (int) qdutils::MDPVersion::getInstance().getMaxPipeWidth()) { return; } //H/w requirement for BWC only. Pipe can still support 4096 if(src_h > 4092) { return; } //Decimation necessary, cannot use BWC. H/W requirement. if(qdutils::MDPVersion::getInstance().supportsDecimation()) { uint8_t horzDeci = 0; uint8_t vertDeci = 0; ovutils::getDecimationFactor(src_w, src_h, dst_w, dst_h, horzDeci, vertDeci); if(horzDeci || vertDeci) return; } ovutils::setMdpFlags(mdpFlags, ovutils::OV_MDSS_MDP_BWC_EN); } void LayerRotMap::add(hwc_layer_1_t* layer, Rotator *rot) { if(mCount >= RotMgr::MAX_ROT_SESS) return; mLayer[mCount] = layer; mRot[mCount] = rot; mCount++; } void LayerRotMap::reset() { for (int i = 0; i < RotMgr::MAX_ROT_SESS; i++) { mLayer[i] = 0; mRot[i] = 0; } mCount = 0; } void LayerRotMap::clear() { RotMgr::getInstance()->markUnusedTop(mCount); reset(); } bool LayerRotMap::isRotCached(uint32_t index) const { overlay::Rotator* rot = getRot(index); hwc_layer_1_t* layer = getLayer(index); if(rot and layer and layer->handle) { private_handle_t *hnd = (private_handle_t *)(layer->handle); return (rot->isRotCached(hnd->fd,(uint32_t)(hnd->offset))); } return false; } void LayerRotMap::setReleaseFd(const int& fence) { for(uint32_t i = 0; i < mCount; i++) { if(mRot[i] and mLayer[i] and mLayer[i]->handle) { /* Ensure that none of the above (Rotator-instance, * layer and layer-handle) are NULL*/ if(isRotCached(i)) mRot[i]->setPrevBufReleaseFd(dup(fence)); else mRot[i]->setCurrBufReleaseFd(dup(fence)); } } } hwc_rect expandROIFromMidPoint(hwc_rect roi, hwc_rect fullFrame) { int lRoiWidth = 0, rRoiWidth = 0; int half_frame_width = fullFrame.right/2; hwc_rect lFrame = fullFrame; hwc_rect rFrame = fullFrame; lFrame.right = (lFrame.right - lFrame.left)/2; rFrame.left = lFrame.right; hwc_rect lRoi = getIntersection(roi, lFrame); hwc_rect rRoi = getIntersection(roi, rFrame); lRoiWidth = lRoi.right - lRoi.left; rRoiWidth = rRoi.right - rRoi.left; if(lRoiWidth && rRoiWidth) { if(lRoiWidth < rRoiWidth) roi.left = half_frame_width - rRoiWidth; else roi.right = half_frame_width + lRoiWidth; } return roi; } void resetROI(hwc_context_t *ctx, const int dpy) { const int fbXRes = (int)ctx->dpyAttr[dpy].xres; const int fbYRes = (int)ctx->dpyAttr[dpy].yres; /* When source split is enabled, both the panels are calibrated * in a single coordinate system. So only one ROI is generated * for the whole panel extending equally from the midpoint and * populated for the left side. */ if(!qdutils::MDPVersion::getInstance().isSrcSplit() && isDisplaySplit(ctx, dpy)) { const int lSplit = getLeftSplit(ctx, dpy); ctx->listStats[dpy].lRoi = (struct hwc_rect){0, 0, lSplit, fbYRes}; ctx->listStats[dpy].rRoi = (struct hwc_rect){lSplit, 0, fbXRes, fbYRes}; } else { ctx->listStats[dpy].lRoi = (struct hwc_rect){0, 0,fbXRes, fbYRes}; ctx->listStats[dpy].rRoi = (struct hwc_rect){0, 0, 0, 0}; } } hwc_rect_t getSanitizeROI(struct hwc_rect roi, hwc_rect boundary) { if(!isValidRect(roi)) return roi; struct hwc_rect t_roi = roi; const int LEFT_ALIGN = qdutils::MDPVersion::getInstance().getLeftAlign(); const int WIDTH_ALIGN = qdutils::MDPVersion::getInstance().getWidthAlign(); const int TOP_ALIGN = qdutils::MDPVersion::getInstance().getTopAlign(); const int HEIGHT_ALIGN = qdutils::MDPVersion::getInstance().getHeightAlign(); const int MIN_WIDTH = qdutils::MDPVersion::getInstance().getMinROIWidth(); const int MIN_HEIGHT = qdutils::MDPVersion::getInstance().getMinROIHeight(); /* Align to minimum width recommended by the panel */ if((t_roi.right - t_roi.left) < MIN_WIDTH) { if(MIN_WIDTH == boundary.right - boundary.left) { t_roi.left = 0; t_roi.right = MIN_WIDTH; } else { if((t_roi.left + MIN_WIDTH) > boundary.right) t_roi.left = t_roi.right - MIN_WIDTH; else t_roi.right = t_roi.left + MIN_WIDTH; } } /* Align to minimum height recommended by the panel */ if((t_roi.bottom - t_roi.top) < MIN_HEIGHT) { if(MIN_HEIGHT == boundary.bottom - boundary.top) { t_roi.top = 0; t_roi.bottom = MIN_HEIGHT; } else { if((t_roi.top + MIN_HEIGHT) > boundary.bottom) t_roi.top = t_roi.bottom - MIN_HEIGHT; else t_roi.bottom = t_roi.top + MIN_HEIGHT; } } /* Align left and width to meet panel restrictions */ if(LEFT_ALIGN) t_roi.left = t_roi.left - (t_roi.left % LEFT_ALIGN); if(WIDTH_ALIGN) { int width = t_roi.right - t_roi.left; width = WIDTH_ALIGN * ((width + (WIDTH_ALIGN - 1)) / WIDTH_ALIGN); t_roi.right = t_roi.left + width; if(t_roi.right > boundary.right) { t_roi.right = boundary.right; t_roi.left = t_roi.right - width; if(LEFT_ALIGN) t_roi.left = t_roi.left - (t_roi.left % LEFT_ALIGN); } } /* Align top and height to meet panel restrictions */ if(TOP_ALIGN) t_roi.top = t_roi.top - (t_roi.top % TOP_ALIGN); if(HEIGHT_ALIGN) { int height = t_roi.bottom - t_roi.top; height = HEIGHT_ALIGN * ((height + (HEIGHT_ALIGN - 1)) / HEIGHT_ALIGN); t_roi.bottom = t_roi.top + height; if(t_roi.bottom > boundary.bottom) { t_roi.bottom = boundary.bottom; t_roi.top = t_roi.bottom - height; if(TOP_ALIGN) t_roi.top = t_roi.top - (t_roi.top % TOP_ALIGN); } } return t_roi; } void handle_pause(hwc_context_t* ctx, int dpy) { if(ctx->dpyAttr[dpy].connected) { ctx->mDrawLock.lock(); ctx->dpyAttr[dpy].isActive = true; ctx->dpyAttr[dpy].isPause = true; ctx->mDrawLock.unlock(); ctx->proc->invalidate(ctx->proc); usleep(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period * 2 / 1000); // At this point all the pipes used by External have been // marked as UNSET. ctx->mDrawLock.lock(); // Perform commit to unstage the pipes. if (!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) { ALOGE("%s: display commit fail! for %d dpy", __FUNCTION__, dpy); } ctx->mDrawLock.unlock(); ctx->proc->invalidate(ctx->proc); } return; } void handle_resume(hwc_context_t* ctx, int dpy) { if(ctx->dpyAttr[dpy].connected) { ctx->mDrawLock.lock(); ctx->dpyAttr[dpy].isConfiguring = true; ctx->dpyAttr[dpy].isActive = true; ctx->mDrawLock.unlock(); ctx->proc->invalidate(ctx->proc); usleep(ctx->dpyAttr[HWC_DISPLAY_PRIMARY].vsync_period * 2 / 1000); //At this point external has all the pipes it would need. ctx->mDrawLock.lock(); ctx->dpyAttr[dpy].isPause = false; ctx->mDrawLock.unlock(); ctx->proc->invalidate(ctx->proc); } return; } void clearPipeResources(hwc_context_t* ctx, int dpy) { if(ctx->mOverlay) { ctx->mOverlay->configBegin(); ctx->mOverlay->configDone(); } if(ctx->mRotMgr) { ctx->mRotMgr->clear(); } // Call a display commit to ensure that pipes and associated // fd's are cleaned up. if(!Overlay::displayCommit(ctx->dpyAttr[dpy].fd)) { ALOGE("%s: display commit failed for %d", __FUNCTION__, dpy); } } // Handles online events when HDMI is the primary display. In particular, // online events for hdmi connected before AND after boot up and HWC init. void handle_online(hwc_context_t* ctx, int dpy) { //On 8994 due to hardware limitations, we disable bwc completely when HDMI //intf is active if(qdutils::MDPVersion::getInstance().is8994() and qdutils::MDPVersion::getInstance().supportsBWC()) { ctx->mBWCEnabled = false; } // Close the current fd if it was opened earlier on when HWC // was initialized. if (ctx->dpyAttr[dpy].fd >= 0) { close(ctx->dpyAttr[dpy].fd); ctx->dpyAttr[dpy].fd = -1; } // TODO: If HDMI is connected after the display has booted up, // and the best configuration is different from the default // then we need to deal with this appropriately. ctx->mHDMIDisplay->configure(); updateDisplayInfo(ctx, dpy); initCompositionResources(ctx, dpy); ctx->dpyAttr[dpy].connected = true; } // Handles offline events for HDMI. This can be used for offline events // initiated by the HDMI driver and the CEC framework. void handle_offline(hwc_context_t* ctx, int dpy) { destroyCompositionResources(ctx, dpy); // Clear all pipe resources and call a display commit to ensure // that all the fd's are closed. This will ensure that the HDMI // core turns off and that we receive an event the next time the // cable is connected. if (ctx->mHDMIDisplay->isHDMIPrimaryDisplay()) { clearPipeResources(ctx, dpy); } ctx->mHDMIDisplay->teardown(); resetDisplayInfo(ctx, dpy); ctx->dpyAttr[dpy].connected = false; ctx->dpyAttr[dpy].isActive = false; //On 8994 due to hardware limitations, we enable bwc only when HDMI //intf is inactive if(qdutils::MDPVersion::getInstance().is8994() and qdutils::MDPVersion::getInstance().supportsBWC()) { ctx->mBWCEnabled = true; } } void ColorMode::init() { //Map symbols from libmm-qdcm and get list of modes mModeHandle = dlopen("libmm-qdcm.so", RTLD_NOW); if (mModeHandle) { *(void **)& fnApplyDefaultMode = dlsym(mModeHandle, "applyDefaults"); *(void **)& fnApplyModeById = dlsym(mModeHandle, "applyModeById"); *(void **)& fnGetNumModes = dlsym(mModeHandle, "getNumDisplayModes"); *(void **)& fnGetCurrentMode = dlsym(mModeHandle, "getCurrentMode"); *(void **)& fnGetModeList = dlsym(mModeHandle, "getDisplayModeIdList"); *(void **)& fnSetDefaultMode = dlsym(mModeHandle, "setDefaultMode"); *(void **)& fnDeleteInstance = dlsym(mModeHandle, "deleteInstance"); } else { ALOGW("Unable to load libmm-qdcm"); } if(fnGetNumModes) { mNumModes = fnGetNumModes(HWC_DISPLAY_PRIMARY); if(mNumModes > MAX_NUM_COLOR_MODES) { ALOGE("Number of modes is above the limit: %d", mNumModes); mNumModes = 0; return; } if(fnGetModeList) { fnGetModeList(mModeList, &mCurMode, HWC_DISPLAY_PRIMARY); mCurModeIndex = getIndexForMode(mCurMode); ALOGI("ColorMode: current mode: %d current mode index: %d number of modes: %d", mCurMode, mCurModeIndex, mNumModes); } } } //Legacy API int ColorMode::applyDefaultMode() { int ret = 0; if(fnApplyDefaultMode) { ret = fnApplyDefaultMode(HWC_DISPLAY_PRIMARY); if(!ret) { mCurModeIndex = getIndexForMode(fnGetCurrentMode(HWC_DISPLAY_PRIMARY)); } return ret; } else { return -EINVAL; } } int ColorMode::applyModeByID(int modeID) { if(fnApplyModeById) { int ret = fnApplyModeById(modeID, HWC_DISPLAY_PRIMARY); if (!ret) ret = setDefaultMode(modeID); return ret; } else { return -EINVAL; } } //This API is called from setActiveConfig //The value here must be set as default int ColorMode::applyModeByIndex(int index) { int ret = 0; int mode = getModeForIndex(index); if(mode < 0) { ALOGE("Invalid mode for index: %d", index); return -EINVAL; } ALOGD("%s: Applying mode index: %d modeID: %d", __FUNCTION__, index, mode); ret = applyModeByID(mode); if(!ret) { mCurModeIndex = index; } return ret; } int ColorMode::setDefaultMode(int modeID) { if(fnSetDefaultMode) { ALOGD("Setting default color mode to %d", modeID); return fnSetDefaultMode(modeID, HWC_DISPLAY_PRIMARY); } else { return -EINVAL; } } int ColorMode::getModeForIndex(int index) { if(index < mNumModes) { return mModeList[index]; } else { return -EINVAL; } } int ColorMode::getIndexForMode(int mode) { if(mModeList) { for(int32_t i = 0; i < mNumModes; i++) if(mModeList[i] == mode) return i; } return -EINVAL; } void ColorMode::destroy() { if(mModeHandle) { if (fnDeleteInstance) { fnDeleteInstance(); } dlclose(mModeHandle); mModeHandle = NULL; } } };//namespace qhwc