1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineModuleInfo.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/WinEHFuncInfo.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/MC/MCAsmInfo.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/Debug.h"
34 #include <cstdlib>
35
36 using namespace llvm;
37
X86FrameLowering(const X86Subtarget & STI,unsigned StackAlignOverride)38 X86FrameLowering::X86FrameLowering(const X86Subtarget &STI,
39 unsigned StackAlignOverride)
40 : TargetFrameLowering(StackGrowsDown, StackAlignOverride,
41 STI.is64Bit() ? -8 : -4),
42 STI(STI), TII(*STI.getInstrInfo()), TRI(STI.getRegisterInfo()) {
43 // Cache a bunch of frame-related predicates for this subtarget.
44 SlotSize = TRI->getSlotSize();
45 Is64Bit = STI.is64Bit();
46 IsLP64 = STI.isTarget64BitLP64();
47 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
48 Uses64BitFramePtr = STI.isTarget64BitLP64() || STI.isTargetNaCl64();
49 StackPtr = TRI->getStackRegister();
50 }
51
hasReservedCallFrame(const MachineFunction & MF) const52 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
53 return !MF.getFrameInfo()->hasVarSizedObjects() &&
54 !MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
55 }
56
57 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
58 /// call frame pseudos can be simplified. Having a FP, as in the default
59 /// implementation, is not sufficient here since we can't always use it.
60 /// Use a more nuanced condition.
61 bool
canSimplifyCallFramePseudos(const MachineFunction & MF) const62 X86FrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
63 return hasReservedCallFrame(MF) ||
64 (hasFP(MF) && !TRI->needsStackRealignment(MF)) ||
65 TRI->hasBasePointer(MF);
66 }
67
68 // needsFrameIndexResolution - Do we need to perform FI resolution for
69 // this function. Normally, this is required only when the function
70 // has any stack objects. However, FI resolution actually has another job,
71 // not apparent from the title - it resolves callframesetup/destroy
72 // that were not simplified earlier.
73 // So, this is required for x86 functions that have push sequences even
74 // when there are no stack objects.
75 bool
needsFrameIndexResolution(const MachineFunction & MF) const76 X86FrameLowering::needsFrameIndexResolution(const MachineFunction &MF) const {
77 return MF.getFrameInfo()->hasStackObjects() ||
78 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences();
79 }
80
81 /// hasFP - Return true if the specified function should have a dedicated frame
82 /// pointer register. This is true if the function has variable sized allocas
83 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const84 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
85 const MachineFrameInfo *MFI = MF.getFrameInfo();
86 const MachineModuleInfo &MMI = MF.getMMI();
87
88 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
89 TRI->needsStackRealignment(MF) ||
90 MFI->hasVarSizedObjects() ||
91 MFI->isFrameAddressTaken() || MFI->hasOpaqueSPAdjustment() ||
92 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
93 MMI.callsUnwindInit() || MMI.hasEHFunclets() || MMI.callsEHReturn() ||
94 MFI->hasStackMap() || MFI->hasPatchPoint());
95 }
96
getSUBriOpcode(unsigned IsLP64,int64_t Imm)97 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
98 if (IsLP64) {
99 if (isInt<8>(Imm))
100 return X86::SUB64ri8;
101 return X86::SUB64ri32;
102 } else {
103 if (isInt<8>(Imm))
104 return X86::SUB32ri8;
105 return X86::SUB32ri;
106 }
107 }
108
getADDriOpcode(unsigned IsLP64,int64_t Imm)109 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
110 if (IsLP64) {
111 if (isInt<8>(Imm))
112 return X86::ADD64ri8;
113 return X86::ADD64ri32;
114 } else {
115 if (isInt<8>(Imm))
116 return X86::ADD32ri8;
117 return X86::ADD32ri;
118 }
119 }
120
getSUBrrOpcode(unsigned isLP64)121 static unsigned getSUBrrOpcode(unsigned isLP64) {
122 return isLP64 ? X86::SUB64rr : X86::SUB32rr;
123 }
124
getADDrrOpcode(unsigned isLP64)125 static unsigned getADDrrOpcode(unsigned isLP64) {
126 return isLP64 ? X86::ADD64rr : X86::ADD32rr;
127 }
128
getANDriOpcode(bool IsLP64,int64_t Imm)129 static unsigned getANDriOpcode(bool IsLP64, int64_t Imm) {
130 if (IsLP64) {
131 if (isInt<8>(Imm))
132 return X86::AND64ri8;
133 return X86::AND64ri32;
134 }
135 if (isInt<8>(Imm))
136 return X86::AND32ri8;
137 return X86::AND32ri;
138 }
139
getLEArOpcode(unsigned IsLP64)140 static unsigned getLEArOpcode(unsigned IsLP64) {
141 return IsLP64 ? X86::LEA64r : X86::LEA32r;
142 }
143
144 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
145 /// when it reaches the "return" instruction. We can then pop a stack object
146 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const X86RegisterInfo * TRI,bool Is64Bit)147 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
148 MachineBasicBlock::iterator &MBBI,
149 const X86RegisterInfo *TRI,
150 bool Is64Bit) {
151 const MachineFunction *MF = MBB.getParent();
152 const Function *F = MF->getFunction();
153 if (!F || MF->getMMI().callsEHReturn())
154 return 0;
155
156 const TargetRegisterClass &AvailableRegs = *TRI->getGPRsForTailCall(*MF);
157
158 unsigned Opc = MBBI->getOpcode();
159 switch (Opc) {
160 default: return 0;
161 case X86::RETL:
162 case X86::RETQ:
163 case X86::RETIL:
164 case X86::RETIQ:
165 case X86::TCRETURNdi:
166 case X86::TCRETURNri:
167 case X86::TCRETURNmi:
168 case X86::TCRETURNdi64:
169 case X86::TCRETURNri64:
170 case X86::TCRETURNmi64:
171 case X86::EH_RETURN:
172 case X86::EH_RETURN64: {
173 SmallSet<uint16_t, 8> Uses;
174 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
175 MachineOperand &MO = MBBI->getOperand(i);
176 if (!MO.isReg() || MO.isDef())
177 continue;
178 unsigned Reg = MO.getReg();
179 if (!Reg)
180 continue;
181 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
182 Uses.insert(*AI);
183 }
184
185 for (auto CS : AvailableRegs)
186 if (!Uses.count(CS) && CS != X86::RIP)
187 return CS;
188 }
189 }
190
191 return 0;
192 }
193
isEAXLiveIn(MachineFunction & MF)194 static bool isEAXLiveIn(MachineFunction &MF) {
195 for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
196 EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
197 unsigned Reg = II->first;
198
199 if (Reg == X86::RAX || Reg == X86::EAX || Reg == X86::AX ||
200 Reg == X86::AH || Reg == X86::AL)
201 return true;
202 }
203
204 return false;
205 }
206
207 /// Check if the flags need to be preserved before the terminators.
208 /// This would be the case, if the eflags is live-in of the region
209 /// composed by the terminators or live-out of that region, without
210 /// being defined by a terminator.
211 static bool
flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock & MBB)212 flagsNeedToBePreservedBeforeTheTerminators(const MachineBasicBlock &MBB) {
213 for (const MachineInstr &MI : MBB.terminators()) {
214 bool BreakNext = false;
215 for (const MachineOperand &MO : MI.operands()) {
216 if (!MO.isReg())
217 continue;
218 unsigned Reg = MO.getReg();
219 if (Reg != X86::EFLAGS)
220 continue;
221
222 // This terminator needs an eflags that is not defined
223 // by a previous another terminator:
224 // EFLAGS is live-in of the region composed by the terminators.
225 if (!MO.isDef())
226 return true;
227 // This terminator defines the eflags, i.e., we don't need to preserve it.
228 // However, we still need to check this specific terminator does not
229 // read a live-in value.
230 BreakNext = true;
231 }
232 // We found a definition of the eflags, no need to preserve them.
233 if (BreakNext)
234 return false;
235 }
236
237 // None of the terminators use or define the eflags.
238 // Check if they are live-out, that would imply we need to preserve them.
239 for (const MachineBasicBlock *Succ : MBB.successors())
240 if (Succ->isLiveIn(X86::EFLAGS))
241 return true;
242
243 return false;
244 }
245
246 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
247 /// stack pointer by a constant value.
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,int64_t NumBytes,bool InEpilogue) const248 void X86FrameLowering::emitSPUpdate(MachineBasicBlock &MBB,
249 MachineBasicBlock::iterator &MBBI,
250 int64_t NumBytes, bool InEpilogue) const {
251 bool isSub = NumBytes < 0;
252 uint64_t Offset = isSub ? -NumBytes : NumBytes;
253
254 uint64_t Chunk = (1LL << 31) - 1;
255 DebugLoc DL = MBB.findDebugLoc(MBBI);
256
257 while (Offset) {
258 if (Offset > Chunk) {
259 // Rather than emit a long series of instructions for large offsets,
260 // load the offset into a register and do one sub/add
261 unsigned Reg = 0;
262
263 if (isSub && !isEAXLiveIn(*MBB.getParent()))
264 Reg = (unsigned)(Is64Bit ? X86::RAX : X86::EAX);
265 else
266 Reg = findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
267
268 if (Reg) {
269 unsigned Opc = Is64Bit ? X86::MOV64ri : X86::MOV32ri;
270 BuildMI(MBB, MBBI, DL, TII.get(Opc), Reg)
271 .addImm(Offset);
272 Opc = isSub
273 ? getSUBrrOpcode(Is64Bit)
274 : getADDrrOpcode(Is64Bit);
275 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
276 .addReg(StackPtr)
277 .addReg(Reg);
278 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
279 Offset = 0;
280 continue;
281 }
282 }
283
284 uint64_t ThisVal = std::min(Offset, Chunk);
285 if (ThisVal == (Is64Bit ? 8 : 4)) {
286 // Use push / pop instead.
287 unsigned Reg = isSub
288 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
289 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
290 if (Reg) {
291 unsigned Opc = isSub
292 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
293 : (Is64Bit ? X86::POP64r : X86::POP32r);
294 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
295 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
296 if (isSub)
297 MI->setFlag(MachineInstr::FrameSetup);
298 else
299 MI->setFlag(MachineInstr::FrameDestroy);
300 Offset -= ThisVal;
301 continue;
302 }
303 }
304
305 MachineInstrBuilder MI = BuildStackAdjustment(
306 MBB, MBBI, DL, isSub ? -ThisVal : ThisVal, InEpilogue);
307 if (isSub)
308 MI.setMIFlag(MachineInstr::FrameSetup);
309 else
310 MI.setMIFlag(MachineInstr::FrameDestroy);
311
312 Offset -= ThisVal;
313 }
314 }
315
BuildStackAdjustment(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,int64_t Offset,bool InEpilogue) const316 MachineInstrBuilder X86FrameLowering::BuildStackAdjustment(
317 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc DL,
318 int64_t Offset, bool InEpilogue) const {
319 assert(Offset != 0 && "zero offset stack adjustment requested");
320
321 // On Atom, using LEA to adjust SP is preferred, but using it in the epilogue
322 // is tricky.
323 bool UseLEA;
324 if (!InEpilogue) {
325 // Check if inserting the prologue at the beginning
326 // of MBB would require to use LEA operations.
327 // We need to use LEA operations if EFLAGS is live in, because
328 // it means an instruction will read it before it gets defined.
329 UseLEA = STI.useLeaForSP() || MBB.isLiveIn(X86::EFLAGS);
330 } else {
331 // If we can use LEA for SP but we shouldn't, check that none
332 // of the terminators uses the eflags. Otherwise we will insert
333 // a ADD that will redefine the eflags and break the condition.
334 // Alternatively, we could move the ADD, but this may not be possible
335 // and is an optimization anyway.
336 UseLEA = canUseLEAForSPInEpilogue(*MBB.getParent());
337 if (UseLEA && !STI.useLeaForSP())
338 UseLEA = flagsNeedToBePreservedBeforeTheTerminators(MBB);
339 // If that assert breaks, that means we do not do the right thing
340 // in canUseAsEpilogue.
341 assert((UseLEA || !flagsNeedToBePreservedBeforeTheTerminators(MBB)) &&
342 "We shouldn't have allowed this insertion point");
343 }
344
345 MachineInstrBuilder MI;
346 if (UseLEA) {
347 MI = addRegOffset(BuildMI(MBB, MBBI, DL,
348 TII.get(getLEArOpcode(Uses64BitFramePtr)),
349 StackPtr),
350 StackPtr, false, Offset);
351 } else {
352 bool IsSub = Offset < 0;
353 uint64_t AbsOffset = IsSub ? -Offset : Offset;
354 unsigned Opc = IsSub ? getSUBriOpcode(Uses64BitFramePtr, AbsOffset)
355 : getADDriOpcode(Uses64BitFramePtr, AbsOffset);
356 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
357 .addReg(StackPtr)
358 .addImm(AbsOffset);
359 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
360 }
361 return MI;
362 }
363
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,bool doMergeWithPrevious) const364 int X86FrameLowering::mergeSPUpdates(MachineBasicBlock &MBB,
365 MachineBasicBlock::iterator &MBBI,
366 bool doMergeWithPrevious) const {
367 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
368 (!doMergeWithPrevious && MBBI == MBB.end()))
369 return 0;
370
371 MachineBasicBlock::iterator PI = doMergeWithPrevious ? std::prev(MBBI) : MBBI;
372 MachineBasicBlock::iterator NI = doMergeWithPrevious ? nullptr
373 : std::next(MBBI);
374 unsigned Opc = PI->getOpcode();
375 int Offset = 0;
376
377 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
378 Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
379 Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
380 PI->getOperand(0).getReg() == StackPtr){
381 Offset += PI->getOperand(2).getImm();
382 MBB.erase(PI);
383 if (!doMergeWithPrevious) MBBI = NI;
384 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
385 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
386 PI->getOperand(0).getReg() == StackPtr) {
387 Offset -= PI->getOperand(2).getImm();
388 MBB.erase(PI);
389 if (!doMergeWithPrevious) MBBI = NI;
390 }
391
392 return Offset;
393 }
394
BuildCFI(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,MCCFIInstruction CFIInst) const395 void X86FrameLowering::BuildCFI(MachineBasicBlock &MBB,
396 MachineBasicBlock::iterator MBBI, DebugLoc DL,
397 MCCFIInstruction CFIInst) const {
398 MachineFunction &MF = *MBB.getParent();
399 unsigned CFIIndex = MF.getMMI().addFrameInst(CFIInst);
400 BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
401 .addCFIIndex(CFIIndex);
402 }
403
404 void
emitCalleeSavedFrameMoves(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL) const405 X86FrameLowering::emitCalleeSavedFrameMoves(MachineBasicBlock &MBB,
406 MachineBasicBlock::iterator MBBI,
407 DebugLoc DL) const {
408 MachineFunction &MF = *MBB.getParent();
409 MachineFrameInfo *MFI = MF.getFrameInfo();
410 MachineModuleInfo &MMI = MF.getMMI();
411 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
412
413 // Add callee saved registers to move list.
414 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
415 if (CSI.empty()) return;
416
417 // Calculate offsets.
418 for (std::vector<CalleeSavedInfo>::const_iterator
419 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
420 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
421 unsigned Reg = I->getReg();
422
423 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
424 BuildCFI(MBB, MBBI, DL,
425 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
426 }
427 }
428
429 /// usesTheStack - This function checks if any of the users of EFLAGS
430 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
431 /// to use the stack, and if we don't adjust the stack we clobber the first
432 /// frame index.
433 /// See X86InstrInfo::copyPhysReg.
usesTheStack(const MachineFunction & MF)434 static bool usesTheStack(const MachineFunction &MF) {
435 const MachineRegisterInfo &MRI = MF.getRegInfo();
436
437 for (MachineRegisterInfo::reg_instr_iterator
438 ri = MRI.reg_instr_begin(X86::EFLAGS), re = MRI.reg_instr_end();
439 ri != re; ++ri)
440 if (ri->isCopy())
441 return true;
442
443 return false;
444 }
445
emitStackProbe(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,bool InProlog) const446 MachineInstr *X86FrameLowering::emitStackProbe(MachineFunction &MF,
447 MachineBasicBlock &MBB,
448 MachineBasicBlock::iterator MBBI,
449 DebugLoc DL,
450 bool InProlog) const {
451 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
452 if (STI.isTargetWindowsCoreCLR()) {
453 if (InProlog) {
454 return emitStackProbeInlineStub(MF, MBB, MBBI, DL, true);
455 } else {
456 return emitStackProbeInline(MF, MBB, MBBI, DL, false);
457 }
458 } else {
459 return emitStackProbeCall(MF, MBB, MBBI, DL, InProlog);
460 }
461 }
462
inlineStackProbe(MachineFunction & MF,MachineBasicBlock & PrologMBB) const463 void X86FrameLowering::inlineStackProbe(MachineFunction &MF,
464 MachineBasicBlock &PrologMBB) const {
465 const StringRef ChkStkStubSymbol = "__chkstk_stub";
466 MachineInstr *ChkStkStub = nullptr;
467
468 for (MachineInstr &MI : PrologMBB) {
469 if (MI.isCall() && MI.getOperand(0).isSymbol() &&
470 ChkStkStubSymbol == MI.getOperand(0).getSymbolName()) {
471 ChkStkStub = &MI;
472 break;
473 }
474 }
475
476 if (ChkStkStub != nullptr) {
477 MachineBasicBlock::iterator MBBI = std::next(ChkStkStub->getIterator());
478 assert(std::prev(MBBI).operator==(ChkStkStub) &&
479 "MBBI expected after __chkstk_stub.");
480 DebugLoc DL = PrologMBB.findDebugLoc(MBBI);
481 emitStackProbeInline(MF, PrologMBB, MBBI, DL, true);
482 ChkStkStub->eraseFromParent();
483 }
484 }
485
emitStackProbeInline(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,bool InProlog) const486 MachineInstr *X86FrameLowering::emitStackProbeInline(
487 MachineFunction &MF, MachineBasicBlock &MBB,
488 MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
489 const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
490 assert(STI.is64Bit() && "different expansion needed for 32 bit");
491 assert(STI.isTargetWindowsCoreCLR() && "custom expansion expects CoreCLR");
492 const TargetInstrInfo &TII = *STI.getInstrInfo();
493 const BasicBlock *LLVM_BB = MBB.getBasicBlock();
494
495 // RAX contains the number of bytes of desired stack adjustment.
496 // The handling here assumes this value has already been updated so as to
497 // maintain stack alignment.
498 //
499 // We need to exit with RSP modified by this amount and execute suitable
500 // page touches to notify the OS that we're growing the stack responsibly.
501 // All stack probing must be done without modifying RSP.
502 //
503 // MBB:
504 // SizeReg = RAX;
505 // ZeroReg = 0
506 // CopyReg = RSP
507 // Flags, TestReg = CopyReg - SizeReg
508 // FinalReg = !Flags.Ovf ? TestReg : ZeroReg
509 // LimitReg = gs magic thread env access
510 // if FinalReg >= LimitReg goto ContinueMBB
511 // RoundBB:
512 // RoundReg = page address of FinalReg
513 // LoopMBB:
514 // LoopReg = PHI(LimitReg,ProbeReg)
515 // ProbeReg = LoopReg - PageSize
516 // [ProbeReg] = 0
517 // if (ProbeReg > RoundReg) goto LoopMBB
518 // ContinueMBB:
519 // RSP = RSP - RAX
520 // [rest of original MBB]
521
522 // Set up the new basic blocks
523 MachineBasicBlock *RoundMBB = MF.CreateMachineBasicBlock(LLVM_BB);
524 MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(LLVM_BB);
525 MachineBasicBlock *ContinueMBB = MF.CreateMachineBasicBlock(LLVM_BB);
526
527 MachineFunction::iterator MBBIter = std::next(MBB.getIterator());
528 MF.insert(MBBIter, RoundMBB);
529 MF.insert(MBBIter, LoopMBB);
530 MF.insert(MBBIter, ContinueMBB);
531
532 // Split MBB and move the tail portion down to ContinueMBB.
533 MachineBasicBlock::iterator BeforeMBBI = std::prev(MBBI);
534 ContinueMBB->splice(ContinueMBB->begin(), &MBB, MBBI, MBB.end());
535 ContinueMBB->transferSuccessorsAndUpdatePHIs(&MBB);
536
537 // Some useful constants
538 const int64_t ThreadEnvironmentStackLimit = 0x10;
539 const int64_t PageSize = 0x1000;
540 const int64_t PageMask = ~(PageSize - 1);
541
542 // Registers we need. For the normal case we use virtual
543 // registers. For the prolog expansion we use RAX, RCX and RDX.
544 MachineRegisterInfo &MRI = MF.getRegInfo();
545 const TargetRegisterClass *RegClass = &X86::GR64RegClass;
546 const unsigned SizeReg = InProlog ? (unsigned)X86::RAX
547 : MRI.createVirtualRegister(RegClass),
548 ZeroReg = InProlog ? (unsigned)X86::RCX
549 : MRI.createVirtualRegister(RegClass),
550 CopyReg = InProlog ? (unsigned)X86::RDX
551 : MRI.createVirtualRegister(RegClass),
552 TestReg = InProlog ? (unsigned)X86::RDX
553 : MRI.createVirtualRegister(RegClass),
554 FinalReg = InProlog ? (unsigned)X86::RDX
555 : MRI.createVirtualRegister(RegClass),
556 RoundedReg = InProlog ? (unsigned)X86::RDX
557 : MRI.createVirtualRegister(RegClass),
558 LimitReg = InProlog ? (unsigned)X86::RCX
559 : MRI.createVirtualRegister(RegClass),
560 JoinReg = InProlog ? (unsigned)X86::RCX
561 : MRI.createVirtualRegister(RegClass),
562 ProbeReg = InProlog ? (unsigned)X86::RCX
563 : MRI.createVirtualRegister(RegClass);
564
565 // SP-relative offsets where we can save RCX and RDX.
566 int64_t RCXShadowSlot = 0;
567 int64_t RDXShadowSlot = 0;
568
569 // If inlining in the prolog, save RCX and RDX.
570 // Future optimization: don't save or restore if not live in.
571 if (InProlog) {
572 // Compute the offsets. We need to account for things already
573 // pushed onto the stack at this point: return address, frame
574 // pointer (if used), and callee saves.
575 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
576 const int64_t CalleeSaveSize = X86FI->getCalleeSavedFrameSize();
577 const bool HasFP = hasFP(MF);
578 RCXShadowSlot = 8 + CalleeSaveSize + (HasFP ? 8 : 0);
579 RDXShadowSlot = RCXShadowSlot + 8;
580 // Emit the saves.
581 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
582 RCXShadowSlot)
583 .addReg(X86::RCX);
584 addRegOffset(BuildMI(&MBB, DL, TII.get(X86::MOV64mr)), X86::RSP, false,
585 RDXShadowSlot)
586 .addReg(X86::RDX);
587 } else {
588 // Not in the prolog. Copy RAX to a virtual reg.
589 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), SizeReg).addReg(X86::RAX);
590 }
591
592 // Add code to MBB to check for overflow and set the new target stack pointer
593 // to zero if so.
594 BuildMI(&MBB, DL, TII.get(X86::XOR64rr), ZeroReg)
595 .addReg(ZeroReg, RegState::Undef)
596 .addReg(ZeroReg, RegState::Undef);
597 BuildMI(&MBB, DL, TII.get(X86::MOV64rr), CopyReg).addReg(X86::RSP);
598 BuildMI(&MBB, DL, TII.get(X86::SUB64rr), TestReg)
599 .addReg(CopyReg)
600 .addReg(SizeReg);
601 BuildMI(&MBB, DL, TII.get(X86::CMOVB64rr), FinalReg)
602 .addReg(TestReg)
603 .addReg(ZeroReg);
604
605 // FinalReg now holds final stack pointer value, or zero if
606 // allocation would overflow. Compare against the current stack
607 // limit from the thread environment block. Note this limit is the
608 // lowest touched page on the stack, not the point at which the OS
609 // will cause an overflow exception, so this is just an optimization
610 // to avoid unnecessarily touching pages that are below the current
611 // SP but already commited to the stack by the OS.
612 BuildMI(&MBB, DL, TII.get(X86::MOV64rm), LimitReg)
613 .addReg(0)
614 .addImm(1)
615 .addReg(0)
616 .addImm(ThreadEnvironmentStackLimit)
617 .addReg(X86::GS);
618 BuildMI(&MBB, DL, TII.get(X86::CMP64rr)).addReg(FinalReg).addReg(LimitReg);
619 // Jump if the desired stack pointer is at or above the stack limit.
620 BuildMI(&MBB, DL, TII.get(X86::JAE_1)).addMBB(ContinueMBB);
621
622 // Add code to roundMBB to round the final stack pointer to a page boundary.
623 BuildMI(RoundMBB, DL, TII.get(X86::AND64ri32), RoundedReg)
624 .addReg(FinalReg)
625 .addImm(PageMask);
626 BuildMI(RoundMBB, DL, TII.get(X86::JMP_1)).addMBB(LoopMBB);
627
628 // LimitReg now holds the current stack limit, RoundedReg page-rounded
629 // final RSP value. Add code to loopMBB to decrement LimitReg page-by-page
630 // and probe until we reach RoundedReg.
631 if (!InProlog) {
632 BuildMI(LoopMBB, DL, TII.get(X86::PHI), JoinReg)
633 .addReg(LimitReg)
634 .addMBB(RoundMBB)
635 .addReg(ProbeReg)
636 .addMBB(LoopMBB);
637 }
638
639 addRegOffset(BuildMI(LoopMBB, DL, TII.get(X86::LEA64r), ProbeReg), JoinReg,
640 false, -PageSize);
641
642 // Probe by storing a byte onto the stack.
643 BuildMI(LoopMBB, DL, TII.get(X86::MOV8mi))
644 .addReg(ProbeReg)
645 .addImm(1)
646 .addReg(0)
647 .addImm(0)
648 .addReg(0)
649 .addImm(0);
650 BuildMI(LoopMBB, DL, TII.get(X86::CMP64rr))
651 .addReg(RoundedReg)
652 .addReg(ProbeReg);
653 BuildMI(LoopMBB, DL, TII.get(X86::JNE_1)).addMBB(LoopMBB);
654
655 MachineBasicBlock::iterator ContinueMBBI = ContinueMBB->getFirstNonPHI();
656
657 // If in prolog, restore RDX and RCX.
658 if (InProlog) {
659 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
660 X86::RCX),
661 X86::RSP, false, RCXShadowSlot);
662 addRegOffset(BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::MOV64rm),
663 X86::RDX),
664 X86::RSP, false, RDXShadowSlot);
665 }
666
667 // Now that the probing is done, add code to continueMBB to update
668 // the stack pointer for real.
669 BuildMI(*ContinueMBB, ContinueMBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
670 .addReg(X86::RSP)
671 .addReg(SizeReg);
672
673 // Add the control flow edges we need.
674 MBB.addSuccessor(ContinueMBB);
675 MBB.addSuccessor(RoundMBB);
676 RoundMBB->addSuccessor(LoopMBB);
677 LoopMBB->addSuccessor(ContinueMBB);
678 LoopMBB->addSuccessor(LoopMBB);
679
680 // Mark all the instructions added to the prolog as frame setup.
681 if (InProlog) {
682 for (++BeforeMBBI; BeforeMBBI != MBB.end(); ++BeforeMBBI) {
683 BeforeMBBI->setFlag(MachineInstr::FrameSetup);
684 }
685 for (MachineInstr &MI : *RoundMBB) {
686 MI.setFlag(MachineInstr::FrameSetup);
687 }
688 for (MachineInstr &MI : *LoopMBB) {
689 MI.setFlag(MachineInstr::FrameSetup);
690 }
691 for (MachineBasicBlock::iterator CMBBI = ContinueMBB->begin();
692 CMBBI != ContinueMBBI; ++CMBBI) {
693 CMBBI->setFlag(MachineInstr::FrameSetup);
694 }
695 }
696
697 // Possible TODO: physreg liveness for InProlog case.
698
699 return ContinueMBBI;
700 }
701
emitStackProbeCall(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,bool InProlog) const702 MachineInstr *X86FrameLowering::emitStackProbeCall(
703 MachineFunction &MF, MachineBasicBlock &MBB,
704 MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
705 bool IsLargeCodeModel = MF.getTarget().getCodeModel() == CodeModel::Large;
706
707 unsigned CallOp;
708 if (Is64Bit)
709 CallOp = IsLargeCodeModel ? X86::CALL64r : X86::CALL64pcrel32;
710 else
711 CallOp = X86::CALLpcrel32;
712
713 const char *Symbol;
714 if (Is64Bit) {
715 if (STI.isTargetCygMing()) {
716 Symbol = "___chkstk_ms";
717 } else {
718 Symbol = "__chkstk";
719 }
720 } else if (STI.isTargetCygMing())
721 Symbol = "_alloca";
722 else
723 Symbol = "_chkstk";
724
725 MachineInstrBuilder CI;
726 MachineBasicBlock::iterator ExpansionMBBI = std::prev(MBBI);
727
728 // All current stack probes take AX and SP as input, clobber flags, and
729 // preserve all registers. x86_64 probes leave RSP unmodified.
730 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
731 // For the large code model, we have to call through a register. Use R11,
732 // as it is scratch in all supported calling conventions.
733 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::R11)
734 .addExternalSymbol(Symbol);
735 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addReg(X86::R11);
736 } else {
737 CI = BuildMI(MBB, MBBI, DL, TII.get(CallOp)).addExternalSymbol(Symbol);
738 }
739
740 unsigned AX = Is64Bit ? X86::RAX : X86::EAX;
741 unsigned SP = Is64Bit ? X86::RSP : X86::ESP;
742 CI.addReg(AX, RegState::Implicit)
743 .addReg(SP, RegState::Implicit)
744 .addReg(AX, RegState::Define | RegState::Implicit)
745 .addReg(SP, RegState::Define | RegState::Implicit)
746 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
747
748 if (Is64Bit) {
749 // MSVC x64's __chkstk and cygwin/mingw's ___chkstk_ms do not adjust %rsp
750 // themselves. It also does not clobber %rax so we can reuse it when
751 // adjusting %rsp.
752 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), X86::RSP)
753 .addReg(X86::RSP)
754 .addReg(X86::RAX);
755 }
756
757 if (InProlog) {
758 // Apply the frame setup flag to all inserted instrs.
759 for (++ExpansionMBBI; ExpansionMBBI != MBBI; ++ExpansionMBBI)
760 ExpansionMBBI->setFlag(MachineInstr::FrameSetup);
761 }
762
763 return MBBI;
764 }
765
emitStackProbeInlineStub(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,bool InProlog) const766 MachineInstr *X86FrameLowering::emitStackProbeInlineStub(
767 MachineFunction &MF, MachineBasicBlock &MBB,
768 MachineBasicBlock::iterator MBBI, DebugLoc DL, bool InProlog) const {
769
770 assert(InProlog && "ChkStkStub called outside prolog!");
771
772 BuildMI(MBB, MBBI, DL, TII.get(X86::CALLpcrel32))
773 .addExternalSymbol("__chkstk_stub");
774
775 return MBBI;
776 }
777
calculateSetFPREG(uint64_t SPAdjust)778 static unsigned calculateSetFPREG(uint64_t SPAdjust) {
779 // Win64 ABI has a less restrictive limitation of 240; 128 works equally well
780 // and might require smaller successive adjustments.
781 const uint64_t Win64MaxSEHOffset = 128;
782 uint64_t SEHFrameOffset = std::min(SPAdjust, Win64MaxSEHOffset);
783 // Win64 ABI requires 16-byte alignment for the UWOP_SET_FPREG opcode.
784 return SEHFrameOffset & -16;
785 }
786
787 // If we're forcing a stack realignment we can't rely on just the frame
788 // info, we need to know the ABI stack alignment as well in case we
789 // have a call out. Otherwise just make sure we have some alignment - we'll
790 // go with the minimum SlotSize.
calculateMaxStackAlign(const MachineFunction & MF) const791 uint64_t X86FrameLowering::calculateMaxStackAlign(const MachineFunction &MF) const {
792 const MachineFrameInfo *MFI = MF.getFrameInfo();
793 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
794 unsigned StackAlign = getStackAlignment();
795 if (MF.getFunction()->hasFnAttribute("stackrealign")) {
796 if (MFI->hasCalls())
797 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
798 else if (MaxAlign < SlotSize)
799 MaxAlign = SlotSize;
800 }
801 return MaxAlign;
802 }
803
BuildStackAlignAND(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,unsigned Reg,uint64_t MaxAlign) const804 void X86FrameLowering::BuildStackAlignAND(MachineBasicBlock &MBB,
805 MachineBasicBlock::iterator MBBI,
806 DebugLoc DL, unsigned Reg,
807 uint64_t MaxAlign) const {
808 uint64_t Val = -MaxAlign;
809 unsigned AndOp = getANDriOpcode(Uses64BitFramePtr, Val);
810 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(AndOp), Reg)
811 .addReg(Reg)
812 .addImm(Val)
813 .setMIFlag(MachineInstr::FrameSetup);
814
815 // The EFLAGS implicit def is dead.
816 MI->getOperand(3).setIsDead();
817 }
818
819 /// emitPrologue - Push callee-saved registers onto the stack, which
820 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
821 /// space for local variables. Also emit labels used by the exception handler to
822 /// generate the exception handling frames.
823
824 /*
825 Here's a gist of what gets emitted:
826
827 ; Establish frame pointer, if needed
828 [if needs FP]
829 push %rbp
830 .cfi_def_cfa_offset 16
831 .cfi_offset %rbp, -16
832 .seh_pushreg %rpb
833 mov %rsp, %rbp
834 .cfi_def_cfa_register %rbp
835
836 ; Spill general-purpose registers
837 [for all callee-saved GPRs]
838 pushq %<reg>
839 [if not needs FP]
840 .cfi_def_cfa_offset (offset from RETADDR)
841 .seh_pushreg %<reg>
842
843 ; If the required stack alignment > default stack alignment
844 ; rsp needs to be re-aligned. This creates a "re-alignment gap"
845 ; of unknown size in the stack frame.
846 [if stack needs re-alignment]
847 and $MASK, %rsp
848
849 ; Allocate space for locals
850 [if target is Windows and allocated space > 4096 bytes]
851 ; Windows needs special care for allocations larger
852 ; than one page.
853 mov $NNN, %rax
854 call ___chkstk_ms/___chkstk
855 sub %rax, %rsp
856 [else]
857 sub $NNN, %rsp
858
859 [if needs FP]
860 .seh_stackalloc (size of XMM spill slots)
861 .seh_setframe %rbp, SEHFrameOffset ; = size of all spill slots
862 [else]
863 .seh_stackalloc NNN
864
865 ; Spill XMMs
866 ; Note, that while only Windows 64 ABI specifies XMMs as callee-preserved,
867 ; they may get spilled on any platform, if the current function
868 ; calls @llvm.eh.unwind.init
869 [if needs FP]
870 [for all callee-saved XMM registers]
871 movaps %<xmm reg>, -MMM(%rbp)
872 [for all callee-saved XMM registers]
873 .seh_savexmm %<xmm reg>, (-MMM + SEHFrameOffset)
874 ; i.e. the offset relative to (%rbp - SEHFrameOffset)
875 [else]
876 [for all callee-saved XMM registers]
877 movaps %<xmm reg>, KKK(%rsp)
878 [for all callee-saved XMM registers]
879 .seh_savexmm %<xmm reg>, KKK
880
881 .seh_endprologue
882
883 [if needs base pointer]
884 mov %rsp, %rbx
885 [if needs to restore base pointer]
886 mov %rsp, -MMM(%rbp)
887
888 ; Emit CFI info
889 [if needs FP]
890 [for all callee-saved registers]
891 .cfi_offset %<reg>, (offset from %rbp)
892 [else]
893 .cfi_def_cfa_offset (offset from RETADDR)
894 [for all callee-saved registers]
895 .cfi_offset %<reg>, (offset from %rsp)
896
897 Notes:
898 - .seh directives are emitted only for Windows 64 ABI
899 - .cfi directives are emitted for all other ABIs
900 - for 32-bit code, substitute %e?? registers for %r??
901 */
902
emitPrologue(MachineFunction & MF,MachineBasicBlock & MBB) const903 void X86FrameLowering::emitPrologue(MachineFunction &MF,
904 MachineBasicBlock &MBB) const {
905 assert(&STI == &MF.getSubtarget<X86Subtarget>() &&
906 "MF used frame lowering for wrong subtarget");
907 MachineBasicBlock::iterator MBBI = MBB.begin();
908 MachineFrameInfo *MFI = MF.getFrameInfo();
909 const Function *Fn = MF.getFunction();
910 MachineModuleInfo &MMI = MF.getMMI();
911 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
912 uint64_t MaxAlign = calculateMaxStackAlign(MF); // Desired stack alignment.
913 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
914 bool IsFunclet = MBB.isEHFuncletEntry();
915 EHPersonality Personality = EHPersonality::Unknown;
916 if (Fn->hasPersonalityFn())
917 Personality = classifyEHPersonality(Fn->getPersonalityFn());
918 bool FnHasClrFunclet =
919 MMI.hasEHFunclets() && Personality == EHPersonality::CoreCLR;
920 bool IsClrFunclet = IsFunclet && FnHasClrFunclet;
921 bool HasFP = hasFP(MF);
922 bool IsWin64CC = STI.isCallingConvWin64(Fn->getCallingConv());
923 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
924 bool NeedsWinCFI = IsWin64Prologue && Fn->needsUnwindTableEntry();
925 bool NeedsDwarfCFI =
926 !IsWin64Prologue && (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
927 unsigned FramePtr = TRI->getFrameRegister(MF);
928 const unsigned MachineFramePtr =
929 STI.isTarget64BitILP32()
930 ? getX86SubSuperRegister(FramePtr, MVT::i64, false)
931 : FramePtr;
932 unsigned BasePtr = TRI->getBaseRegister();
933
934 // Debug location must be unknown since the first debug location is used
935 // to determine the end of the prologue.
936 DebugLoc DL;
937
938 // Add RETADDR move area to callee saved frame size.
939 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
940 if (TailCallReturnAddrDelta && IsWin64Prologue)
941 report_fatal_error("Can't handle guaranteed tail call under win64 yet");
942
943 if (TailCallReturnAddrDelta < 0)
944 X86FI->setCalleeSavedFrameSize(
945 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
946
947 bool UseStackProbe = (STI.isOSWindows() && !STI.isTargetMachO());
948
949 // The default stack probe size is 4096 if the function has no stackprobesize
950 // attribute.
951 unsigned StackProbeSize = 4096;
952 if (Fn->hasFnAttribute("stack-probe-size"))
953 Fn->getFnAttribute("stack-probe-size")
954 .getValueAsString()
955 .getAsInteger(0, StackProbeSize);
956
957 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
958 // function, and use up to 128 bytes of stack space, don't have a frame
959 // pointer, calls, or dynamic alloca then we do not need to adjust the
960 // stack pointer (we fit in the Red Zone). We also check that we don't
961 // push and pop from the stack.
962 if (Is64Bit && !Fn->hasFnAttribute(Attribute::NoRedZone) &&
963 !TRI->needsStackRealignment(MF) &&
964 !MFI->hasVarSizedObjects() && // No dynamic alloca.
965 !MFI->adjustsStack() && // No calls.
966 !IsWin64CC && // Win64 has no Red Zone
967 !usesTheStack(MF) && // Don't push and pop.
968 !MF.shouldSplitStack()) { // Regular stack
969 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
970 if (HasFP) MinSize += SlotSize;
971 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
972 MFI->setStackSize(StackSize);
973 }
974
975 // Insert stack pointer adjustment for later moving of return addr. Only
976 // applies to tail call optimized functions where the callee argument stack
977 // size is bigger than the callers.
978 if (TailCallReturnAddrDelta < 0) {
979 BuildStackAdjustment(MBB, MBBI, DL, TailCallReturnAddrDelta,
980 /*InEpilogue=*/false)
981 .setMIFlag(MachineInstr::FrameSetup);
982 }
983
984 // Mapping for machine moves:
985 //
986 // DST: VirtualFP AND
987 // SRC: VirtualFP => DW_CFA_def_cfa_offset
988 // ELSE => DW_CFA_def_cfa
989 //
990 // SRC: VirtualFP AND
991 // DST: Register => DW_CFA_def_cfa_register
992 //
993 // ELSE
994 // OFFSET < 0 => DW_CFA_offset_extended_sf
995 // REG < 64 => DW_CFA_offset + Reg
996 // ELSE => DW_CFA_offset_extended
997
998 uint64_t NumBytes = 0;
999 int stackGrowth = -SlotSize;
1000
1001 // Find the funclet establisher parameter
1002 unsigned Establisher = X86::NoRegister;
1003 if (IsClrFunclet)
1004 Establisher = Uses64BitFramePtr ? X86::RCX : X86::ECX;
1005 else if (IsFunclet)
1006 Establisher = Uses64BitFramePtr ? X86::RDX : X86::EDX;
1007
1008 if (IsWin64Prologue && IsFunclet && !IsClrFunclet) {
1009 // Immediately spill establisher into the home slot.
1010 // The runtime cares about this.
1011 // MOV64mr %rdx, 16(%rsp)
1012 unsigned MOVmr = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1013 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(MOVmr)), StackPtr, true, 16)
1014 .addReg(Establisher)
1015 .setMIFlag(MachineInstr::FrameSetup);
1016 MBB.addLiveIn(Establisher);
1017 }
1018
1019 if (HasFP) {
1020 // Calculate required stack adjustment.
1021 uint64_t FrameSize = StackSize - SlotSize;
1022 // If required, include space for extra hidden slot for stashing base pointer.
1023 if (X86FI->getRestoreBasePointer())
1024 FrameSize += SlotSize;
1025
1026 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
1027
1028 // Callee-saved registers are pushed on stack before the stack is realigned.
1029 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1030 NumBytes = RoundUpToAlignment(NumBytes, MaxAlign);
1031
1032 // Get the offset of the stack slot for the EBP register, which is
1033 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
1034 // Update the frame offset adjustment.
1035 if (!IsFunclet)
1036 MFI->setOffsetAdjustment(-NumBytes);
1037 else
1038 assert(MFI->getOffsetAdjustment() == -(int)NumBytes &&
1039 "should calculate same local variable offset for funclets");
1040
1041 // Save EBP/RBP into the appropriate stack slot.
1042 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
1043 .addReg(MachineFramePtr, RegState::Kill)
1044 .setMIFlag(MachineInstr::FrameSetup);
1045
1046 if (NeedsDwarfCFI) {
1047 // Mark the place where EBP/RBP was saved.
1048 // Define the current CFA rule to use the provided offset.
1049 assert(StackSize);
1050 BuildCFI(MBB, MBBI, DL,
1051 MCCFIInstruction::createDefCfaOffset(nullptr, 2 * stackGrowth));
1052
1053 // Change the rule for the FramePtr to be an "offset" rule.
1054 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1055 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createOffset(
1056 nullptr, DwarfFramePtr, 2 * stackGrowth));
1057 }
1058
1059 if (NeedsWinCFI) {
1060 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg))
1061 .addImm(FramePtr)
1062 .setMIFlag(MachineInstr::FrameSetup);
1063 }
1064
1065 if (!IsWin64Prologue && !IsFunclet) {
1066 // Update EBP with the new base value.
1067 BuildMI(MBB, MBBI, DL,
1068 TII.get(Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr),
1069 FramePtr)
1070 .addReg(StackPtr)
1071 .setMIFlag(MachineInstr::FrameSetup);
1072
1073 if (NeedsDwarfCFI) {
1074 // Mark effective beginning of when frame pointer becomes valid.
1075 // Define the current CFA to use the EBP/RBP register.
1076 unsigned DwarfFramePtr = TRI->getDwarfRegNum(MachineFramePtr, true);
1077 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaRegister(
1078 nullptr, DwarfFramePtr));
1079 }
1080 }
1081
1082 // Mark the FramePtr as live-in in every block. Don't do this again for
1083 // funclet prologues.
1084 if (!IsFunclet) {
1085 for (MachineBasicBlock &EveryMBB : MF)
1086 EveryMBB.addLiveIn(MachineFramePtr);
1087 }
1088 } else {
1089 assert(!IsFunclet && "funclets without FPs not yet implemented");
1090 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
1091 }
1092
1093 // For EH funclets, only allocate enough space for outgoing calls. Save the
1094 // NumBytes value that we would've used for the parent frame.
1095 unsigned ParentFrameNumBytes = NumBytes;
1096 if (IsFunclet)
1097 NumBytes = getWinEHFuncletFrameSize(MF);
1098
1099 // Skip the callee-saved push instructions.
1100 bool PushedRegs = false;
1101 int StackOffset = 2 * stackGrowth;
1102
1103 while (MBBI != MBB.end() &&
1104 MBBI->getFlag(MachineInstr::FrameSetup) &&
1105 (MBBI->getOpcode() == X86::PUSH32r ||
1106 MBBI->getOpcode() == X86::PUSH64r)) {
1107 PushedRegs = true;
1108 unsigned Reg = MBBI->getOperand(0).getReg();
1109 ++MBBI;
1110
1111 if (!HasFP && NeedsDwarfCFI) {
1112 // Mark callee-saved push instruction.
1113 // Define the current CFA rule to use the provided offset.
1114 assert(StackSize);
1115 BuildCFI(MBB, MBBI, DL,
1116 MCCFIInstruction::createDefCfaOffset(nullptr, StackOffset));
1117 StackOffset += stackGrowth;
1118 }
1119
1120 if (NeedsWinCFI) {
1121 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_PushReg)).addImm(Reg).setMIFlag(
1122 MachineInstr::FrameSetup);
1123 }
1124 }
1125
1126 // Realign stack after we pushed callee-saved registers (so that we'll be
1127 // able to calculate their offsets from the frame pointer).
1128 // Don't do this for Win64, it needs to realign the stack after the prologue.
1129 if (!IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF)) {
1130 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1131 BuildStackAlignAND(MBB, MBBI, DL, StackPtr, MaxAlign);
1132 }
1133
1134 // If there is an SUB32ri of ESP immediately before this instruction, merge
1135 // the two. This can be the case when tail call elimination is enabled and
1136 // the callee has more arguments then the caller.
1137 NumBytes -= mergeSPUpdates(MBB, MBBI, true);
1138
1139 // Adjust stack pointer: ESP -= numbytes.
1140
1141 // Windows and cygwin/mingw require a prologue helper routine when allocating
1142 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
1143 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
1144 // stack and adjust the stack pointer in one go. The 64-bit version of
1145 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
1146 // responsible for adjusting the stack pointer. Touching the stack at 4K
1147 // increments is necessary to ensure that the guard pages used by the OS
1148 // virtual memory manager are allocated in correct sequence.
1149 uint64_t AlignedNumBytes = NumBytes;
1150 if (IsWin64Prologue && !IsFunclet && TRI->needsStackRealignment(MF))
1151 AlignedNumBytes = RoundUpToAlignment(AlignedNumBytes, MaxAlign);
1152 if (AlignedNumBytes >= StackProbeSize && UseStackProbe) {
1153 // Check whether EAX is livein for this function.
1154 bool isEAXAlive = isEAXLiveIn(MF);
1155
1156 if (isEAXAlive) {
1157 // Sanity check that EAX is not livein for this function.
1158 // It should not be, so throw an assert.
1159 assert(!Is64Bit && "EAX is livein in x64 case!");
1160
1161 // Save EAX
1162 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
1163 .addReg(X86::EAX, RegState::Kill)
1164 .setMIFlag(MachineInstr::FrameSetup);
1165 }
1166
1167 if (Is64Bit) {
1168 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
1169 // Function prologue is responsible for adjusting the stack pointer.
1170 if (isUInt<32>(NumBytes)) {
1171 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1172 .addImm(NumBytes)
1173 .setMIFlag(MachineInstr::FrameSetup);
1174 } else if (isInt<32>(NumBytes)) {
1175 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri32), X86::RAX)
1176 .addImm(NumBytes)
1177 .setMIFlag(MachineInstr::FrameSetup);
1178 } else {
1179 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
1180 .addImm(NumBytes)
1181 .setMIFlag(MachineInstr::FrameSetup);
1182 }
1183 } else {
1184 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
1185 // We'll also use 4 already allocated bytes for EAX.
1186 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
1187 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
1188 .setMIFlag(MachineInstr::FrameSetup);
1189 }
1190
1191 // Call __chkstk, __chkstk_ms, or __alloca.
1192 emitStackProbe(MF, MBB, MBBI, DL, true);
1193
1194 if (isEAXAlive) {
1195 // Restore EAX
1196 MachineInstr *MI =
1197 addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm), X86::EAX),
1198 StackPtr, false, NumBytes - 4);
1199 MI->setFlag(MachineInstr::FrameSetup);
1200 MBB.insert(MBBI, MI);
1201 }
1202 } else if (NumBytes) {
1203 emitSPUpdate(MBB, MBBI, -(int64_t)NumBytes, /*InEpilogue=*/false);
1204 }
1205
1206 if (NeedsWinCFI && NumBytes)
1207 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_StackAlloc))
1208 .addImm(NumBytes)
1209 .setMIFlag(MachineInstr::FrameSetup);
1210
1211 int SEHFrameOffset = 0;
1212 unsigned SPOrEstablisher;
1213 if (IsFunclet) {
1214 if (IsClrFunclet) {
1215 // The establisher parameter passed to a CLR funclet is actually a pointer
1216 // to the (mostly empty) frame of its nearest enclosing funclet; we have
1217 // to find the root function establisher frame by loading the PSPSym from
1218 // the intermediate frame.
1219 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1220 MachinePointerInfo NoInfo;
1221 MBB.addLiveIn(Establisher);
1222 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rm), Establisher),
1223 Establisher, false, PSPSlotOffset)
1224 .addMemOperand(MF.getMachineMemOperand(
1225 NoInfo, MachineMemOperand::MOLoad, SlotSize, SlotSize));
1226 ;
1227 // Save the root establisher back into the current funclet's (mostly
1228 // empty) frame, in case a sub-funclet or the GC needs it.
1229 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr,
1230 false, PSPSlotOffset)
1231 .addReg(Establisher)
1232 .addMemOperand(
1233 MF.getMachineMemOperand(NoInfo, MachineMemOperand::MOStore |
1234 MachineMemOperand::MOVolatile,
1235 SlotSize, SlotSize));
1236 }
1237 SPOrEstablisher = Establisher;
1238 } else {
1239 SPOrEstablisher = StackPtr;
1240 }
1241
1242 if (IsWin64Prologue && HasFP) {
1243 // Set RBP to a small fixed offset from RSP. In the funclet case, we base
1244 // this calculation on the incoming establisher, which holds the value of
1245 // RSP from the parent frame at the end of the prologue.
1246 SEHFrameOffset = calculateSetFPREG(ParentFrameNumBytes);
1247 if (SEHFrameOffset)
1248 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA64r), FramePtr),
1249 SPOrEstablisher, false, SEHFrameOffset);
1250 else
1251 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64rr), FramePtr)
1252 .addReg(SPOrEstablisher);
1253
1254 // If this is not a funclet, emit the CFI describing our frame pointer.
1255 if (NeedsWinCFI && !IsFunclet) {
1256 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SetFrame))
1257 .addImm(FramePtr)
1258 .addImm(SEHFrameOffset)
1259 .setMIFlag(MachineInstr::FrameSetup);
1260 if (isAsynchronousEHPersonality(Personality))
1261 MF.getWinEHFuncInfo()->SEHSetFrameOffset = SEHFrameOffset;
1262 }
1263 } else if (IsFunclet && STI.is32Bit()) {
1264 // Reset EBP / ESI to something good for funclets.
1265 MBBI = restoreWin32EHStackPointers(MBB, MBBI, DL);
1266 // If we're a catch funclet, we can be returned to via catchret. Save ESP
1267 // into the registration node so that the runtime will restore it for us.
1268 if (!MBB.isCleanupFuncletEntry()) {
1269 assert(Personality == EHPersonality::MSVC_CXX);
1270 unsigned FrameReg;
1271 int FI = MF.getWinEHFuncInfo()->EHRegNodeFrameIndex;
1272 int64_t EHRegOffset = getFrameIndexReference(MF, FI, FrameReg);
1273 // ESP is the first field, so no extra displacement is needed.
1274 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32mr)), FrameReg,
1275 false, EHRegOffset)
1276 .addReg(X86::ESP);
1277 }
1278 }
1279
1280 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) {
1281 const MachineInstr *FrameInstr = &*MBBI;
1282 ++MBBI;
1283
1284 if (NeedsWinCFI) {
1285 int FI;
1286 if (unsigned Reg = TII.isStoreToStackSlot(FrameInstr, FI)) {
1287 if (X86::FR64RegClass.contains(Reg)) {
1288 unsigned IgnoredFrameReg;
1289 int Offset = getFrameIndexReference(MF, FI, IgnoredFrameReg);
1290 Offset += SEHFrameOffset;
1291
1292 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_SaveXMM))
1293 .addImm(Reg)
1294 .addImm(Offset)
1295 .setMIFlag(MachineInstr::FrameSetup);
1296 }
1297 }
1298 }
1299 }
1300
1301 if (NeedsWinCFI)
1302 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_EndPrologue))
1303 .setMIFlag(MachineInstr::FrameSetup);
1304
1305 if (FnHasClrFunclet && !IsFunclet) {
1306 // Save the so-called Initial-SP (i.e. the value of the stack pointer
1307 // immediately after the prolog) into the PSPSlot so that funclets
1308 // and the GC can recover it.
1309 unsigned PSPSlotOffset = getPSPSlotOffsetFromSP(MF);
1310 auto PSPInfo = MachinePointerInfo::getFixedStack(
1311 MF, MF.getWinEHFuncInfo()->PSPSymFrameIdx);
1312 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mr)), StackPtr, false,
1313 PSPSlotOffset)
1314 .addReg(StackPtr)
1315 .addMemOperand(MF.getMachineMemOperand(
1316 PSPInfo, MachineMemOperand::MOStore | MachineMemOperand::MOVolatile,
1317 SlotSize, SlotSize));
1318 }
1319
1320 // Realign stack after we spilled callee-saved registers (so that we'll be
1321 // able to calculate their offsets from the frame pointer).
1322 // Win64 requires aligning the stack after the prologue.
1323 if (IsWin64Prologue && TRI->needsStackRealignment(MF)) {
1324 assert(HasFP && "There should be a frame pointer if stack is realigned.");
1325 BuildStackAlignAND(MBB, MBBI, DL, SPOrEstablisher, MaxAlign);
1326 }
1327
1328 // We already dealt with stack realignment and funclets above.
1329 if (IsFunclet && STI.is32Bit())
1330 return;
1331
1332 // If we need a base pointer, set it up here. It's whatever the value
1333 // of the stack pointer is at this point. Any variable size objects
1334 // will be allocated after this, so we can still use the base pointer
1335 // to reference locals.
1336 if (TRI->hasBasePointer(MF)) {
1337 // Update the base pointer with the current stack pointer.
1338 unsigned Opc = Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr;
1339 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
1340 .addReg(SPOrEstablisher)
1341 .setMIFlag(MachineInstr::FrameSetup);
1342 if (X86FI->getRestoreBasePointer()) {
1343 // Stash value of base pointer. Saving RSP instead of EBP shortens
1344 // dependence chain. Used by SjLj EH.
1345 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1346 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)),
1347 FramePtr, true, X86FI->getRestoreBasePointerOffset())
1348 .addReg(SPOrEstablisher)
1349 .setMIFlag(MachineInstr::FrameSetup);
1350 }
1351
1352 if (X86FI->getHasSEHFramePtrSave() && !IsFunclet) {
1353 // Stash the value of the frame pointer relative to the base pointer for
1354 // Win32 EH. This supports Win32 EH, which does the inverse of the above:
1355 // it recovers the frame pointer from the base pointer rather than the
1356 // other way around.
1357 unsigned Opm = Uses64BitFramePtr ? X86::MOV64mr : X86::MOV32mr;
1358 unsigned UsedReg;
1359 int Offset =
1360 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
1361 assert(UsedReg == BasePtr);
1362 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opm)), UsedReg, true, Offset)
1363 .addReg(FramePtr)
1364 .setMIFlag(MachineInstr::FrameSetup);
1365 }
1366 }
1367
1368 if (((!HasFP && NumBytes) || PushedRegs) && NeedsDwarfCFI) {
1369 // Mark end of stack pointer adjustment.
1370 if (!HasFP && NumBytes) {
1371 // Define the current CFA rule to use the provided offset.
1372 assert(StackSize);
1373 BuildCFI(MBB, MBBI, DL, MCCFIInstruction::createDefCfaOffset(
1374 nullptr, -StackSize + stackGrowth));
1375 }
1376
1377 // Emit DWARF info specifying the offsets of the callee-saved registers.
1378 if (PushedRegs)
1379 emitCalleeSavedFrameMoves(MBB, MBBI, DL);
1380 }
1381 }
1382
canUseLEAForSPInEpilogue(const MachineFunction & MF) const1383 bool X86FrameLowering::canUseLEAForSPInEpilogue(
1384 const MachineFunction &MF) const {
1385 // We can't use LEA instructions for adjusting the stack pointer if this is a
1386 // leaf function in the Win64 ABI. Only ADD instructions may be used to
1387 // deallocate the stack.
1388 // This means that we can use LEA for SP in two situations:
1389 // 1. We *aren't* using the Win64 ABI which means we are free to use LEA.
1390 // 2. We *have* a frame pointer which means we are permitted to use LEA.
1391 return !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() || hasFP(MF);
1392 }
1393
isFuncletReturnInstr(MachineInstr * MI)1394 static bool isFuncletReturnInstr(MachineInstr *MI) {
1395 switch (MI->getOpcode()) {
1396 case X86::CATCHRET:
1397 case X86::CLEANUPRET:
1398 return true;
1399 default:
1400 return false;
1401 }
1402 llvm_unreachable("impossible");
1403 }
1404
1405 // CLR funclets use a special "Previous Stack Pointer Symbol" slot on the
1406 // stack. It holds a pointer to the bottom of the root function frame. The
1407 // establisher frame pointer passed to a nested funclet may point to the
1408 // (mostly empty) frame of its parent funclet, but it will need to find
1409 // the frame of the root function to access locals. To facilitate this,
1410 // every funclet copies the pointer to the bottom of the root function
1411 // frame into a PSPSym slot in its own (mostly empty) stack frame. Using the
1412 // same offset for the PSPSym in the root function frame that's used in the
1413 // funclets' frames allows each funclet to dynamically accept any ancestor
1414 // frame as its establisher argument (the runtime doesn't guarantee the
1415 // immediate parent for some reason lost to history), and also allows the GC,
1416 // which uses the PSPSym for some bookkeeping, to find it in any funclet's
1417 // frame with only a single offset reported for the entire method.
1418 unsigned
getPSPSlotOffsetFromSP(const MachineFunction & MF) const1419 X86FrameLowering::getPSPSlotOffsetFromSP(const MachineFunction &MF) const {
1420 const WinEHFuncInfo &Info = *MF.getWinEHFuncInfo();
1421 // getFrameIndexReferenceFromSP has an out ref parameter for the stack
1422 // pointer register; pass a dummy that we ignore
1423 unsigned SPReg;
1424 int Offset = getFrameIndexReferenceFromSP(MF, Info.PSPSymFrameIdx, SPReg);
1425 assert(Offset >= 0);
1426 return static_cast<unsigned>(Offset);
1427 }
1428
1429 unsigned
getWinEHFuncletFrameSize(const MachineFunction & MF) const1430 X86FrameLowering::getWinEHFuncletFrameSize(const MachineFunction &MF) const {
1431 // This is the size of the pushed CSRs.
1432 unsigned CSSize =
1433 MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
1434 // This is the amount of stack a funclet needs to allocate.
1435 unsigned UsedSize;
1436 EHPersonality Personality =
1437 classifyEHPersonality(MF.getFunction()->getPersonalityFn());
1438 if (Personality == EHPersonality::CoreCLR) {
1439 // CLR funclets need to hold enough space to include the PSPSym, at the
1440 // same offset from the stack pointer (immediately after the prolog) as it
1441 // resides at in the main function.
1442 UsedSize = getPSPSlotOffsetFromSP(MF) + SlotSize;
1443 } else {
1444 // Other funclets just need enough stack for outgoing call arguments.
1445 UsedSize = MF.getFrameInfo()->getMaxCallFrameSize();
1446 }
1447 // RBP is not included in the callee saved register block. After pushing RBP,
1448 // everything is 16 byte aligned. Everything we allocate before an outgoing
1449 // call must also be 16 byte aligned.
1450 unsigned FrameSizeMinusRBP =
1451 RoundUpToAlignment(CSSize + UsedSize, getStackAlignment());
1452 // Subtract out the size of the callee saved registers. This is how much stack
1453 // each funclet will allocate.
1454 return FrameSizeMinusRBP - CSSize;
1455 }
1456
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const1457 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
1458 MachineBasicBlock &MBB) const {
1459 const MachineFrameInfo *MFI = MF.getFrameInfo();
1460 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1461 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
1462 DebugLoc DL;
1463 if (MBBI != MBB.end())
1464 DL = MBBI->getDebugLoc();
1465 // standard x86_64 and NaCl use 64-bit frame/stack pointers, x32 - 32-bit.
1466 const bool Is64BitILP32 = STI.isTarget64BitILP32();
1467 unsigned FramePtr = TRI->getFrameRegister(MF);
1468 unsigned MachineFramePtr =
1469 Is64BitILP32 ? getX86SubSuperRegister(FramePtr, MVT::i64, false)
1470 : FramePtr;
1471
1472 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1473 bool NeedsWinCFI =
1474 IsWin64Prologue && MF.getFunction()->needsUnwindTableEntry();
1475 bool IsFunclet = isFuncletReturnInstr(MBBI);
1476 MachineBasicBlock *TargetMBB = nullptr;
1477
1478 // Get the number of bytes to allocate from the FrameInfo.
1479 uint64_t StackSize = MFI->getStackSize();
1480 uint64_t MaxAlign = calculateMaxStackAlign(MF);
1481 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1482 uint64_t NumBytes = 0;
1483
1484 if (MBBI->getOpcode() == X86::CATCHRET) {
1485 // SEH shouldn't use catchret.
1486 assert(!isAsynchronousEHPersonality(
1487 classifyEHPersonality(MF.getFunction()->getPersonalityFn())) &&
1488 "SEH should not use CATCHRET");
1489
1490 NumBytes = getWinEHFuncletFrameSize(MF);
1491 assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1492 TargetMBB = MBBI->getOperand(0).getMBB();
1493
1494 // Pop EBP.
1495 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1496 MachineFramePtr)
1497 .setMIFlag(MachineInstr::FrameDestroy);
1498 } else if (MBBI->getOpcode() == X86::CLEANUPRET) {
1499 NumBytes = getWinEHFuncletFrameSize(MF);
1500 assert(hasFP(MF) && "EH funclets without FP not yet implemented");
1501 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::POP64r : X86::POP32r),
1502 MachineFramePtr)
1503 .setMIFlag(MachineInstr::FrameDestroy);
1504 } else if (hasFP(MF)) {
1505 // Calculate required stack adjustment.
1506 uint64_t FrameSize = StackSize - SlotSize;
1507 NumBytes = FrameSize - CSSize;
1508
1509 // Callee-saved registers were pushed on stack before the stack was
1510 // realigned.
1511 if (TRI->needsStackRealignment(MF) && !IsWin64Prologue)
1512 NumBytes = RoundUpToAlignment(FrameSize, MaxAlign);
1513
1514 // Pop EBP.
1515 BuildMI(MBB, MBBI, DL,
1516 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), MachineFramePtr)
1517 .setMIFlag(MachineInstr::FrameDestroy);
1518 } else {
1519 NumBytes = StackSize - CSSize;
1520 }
1521 uint64_t SEHStackAllocAmt = NumBytes;
1522
1523 // Skip the callee-saved pop instructions.
1524 while (MBBI != MBB.begin()) {
1525 MachineBasicBlock::iterator PI = std::prev(MBBI);
1526 unsigned Opc = PI->getOpcode();
1527
1528 if ((Opc != X86::POP32r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1529 (Opc != X86::POP64r || !PI->getFlag(MachineInstr::FrameDestroy)) &&
1530 Opc != X86::DBG_VALUE && !PI->isTerminator())
1531 break;
1532
1533 --MBBI;
1534 }
1535 MachineBasicBlock::iterator FirstCSPop = MBBI;
1536
1537 if (TargetMBB) {
1538 // Fill EAX/RAX with the address of the target block.
1539 unsigned ReturnReg = STI.is64Bit() ? X86::RAX : X86::EAX;
1540 if (STI.is64Bit()) {
1541 // LEA64r TargetMBB(%rip), %rax
1542 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::LEA64r), ReturnReg)
1543 .addReg(X86::RIP)
1544 .addImm(0)
1545 .addReg(0)
1546 .addMBB(TargetMBB)
1547 .addReg(0);
1548 } else {
1549 // MOV32ri $TargetMBB, %eax
1550 BuildMI(MBB, FirstCSPop, DL, TII.get(X86::MOV32ri), ReturnReg)
1551 .addMBB(TargetMBB);
1552 }
1553 // Record that we've taken the address of TargetMBB and no longer just
1554 // reference it in a terminator.
1555 TargetMBB->setHasAddressTaken();
1556 }
1557
1558 if (MBBI != MBB.end())
1559 DL = MBBI->getDebugLoc();
1560
1561 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1562 // instruction, merge the two instructions.
1563 if (NumBytes || MFI->hasVarSizedObjects())
1564 NumBytes += mergeSPUpdates(MBB, MBBI, true);
1565
1566 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1567 // slot before popping them off! Same applies for the case, when stack was
1568 // realigned. Don't do this if this was a funclet epilogue, since the funclets
1569 // will not do realignment or dynamic stack allocation.
1570 if ((TRI->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) &&
1571 !IsFunclet) {
1572 if (TRI->needsStackRealignment(MF))
1573 MBBI = FirstCSPop;
1574 unsigned SEHFrameOffset = calculateSetFPREG(SEHStackAllocAmt);
1575 uint64_t LEAAmount =
1576 IsWin64Prologue ? SEHStackAllocAmt - SEHFrameOffset : -CSSize;
1577
1578 // There are only two legal forms of epilogue:
1579 // - add SEHAllocationSize, %rsp
1580 // - lea SEHAllocationSize(%FramePtr), %rsp
1581 //
1582 // 'mov %FramePtr, %rsp' will not be recognized as an epilogue sequence.
1583 // However, we may use this sequence if we have a frame pointer because the
1584 // effects of the prologue can safely be undone.
1585 if (LEAAmount != 0) {
1586 unsigned Opc = getLEArOpcode(Uses64BitFramePtr);
1587 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1588 FramePtr, false, LEAAmount);
1589 --MBBI;
1590 } else {
1591 unsigned Opc = (Uses64BitFramePtr ? X86::MOV64rr : X86::MOV32rr);
1592 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1593 .addReg(FramePtr);
1594 --MBBI;
1595 }
1596 } else if (NumBytes) {
1597 // Adjust stack pointer back: ESP += numbytes.
1598 emitSPUpdate(MBB, MBBI, NumBytes, /*InEpilogue=*/true);
1599 --MBBI;
1600 }
1601
1602 // Windows unwinder will not invoke function's exception handler if IP is
1603 // either in prologue or in epilogue. This behavior causes a problem when a
1604 // call immediately precedes an epilogue, because the return address points
1605 // into the epilogue. To cope with that, we insert an epilogue marker here,
1606 // then replace it with a 'nop' if it ends up immediately after a CALL in the
1607 // final emitted code.
1608 if (NeedsWinCFI)
1609 BuildMI(MBB, MBBI, DL, TII.get(X86::SEH_Epilogue));
1610
1611 // Add the return addr area delta back since we are not tail calling.
1612 int Offset = -1 * X86FI->getTCReturnAddrDelta();
1613 assert(Offset >= 0 && "TCDelta should never be positive");
1614 if (Offset) {
1615 MBBI = MBB.getFirstTerminator();
1616
1617 // Check for possible merge with preceding ADD instruction.
1618 Offset += mergeSPUpdates(MBB, MBBI, true);
1619 emitSPUpdate(MBB, MBBI, Offset, /*InEpilogue=*/true);
1620 }
1621 }
1622
1623 // NOTE: this only has a subset of the full frame index logic. In
1624 // particular, the FI < 0 and AfterFPPop logic is handled in
1625 // X86RegisterInfo::eliminateFrameIndex, but not here. Possibly
1626 // (probably?) it should be moved into here.
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1627 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1628 unsigned &FrameReg) const {
1629 const MachineFrameInfo *MFI = MF.getFrameInfo();
1630
1631 // We can't calculate offset from frame pointer if the stack is realigned,
1632 // so enforce usage of stack/base pointer. The base pointer is used when we
1633 // have dynamic allocas in addition to dynamic realignment.
1634 if (TRI->hasBasePointer(MF))
1635 FrameReg = TRI->getBaseRegister();
1636 else if (TRI->needsStackRealignment(MF))
1637 FrameReg = TRI->getStackRegister();
1638 else
1639 FrameReg = TRI->getFrameRegister(MF);
1640
1641 // Offset will hold the offset from the stack pointer at function entry to the
1642 // object.
1643 // We need to factor in additional offsets applied during the prologue to the
1644 // frame, base, and stack pointer depending on which is used.
1645 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1646 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1647 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1648 uint64_t StackSize = MFI->getStackSize();
1649 bool HasFP = hasFP(MF);
1650 bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
1651 int64_t FPDelta = 0;
1652
1653 if (IsWin64Prologue) {
1654 assert(!MFI->hasCalls() || (StackSize % 16) == 8);
1655
1656 // Calculate required stack adjustment.
1657 uint64_t FrameSize = StackSize - SlotSize;
1658 // If required, include space for extra hidden slot for stashing base pointer.
1659 if (X86FI->getRestoreBasePointer())
1660 FrameSize += SlotSize;
1661 uint64_t NumBytes = FrameSize - CSSize;
1662
1663 uint64_t SEHFrameOffset = calculateSetFPREG(NumBytes);
1664 if (FI && FI == X86FI->getFAIndex())
1665 return -SEHFrameOffset;
1666
1667 // FPDelta is the offset from the "traditional" FP location of the old base
1668 // pointer followed by return address and the location required by the
1669 // restricted Win64 prologue.
1670 // Add FPDelta to all offsets below that go through the frame pointer.
1671 FPDelta = FrameSize - SEHFrameOffset;
1672 assert((!MFI->hasCalls() || (FPDelta % 16) == 0) &&
1673 "FPDelta isn't aligned per the Win64 ABI!");
1674 }
1675
1676
1677 if (TRI->hasBasePointer(MF)) {
1678 assert(HasFP && "VLAs and dynamic stack realign, but no FP?!");
1679 if (FI < 0) {
1680 // Skip the saved EBP.
1681 return Offset + SlotSize + FPDelta;
1682 } else {
1683 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1684 return Offset + StackSize;
1685 }
1686 } else if (TRI->needsStackRealignment(MF)) {
1687 if (FI < 0) {
1688 // Skip the saved EBP.
1689 return Offset + SlotSize + FPDelta;
1690 } else {
1691 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1692 return Offset + StackSize;
1693 }
1694 // FIXME: Support tail calls
1695 } else {
1696 if (!HasFP)
1697 return Offset + StackSize;
1698
1699 // Skip the saved EBP.
1700 Offset += SlotSize;
1701
1702 // Skip the RETADDR move area
1703 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1704 if (TailCallReturnAddrDelta < 0)
1705 Offset -= TailCallReturnAddrDelta;
1706 }
1707
1708 return Offset + FPDelta;
1709 }
1710
1711 // Simplified from getFrameIndexReference keeping only StackPointer cases
getFrameIndexReferenceFromSP(const MachineFunction & MF,int FI,unsigned & FrameReg) const1712 int X86FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF,
1713 int FI,
1714 unsigned &FrameReg) const {
1715 const MachineFrameInfo *MFI = MF.getFrameInfo();
1716 // Does not include any dynamic realign.
1717 const uint64_t StackSize = MFI->getStackSize();
1718 {
1719 #ifndef NDEBUG
1720 // LLVM arranges the stack as follows:
1721 // ...
1722 // ARG2
1723 // ARG1
1724 // RETADDR
1725 // PUSH RBP <-- RBP points here
1726 // PUSH CSRs
1727 // ~~~~~~~ <-- possible stack realignment (non-win64)
1728 // ...
1729 // STACK OBJECTS
1730 // ... <-- RSP after prologue points here
1731 // ~~~~~~~ <-- possible stack realignment (win64)
1732 //
1733 // if (hasVarSizedObjects()):
1734 // ... <-- "base pointer" (ESI/RBX) points here
1735 // DYNAMIC ALLOCAS
1736 // ... <-- RSP points here
1737 //
1738 // Case 1: In the simple case of no stack realignment and no dynamic
1739 // allocas, both "fixed" stack objects (arguments and CSRs) are addressable
1740 // with fixed offsets from RSP.
1741 //
1742 // Case 2: In the case of stack realignment with no dynamic allocas, fixed
1743 // stack objects are addressed with RBP and regular stack objects with RSP.
1744 //
1745 // Case 3: In the case of dynamic allocas and stack realignment, RSP is used
1746 // to address stack arguments for outgoing calls and nothing else. The "base
1747 // pointer" points to local variables, and RBP points to fixed objects.
1748 //
1749 // In cases 2 and 3, we can only answer for non-fixed stack objects, and the
1750 // answer we give is relative to the SP after the prologue, and not the
1751 // SP in the middle of the function.
1752
1753 assert((!MFI->isFixedObjectIndex(FI) || !TRI->needsStackRealignment(MF) ||
1754 STI.isTargetWin64()) &&
1755 "offset from fixed object to SP is not static");
1756
1757 // We don't handle tail calls, and shouldn't be seeing them either.
1758 int TailCallReturnAddrDelta =
1759 MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta();
1760 assert(!(TailCallReturnAddrDelta < 0) && "we don't handle this case!");
1761 #endif
1762 }
1763
1764 // Fill in FrameReg output argument.
1765 FrameReg = TRI->getStackRegister();
1766
1767 // This is how the math works out:
1768 //
1769 // %rsp grows (i.e. gets lower) left to right. Each box below is
1770 // one word (eight bytes). Obj0 is the stack slot we're trying to
1771 // get to.
1772 //
1773 // ----------------------------------
1774 // | BP | Obj0 | Obj1 | ... | ObjN |
1775 // ----------------------------------
1776 // ^ ^ ^ ^
1777 // A B C E
1778 //
1779 // A is the incoming stack pointer.
1780 // (B - A) is the local area offset (-8 for x86-64) [1]
1781 // (C - A) is the Offset returned by MFI->getObjectOffset for Obj0 [2]
1782 //
1783 // |(E - B)| is the StackSize (absolute value, positive). For a
1784 // stack that grown down, this works out to be (B - E). [3]
1785 //
1786 // E is also the value of %rsp after stack has been set up, and we
1787 // want (C - E) -- the value we can add to %rsp to get to Obj0. Now
1788 // (C - E) == (C - A) - (B - A) + (B - E)
1789 // { Using [1], [2] and [3] above }
1790 // == getObjectOffset - LocalAreaOffset + StackSize
1791 //
1792
1793 // Get the Offset from the StackPointer
1794 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1795
1796 return Offset + StackSize;
1797 }
1798
assignCalleeSavedSpillSlots(MachineFunction & MF,const TargetRegisterInfo * TRI,std::vector<CalleeSavedInfo> & CSI) const1799 bool X86FrameLowering::assignCalleeSavedSpillSlots(
1800 MachineFunction &MF, const TargetRegisterInfo *TRI,
1801 std::vector<CalleeSavedInfo> &CSI) const {
1802 MachineFrameInfo *MFI = MF.getFrameInfo();
1803 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1804
1805 unsigned CalleeSavedFrameSize = 0;
1806 int SpillSlotOffset = getOffsetOfLocalArea() + X86FI->getTCReturnAddrDelta();
1807
1808 if (hasFP(MF)) {
1809 // emitPrologue always spills frame register the first thing.
1810 SpillSlotOffset -= SlotSize;
1811 MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1812
1813 // Since emitPrologue and emitEpilogue will handle spilling and restoring of
1814 // the frame register, we can delete it from CSI list and not have to worry
1815 // about avoiding it later.
1816 unsigned FPReg = TRI->getFrameRegister(MF);
1817 for (unsigned i = 0; i < CSI.size(); ++i) {
1818 if (TRI->regsOverlap(CSI[i].getReg(),FPReg)) {
1819 CSI.erase(CSI.begin() + i);
1820 break;
1821 }
1822 }
1823 }
1824
1825 // Assign slots for GPRs. It increases frame size.
1826 for (unsigned i = CSI.size(); i != 0; --i) {
1827 unsigned Reg = CSI[i - 1].getReg();
1828
1829 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1830 continue;
1831
1832 SpillSlotOffset -= SlotSize;
1833 CalleeSavedFrameSize += SlotSize;
1834
1835 int SlotIndex = MFI->CreateFixedSpillStackObject(SlotSize, SpillSlotOffset);
1836 CSI[i - 1].setFrameIdx(SlotIndex);
1837 }
1838
1839 X86FI->setCalleeSavedFrameSize(CalleeSavedFrameSize);
1840
1841 // Assign slots for XMMs.
1842 for (unsigned i = CSI.size(); i != 0; --i) {
1843 unsigned Reg = CSI[i - 1].getReg();
1844 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1845 continue;
1846
1847 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1848 // ensure alignment
1849 SpillSlotOffset -= std::abs(SpillSlotOffset) % RC->getAlignment();
1850 // spill into slot
1851 SpillSlotOffset -= RC->getSize();
1852 int SlotIndex =
1853 MFI->CreateFixedSpillStackObject(RC->getSize(), SpillSlotOffset);
1854 CSI[i - 1].setFrameIdx(SlotIndex);
1855 MFI->ensureMaxAlignment(RC->getAlignment());
1856 }
1857
1858 return true;
1859 }
1860
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1861 bool X86FrameLowering::spillCalleeSavedRegisters(
1862 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1863 const std::vector<CalleeSavedInfo> &CSI,
1864 const TargetRegisterInfo *TRI) const {
1865 DebugLoc DL = MBB.findDebugLoc(MI);
1866
1867 // Don't save CSRs in 32-bit EH funclets. The caller saves EBX, EBP, ESI, EDI
1868 // for us, and there are no XMM CSRs on Win32.
1869 if (MBB.isEHFuncletEntry() && STI.is32Bit() && STI.isOSWindows())
1870 return true;
1871
1872 // Push GPRs. It increases frame size.
1873 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1874 for (unsigned i = CSI.size(); i != 0; --i) {
1875 unsigned Reg = CSI[i - 1].getReg();
1876
1877 if (!X86::GR64RegClass.contains(Reg) && !X86::GR32RegClass.contains(Reg))
1878 continue;
1879 // Add the callee-saved register as live-in. It's killed at the spill.
1880 MBB.addLiveIn(Reg);
1881
1882 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1883 .setMIFlag(MachineInstr::FrameSetup);
1884 }
1885
1886 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1887 // It can be done by spilling XMMs to stack frame.
1888 for (unsigned i = CSI.size(); i != 0; --i) {
1889 unsigned Reg = CSI[i-1].getReg();
1890 if (X86::GR64RegClass.contains(Reg) || X86::GR32RegClass.contains(Reg))
1891 continue;
1892 // Add the callee-saved register as live-in. It's killed at the spill.
1893 MBB.addLiveIn(Reg);
1894 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1895
1896 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i - 1].getFrameIdx(), RC,
1897 TRI);
1898 --MI;
1899 MI->setFlag(MachineInstr::FrameSetup);
1900 ++MI;
1901 }
1902
1903 return true;
1904 }
1905
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1906 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1907 MachineBasicBlock::iterator MI,
1908 const std::vector<CalleeSavedInfo> &CSI,
1909 const TargetRegisterInfo *TRI) const {
1910 if (CSI.empty())
1911 return false;
1912
1913 if (isFuncletReturnInstr(MI) && STI.isOSWindows()) {
1914 // Don't restore CSRs in 32-bit EH funclets. Matches
1915 // spillCalleeSavedRegisters.
1916 if (STI.is32Bit())
1917 return true;
1918 // Don't restore CSRs before an SEH catchret. SEH except blocks do not form
1919 // funclets. emitEpilogue transforms these to normal jumps.
1920 if (MI->getOpcode() == X86::CATCHRET) {
1921 const Function *Func = MBB.getParent()->getFunction();
1922 bool IsSEH = isAsynchronousEHPersonality(
1923 classifyEHPersonality(Func->getPersonalityFn()));
1924 if (IsSEH)
1925 return true;
1926 }
1927 }
1928
1929 DebugLoc DL = MBB.findDebugLoc(MI);
1930
1931 // Reload XMMs from stack frame.
1932 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1933 unsigned Reg = CSI[i].getReg();
1934 if (X86::GR64RegClass.contains(Reg) ||
1935 X86::GR32RegClass.contains(Reg))
1936 continue;
1937
1938 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1939 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(), RC, TRI);
1940 }
1941
1942 // POP GPRs.
1943 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1944 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1945 unsigned Reg = CSI[i].getReg();
1946 if (!X86::GR64RegClass.contains(Reg) &&
1947 !X86::GR32RegClass.contains(Reg))
1948 continue;
1949
1950 BuildMI(MBB, MI, DL, TII.get(Opc), Reg)
1951 .setMIFlag(MachineInstr::FrameDestroy);
1952 }
1953 return true;
1954 }
1955
determineCalleeSaves(MachineFunction & MF,BitVector & SavedRegs,RegScavenger * RS) const1956 void X86FrameLowering::determineCalleeSaves(MachineFunction &MF,
1957 BitVector &SavedRegs,
1958 RegScavenger *RS) const {
1959 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1960
1961 MachineFrameInfo *MFI = MF.getFrameInfo();
1962
1963 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1964 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1965
1966 if (TailCallReturnAddrDelta < 0) {
1967 // create RETURNADDR area
1968 // arg
1969 // arg
1970 // RETADDR
1971 // { ...
1972 // RETADDR area
1973 // ...
1974 // }
1975 // [EBP]
1976 MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1977 TailCallReturnAddrDelta - SlotSize, true);
1978 }
1979
1980 // Spill the BasePtr if it's used.
1981 if (TRI->hasBasePointer(MF)) {
1982 SavedRegs.set(TRI->getBaseRegister());
1983
1984 // Allocate a spill slot for EBP if we have a base pointer and EH funclets.
1985 if (MF.getMMI().hasEHFunclets()) {
1986 int FI = MFI->CreateSpillStackObject(SlotSize, SlotSize);
1987 X86FI->setHasSEHFramePtrSave(true);
1988 X86FI->setSEHFramePtrSaveIndex(FI);
1989 }
1990 }
1991 }
1992
1993 static bool
HasNestArgument(const MachineFunction * MF)1994 HasNestArgument(const MachineFunction *MF) {
1995 const Function *F = MF->getFunction();
1996 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1997 I != E; I++) {
1998 if (I->hasNestAttr())
1999 return true;
2000 }
2001 return false;
2002 }
2003
2004 /// GetScratchRegister - Get a temp register for performing work in the
2005 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
2006 /// and the properties of the function either one or two registers will be
2007 /// needed. Set primary to true for the first register, false for the second.
2008 static unsigned
GetScratchRegister(bool Is64Bit,bool IsLP64,const MachineFunction & MF,bool Primary)2009 GetScratchRegister(bool Is64Bit, bool IsLP64, const MachineFunction &MF, bool Primary) {
2010 CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
2011
2012 // Erlang stuff.
2013 if (CallingConvention == CallingConv::HiPE) {
2014 if (Is64Bit)
2015 return Primary ? X86::R14 : X86::R13;
2016 else
2017 return Primary ? X86::EBX : X86::EDI;
2018 }
2019
2020 if (Is64Bit) {
2021 if (IsLP64)
2022 return Primary ? X86::R11 : X86::R12;
2023 else
2024 return Primary ? X86::R11D : X86::R12D;
2025 }
2026
2027 bool IsNested = HasNestArgument(&MF);
2028
2029 if (CallingConvention == CallingConv::X86_FastCall ||
2030 CallingConvention == CallingConv::Fast) {
2031 if (IsNested)
2032 report_fatal_error("Segmented stacks does not support fastcall with "
2033 "nested function.");
2034 return Primary ? X86::EAX : X86::ECX;
2035 }
2036 if (IsNested)
2037 return Primary ? X86::EDX : X86::EAX;
2038 return Primary ? X86::ECX : X86::EAX;
2039 }
2040
2041 // The stack limit in the TCB is set to this many bytes above the actual stack
2042 // limit.
2043 static const uint64_t kSplitStackAvailable = 256;
2044
adjustForSegmentedStacks(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2045 void X86FrameLowering::adjustForSegmentedStacks(
2046 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2047 MachineFrameInfo *MFI = MF.getFrameInfo();
2048 uint64_t StackSize;
2049 unsigned TlsReg, TlsOffset;
2050 DebugLoc DL;
2051
2052 unsigned ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2053 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2054 "Scratch register is live-in");
2055
2056 if (MF.getFunction()->isVarArg())
2057 report_fatal_error("Segmented stacks do not support vararg functions.");
2058 if (!STI.isTargetLinux() && !STI.isTargetDarwin() && !STI.isTargetWin32() &&
2059 !STI.isTargetWin64() && !STI.isTargetFreeBSD() &&
2060 !STI.isTargetDragonFly())
2061 report_fatal_error("Segmented stacks not supported on this platform.");
2062
2063 // Eventually StackSize will be calculated by a link-time pass; which will
2064 // also decide whether checking code needs to be injected into this particular
2065 // prologue.
2066 StackSize = MFI->getStackSize();
2067
2068 // Do not generate a prologue for functions with a stack of size zero
2069 if (StackSize == 0)
2070 return;
2071
2072 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
2073 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
2074 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2075 bool IsNested = false;
2076
2077 // We need to know if the function has a nest argument only in 64 bit mode.
2078 if (Is64Bit)
2079 IsNested = HasNestArgument(&MF);
2080
2081 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
2082 // allocMBB needs to be last (terminating) instruction.
2083
2084 for (const auto &LI : PrologueMBB.liveins()) {
2085 allocMBB->addLiveIn(LI);
2086 checkMBB->addLiveIn(LI);
2087 }
2088
2089 if (IsNested)
2090 allocMBB->addLiveIn(IsLP64 ? X86::R10 : X86::R10D);
2091
2092 MF.push_front(allocMBB);
2093 MF.push_front(checkMBB);
2094
2095 // When the frame size is less than 256 we just compare the stack
2096 // boundary directly to the value of the stack pointer, per gcc.
2097 bool CompareStackPointer = StackSize < kSplitStackAvailable;
2098
2099 // Read the limit off the current stacklet off the stack_guard location.
2100 if (Is64Bit) {
2101 if (STI.isTargetLinux()) {
2102 TlsReg = X86::FS;
2103 TlsOffset = IsLP64 ? 0x70 : 0x40;
2104 } else if (STI.isTargetDarwin()) {
2105 TlsReg = X86::GS;
2106 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
2107 } else if (STI.isTargetWin64()) {
2108 TlsReg = X86::GS;
2109 TlsOffset = 0x28; // pvArbitrary, reserved for application use
2110 } else if (STI.isTargetFreeBSD()) {
2111 TlsReg = X86::FS;
2112 TlsOffset = 0x18;
2113 } else if (STI.isTargetDragonFly()) {
2114 TlsReg = X86::FS;
2115 TlsOffset = 0x20; // use tls_tcb.tcb_segstack
2116 } else {
2117 report_fatal_error("Segmented stacks not supported on this platform.");
2118 }
2119
2120 if (CompareStackPointer)
2121 ScratchReg = IsLP64 ? X86::RSP : X86::ESP;
2122 else
2123 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::LEA64r : X86::LEA64_32r), ScratchReg).addReg(X86::RSP)
2124 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2125
2126 BuildMI(checkMBB, DL, TII.get(IsLP64 ? X86::CMP64rm : X86::CMP32rm)).addReg(ScratchReg)
2127 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2128 } else {
2129 if (STI.isTargetLinux()) {
2130 TlsReg = X86::GS;
2131 TlsOffset = 0x30;
2132 } else if (STI.isTargetDarwin()) {
2133 TlsReg = X86::GS;
2134 TlsOffset = 0x48 + 90*4;
2135 } else if (STI.isTargetWin32()) {
2136 TlsReg = X86::FS;
2137 TlsOffset = 0x14; // pvArbitrary, reserved for application use
2138 } else if (STI.isTargetDragonFly()) {
2139 TlsReg = X86::FS;
2140 TlsOffset = 0x10; // use tls_tcb.tcb_segstack
2141 } else if (STI.isTargetFreeBSD()) {
2142 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
2143 } else {
2144 report_fatal_error("Segmented stacks not supported on this platform.");
2145 }
2146
2147 if (CompareStackPointer)
2148 ScratchReg = X86::ESP;
2149 else
2150 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
2151 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
2152
2153 if (STI.isTargetLinux() || STI.isTargetWin32() || STI.isTargetWin64() ||
2154 STI.isTargetDragonFly()) {
2155 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
2156 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
2157 } else if (STI.isTargetDarwin()) {
2158
2159 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register.
2160 unsigned ScratchReg2;
2161 bool SaveScratch2;
2162 if (CompareStackPointer) {
2163 // The primary scratch register is available for holding the TLS offset.
2164 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2165 SaveScratch2 = false;
2166 } else {
2167 // Need to use a second register to hold the TLS offset
2168 ScratchReg2 = GetScratchRegister(Is64Bit, IsLP64, MF, false);
2169
2170 // Unfortunately, with fastcc the second scratch register may hold an
2171 // argument.
2172 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
2173 }
2174
2175 // If Scratch2 is live-in then it needs to be saved.
2176 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
2177 "Scratch register is live-in and not saved");
2178
2179 if (SaveScratch2)
2180 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
2181 .addReg(ScratchReg2, RegState::Kill);
2182
2183 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
2184 .addImm(TlsOffset);
2185 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
2186 .addReg(ScratchReg)
2187 .addReg(ScratchReg2).addImm(1).addReg(0)
2188 .addImm(0)
2189 .addReg(TlsReg);
2190
2191 if (SaveScratch2)
2192 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
2193 }
2194 }
2195
2196 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
2197 // It jumps to normal execution of the function body.
2198 BuildMI(checkMBB, DL, TII.get(X86::JA_1)).addMBB(&PrologueMBB);
2199
2200 // On 32 bit we first push the arguments size and then the frame size. On 64
2201 // bit, we pass the stack frame size in r10 and the argument size in r11.
2202 if (Is64Bit) {
2203 // Functions with nested arguments use R10, so it needs to be saved across
2204 // the call to _morestack
2205
2206 const unsigned RegAX = IsLP64 ? X86::RAX : X86::EAX;
2207 const unsigned Reg10 = IsLP64 ? X86::R10 : X86::R10D;
2208 const unsigned Reg11 = IsLP64 ? X86::R11 : X86::R11D;
2209 const unsigned MOVrr = IsLP64 ? X86::MOV64rr : X86::MOV32rr;
2210 const unsigned MOVri = IsLP64 ? X86::MOV64ri : X86::MOV32ri;
2211
2212 if (IsNested)
2213 BuildMI(allocMBB, DL, TII.get(MOVrr), RegAX).addReg(Reg10);
2214
2215 BuildMI(allocMBB, DL, TII.get(MOVri), Reg10)
2216 .addImm(StackSize);
2217 BuildMI(allocMBB, DL, TII.get(MOVri), Reg11)
2218 .addImm(X86FI->getArgumentStackSize());
2219 } else {
2220 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2221 .addImm(X86FI->getArgumentStackSize());
2222 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
2223 .addImm(StackSize);
2224 }
2225
2226 // __morestack is in libgcc
2227 if (Is64Bit && MF.getTarget().getCodeModel() == CodeModel::Large) {
2228 // Under the large code model, we cannot assume that __morestack lives
2229 // within 2^31 bytes of the call site, so we cannot use pc-relative
2230 // addressing. We cannot perform the call via a temporary register,
2231 // as the rax register may be used to store the static chain, and all
2232 // other suitable registers may be either callee-save or used for
2233 // parameter passing. We cannot use the stack at this point either
2234 // because __morestack manipulates the stack directly.
2235 //
2236 // To avoid these issues, perform an indirect call via a read-only memory
2237 // location containing the address.
2238 //
2239 // This solution is not perfect, as it assumes that the .rodata section
2240 // is laid out within 2^31 bytes of each function body, but this seems
2241 // to be sufficient for JIT.
2242 BuildMI(allocMBB, DL, TII.get(X86::CALL64m))
2243 .addReg(X86::RIP)
2244 .addImm(0)
2245 .addReg(0)
2246 .addExternalSymbol("__morestack_addr")
2247 .addReg(0);
2248 MF.getMMI().setUsesMorestackAddr(true);
2249 } else {
2250 if (Is64Bit)
2251 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
2252 .addExternalSymbol("__morestack");
2253 else
2254 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
2255 .addExternalSymbol("__morestack");
2256 }
2257
2258 if (IsNested)
2259 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
2260 else
2261 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
2262
2263 allocMBB->addSuccessor(&PrologueMBB);
2264
2265 checkMBB->addSuccessor(allocMBB);
2266 checkMBB->addSuccessor(&PrologueMBB);
2267
2268 #ifdef XDEBUG
2269 MF.verify();
2270 #endif
2271 }
2272
2273 /// Erlang programs may need a special prologue to handle the stack size they
2274 /// might need at runtime. That is because Erlang/OTP does not implement a C
2275 /// stack but uses a custom implementation of hybrid stack/heap architecture.
2276 /// (for more information see Eric Stenman's Ph.D. thesis:
2277 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
2278 ///
2279 /// CheckStack:
2280 /// temp0 = sp - MaxStack
2281 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
2282 /// OldStart:
2283 /// ...
2284 /// IncStack:
2285 /// call inc_stack # doubles the stack space
2286 /// temp0 = sp - MaxStack
2287 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF,MachineBasicBlock & PrologueMBB) const2288 void X86FrameLowering::adjustForHiPEPrologue(
2289 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2290 MachineFrameInfo *MFI = MF.getFrameInfo();
2291 DebugLoc DL;
2292 // HiPE-specific values
2293 const unsigned HipeLeafWords = 24;
2294 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
2295 const unsigned Guaranteed = HipeLeafWords * SlotSize;
2296 unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
2297 MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
2298 unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
2299
2300 assert(STI.isTargetLinux() &&
2301 "HiPE prologue is only supported on Linux operating systems.");
2302
2303 // Compute the largest caller's frame that is needed to fit the callees'
2304 // frames. This 'MaxStack' is computed from:
2305 //
2306 // a) the fixed frame size, which is the space needed for all spilled temps,
2307 // b) outgoing on-stack parameter areas, and
2308 // c) the minimum stack space this function needs to make available for the
2309 // functions it calls (a tunable ABI property).
2310 if (MFI->hasCalls()) {
2311 unsigned MoreStackForCalls = 0;
2312
2313 for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
2314 MBBI != MBBE; ++MBBI)
2315 for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
2316 MI != ME; ++MI) {
2317 if (!MI->isCall())
2318 continue;
2319
2320 // Get callee operand.
2321 const MachineOperand &MO = MI->getOperand(0);
2322
2323 // Only take account of global function calls (no closures etc.).
2324 if (!MO.isGlobal())
2325 continue;
2326
2327 const Function *F = dyn_cast<Function>(MO.getGlobal());
2328 if (!F)
2329 continue;
2330
2331 // Do not update 'MaxStack' for primitive and built-in functions
2332 // (encoded with names either starting with "erlang."/"bif_" or not
2333 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
2334 // "_", such as the BIF "suspend_0") as they are executed on another
2335 // stack.
2336 if (F->getName().find("erlang.") != StringRef::npos ||
2337 F->getName().find("bif_") != StringRef::npos ||
2338 F->getName().find_first_of("._") == StringRef::npos)
2339 continue;
2340
2341 unsigned CalleeStkArity =
2342 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
2343 if (HipeLeafWords - 1 > CalleeStkArity)
2344 MoreStackForCalls = std::max(MoreStackForCalls,
2345 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
2346 }
2347 MaxStack += MoreStackForCalls;
2348 }
2349
2350 // If the stack frame needed is larger than the guaranteed then runtime checks
2351 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
2352 if (MaxStack > Guaranteed) {
2353 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
2354 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
2355
2356 for (const auto &LI : PrologueMBB.liveins()) {
2357 stackCheckMBB->addLiveIn(LI);
2358 incStackMBB->addLiveIn(LI);
2359 }
2360
2361 MF.push_front(incStackMBB);
2362 MF.push_front(stackCheckMBB);
2363
2364 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
2365 unsigned LEAop, CMPop, CALLop;
2366 if (Is64Bit) {
2367 SPReg = X86::RSP;
2368 PReg = X86::RBP;
2369 LEAop = X86::LEA64r;
2370 CMPop = X86::CMP64rm;
2371 CALLop = X86::CALL64pcrel32;
2372 SPLimitOffset = 0x90;
2373 } else {
2374 SPReg = X86::ESP;
2375 PReg = X86::EBP;
2376 LEAop = X86::LEA32r;
2377 CMPop = X86::CMP32rm;
2378 CALLop = X86::CALLpcrel32;
2379 SPLimitOffset = 0x4c;
2380 }
2381
2382 ScratchReg = GetScratchRegister(Is64Bit, IsLP64, MF, true);
2383 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
2384 "HiPE prologue scratch register is live-in");
2385
2386 // Create new MBB for StackCheck:
2387 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
2388 SPReg, false, -MaxStack);
2389 // SPLimitOffset is in a fixed heap location (pointed by BP).
2390 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
2391 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2392 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_1)).addMBB(&PrologueMBB);
2393
2394 // Create new MBB for IncStack:
2395 BuildMI(incStackMBB, DL, TII.get(CALLop)).
2396 addExternalSymbol("inc_stack_0");
2397 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
2398 SPReg, false, -MaxStack);
2399 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
2400 .addReg(ScratchReg), PReg, false, SPLimitOffset);
2401 BuildMI(incStackMBB, DL, TII.get(X86::JLE_1)).addMBB(incStackMBB);
2402
2403 stackCheckMBB->addSuccessor(&PrologueMBB, {99, 100});
2404 stackCheckMBB->addSuccessor(incStackMBB, {1, 100});
2405 incStackMBB->addSuccessor(&PrologueMBB, {99, 100});
2406 incStackMBB->addSuccessor(incStackMBB, {1, 100});
2407 }
2408 #ifdef XDEBUG
2409 MF.verify();
2410 #endif
2411 }
2412
adjustStackWithPops(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,int Offset) const2413 bool X86FrameLowering::adjustStackWithPops(MachineBasicBlock &MBB,
2414 MachineBasicBlock::iterator MBBI, DebugLoc DL, int Offset) const {
2415
2416 if (Offset <= 0)
2417 return false;
2418
2419 if (Offset % SlotSize)
2420 return false;
2421
2422 int NumPops = Offset / SlotSize;
2423 // This is only worth it if we have at most 2 pops.
2424 if (NumPops != 1 && NumPops != 2)
2425 return false;
2426
2427 // Handle only the trivial case where the adjustment directly follows
2428 // a call. This is the most common one, anyway.
2429 if (MBBI == MBB.begin())
2430 return false;
2431 MachineBasicBlock::iterator Prev = std::prev(MBBI);
2432 if (!Prev->isCall() || !Prev->getOperand(1).isRegMask())
2433 return false;
2434
2435 unsigned Regs[2];
2436 unsigned FoundRegs = 0;
2437
2438 auto RegMask = Prev->getOperand(1);
2439
2440 auto &RegClass =
2441 Is64Bit ? X86::GR64_NOREX_NOSPRegClass : X86::GR32_NOREX_NOSPRegClass;
2442 // Try to find up to NumPops free registers.
2443 for (auto Candidate : RegClass) {
2444
2445 // Poor man's liveness:
2446 // Since we're immediately after a call, any register that is clobbered
2447 // by the call and not defined by it can be considered dead.
2448 if (!RegMask.clobbersPhysReg(Candidate))
2449 continue;
2450
2451 bool IsDef = false;
2452 for (const MachineOperand &MO : Prev->implicit_operands()) {
2453 if (MO.isReg() && MO.isDef() && MO.getReg() == Candidate) {
2454 IsDef = true;
2455 break;
2456 }
2457 }
2458
2459 if (IsDef)
2460 continue;
2461
2462 Regs[FoundRegs++] = Candidate;
2463 if (FoundRegs == (unsigned)NumPops)
2464 break;
2465 }
2466
2467 if (FoundRegs == 0)
2468 return false;
2469
2470 // If we found only one free register, but need two, reuse the same one twice.
2471 while (FoundRegs < (unsigned)NumPops)
2472 Regs[FoundRegs++] = Regs[0];
2473
2474 for (int i = 0; i < NumPops; ++i)
2475 BuildMI(MBB, MBBI, DL,
2476 TII.get(STI.is64Bit() ? X86::POP64r : X86::POP32r), Regs[i]);
2477
2478 return true;
2479 }
2480
2481 void X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const2482 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
2483 MachineBasicBlock::iterator I) const {
2484 bool reserveCallFrame = hasReservedCallFrame(MF);
2485 unsigned Opcode = I->getOpcode();
2486 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
2487 DebugLoc DL = I->getDebugLoc();
2488 uint64_t Amount = !reserveCallFrame ? I->getOperand(0).getImm() : 0;
2489 uint64_t InternalAmt = (isDestroy || Amount) ? I->getOperand(1).getImm() : 0;
2490 I = MBB.erase(I);
2491
2492 if (!reserveCallFrame) {
2493 // If the stack pointer can be changed after prologue, turn the
2494 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
2495 // adjcallstackdown instruction into 'add ESP, <amt>'
2496
2497 // We need to keep the stack aligned properly. To do this, we round the
2498 // amount of space needed for the outgoing arguments up to the next
2499 // alignment boundary.
2500 unsigned StackAlign = getStackAlignment();
2501 Amount = RoundUpToAlignment(Amount, StackAlign);
2502
2503 MachineModuleInfo &MMI = MF.getMMI();
2504 const Function *Fn = MF.getFunction();
2505 bool WindowsCFI = MF.getTarget().getMCAsmInfo()->usesWindowsCFI();
2506 bool DwarfCFI = !WindowsCFI &&
2507 (MMI.hasDebugInfo() || Fn->needsUnwindTableEntry());
2508
2509 // If we have any exception handlers in this function, and we adjust
2510 // the SP before calls, we may need to indicate this to the unwinder
2511 // using GNU_ARGS_SIZE. Note that this may be necessary even when
2512 // Amount == 0, because the preceding function may have set a non-0
2513 // GNU_ARGS_SIZE.
2514 // TODO: We don't need to reset this between subsequent functions,
2515 // if it didn't change.
2516 bool HasDwarfEHHandlers = !WindowsCFI &&
2517 !MF.getMMI().getLandingPads().empty();
2518
2519 if (HasDwarfEHHandlers && !isDestroy &&
2520 MF.getInfo<X86MachineFunctionInfo>()->getHasPushSequences())
2521 BuildCFI(MBB, I, DL,
2522 MCCFIInstruction::createGnuArgsSize(nullptr, Amount));
2523
2524 if (Amount == 0)
2525 return;
2526
2527 // Factor out the amount that gets handled inside the sequence
2528 // (Pushes of argument for frame setup, callee pops for frame destroy)
2529 Amount -= InternalAmt;
2530
2531 // TODO: This is needed only if we require precise CFA.
2532 // If this is a callee-pop calling convention, emit a CFA adjust for
2533 // the amount the callee popped.
2534 if (isDestroy && InternalAmt && DwarfCFI && !hasFP(MF))
2535 BuildCFI(MBB, I, DL,
2536 MCCFIInstruction::createAdjustCfaOffset(nullptr, -InternalAmt));
2537
2538 if (Amount) {
2539 // Add Amount to SP to destroy a frame, and subtract to setup.
2540 int Offset = isDestroy ? Amount : -Amount;
2541
2542 if (!(Fn->optForMinSize() &&
2543 adjustStackWithPops(MBB, I, DL, Offset)))
2544 BuildStackAdjustment(MBB, I, DL, Offset, /*InEpilogue=*/false);
2545 }
2546
2547 if (DwarfCFI && !hasFP(MF)) {
2548 // If we don't have FP, but need to generate unwind information,
2549 // we need to set the correct CFA offset after the stack adjustment.
2550 // How much we adjust the CFA offset depends on whether we're emitting
2551 // CFI only for EH purposes or for debugging. EH only requires the CFA
2552 // offset to be correct at each call site, while for debugging we want
2553 // it to be more precise.
2554 int CFAOffset = Amount;
2555 // TODO: When not using precise CFA, we also need to adjust for the
2556 // InternalAmt here.
2557
2558 if (CFAOffset) {
2559 CFAOffset = isDestroy ? -CFAOffset : CFAOffset;
2560 BuildCFI(MBB, I, DL,
2561 MCCFIInstruction::createAdjustCfaOffset(nullptr, CFAOffset));
2562 }
2563 }
2564
2565 return;
2566 }
2567
2568 if (isDestroy && InternalAmt) {
2569 // If we are performing frame pointer elimination and if the callee pops
2570 // something off the stack pointer, add it back. We do this until we have
2571 // more advanced stack pointer tracking ability.
2572 // We are not tracking the stack pointer adjustment by the callee, so make
2573 // sure we restore the stack pointer immediately after the call, there may
2574 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
2575 MachineBasicBlock::iterator B = MBB.begin();
2576 while (I != B && !std::prev(I)->isCall())
2577 --I;
2578 BuildStackAdjustment(MBB, I, DL, -InternalAmt, /*InEpilogue=*/false);
2579 }
2580 }
2581
canUseAsEpilogue(const MachineBasicBlock & MBB) const2582 bool X86FrameLowering::canUseAsEpilogue(const MachineBasicBlock &MBB) const {
2583 assert(MBB.getParent() && "Block is not attached to a function!");
2584
2585 // Win64 has strict requirements in terms of epilogue and we are
2586 // not taking a chance at messing with them.
2587 // I.e., unless this block is already an exit block, we can't use
2588 // it as an epilogue.
2589 if (STI.isTargetWin64() && !MBB.succ_empty() && !MBB.isReturnBlock())
2590 return false;
2591
2592 if (canUseLEAForSPInEpilogue(*MBB.getParent()))
2593 return true;
2594
2595 // If we cannot use LEA to adjust SP, we may need to use ADD, which
2596 // clobbers the EFLAGS. Check that we do not need to preserve it,
2597 // otherwise, conservatively assume this is not
2598 // safe to insert the epilogue here.
2599 return !flagsNeedToBePreservedBeforeTheTerminators(MBB);
2600 }
2601
enableShrinkWrapping(const MachineFunction & MF) const2602 bool X86FrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
2603 // If we may need to emit frameless compact unwind information, give
2604 // up as this is currently broken: PR25614.
2605 return MF.getFunction()->hasFnAttribute(Attribute::NoUnwind) || hasFP(MF);
2606 }
2607
restoreWin32EHStackPointers(MachineBasicBlock & MBB,MachineBasicBlock::iterator MBBI,DebugLoc DL,bool RestoreSP) const2608 MachineBasicBlock::iterator X86FrameLowering::restoreWin32EHStackPointers(
2609 MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
2610 DebugLoc DL, bool RestoreSP) const {
2611 assert(STI.isTargetWindowsMSVC() && "funclets only supported in MSVC env");
2612 assert(STI.isTargetWin32() && "EBP/ESI restoration only required on win32");
2613 assert(STI.is32Bit() && !Uses64BitFramePtr &&
2614 "restoring EBP/ESI on non-32-bit target");
2615
2616 MachineFunction &MF = *MBB.getParent();
2617 unsigned FramePtr = TRI->getFrameRegister(MF);
2618 unsigned BasePtr = TRI->getBaseRegister();
2619 WinEHFuncInfo &FuncInfo = *MF.getWinEHFuncInfo();
2620 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
2621 MachineFrameInfo *MFI = MF.getFrameInfo();
2622
2623 // FIXME: Don't set FrameSetup flag in catchret case.
2624
2625 int FI = FuncInfo.EHRegNodeFrameIndex;
2626 int EHRegSize = MFI->getObjectSize(FI);
2627
2628 if (RestoreSP) {
2629 // MOV32rm -EHRegSize(%ebp), %esp
2630 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), X86::ESP),
2631 X86::EBP, true, -EHRegSize)
2632 .setMIFlag(MachineInstr::FrameSetup);
2633 }
2634
2635 unsigned UsedReg;
2636 int EHRegOffset = getFrameIndexReference(MF, FI, UsedReg);
2637 int EndOffset = -EHRegOffset - EHRegSize;
2638 FuncInfo.EHRegNodeEndOffset = EndOffset;
2639
2640 if (UsedReg == FramePtr) {
2641 // ADD $offset, %ebp
2642 unsigned ADDri = getADDriOpcode(false, EndOffset);
2643 BuildMI(MBB, MBBI, DL, TII.get(ADDri), FramePtr)
2644 .addReg(FramePtr)
2645 .addImm(EndOffset)
2646 .setMIFlag(MachineInstr::FrameSetup)
2647 ->getOperand(3)
2648 .setIsDead();
2649 assert(EndOffset >= 0 &&
2650 "end of registration object above normal EBP position!");
2651 } else if (UsedReg == BasePtr) {
2652 // LEA offset(%ebp), %esi
2653 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::LEA32r), BasePtr),
2654 FramePtr, false, EndOffset)
2655 .setMIFlag(MachineInstr::FrameSetup);
2656 // MOV32rm SavedEBPOffset(%esi), %ebp
2657 assert(X86FI->getHasSEHFramePtrSave());
2658 int Offset =
2659 getFrameIndexReference(MF, X86FI->getSEHFramePtrSaveIndex(), UsedReg);
2660 assert(UsedReg == BasePtr);
2661 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32rm), FramePtr),
2662 UsedReg, true, Offset)
2663 .setMIFlag(MachineInstr::FrameSetup);
2664 } else {
2665 llvm_unreachable("32-bit frames with WinEH must use FramePtr or BasePtr");
2666 }
2667 return MBBI;
2668 }
2669
getWinEHParentFrameOffset(const MachineFunction & MF) const2670 unsigned X86FrameLowering::getWinEHParentFrameOffset(const MachineFunction &MF) const {
2671 // RDX, the parent frame pointer, is homed into 16(%rsp) in the prologue.
2672 unsigned Offset = 16;
2673 // RBP is immediately pushed.
2674 Offset += SlotSize;
2675 // All callee-saved registers are then pushed.
2676 Offset += MF.getInfo<X86MachineFunctionInfo>()->getCalleeSavedFrameSize();
2677 // Every funclet allocates enough stack space for the largest outgoing call.
2678 Offset += getWinEHFuncletFrameSize(MF);
2679 return Offset;
2680 }
2681
processFunctionBeforeFrameFinalized(MachineFunction & MF,RegScavenger * RS) const2682 void X86FrameLowering::processFunctionBeforeFrameFinalized(
2683 MachineFunction &MF, RegScavenger *RS) const {
2684 // If this function isn't doing Win64-style C++ EH, we don't need to do
2685 // anything.
2686 const Function *Fn = MF.getFunction();
2687 if (!STI.is64Bit() || !MF.getMMI().hasEHFunclets() ||
2688 classifyEHPersonality(Fn->getPersonalityFn()) != EHPersonality::MSVC_CXX)
2689 return;
2690
2691 // Win64 C++ EH needs to allocate the UnwindHelp object at some fixed offset
2692 // relative to RSP after the prologue. Find the offset of the last fixed
2693 // object, so that we can allocate a slot immediately following it. If there
2694 // were no fixed objects, use offset -SlotSize, which is immediately after the
2695 // return address. Fixed objects have negative frame indices.
2696 MachineFrameInfo *MFI = MF.getFrameInfo();
2697 int64_t MinFixedObjOffset = -SlotSize;
2698 for (int I = MFI->getObjectIndexBegin(); I < 0; ++I)
2699 MinFixedObjOffset = std::min(MinFixedObjOffset, MFI->getObjectOffset(I));
2700
2701 int64_t UnwindHelpOffset = MinFixedObjOffset - SlotSize;
2702 int UnwindHelpFI =
2703 MFI->CreateFixedObject(SlotSize, UnwindHelpOffset, /*Immutable=*/false);
2704 MF.getWinEHFuncInfo()->UnwindHelpFrameIdx = UnwindHelpFI;
2705
2706 // Store -2 into UnwindHelp on function entry. We have to scan forwards past
2707 // other frame setup instructions.
2708 MachineBasicBlock &MBB = MF.front();
2709 auto MBBI = MBB.begin();
2710 while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup))
2711 ++MBBI;
2712
2713 DebugLoc DL = MBB.findDebugLoc(MBBI);
2714 addFrameReference(BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64mi32)),
2715 UnwindHelpFI)
2716 .addImm(-2);
2717 }
2718