// // Copyright (C) 2012 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/common/utils.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "update_engine/common/clock_interface.h" #include "update_engine/common/constants.h" #include "update_engine/common/platform_constants.h" #include "update_engine/common/prefs_interface.h" #include "update_engine/common/subprocess.h" #include "update_engine/payload_consumer/file_descriptor.h" #include "update_engine/payload_consumer/file_writer.h" #include "update_engine/payload_consumer/payload_constants.h" using base::Time; using base::TimeDelta; using std::min; using std::pair; using std::string; using std::vector; namespace chromeos_update_engine { namespace { // The following constants control how UnmountFilesystem should retry if // umount() fails with an errno EBUSY, i.e. retry 5 times over the course of // one second. const int kUnmountMaxNumOfRetries = 5; const int kUnmountRetryIntervalInMicroseconds = 200 * 1000; // 200 ms // Number of bytes to read from a file to attempt to detect its contents. Used // in GetFileFormat. const int kGetFileFormatMaxHeaderSize = 32; // The path to the kernel's boot_id. const char kBootIdPath[] = "/proc/sys/kernel/random/boot_id"; // Return true if |disk_name| is an MTD or a UBI device. Note that this test is // simply based on the name of the device. bool IsMtdDeviceName(const string& disk_name) { return base::StartsWith(disk_name, "/dev/ubi", base::CompareCase::SENSITIVE) || base::StartsWith(disk_name, "/dev/mtd", base::CompareCase::SENSITIVE); } // Return the device name for the corresponding partition on a NAND device. // WARNING: This function returns device names that are not mountable. string MakeNandPartitionName(int partition_num) { switch (partition_num) { case 2: case 4: case 6: { return base::StringPrintf("/dev/mtd%d", partition_num); } default: { return base::StringPrintf("/dev/ubi%d_0", partition_num); } } } // Return the device name for the corresponding partition on a NAND device that // may be mountable (but may not be writable). string MakeNandPartitionNameForMount(int partition_num) { switch (partition_num) { case 2: case 4: case 6: { return base::StringPrintf("/dev/mtd%d", partition_num); } case 3: case 5: case 7: { return base::StringPrintf("/dev/ubiblock%d_0", partition_num); } default: { return base::StringPrintf("/dev/ubi%d_0", partition_num); } } } // If |path| is absolute, or explicit relative to the current working directory, // leaves it as is. Otherwise, uses the system's temp directory, as defined by // base::GetTempDir() and prepends it to |path|. On success stores the full // temporary path in |template_path| and returns true. bool GetTempName(const string& path, base::FilePath* template_path) { if (path[0] == '/' || base::StartsWith(path, "./", base::CompareCase::SENSITIVE) || base::StartsWith(path, "../", base::CompareCase::SENSITIVE)) { *template_path = base::FilePath(path); return true; } base::FilePath temp_dir; #ifdef __ANDROID__ temp_dir = base::FilePath(constants::kNonVolatileDirectory).Append("tmp"); if (!base::PathExists(temp_dir)) TEST_AND_RETURN_FALSE(base::CreateDirectory(temp_dir)); #else TEST_AND_RETURN_FALSE(base::GetTempDir(&temp_dir)); #endif // __ANDROID__ *template_path = temp_dir.Append(path); return true; } } // namespace namespace utils { string ParseECVersion(string input_line) { base::TrimWhitespaceASCII(input_line, base::TRIM_ALL, &input_line); // At this point we want to convert the format key=value pair from mosys to // a vector of key value pairs. vector> kv_pairs; if (base::SplitStringIntoKeyValuePairs(input_line, '=', ' ', &kv_pairs)) { for (const pair& kv_pair : kv_pairs) { // Finally match against the fw_verion which may have quotes. if (kv_pair.first == "fw_version") { string output; // Trim any quotes. base::TrimString(kv_pair.second, "\"", &output); return output; } } } LOG(ERROR) << "Unable to parse fwid from ec info."; return ""; } bool WriteFile(const char* path, const void* data, int data_len) { DirectFileWriter writer; TEST_AND_RETURN_FALSE_ERRNO(0 == writer.Open(path, O_WRONLY | O_CREAT | O_TRUNC, 0600)); ScopedFileWriterCloser closer(&writer); TEST_AND_RETURN_FALSE_ERRNO(writer.Write(data, data_len)); return true; } bool ReadAll( int fd, void* buf, size_t count, size_t* out_bytes_read, bool* eof) { char* c_buf = static_cast(buf); size_t bytes_read = 0; *eof = false; while (bytes_read < count) { ssize_t rc = HANDLE_EINTR(read(fd, c_buf + bytes_read, count - bytes_read)); if (rc < 0) { // EAGAIN and EWOULDBLOCK are normal return values when there's no more // input and we are in non-blocking mode. if (errno != EWOULDBLOCK && errno != EAGAIN) { PLOG(ERROR) << "Error reading fd " << fd; *out_bytes_read = bytes_read; return false; } break; } else if (rc == 0) { // A value of 0 means that we reached EOF and there is nothing else to // read from this fd. *eof = true; break; } else { bytes_read += rc; } } *out_bytes_read = bytes_read; return true; } bool WriteAll(int fd, const void* buf, size_t count) { const char* c_buf = static_cast(buf); ssize_t bytes_written = 0; while (bytes_written < static_cast(count)) { ssize_t rc = write(fd, c_buf + bytes_written, count - bytes_written); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); bytes_written += rc; } return true; } bool PWriteAll(int fd, const void* buf, size_t count, off_t offset) { const char* c_buf = static_cast(buf); size_t bytes_written = 0; int num_attempts = 0; while (bytes_written < count) { num_attempts++; ssize_t rc = pwrite(fd, c_buf + bytes_written, count - bytes_written, offset + bytes_written); // TODO(garnold) for debugging failure in chromium-os:31077; to be removed. if (rc < 0) { PLOG(ERROR) << "pwrite error; num_attempts=" << num_attempts << " bytes_written=" << bytes_written << " count=" << count << " offset=" << offset; } TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); bytes_written += rc; } return true; } bool WriteAll(FileDescriptorPtr fd, const void* buf, size_t count) { const char* c_buf = static_cast(buf); ssize_t bytes_written = 0; while (bytes_written < static_cast(count)) { ssize_t rc = fd->Write(c_buf + bytes_written, count - bytes_written); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); bytes_written += rc; } return true; } bool PWriteAll(FileDescriptorPtr fd, const void* buf, size_t count, off_t offset) { TEST_AND_RETURN_FALSE_ERRNO(fd->Seek(offset, SEEK_SET) != static_cast(-1)); return WriteAll(fd, buf, count); } bool PReadAll(int fd, void* buf, size_t count, off_t offset, ssize_t* out_bytes_read) { char* c_buf = static_cast(buf); ssize_t bytes_read = 0; while (bytes_read < static_cast(count)) { ssize_t rc = pread(fd, c_buf + bytes_read, count - bytes_read, offset + bytes_read); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); if (rc == 0) { break; } bytes_read += rc; } *out_bytes_read = bytes_read; return true; } bool PReadAll(FileDescriptorPtr fd, void* buf, size_t count, off_t offset, ssize_t* out_bytes_read) { TEST_AND_RETURN_FALSE_ERRNO(fd->Seek(offset, SEEK_SET) != static_cast(-1)); char* c_buf = static_cast(buf); ssize_t bytes_read = 0; while (bytes_read < static_cast(count)) { ssize_t rc = fd->Read(c_buf + bytes_read, count - bytes_read); TEST_AND_RETURN_FALSE_ERRNO(rc >= 0); if (rc == 0) { break; } bytes_read += rc; } *out_bytes_read = bytes_read; return true; } // Append |nbytes| of content from |buf| to the vector pointed to by either // |vec_p| or |str_p|. static void AppendBytes(const uint8_t* buf, size_t nbytes, brillo::Blob* vec_p) { CHECK(buf); CHECK(vec_p); vec_p->insert(vec_p->end(), buf, buf + nbytes); } static void AppendBytes(const uint8_t* buf, size_t nbytes, string* str_p) { CHECK(buf); CHECK(str_p); str_p->append(buf, buf + nbytes); } // Reads from an open file |fp|, appending the read content to the container // pointer to by |out_p|. Returns true upon successful reading all of the // file's content, false otherwise. If |size| is not -1, reads up to |size| // bytes. template static bool Read(FILE* fp, off_t size, T* out_p) { CHECK(fp); CHECK(size == -1 || size >= 0); uint8_t buf[1024]; while (size == -1 || size > 0) { off_t bytes_to_read = sizeof(buf); if (size > 0 && bytes_to_read > size) { bytes_to_read = size; } size_t nbytes = fread(buf, 1, bytes_to_read, fp); if (!nbytes) { break; } AppendBytes(buf, nbytes, out_p); if (size != -1) { CHECK(size >= static_cast(nbytes)); size -= nbytes; } } if (ferror(fp)) { return false; } return size == 0 || feof(fp); } // Opens a file |path| for reading and appends its the contents to a container // |out_p|. Starts reading the file from |offset|. If |offset| is beyond the end // of the file, returns success. If |size| is not -1, reads up to |size| bytes. template static bool ReadFileChunkAndAppend(const string& path, off_t offset, off_t size, T* out_p) { CHECK_GE(offset, 0); CHECK(size == -1 || size >= 0); base::ScopedFILE fp(fopen(path.c_str(), "r")); if (!fp.get()) return false; if (offset) { // Return success without appending any data if a chunk beyond the end of // the file is requested. if (offset >= FileSize(path)) { return true; } TEST_AND_RETURN_FALSE_ERRNO(fseek(fp.get(), offset, SEEK_SET) == 0); } return Read(fp.get(), size, out_p); } // TODO(deymo): This is only used in unittest, but requires the private // Read() defined here. Expose Read() or move to base/ version. bool ReadPipe(const string& cmd, string* out_p) { FILE* fp = popen(cmd.c_str(), "r"); if (!fp) return false; bool success = Read(fp, -1, out_p); return (success && pclose(fp) >= 0); } bool ReadFile(const string& path, brillo::Blob* out_p) { return ReadFileChunkAndAppend(path, 0, -1, out_p); } bool ReadFile(const string& path, string* out_p) { return ReadFileChunkAndAppend(path, 0, -1, out_p); } bool ReadFileChunk(const string& path, off_t offset, off_t size, brillo::Blob* out_p) { return ReadFileChunkAndAppend(path, offset, size, out_p); } off_t BlockDevSize(int fd) { uint64_t dev_size; int rc = ioctl(fd, BLKGETSIZE64, &dev_size); if (rc == -1) { dev_size = -1; PLOG(ERROR) << "Error running ioctl(BLKGETSIZE64) on " << fd; } return dev_size; } off_t FileSize(int fd) { struct stat stbuf; int rc = fstat(fd, &stbuf); CHECK_EQ(rc, 0); if (rc < 0) { PLOG(ERROR) << "Error stat-ing " << fd; return rc; } if (S_ISREG(stbuf.st_mode)) return stbuf.st_size; if (S_ISBLK(stbuf.st_mode)) return BlockDevSize(fd); LOG(ERROR) << "Couldn't determine the type of " << fd; return -1; } off_t FileSize(const string& path) { int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC); if (fd == -1) { PLOG(ERROR) << "Error opening " << path; return fd; } off_t size = FileSize(fd); if (size == -1) PLOG(ERROR) << "Error getting file size of " << path; close(fd); return size; } void HexDumpArray(const uint8_t* const arr, const size_t length) { LOG(INFO) << "Logging array of length: " << length; const unsigned int bytes_per_line = 16; for (uint32_t i = 0; i < length; i += bytes_per_line) { const unsigned int bytes_remaining = length - i; const unsigned int bytes_per_this_line = min(bytes_per_line, bytes_remaining); char header[100]; int r = snprintf(header, sizeof(header), "0x%08x : ", i); TEST_AND_RETURN(r == 13); string line = header; for (unsigned int j = 0; j < bytes_per_this_line; j++) { char buf[20]; uint8_t c = arr[i + j]; r = snprintf(buf, sizeof(buf), "%02x ", static_cast(c)); TEST_AND_RETURN(r == 3); line += buf; } LOG(INFO) << line; } } bool SplitPartitionName(const string& partition_name, string* out_disk_name, int* out_partition_num) { if (!base::StartsWith(partition_name, "/dev/", base::CompareCase::SENSITIVE)) { LOG(ERROR) << "Invalid partition device name: " << partition_name; return false; } size_t last_nondigit_pos = partition_name.find_last_not_of("0123456789"); if (last_nondigit_pos == string::npos || (last_nondigit_pos + 1) == partition_name.size()) { LOG(ERROR) << "Unable to parse partition device name: " << partition_name; return false; } size_t partition_name_len = string::npos; if (partition_name[last_nondigit_pos] == '_') { // NAND block devices have weird naming which could be something // like "/dev/ubiblock2_0". We discard "_0" in such a case. size_t prev_nondigit_pos = partition_name.find_last_not_of("0123456789", last_nondigit_pos - 1); if (prev_nondigit_pos == string::npos || (prev_nondigit_pos + 1) == last_nondigit_pos) { LOG(ERROR) << "Unable to parse partition device name: " << partition_name; return false; } partition_name_len = last_nondigit_pos - prev_nondigit_pos; last_nondigit_pos = prev_nondigit_pos; } if (out_disk_name) { // Special case for MMC devices which have the following naming scheme: // mmcblk0p2 size_t disk_name_len = last_nondigit_pos; if (partition_name[last_nondigit_pos] != 'p' || last_nondigit_pos == 0 || !isdigit(partition_name[last_nondigit_pos - 1])) { disk_name_len++; } *out_disk_name = partition_name.substr(0, disk_name_len); } if (out_partition_num) { string partition_str = partition_name.substr(last_nondigit_pos + 1, partition_name_len); *out_partition_num = atoi(partition_str.c_str()); } return true; } string MakePartitionName(const string& disk_name, int partition_num) { if (partition_num < 1) { LOG(ERROR) << "Invalid partition number: " << partition_num; return string(); } if (!base::StartsWith(disk_name, "/dev/", base::CompareCase::SENSITIVE)) { LOG(ERROR) << "Invalid disk name: " << disk_name; return string(); } if (IsMtdDeviceName(disk_name)) { // Special case for UBI block devices. // 1. ubiblock is not writable, we need to use plain "ubi". // 2. There is a "_0" suffix. return MakeNandPartitionName(partition_num); } string partition_name = disk_name; if (isdigit(partition_name.back())) { // Special case for devices with names ending with a digit. // Add "p" to separate the disk name from partition number, // e.g. "/dev/loop0p2" partition_name += 'p'; } partition_name += std::to_string(partition_num); return partition_name; } string MakePartitionNameForMount(const string& part_name) { if (IsMtdDeviceName(part_name)) { int partition_num; if (!SplitPartitionName(part_name, nullptr, &partition_num)) { return ""; } return MakeNandPartitionNameForMount(partition_num); } return part_name; } string ErrnoNumberAsString(int err) { char buf[100]; buf[0] = '\0'; return strerror_r(err, buf, sizeof(buf)); } bool FileExists(const char* path) { struct stat stbuf; return 0 == lstat(path, &stbuf); } bool IsSymlink(const char* path) { struct stat stbuf; return lstat(path, &stbuf) == 0 && S_ISLNK(stbuf.st_mode) != 0; } bool TryAttachingUbiVolume(int volume_num, int timeout) { const string volume_path = base::StringPrintf("/dev/ubi%d_0", volume_num); if (FileExists(volume_path.c_str())) { return true; } int exit_code; vector cmd = { "ubiattach", "-m", base::StringPrintf("%d", volume_num), "-d", base::StringPrintf("%d", volume_num) }; TEST_AND_RETURN_FALSE(Subprocess::SynchronousExec(cmd, &exit_code, nullptr)); TEST_AND_RETURN_FALSE(exit_code == 0); cmd = { "ubiblock", "--create", volume_path }; TEST_AND_RETURN_FALSE(Subprocess::SynchronousExec(cmd, &exit_code, nullptr)); TEST_AND_RETURN_FALSE(exit_code == 0); while (timeout > 0 && !FileExists(volume_path.c_str())) { sleep(1); timeout--; } return FileExists(volume_path.c_str()); } bool MakeTempFile(const string& base_filename_template, string* filename, int* fd) { base::FilePath filename_template; TEST_AND_RETURN_FALSE( GetTempName(base_filename_template, &filename_template)); DCHECK(filename || fd); vector buf(filename_template.value().size() + 1); memcpy(buf.data(), filename_template.value().data(), filename_template.value().size()); buf[filename_template.value().size()] = '\0'; int mkstemp_fd = mkstemp(buf.data()); TEST_AND_RETURN_FALSE_ERRNO(mkstemp_fd >= 0); if (filename) { *filename = buf.data(); } if (fd) { *fd = mkstemp_fd; } else { close(mkstemp_fd); } return true; } bool MakeTempDirectory(const string& base_dirname_template, string* dirname) { base::FilePath dirname_template; TEST_AND_RETURN_FALSE(GetTempName(base_dirname_template, &dirname_template)); DCHECK(dirname); vector buf(dirname_template.value().size() + 1); memcpy(buf.data(), dirname_template.value().data(), dirname_template.value().size()); buf[dirname_template.value().size()] = '\0'; char* return_code = mkdtemp(buf.data()); TEST_AND_RETURN_FALSE_ERRNO(return_code != nullptr); *dirname = buf.data(); return true; } bool SetBlockDeviceReadOnly(const string& device, bool read_only) { int fd = HANDLE_EINTR(open(device.c_str(), O_RDONLY | O_CLOEXEC)); if (fd < 0) { PLOG(ERROR) << "Opening block device " << device; return false; } ScopedFdCloser fd_closer(&fd); // We take no action if not needed. int read_only_flag; int expected_flag = read_only ? 1 : 0; int rc = ioctl(fd, BLKROGET, &read_only_flag); // In case of failure reading the setting we will try to set it anyway. if (rc == 0 && read_only_flag == expected_flag) return true; rc = ioctl(fd, BLKROSET, &expected_flag); if (rc != 0) { PLOG(ERROR) << "Marking block device " << device << " as read_only=" << expected_flag; return false; } return true; } bool MountFilesystem(const string& device, const string& mountpoint, unsigned long mountflags, // NOLINT(runtime/int) const string& type, const string& fs_mount_options) { vector fstypes; if (type.empty()) { fstypes = {"ext2", "ext3", "ext4", "squashfs"}; } else { fstypes = {type.c_str()}; } for (const char* fstype : fstypes) { int rc = mount(device.c_str(), mountpoint.c_str(), fstype, mountflags, fs_mount_options.c_str()); if (rc == 0) return true; PLOG(WARNING) << "Unable to mount destination device " << device << " on " << mountpoint << " as " << fstype; } if (!type.empty()) { LOG(ERROR) << "Unable to mount " << device << " with any supported type"; } return false; } bool UnmountFilesystem(const string& mountpoint) { for (int num_retries = 0; ; ++num_retries) { if (umount(mountpoint.c_str()) == 0) break; TEST_AND_RETURN_FALSE_ERRNO(errno == EBUSY && num_retries < kUnmountMaxNumOfRetries); usleep(kUnmountRetryIntervalInMicroseconds); } return true; } bool GetFilesystemSize(const string& device, int* out_block_count, int* out_block_size) { int fd = HANDLE_EINTR(open(device.c_str(), O_RDONLY)); TEST_AND_RETURN_FALSE_ERRNO(fd >= 0); ScopedFdCloser fd_closer(&fd); return GetFilesystemSizeFromFD(fd, out_block_count, out_block_size); } bool GetFilesystemSizeFromFD(int fd, int* out_block_count, int* out_block_size) { TEST_AND_RETURN_FALSE(fd >= 0); // Determine the filesystem size by directly reading the block count and // block size information from the superblock. Supported FS are ext3 and // squashfs. // Read from the fd only once and detect in memory. The first 2 KiB is enough // to read the ext2 superblock (located at offset 1024) and the squashfs // superblock (located at offset 0). const ssize_t kBufferSize = 2048; uint8_t buffer[kBufferSize]; if (HANDLE_EINTR(pread(fd, buffer, kBufferSize, 0)) != kBufferSize) { PLOG(ERROR) << "Unable to read the file system header:"; return false; } if (GetSquashfs4Size(buffer, kBufferSize, out_block_count, out_block_size)) return true; if (GetExt3Size(buffer, kBufferSize, out_block_count, out_block_size)) return true; LOG(ERROR) << "Unable to determine file system type."; return false; } bool GetExt3Size(const uint8_t* buffer, size_t buffer_size, int* out_block_count, int* out_block_size) { // See include/linux/ext2_fs.h for more details on the structure. We obtain // ext2 constants from ext2fs/ext2fs.h header but we don't link with the // library. if (buffer_size < SUPERBLOCK_OFFSET + SUPERBLOCK_SIZE) return false; const uint8_t* superblock = buffer + SUPERBLOCK_OFFSET; // ext3_fs.h: ext3_super_block.s_blocks_count uint32_t block_count = *reinterpret_cast(superblock + 1 * sizeof(int32_t)); // ext3_fs.h: ext3_super_block.s_log_block_size uint32_t log_block_size = *reinterpret_cast(superblock + 6 * sizeof(int32_t)); // ext3_fs.h: ext3_super_block.s_magic uint16_t magic = *reinterpret_cast(superblock + 14 * sizeof(int32_t)); block_count = le32toh(block_count); log_block_size = le32toh(log_block_size) + EXT2_MIN_BLOCK_LOG_SIZE; magic = le16toh(magic); // Sanity check the parameters. TEST_AND_RETURN_FALSE(magic == EXT2_SUPER_MAGIC); TEST_AND_RETURN_FALSE(log_block_size >= EXT2_MIN_BLOCK_LOG_SIZE && log_block_size <= EXT2_MAX_BLOCK_LOG_SIZE); TEST_AND_RETURN_FALSE(block_count > 0); if (out_block_count) *out_block_count = block_count; if (out_block_size) *out_block_size = 1 << log_block_size; return true; } bool GetSquashfs4Size(const uint8_t* buffer, size_t buffer_size, int* out_block_count, int* out_block_size) { // See fs/squashfs/squashfs_fs.h for format details. We only support // Squashfs 4.x little endian. // sizeof(struct squashfs_super_block) const size_t kSquashfsSuperBlockSize = 96; if (buffer_size < kSquashfsSuperBlockSize) return false; // Check magic, squashfs_fs.h: SQUASHFS_MAGIC if (memcmp(buffer, "hsqs", 4) != 0) return false; // Only little endian is supported. // squashfs_fs.h: struct squashfs_super_block.s_major uint16_t s_major = *reinterpret_cast( buffer + 5 * sizeof(uint32_t) + 4 * sizeof(uint16_t)); if (s_major != 4) { LOG(ERROR) << "Found unsupported squashfs major version " << s_major; return false; } // squashfs_fs.h: struct squashfs_super_block.bytes_used uint64_t bytes_used = *reinterpret_cast( buffer + 5 * sizeof(uint32_t) + 6 * sizeof(uint16_t) + sizeof(uint64_t)); const int block_size = 4096; // The squashfs' bytes_used doesn't need to be aligned with the block boundary // so we round up to the nearest blocksize. if (out_block_count) *out_block_count = (bytes_used + block_size - 1) / block_size; if (out_block_size) *out_block_size = block_size; return true; } bool IsExtFilesystem(const string& device) { brillo::Blob header; // The first 2 KiB is enough to read the ext2 superblock (located at offset // 1024). if (!ReadFileChunk(device, 0, 2048, &header)) return false; return GetExt3Size(header.data(), header.size(), nullptr, nullptr); } bool IsSquashfsFilesystem(const string& device) { brillo::Blob header; // The first 96 is enough to read the squashfs superblock. const ssize_t kSquashfsSuperBlockSize = 96; if (!ReadFileChunk(device, 0, kSquashfsSuperBlockSize, &header)) return false; return GetSquashfs4Size(header.data(), header.size(), nullptr, nullptr); } // Tries to parse the header of an ELF file to obtain a human-readable // description of it on the |output| string. static bool GetFileFormatELF(const uint8_t* buffer, size_t size, string* output) { // 0x00: EI_MAG - ELF magic header, 4 bytes. if (size < SELFMAG || memcmp(buffer, ELFMAG, SELFMAG) != 0) return false; *output = "ELF"; // 0x04: EI_CLASS, 1 byte. if (size < EI_CLASS + 1) return true; switch (buffer[EI_CLASS]) { case ELFCLASS32: *output += " 32-bit"; break; case ELFCLASS64: *output += " 64-bit"; break; default: *output += " ?-bit"; } // 0x05: EI_DATA, endianness, 1 byte. if (size < EI_DATA + 1) return true; uint8_t ei_data = buffer[EI_DATA]; switch (ei_data) { case ELFDATA2LSB: *output += " little-endian"; break; case ELFDATA2MSB: *output += " big-endian"; break; default: *output += " ?-endian"; // Don't parse anything after the 0x10 offset if endianness is unknown. return true; } const Elf32_Ehdr* hdr = reinterpret_cast(buffer); // 0x12: e_machine, 2 byte endianness based on ei_data. The position (0x12) // and size is the same for both 32 and 64 bits. if (size < offsetof(Elf32_Ehdr, e_machine) + sizeof(hdr->e_machine)) return true; uint16_t e_machine; // Fix endianess regardless of the host endianess. if (ei_data == ELFDATA2LSB) e_machine = le16toh(hdr->e_machine); else e_machine = be16toh(hdr->e_machine); switch (e_machine) { case EM_386: *output += " x86"; break; case EM_MIPS: *output += " mips"; break; case EM_ARM: *output += " arm"; break; case EM_X86_64: *output += " x86-64"; break; default: *output += " unknown-arch"; } return true; } string GetFileFormat(const string& path) { brillo::Blob buffer; if (!ReadFileChunkAndAppend(path, 0, kGetFileFormatMaxHeaderSize, &buffer)) return "File not found."; string result; if (GetFileFormatELF(buffer.data(), buffer.size(), &result)) return result; return "data"; } namespace { // Do the actual trigger. We do it as a main-loop callback to (try to) get a // consistent stack trace. void TriggerCrashReporterUpload() { pid_t pid = fork(); CHECK_GE(pid, 0) << "fork failed"; // fork() failed. Something is very wrong. if (pid == 0) { // We are the child. Crash. abort(); // never returns } // We are the parent. Wait for child to terminate. pid_t result = waitpid(pid, nullptr, 0); LOG_IF(ERROR, result < 0) << "waitpid() failed"; } } // namespace void ScheduleCrashReporterUpload() { brillo::MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&TriggerCrashReporterUpload)); } int FuzzInt(int value, unsigned int range) { int min = value - range / 2; int max = value + range - range / 2; return base::RandInt(min, max); } string FormatSecs(unsigned secs) { return FormatTimeDelta(TimeDelta::FromSeconds(secs)); } string FormatTimeDelta(TimeDelta delta) { string str; // Handle negative durations by prefixing with a minus. if (delta.ToInternalValue() < 0) { delta *= -1; str = "-"; } // Canonicalize into days, hours, minutes, seconds and microseconds. unsigned days = delta.InDays(); delta -= TimeDelta::FromDays(days); unsigned hours = delta.InHours(); delta -= TimeDelta::FromHours(hours); unsigned mins = delta.InMinutes(); delta -= TimeDelta::FromMinutes(mins); unsigned secs = delta.InSeconds(); delta -= TimeDelta::FromSeconds(secs); unsigned usecs = delta.InMicroseconds(); if (days) base::StringAppendF(&str, "%ud", days); if (days || hours) base::StringAppendF(&str, "%uh", hours); if (days || hours || mins) base::StringAppendF(&str, "%um", mins); base::StringAppendF(&str, "%u", secs); if (usecs) { int width = 6; while ((usecs / 10) * 10 == usecs) { usecs /= 10; width--; } base::StringAppendF(&str, ".%0*u", width, usecs); } base::StringAppendF(&str, "s"); return str; } string ToString(const Time utc_time) { Time::Exploded exp_time; utc_time.UTCExplode(&exp_time); return base::StringPrintf("%d/%d/%d %d:%02d:%02d GMT", exp_time.month, exp_time.day_of_month, exp_time.year, exp_time.hour, exp_time.minute, exp_time.second); } string ToString(bool b) { return (b ? "true" : "false"); } string ToString(DownloadSource source) { switch (source) { case kDownloadSourceHttpsServer: return "HttpsServer"; case kDownloadSourceHttpServer: return "HttpServer"; case kDownloadSourceHttpPeer: return "HttpPeer"; case kNumDownloadSources: return "Unknown"; // Don't add a default case to let the compiler warn about newly added // download sources which should be added here. } return "Unknown"; } string ToString(PayloadType payload_type) { switch (payload_type) { case kPayloadTypeDelta: return "Delta"; case kPayloadTypeFull: return "Full"; case kPayloadTypeForcedFull: return "ForcedFull"; case kNumPayloadTypes: return "Unknown"; // Don't add a default case to let the compiler warn about newly added // payload types which should be added here. } return "Unknown"; } ErrorCode GetBaseErrorCode(ErrorCode code) { // Ignore the higher order bits in the code by applying the mask as // we want the enumerations to be in the small contiguous range // with values less than ErrorCode::kUmaReportedMax. ErrorCode base_code = static_cast( static_cast(code) & ~static_cast(ErrorCode::kSpecialFlags)); // Make additional adjustments required for UMA and error classification. // TODO(jaysri): Move this logic to UeErrorCode.cc when we fix // chromium-os:34369. if (base_code >= ErrorCode::kOmahaRequestHTTPResponseBase) { // Since we want to keep the enums to a small value, aggregate all HTTP // errors into this one bucket for UMA and error classification purposes. LOG(INFO) << "Converting error code " << base_code << " to ErrorCode::kOmahaErrorInHTTPResponse"; base_code = ErrorCode::kOmahaErrorInHTTPResponse; } return base_code; } bool CreatePowerwashMarkerFile(const char* file_path) { const char* marker_file = file_path ? file_path : kPowerwashMarkerFile; bool result = utils::WriteFile(marker_file, kPowerwashCommand, strlen(kPowerwashCommand)); if (result) { LOG(INFO) << "Created " << marker_file << " to powerwash on next reboot"; } else { PLOG(ERROR) << "Error in creating powerwash marker file: " << marker_file; } return result; } bool DeletePowerwashMarkerFile(const char* file_path) { const char* marker_file = file_path ? file_path : kPowerwashMarkerFile; const base::FilePath kPowerwashMarkerPath(marker_file); bool result = base::DeleteFile(kPowerwashMarkerPath, false); if (result) LOG(INFO) << "Successfully deleted the powerwash marker file : " << marker_file; else PLOG(ERROR) << "Could not delete the powerwash marker file : " << marker_file; return result; } Time TimeFromStructTimespec(struct timespec *ts) { int64_t us = static_cast(ts->tv_sec) * Time::kMicrosecondsPerSecond + static_cast(ts->tv_nsec) / Time::kNanosecondsPerMicrosecond; return Time::UnixEpoch() + TimeDelta::FromMicroseconds(us); } string StringVectorToString(const vector &vec_str) { string str = "["; for (vector::const_iterator i = vec_str.begin(); i != vec_str.end(); ++i) { if (i != vec_str.begin()) str += ", "; str += '"'; str += *i; str += '"'; } str += "]"; return str; } string CalculateP2PFileId(const string& payload_hash, size_t payload_size) { string encoded_hash = brillo::data_encoding::Base64Encode(payload_hash); return base::StringPrintf("cros_update_size_%" PRIuS "_hash_%s", payload_size, encoded_hash.c_str()); } bool DecodeAndStoreBase64String(const string& base64_encoded, base::FilePath *out_path) { brillo::Blob contents; out_path->clear(); if (base64_encoded.size() == 0) { LOG(ERROR) << "Can't decode empty string."; return false; } if (!brillo::data_encoding::Base64Decode(base64_encoded, &contents) || contents.size() == 0) { LOG(ERROR) << "Error decoding base64."; return false; } FILE *file = base::CreateAndOpenTemporaryFile(out_path); if (file == nullptr) { LOG(ERROR) << "Error creating temporary file."; return false; } if (fwrite(contents.data(), 1, contents.size(), file) != contents.size()) { PLOG(ERROR) << "Error writing to temporary file."; if (fclose(file) != 0) PLOG(ERROR) << "Error closing temporary file."; if (unlink(out_path->value().c_str()) != 0) PLOG(ERROR) << "Error unlinking temporary file."; out_path->clear(); return false; } if (fclose(file) != 0) { PLOG(ERROR) << "Error closing temporary file."; out_path->clear(); return false; } return true; } bool ConvertToOmahaInstallDate(Time time, int *out_num_days) { time_t unix_time = time.ToTimeT(); // Output of: date +"%s" --date="Jan 1, 2007 0:00 PST". const time_t kOmahaEpoch = 1167638400; const int64_t kNumSecondsPerWeek = 7*24*3600; const int64_t kNumDaysPerWeek = 7; time_t omaha_time = unix_time - kOmahaEpoch; if (omaha_time < 0) return false; // Note, as per the comment in utils.h we are deliberately not // handling DST correctly. int64_t num_weeks_since_omaha_epoch = omaha_time / kNumSecondsPerWeek; *out_num_days = num_weeks_since_omaha_epoch * kNumDaysPerWeek; return true; } bool GetMinorVersion(const brillo::KeyValueStore& store, uint32_t* minor_version) { string result; if (store.GetString("PAYLOAD_MINOR_VERSION", &result)) { if (!base::StringToUint(result, minor_version)) { LOG(ERROR) << "StringToUint failed when parsing delta minor version."; return false; } return true; } return false; } bool IsZlibCompatible(const string& fingerprint) { if (fingerprint.size() != sizeof(kCompatibleZlibFingerprint[0]) - 1) { LOG(ERROR) << "Invalid fingerprint: " << fingerprint; return false; } for (auto& f : kCompatibleZlibFingerprint) { if (base::CompareCaseInsensitiveASCII(fingerprint, f) == 0) { return true; } } return false; } bool ReadExtents(const string& path, const vector& extents, brillo::Blob* out_data, ssize_t out_data_size, size_t block_size) { brillo::Blob data(out_data_size); ssize_t bytes_read = 0; int fd = open(path.c_str(), O_RDONLY); TEST_AND_RETURN_FALSE_ERRNO(fd >= 0); ScopedFdCloser fd_closer(&fd); for (const Extent& extent : extents) { ssize_t bytes_read_this_iteration = 0; ssize_t bytes = extent.num_blocks() * block_size; TEST_AND_RETURN_FALSE(bytes_read + bytes <= out_data_size); TEST_AND_RETURN_FALSE(utils::PReadAll(fd, &data[bytes_read], bytes, extent.start_block() * block_size, &bytes_read_this_iteration)); TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes); bytes_read += bytes_read_this_iteration; } TEST_AND_RETURN_FALSE(out_data_size == bytes_read); *out_data = data; return true; } bool GetBootId(string* boot_id) { TEST_AND_RETURN_FALSE( base::ReadFileToString(base::FilePath(kBootIdPath), boot_id)); base::TrimWhitespaceASCII(*boot_id, base::TRIM_TRAILING, boot_id); return true; } } // namespace utils } // namespace chromeos_update_engine