/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #define LOG_TAG "camera_metadata" #include #include #include #include #include #define OK 0 #define ERROR 1 #define NOT_FOUND -ENOENT #define ALIGN_TO(val, alignment) \ (((uintptr_t)(val) + ((alignment) - 1)) & ~((alignment) - 1)) /** * A single metadata entry, storing an array of values of a given type. If the * array is no larger than 4 bytes in size, it is stored in the data.value[] * array; otherwise, it can found in the parent's data array at index * data.offset. */ #define ENTRY_ALIGNMENT ((size_t) 4) typedef struct camera_metadata_buffer_entry { uint32_t tag; uint32_t count; union { uint32_t offset; uint8_t value[4]; } data; uint8_t type; uint8_t reserved[3]; } camera_metadata_buffer_entry_t; typedef uint32_t metadata_uptrdiff_t; typedef uint32_t metadata_size_t; /** * A packet of metadata. This is a list of entries, each of which may point to * its values stored at an offset in data. * * It is assumed by the utility functions that the memory layout of the packet * is as follows: * * |-----------------------------------------------| * | camera_metadata_t | * | | * |-----------------------------------------------| * | reserved for future expansion | * |-----------------------------------------------| * | camera_metadata_buffer_entry_t #0 | * |-----------------------------------------------| * | .... | * |-----------------------------------------------| * | camera_metadata_buffer_entry_t #entry_count-1 | * |-----------------------------------------------| * | free space for | * | (entry_capacity-entry_count) entries | * |-----------------------------------------------| * | start of camera_metadata.data | * | | * |-----------------------------------------------| * | free space for | * | (data_capacity-data_count) bytes | * |-----------------------------------------------| * * With the total length of the whole packet being camera_metadata.size bytes. * * In short, the entries and data are contiguous in memory after the metadata * header. */ #define METADATA_ALIGNMENT ((size_t) 4) struct camera_metadata { metadata_size_t size; uint32_t version; uint32_t flags; metadata_size_t entry_count; metadata_size_t entry_capacity; metadata_uptrdiff_t entries_start; // Offset from camera_metadata metadata_size_t data_count; metadata_size_t data_capacity; metadata_uptrdiff_t data_start; // Offset from camera_metadata uint8_t reserved[]; }; /** * A datum of metadata. This corresponds to camera_metadata_entry_t::data * with the difference that each element is not a pointer. We need to have a * non-pointer type description in order to figure out the largest alignment * requirement for data (DATA_ALIGNMENT). */ #define DATA_ALIGNMENT ((size_t) 8) typedef union camera_metadata_data { uint8_t u8; int32_t i32; float f; int64_t i64; double d; camera_metadata_rational_t r; } camera_metadata_data_t; /** * The preferred alignment of a packet of camera metadata. In general, * this is the lowest common multiple of the constituents of a metadata * package, i.e, of DATA_ALIGNMENT and ENTRY_ALIGNMENT. */ #define MAX_ALIGNMENT(A, B) (((A) > (B)) ? (A) : (B)) #define METADATA_PACKET_ALIGNMENT \ MAX_ALIGNMENT(MAX_ALIGNMENT(DATA_ALIGNMENT, METADATA_ALIGNMENT), ENTRY_ALIGNMENT); /** Versioning information */ #define CURRENT_METADATA_VERSION 1 /** Flag definitions */ #define FLAG_SORTED 0x00000001 /** Tag information */ typedef struct tag_info { const char *tag_name; uint8_t tag_type; } tag_info_t; #include "camera_metadata_tag_info.c" const size_t camera_metadata_type_size[NUM_TYPES] = { [TYPE_BYTE] = sizeof(uint8_t), [TYPE_INT32] = sizeof(int32_t), [TYPE_FLOAT] = sizeof(float), [TYPE_INT64] = sizeof(int64_t), [TYPE_DOUBLE] = sizeof(double), [TYPE_RATIONAL] = sizeof(camera_metadata_rational_t) }; const char *camera_metadata_type_names[NUM_TYPES] = { [TYPE_BYTE] = "byte", [TYPE_INT32] = "int32", [TYPE_FLOAT] = "float", [TYPE_INT64] = "int64", [TYPE_DOUBLE] = "double", [TYPE_RATIONAL] = "rational" }; static camera_metadata_buffer_entry_t *get_entries( const camera_metadata_t *metadata) { return (camera_metadata_buffer_entry_t*) ((uint8_t*)metadata + metadata->entries_start); } static uint8_t *get_data(const camera_metadata_t *metadata) { return (uint8_t*)metadata + metadata->data_start; } size_t get_camera_metadata_alignment() { return METADATA_PACKET_ALIGNMENT; } camera_metadata_t *allocate_copy_camera_metadata_checked( const camera_metadata_t *src, size_t src_size) { if (src == NULL) { return NULL; } void *buffer = malloc(src_size); memcpy(buffer, src, src_size); camera_metadata_t *metadata = (camera_metadata_t*) buffer; if (validate_camera_metadata_structure(metadata, &src_size) != OK) { free(buffer); return NULL; } return metadata; } camera_metadata_t *allocate_camera_metadata(size_t entry_capacity, size_t data_capacity) { size_t memory_needed = calculate_camera_metadata_size(entry_capacity, data_capacity); void *buffer = malloc(memory_needed); return place_camera_metadata(buffer, memory_needed, entry_capacity, data_capacity); } camera_metadata_t *place_camera_metadata(void *dst, size_t dst_size, size_t entry_capacity, size_t data_capacity) { if (dst == NULL) return NULL; size_t memory_needed = calculate_camera_metadata_size(entry_capacity, data_capacity); if (memory_needed > dst_size) return NULL; camera_metadata_t *metadata = (camera_metadata_t*)dst; metadata->version = CURRENT_METADATA_VERSION; metadata->flags = 0; metadata->entry_count = 0; metadata->entry_capacity = entry_capacity; metadata->entries_start = ALIGN_TO(sizeof(camera_metadata_t), ENTRY_ALIGNMENT); metadata->data_count = 0; metadata->data_capacity = data_capacity; metadata->size = memory_needed; size_t data_unaligned = (uint8_t*)(get_entries(metadata) + metadata->entry_capacity) - (uint8_t*)metadata; metadata->data_start = ALIGN_TO(data_unaligned, DATA_ALIGNMENT); assert(validate_camera_metadata_structure(metadata, NULL) == OK); return metadata; } void free_camera_metadata(camera_metadata_t *metadata) { free(metadata); } size_t calculate_camera_metadata_size(size_t entry_count, size_t data_count) { size_t memory_needed = sizeof(camera_metadata_t); // Start entry list at aligned boundary memory_needed = ALIGN_TO(memory_needed, ENTRY_ALIGNMENT); memory_needed += sizeof(camera_metadata_buffer_entry_t[entry_count]); // Start buffer list at aligned boundary memory_needed = ALIGN_TO(memory_needed, DATA_ALIGNMENT); memory_needed += sizeof(uint8_t[data_count]); return memory_needed; } size_t get_camera_metadata_size(const camera_metadata_t *metadata) { if (metadata == NULL) return ERROR; return metadata->size; } size_t get_camera_metadata_compact_size(const camera_metadata_t *metadata) { if (metadata == NULL) return ERROR; return calculate_camera_metadata_size(metadata->entry_count, metadata->data_count); } size_t get_camera_metadata_entry_count(const camera_metadata_t *metadata) { return metadata->entry_count; } size_t get_camera_metadata_entry_capacity(const camera_metadata_t *metadata) { return metadata->entry_capacity; } size_t get_camera_metadata_data_count(const camera_metadata_t *metadata) { return metadata->data_count; } size_t get_camera_metadata_data_capacity(const camera_metadata_t *metadata) { return metadata->data_capacity; } camera_metadata_t* copy_camera_metadata(void *dst, size_t dst_size, const camera_metadata_t *src) { size_t memory_needed = get_camera_metadata_compact_size(src); if (dst == NULL) return NULL; if (dst_size < memory_needed) return NULL; camera_metadata_t *metadata = place_camera_metadata(dst, dst_size, src->entry_count, src->data_count); metadata->flags = src->flags; metadata->entry_count = src->entry_count; metadata->data_count = src->data_count; memcpy(get_entries(metadata), get_entries(src), sizeof(camera_metadata_buffer_entry_t[metadata->entry_count])); memcpy(get_data(metadata), get_data(src), sizeof(uint8_t[metadata->data_count])); assert(validate_camera_metadata_structure(metadata, NULL) == OK); return metadata; } int validate_camera_metadata_structure(const camera_metadata_t *metadata, const size_t *expected_size) { if (metadata == NULL) { ALOGE("%s: metadata is null!", __FUNCTION__); return ERROR; } // Check that the metadata pointer is well-aligned first. { static const struct { const char *name; size_t alignment; } alignments[] = { { .name = "camera_metadata", .alignment = METADATA_ALIGNMENT }, { .name = "camera_metadata_buffer_entry", .alignment = ENTRY_ALIGNMENT }, { .name = "camera_metadata_data", .alignment = DATA_ALIGNMENT }, }; for (size_t i = 0; i < sizeof(alignments)/sizeof(alignments[0]); ++i) { uintptr_t aligned_ptr = ALIGN_TO(metadata, alignments[i].alignment); if ((uintptr_t)metadata != aligned_ptr) { ALOGE("%s: Metadata pointer is not aligned (actual %p, " "expected %p) to type %s", __FUNCTION__, metadata, (void*)aligned_ptr, alignments[i].name); return ERROR; } } } /** * Check that the metadata contents are correct */ if (expected_size != NULL && metadata->size > *expected_size) { ALOGE("%s: Metadata size (%" PRIu32 ") should be <= expected size (%zu)", __FUNCTION__, metadata->size, *expected_size); return ERROR; } if (metadata->entry_count > metadata->entry_capacity) { ALOGE("%s: Entry count (%" PRIu32 ") should be <= entry capacity " "(%" PRIu32 ")", __FUNCTION__, metadata->entry_count, metadata->entry_capacity); return ERROR; } const metadata_uptrdiff_t entries_end = metadata->entries_start + metadata->entry_capacity; if (entries_end < metadata->entries_start || // overflow check entries_end > metadata->data_start) { ALOGE("%s: Entry start + capacity (%" PRIu32 ") should be <= data start " "(%" PRIu32 ")", __FUNCTION__, (metadata->entries_start + metadata->entry_capacity), metadata->data_start); return ERROR; } const metadata_uptrdiff_t data_end = metadata->data_start + metadata->data_capacity; if (data_end < metadata->data_start || // overflow check data_end > metadata->size) { ALOGE("%s: Data start + capacity (%" PRIu32 ") should be <= total size " "(%" PRIu32 ")", __FUNCTION__, (metadata->data_start + metadata->data_capacity), metadata->size); return ERROR; } // Validate each entry const metadata_size_t entry_count = metadata->entry_count; camera_metadata_buffer_entry_t *entries = get_entries(metadata); for (size_t i = 0; i < entry_count; ++i) { if ((uintptr_t)&entries[i] != ALIGN_TO(&entries[i], ENTRY_ALIGNMENT)) { ALOGE("%s: Entry index %zu had bad alignment (address %p)," " expected alignment %zu", __FUNCTION__, i, &entries[i], ENTRY_ALIGNMENT); return ERROR; } camera_metadata_buffer_entry_t entry = entries[i]; if (entry.type >= NUM_TYPES) { ALOGE("%s: Entry index %zu had a bad type %d", __FUNCTION__, i, entry.type); return ERROR; } // TODO: fix vendor_tag_ops across processes so we don't need to special // case vendor-specific tags uint32_t tag_section = entry.tag >> 16; int tag_type = get_camera_metadata_tag_type(entry.tag); if (tag_type != (int)entry.type && tag_section < VENDOR_SECTION) { ALOGE("%s: Entry index %zu had tag type %d, but the type was %d", __FUNCTION__, i, tag_type, entry.type); return ERROR; } size_t data_size = calculate_camera_metadata_entry_data_size(entry.type, entry.count); if (data_size != 0) { camera_metadata_data_t *data = (camera_metadata_data_t*) (get_data(metadata) + entry.data.offset); if ((uintptr_t)data != ALIGN_TO(data, DATA_ALIGNMENT)) { ALOGE("%s: Entry index %zu had bad data alignment (address %p)," " expected align %zu, (tag name %s, data size %zu)", __FUNCTION__, i, data, DATA_ALIGNMENT, get_camera_metadata_tag_name(entry.tag) ?: "unknown", data_size); return ERROR; } size_t data_entry_end = entry.data.offset + data_size; if (data_entry_end < entry.data.offset || // overflow check data_entry_end > metadata->data_capacity) { ALOGE("%s: Entry index %zu data ends (%zu) beyond the capacity " "%" PRIu32, __FUNCTION__, i, data_entry_end, metadata->data_capacity); return ERROR; } } else if (entry.count == 0) { if (entry.data.offset != 0) { ALOGE("%s: Entry index %zu had 0 items, but offset was non-0 " "(%" PRIu32 "), tag name: %s", __FUNCTION__, i, entry.data.offset, get_camera_metadata_tag_name(entry.tag) ?: "unknown"); return ERROR; } } // else data stored inline, so we look at value which can be anything. } return OK; } int append_camera_metadata(camera_metadata_t *dst, const camera_metadata_t *src) { if (dst == NULL || src == NULL ) return ERROR; if (dst->entry_capacity < src->entry_count + dst->entry_count) return ERROR; if (dst->data_capacity < src->data_count + dst->data_count) return ERROR; memcpy(get_entries(dst) + dst->entry_count, get_entries(src), sizeof(camera_metadata_buffer_entry_t[src->entry_count])); memcpy(get_data(dst) + dst->data_count, get_data(src), sizeof(uint8_t[src->data_count])); if (dst->data_count != 0) { camera_metadata_buffer_entry_t *entry = get_entries(dst) + dst->entry_count; for (size_t i = 0; i < src->entry_count; i++, entry++) { if ( calculate_camera_metadata_entry_data_size(entry->type, entry->count) > 0 ) { entry->data.offset += dst->data_count; } } } if (dst->entry_count == 0) { // Appending onto empty buffer, keep sorted state dst->flags |= src->flags & FLAG_SORTED; } else if (src->entry_count != 0) { // Both src, dst are nonempty, cannot assume sort remains dst->flags &= ~FLAG_SORTED; } else { // Src is empty, keep dst sorted state } dst->entry_count += src->entry_count; dst->data_count += src->data_count; assert(validate_camera_metadata_structure(dst, NULL) == OK); return OK; } camera_metadata_t *clone_camera_metadata(const camera_metadata_t *src) { int res; if (src == NULL) return NULL; camera_metadata_t *clone = allocate_camera_metadata( get_camera_metadata_entry_count(src), get_camera_metadata_data_count(src)); if (clone != NULL) { res = append_camera_metadata(clone, src); if (res != OK) { free_camera_metadata(clone); clone = NULL; } } assert(validate_camera_metadata_structure(clone, NULL) == OK); return clone; } size_t calculate_camera_metadata_entry_data_size(uint8_t type, size_t data_count) { if (type >= NUM_TYPES) return 0; size_t data_bytes = data_count * camera_metadata_type_size[type]; return data_bytes <= 4 ? 0 : ALIGN_TO(data_bytes, DATA_ALIGNMENT); } static int add_camera_metadata_entry_raw(camera_metadata_t *dst, uint32_t tag, uint8_t type, const void *data, size_t data_count) { if (dst == NULL) return ERROR; if (dst->entry_count == dst->entry_capacity) return ERROR; if (data_count && data == NULL) return ERROR; size_t data_bytes = calculate_camera_metadata_entry_data_size(type, data_count); if (data_bytes + dst->data_count > dst->data_capacity) return ERROR; size_t data_payload_bytes = data_count * camera_metadata_type_size[type]; camera_metadata_buffer_entry_t *entry = get_entries(dst) + dst->entry_count; memset(entry, 0, sizeof(camera_metadata_buffer_entry_t)); entry->tag = tag; entry->type = type; entry->count = data_count; if (data_bytes == 0) { memcpy(entry->data.value, data, data_payload_bytes); } else { entry->data.offset = dst->data_count; memcpy(get_data(dst) + entry->data.offset, data, data_payload_bytes); dst->data_count += data_bytes; } dst->entry_count++; dst->flags &= ~FLAG_SORTED; assert(validate_camera_metadata_structure(dst, NULL) == OK); return OK; } int add_camera_metadata_entry(camera_metadata_t *dst, uint32_t tag, const void *data, size_t data_count) { int type = get_camera_metadata_tag_type(tag); if (type == -1) { ALOGE("%s: Unknown tag %04x.", __FUNCTION__, tag); return ERROR; } return add_camera_metadata_entry_raw(dst, tag, type, data, data_count); } static int compare_entry_tags(const void *p1, const void *p2) { uint32_t tag1 = ((camera_metadata_buffer_entry_t*)p1)->tag; uint32_t tag2 = ((camera_metadata_buffer_entry_t*)p2)->tag; return tag1 < tag2 ? -1 : tag1 == tag2 ? 0 : 1; } int sort_camera_metadata(camera_metadata_t *dst) { if (dst == NULL) return ERROR; if (dst->flags & FLAG_SORTED) return OK; qsort(get_entries(dst), dst->entry_count, sizeof(camera_metadata_buffer_entry_t), compare_entry_tags); dst->flags |= FLAG_SORTED; assert(validate_camera_metadata_structure(dst, NULL) == OK); return OK; } int get_camera_metadata_entry(camera_metadata_t *src, size_t index, camera_metadata_entry_t *entry) { if (src == NULL || entry == NULL) return ERROR; if (index >= src->entry_count) return ERROR; camera_metadata_buffer_entry_t *buffer_entry = get_entries(src) + index; entry->index = index; entry->tag = buffer_entry->tag; entry->type = buffer_entry->type; entry->count = buffer_entry->count; if (buffer_entry->count * camera_metadata_type_size[buffer_entry->type] > 4) { entry->data.u8 = get_data(src) + buffer_entry->data.offset; } else { entry->data.u8 = buffer_entry->data.value; } return OK; } int get_camera_metadata_ro_entry(const camera_metadata_t *src, size_t index, camera_metadata_ro_entry_t *entry) { return get_camera_metadata_entry((camera_metadata_t*)src, index, (camera_metadata_entry_t*)entry); } int find_camera_metadata_entry(camera_metadata_t *src, uint32_t tag, camera_metadata_entry_t *entry) { if (src == NULL) return ERROR; uint32_t index; if (src->flags & FLAG_SORTED) { // Sorted entries, do a binary search camera_metadata_buffer_entry_t *search_entry = NULL; camera_metadata_buffer_entry_t key; key.tag = tag; search_entry = bsearch(&key, get_entries(src), src->entry_count, sizeof(camera_metadata_buffer_entry_t), compare_entry_tags); if (search_entry == NULL) return NOT_FOUND; index = search_entry - get_entries(src); } else { // Not sorted, linear search camera_metadata_buffer_entry_t *search_entry = get_entries(src); for (index = 0; index < src->entry_count; index++, search_entry++) { if (search_entry->tag == tag) { break; } } if (index == src->entry_count) return NOT_FOUND; } return get_camera_metadata_entry(src, index, entry); } int find_camera_metadata_ro_entry(const camera_metadata_t *src, uint32_t tag, camera_metadata_ro_entry_t *entry) { return find_camera_metadata_entry((camera_metadata_t*)src, tag, (camera_metadata_entry_t*)entry); } int delete_camera_metadata_entry(camera_metadata_t *dst, size_t index) { if (dst == NULL) return ERROR; if (index >= dst->entry_count) return ERROR; camera_metadata_buffer_entry_t *entry = get_entries(dst) + index; size_t data_bytes = calculate_camera_metadata_entry_data_size(entry->type, entry->count); if (data_bytes > 0) { // Shift data buffer to overwrite deleted data uint8_t *start = get_data(dst) + entry->data.offset; uint8_t *end = start + data_bytes; size_t length = dst->data_count - entry->data.offset - data_bytes; memmove(start, end, length); // Update all entry indices to account for shift camera_metadata_buffer_entry_t *e = get_entries(dst); size_t i; for (i = 0; i < dst->entry_count; i++) { if (calculate_camera_metadata_entry_data_size( e->type, e->count) > 0 && e->data.offset > entry->data.offset) { e->data.offset -= data_bytes; } ++e; } dst->data_count -= data_bytes; } // Shift entry array memmove(entry, entry + 1, sizeof(camera_metadata_buffer_entry_t) * (dst->entry_count - index - 1) ); dst->entry_count -= 1; assert(validate_camera_metadata_structure(dst, NULL) == OK); return OK; } int update_camera_metadata_entry(camera_metadata_t *dst, size_t index, const void *data, size_t data_count, camera_metadata_entry_t *updated_entry) { if (dst == NULL) return ERROR; if (index >= dst->entry_count) return ERROR; camera_metadata_buffer_entry_t *entry = get_entries(dst) + index; size_t data_bytes = calculate_camera_metadata_entry_data_size(entry->type, data_count); size_t data_payload_bytes = data_count * camera_metadata_type_size[entry->type]; size_t entry_bytes = calculate_camera_metadata_entry_data_size(entry->type, entry->count); if (data_bytes != entry_bytes) { // May need to shift/add to data array if (dst->data_capacity < dst->data_count + data_bytes - entry_bytes) { // No room return ERROR; } if (entry_bytes != 0) { // Remove old data uint8_t *start = get_data(dst) + entry->data.offset; uint8_t *end = start + entry_bytes; size_t length = dst->data_count - entry->data.offset - entry_bytes; memmove(start, end, length); dst->data_count -= entry_bytes; // Update all entry indices to account for shift camera_metadata_buffer_entry_t *e = get_entries(dst); size_t i; for (i = 0; i < dst->entry_count; i++) { if (calculate_camera_metadata_entry_data_size( e->type, e->count) > 0 && e->data.offset > entry->data.offset) { e->data.offset -= entry_bytes; } ++e; } } if (data_bytes != 0) { // Append new data entry->data.offset = dst->data_count; memcpy(get_data(dst) + entry->data.offset, data, data_payload_bytes); dst->data_count += data_bytes; } } else if (data_bytes != 0) { // data size unchanged, reuse same data location memcpy(get_data(dst) + entry->data.offset, data, data_payload_bytes); } if (data_bytes == 0) { // Data fits into entry memcpy(entry->data.value, data, data_payload_bytes); } entry->count = data_count; if (updated_entry != NULL) { get_camera_metadata_entry(dst, index, updated_entry); } assert(validate_camera_metadata_structure(dst, NULL) == OK); return OK; } static const vendor_tag_ops_t *vendor_tag_ops = NULL; const char *get_camera_metadata_section_name(uint32_t tag) { uint32_t tag_section = tag >> 16; if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) { return vendor_tag_ops->get_section_name( vendor_tag_ops, tag); } if (tag_section >= ANDROID_SECTION_COUNT) { return NULL; } return camera_metadata_section_names[tag_section]; } const char *get_camera_metadata_tag_name(uint32_t tag) { uint32_t tag_section = tag >> 16; if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) { return vendor_tag_ops->get_tag_name( vendor_tag_ops, tag); } if (tag_section >= ANDROID_SECTION_COUNT || tag >= camera_metadata_section_bounds[tag_section][1] ) { return NULL; } uint32_t tag_index = tag & 0xFFFF; return tag_info[tag_section][tag_index].tag_name; } int get_camera_metadata_tag_type(uint32_t tag) { uint32_t tag_section = tag >> 16; if (tag_section >= VENDOR_SECTION && vendor_tag_ops != NULL) { return vendor_tag_ops->get_tag_type( vendor_tag_ops, tag); } if (tag_section >= ANDROID_SECTION_COUNT || tag >= camera_metadata_section_bounds[tag_section][1] ) { return -1; } uint32_t tag_index = tag & 0xFFFF; return tag_info[tag_section][tag_index].tag_type; } int set_camera_metadata_vendor_tag_ops(const vendor_tag_query_ops_t* ops) { // **DEPRECATED** (void) ops; ALOGE("%s: This function has been deprecated", __FUNCTION__); return ERROR; } // Declared in system/media/private/camera/include/camera_metadata_hidden.h int set_camera_metadata_vendor_ops(const vendor_tag_ops_t* ops) { vendor_tag_ops = ops; return OK; } static void print_data(int fd, const uint8_t *data_ptr, uint32_t tag, int type, int count, int indentation); void dump_camera_metadata(const camera_metadata_t *metadata, int fd, int verbosity) { dump_indented_camera_metadata(metadata, fd, verbosity, 0); } void dump_indented_camera_metadata(const camera_metadata_t *metadata, int fd, int verbosity, int indentation) { if (metadata == NULL) { dprintf(fd, "%*sDumping camera metadata array: Not allocated\n", indentation, ""); return; } unsigned int i; dprintf(fd, "%*sDumping camera metadata array: %" PRIu32 " / %" PRIu32 " entries, " "%" PRIu32 " / %" PRIu32 " bytes of extra data.\n", indentation, "", metadata->entry_count, metadata->entry_capacity, metadata->data_count, metadata->data_capacity); dprintf(fd, "%*sVersion: %d, Flags: %08x\n", indentation + 2, "", metadata->version, metadata->flags); camera_metadata_buffer_entry_t *entry = get_entries(metadata); for (i=0; i < metadata->entry_count; i++, entry++) { const char *tag_name, *tag_section; tag_section = get_camera_metadata_section_name(entry->tag); if (tag_section == NULL) { tag_section = "unknownSection"; } tag_name = get_camera_metadata_tag_name(entry->tag); if (tag_name == NULL) { tag_name = "unknownTag"; } const char *type_name; if (entry->type >= NUM_TYPES) { type_name = "unknown"; } else { type_name = camera_metadata_type_names[entry->type]; } dprintf(fd, "%*s%s.%s (%05x): %s[%" PRIu32 "]\n", indentation + 2, "", tag_section, tag_name, entry->tag, type_name, entry->count); if (verbosity < 1) continue; if (entry->type >= NUM_TYPES) continue; size_t type_size = camera_metadata_type_size[entry->type]; uint8_t *data_ptr; if ( type_size * entry->count > 4 ) { if (entry->data.offset >= metadata->data_count) { ALOGE("%s: Malformed entry data offset: %" PRIu32 " (max %" PRIu32 ")", __FUNCTION__, entry->data.offset, metadata->data_count); continue; } data_ptr = get_data(metadata) + entry->data.offset; } else { data_ptr = entry->data.value; } int count = entry->count; if (verbosity < 2 && count > 16) count = 16; print_data(fd, data_ptr, entry->tag, entry->type, count, indentation); } } static void print_data(int fd, const uint8_t *data_ptr, uint32_t tag, int type, int count, int indentation) { static int values_per_line[NUM_TYPES] = { [TYPE_BYTE] = 16, [TYPE_INT32] = 4, [TYPE_FLOAT] = 8, [TYPE_INT64] = 2, [TYPE_DOUBLE] = 4, [TYPE_RATIONAL] = 2, }; size_t type_size = camera_metadata_type_size[type]; char value_string_tmp[CAMERA_METADATA_ENUM_STRING_MAX_SIZE]; uint32_t value; int lines = count / values_per_line[type]; if (count % values_per_line[type] != 0) lines++; int index = 0; int j, k; for (j = 0; j < lines; j++) { dprintf(fd, "%*s[", indentation + 4, ""); for (k = 0; k < values_per_line[type] && count > 0; k++, count--, index += type_size) { switch (type) { case TYPE_BYTE: value = *(data_ptr + index); if (camera_metadata_enum_snprint(tag, value, value_string_tmp, sizeof(value_string_tmp)) == OK) { dprintf(fd, "%s ", value_string_tmp); } else { dprintf(fd, "%hhu ", *(data_ptr + index)); } break; case TYPE_INT32: value = *(int32_t*)(data_ptr + index); if (camera_metadata_enum_snprint(tag, value, value_string_tmp, sizeof(value_string_tmp)) == OK) { dprintf(fd, "%s ", value_string_tmp); } else { dprintf(fd, "%" PRId32 " ", *(int32_t*)(data_ptr + index)); } break; case TYPE_FLOAT: dprintf(fd, "%0.8f ", *(float*)(data_ptr + index)); break; case TYPE_INT64: dprintf(fd, "%" PRId64 " ", *(int64_t*)(data_ptr + index)); break; case TYPE_DOUBLE: dprintf(fd, "%0.8f ", *(double*)(data_ptr + index)); break; case TYPE_RATIONAL: { int32_t numerator = *(int32_t*)(data_ptr + index); int32_t denominator = *(int32_t*)(data_ptr + index + 4); dprintf(fd, "(%d / %d) ", numerator, denominator); break; } default: dprintf(fd, "??? "); } } dprintf(fd, "]\n"); } }