1 //===------------------------- UnwindCursor.hpp ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //
9 // C++ interface to lower levels of libuwind
10 //===----------------------------------------------------------------------===//
11
12 #ifndef __UNWINDCURSOR_HPP__
13 #define __UNWINDCURSOR_HPP__
14
15 #include <algorithm>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <pthread.h>
20 #include <unwind.h>
21
22 #ifdef __APPLE__
23 #include <mach-o/dyld.h>
24 #endif
25
26 #include "config.h"
27
28 #include "AddressSpace.hpp"
29 #include "CompactUnwinder.hpp"
30 #include "config.h"
31 #include "DwarfInstructions.hpp"
32 #include "EHHeaderParser.hpp"
33 #include "libunwind.h"
34 #include "Registers.hpp"
35 #include "Unwind-EHABI.h"
36
37 namespace libunwind {
38
39 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
40 /// Cache of recently found FDEs.
41 template <typename A>
42 class _LIBUNWIND_HIDDEN DwarfFDECache {
43 typedef typename A::pint_t pint_t;
44 public:
45 static pint_t findFDE(pint_t mh, pint_t pc);
46 static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
47 static void removeAllIn(pint_t mh);
48 static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
49 unw_word_t ip_end,
50 unw_word_t fde, unw_word_t mh));
51
52 private:
53
54 struct entry {
55 pint_t mh;
56 pint_t ip_start;
57 pint_t ip_end;
58 pint_t fde;
59 };
60
61 // These fields are all static to avoid needing an initializer.
62 // There is only one instance of this class per process.
63 static pthread_rwlock_t _lock;
64 #ifdef __APPLE__
65 static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
66 static bool _registeredForDyldUnloads;
67 #endif
68 // Can't use std::vector<> here because this code is below libc++.
69 static entry *_buffer;
70 static entry *_bufferUsed;
71 static entry *_bufferEnd;
72 static entry _initialBuffer[64];
73 };
74
75 template <typename A>
76 typename DwarfFDECache<A>::entry *
77 DwarfFDECache<A>::_buffer = _initialBuffer;
78
79 template <typename A>
80 typename DwarfFDECache<A>::entry *
81 DwarfFDECache<A>::_bufferUsed = _initialBuffer;
82
83 template <typename A>
84 typename DwarfFDECache<A>::entry *
85 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
86
87 template <typename A>
88 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
89
90 template <typename A>
91 pthread_rwlock_t DwarfFDECache<A>::_lock = PTHREAD_RWLOCK_INITIALIZER;
92
93 #ifdef __APPLE__
94 template <typename A>
95 bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
96 #endif
97
98 template <typename A>
findFDE(pint_t mh,pint_t pc)99 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
100 pint_t result = 0;
101 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_rdlock(&_lock));
102 for (entry *p = _buffer; p < _bufferUsed; ++p) {
103 if ((mh == p->mh) || (mh == 0)) {
104 if ((p->ip_start <= pc) && (pc < p->ip_end)) {
105 result = p->fde;
106 break;
107 }
108 }
109 }
110 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
111 return result;
112 }
113
114 template <typename A>
add(pint_t mh,pint_t ip_start,pint_t ip_end,pint_t fde)115 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
116 pint_t fde) {
117 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
118 if (_bufferUsed >= _bufferEnd) {
119 size_t oldSize = (size_t)(_bufferEnd - _buffer);
120 size_t newSize = oldSize * 4;
121 // Can't use operator new (we are below it).
122 entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
123 memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
124 if (_buffer != _initialBuffer)
125 free(_buffer);
126 _buffer = newBuffer;
127 _bufferUsed = &newBuffer[oldSize];
128 _bufferEnd = &newBuffer[newSize];
129 }
130 _bufferUsed->mh = mh;
131 _bufferUsed->ip_start = ip_start;
132 _bufferUsed->ip_end = ip_end;
133 _bufferUsed->fde = fde;
134 ++_bufferUsed;
135 #ifdef __APPLE__
136 if (!_registeredForDyldUnloads) {
137 _dyld_register_func_for_remove_image(&dyldUnloadHook);
138 _registeredForDyldUnloads = true;
139 }
140 #endif
141 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
142 }
143
144 template <typename A>
removeAllIn(pint_t mh)145 void DwarfFDECache<A>::removeAllIn(pint_t mh) {
146 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
147 entry *d = _buffer;
148 for (const entry *s = _buffer; s < _bufferUsed; ++s) {
149 if (s->mh != mh) {
150 if (d != s)
151 *d = *s;
152 ++d;
153 }
154 }
155 _bufferUsed = d;
156 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
157 }
158
159 #ifdef __APPLE__
160 template <typename A>
dyldUnloadHook(const struct mach_header * mh,intptr_t)161 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
162 removeAllIn((pint_t) mh);
163 }
164 #endif
165
166 template <typename A>
iterateCacheEntries(void (* func)(unw_word_t ip_start,unw_word_t ip_end,unw_word_t fde,unw_word_t mh))167 void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
168 unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
169 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
170 for (entry *p = _buffer; p < _bufferUsed; ++p) {
171 (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
172 }
173 _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
174 }
175 #endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
176
177
178 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
179
180 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
181 template <typename A> class UnwindSectionHeader {
182 public:
UnwindSectionHeader(A & addressSpace,typename A::pint_t addr)183 UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
184 : _addressSpace(addressSpace), _addr(addr) {}
185
version() const186 uint32_t version() const {
187 return _addressSpace.get32(_addr +
188 offsetof(unwind_info_section_header, version));
189 }
commonEncodingsArraySectionOffset() const190 uint32_t commonEncodingsArraySectionOffset() const {
191 return _addressSpace.get32(_addr +
192 offsetof(unwind_info_section_header,
193 commonEncodingsArraySectionOffset));
194 }
commonEncodingsArrayCount() const195 uint32_t commonEncodingsArrayCount() const {
196 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
197 commonEncodingsArrayCount));
198 }
personalityArraySectionOffset() const199 uint32_t personalityArraySectionOffset() const {
200 return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
201 personalityArraySectionOffset));
202 }
personalityArrayCount() const203 uint32_t personalityArrayCount() const {
204 return _addressSpace.get32(
205 _addr + offsetof(unwind_info_section_header, personalityArrayCount));
206 }
indexSectionOffset() const207 uint32_t indexSectionOffset() const {
208 return _addressSpace.get32(
209 _addr + offsetof(unwind_info_section_header, indexSectionOffset));
210 }
indexCount() const211 uint32_t indexCount() const {
212 return _addressSpace.get32(
213 _addr + offsetof(unwind_info_section_header, indexCount));
214 }
215
216 private:
217 A &_addressSpace;
218 typename A::pint_t _addr;
219 };
220
221 template <typename A> class UnwindSectionIndexArray {
222 public:
UnwindSectionIndexArray(A & addressSpace,typename A::pint_t addr)223 UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
224 : _addressSpace(addressSpace), _addr(addr) {}
225
functionOffset(uint32_t index) const226 uint32_t functionOffset(uint32_t index) const {
227 return _addressSpace.get32(
228 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
229 functionOffset));
230 }
secondLevelPagesSectionOffset(uint32_t index) const231 uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
232 return _addressSpace.get32(
233 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
234 secondLevelPagesSectionOffset));
235 }
lsdaIndexArraySectionOffset(uint32_t index) const236 uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
237 return _addressSpace.get32(
238 _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
239 lsdaIndexArraySectionOffset));
240 }
241
242 private:
243 A &_addressSpace;
244 typename A::pint_t _addr;
245 };
246
247 template <typename A> class UnwindSectionRegularPageHeader {
248 public:
UnwindSectionRegularPageHeader(A & addressSpace,typename A::pint_t addr)249 UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
250 : _addressSpace(addressSpace), _addr(addr) {}
251
kind() const252 uint32_t kind() const {
253 return _addressSpace.get32(
254 _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
255 }
entryPageOffset() const256 uint16_t entryPageOffset() const {
257 return _addressSpace.get16(
258 _addr + offsetof(unwind_info_regular_second_level_page_header,
259 entryPageOffset));
260 }
entryCount() const261 uint16_t entryCount() const {
262 return _addressSpace.get16(
263 _addr +
264 offsetof(unwind_info_regular_second_level_page_header, entryCount));
265 }
266
267 private:
268 A &_addressSpace;
269 typename A::pint_t _addr;
270 };
271
272 template <typename A> class UnwindSectionRegularArray {
273 public:
UnwindSectionRegularArray(A & addressSpace,typename A::pint_t addr)274 UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
275 : _addressSpace(addressSpace), _addr(addr) {}
276
functionOffset(uint32_t index) const277 uint32_t functionOffset(uint32_t index) const {
278 return _addressSpace.get32(
279 _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
280 functionOffset));
281 }
encoding(uint32_t index) const282 uint32_t encoding(uint32_t index) const {
283 return _addressSpace.get32(
284 _addr +
285 arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
286 }
287
288 private:
289 A &_addressSpace;
290 typename A::pint_t _addr;
291 };
292
293 template <typename A> class UnwindSectionCompressedPageHeader {
294 public:
UnwindSectionCompressedPageHeader(A & addressSpace,typename A::pint_t addr)295 UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
296 : _addressSpace(addressSpace), _addr(addr) {}
297
kind() const298 uint32_t kind() const {
299 return _addressSpace.get32(
300 _addr +
301 offsetof(unwind_info_compressed_second_level_page_header, kind));
302 }
entryPageOffset() const303 uint16_t entryPageOffset() const {
304 return _addressSpace.get16(
305 _addr + offsetof(unwind_info_compressed_second_level_page_header,
306 entryPageOffset));
307 }
entryCount() const308 uint16_t entryCount() const {
309 return _addressSpace.get16(
310 _addr +
311 offsetof(unwind_info_compressed_second_level_page_header, entryCount));
312 }
encodingsPageOffset() const313 uint16_t encodingsPageOffset() const {
314 return _addressSpace.get16(
315 _addr + offsetof(unwind_info_compressed_second_level_page_header,
316 encodingsPageOffset));
317 }
encodingsCount() const318 uint16_t encodingsCount() const {
319 return _addressSpace.get16(
320 _addr + offsetof(unwind_info_compressed_second_level_page_header,
321 encodingsCount));
322 }
323
324 private:
325 A &_addressSpace;
326 typename A::pint_t _addr;
327 };
328
329 template <typename A> class UnwindSectionCompressedArray {
330 public:
UnwindSectionCompressedArray(A & addressSpace,typename A::pint_t addr)331 UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
332 : _addressSpace(addressSpace), _addr(addr) {}
333
functionOffset(uint32_t index) const334 uint32_t functionOffset(uint32_t index) const {
335 return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
336 _addressSpace.get32(_addr + index * sizeof(uint32_t)));
337 }
encodingIndex(uint32_t index) const338 uint16_t encodingIndex(uint32_t index) const {
339 return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
340 _addressSpace.get32(_addr + index * sizeof(uint32_t)));
341 }
342
343 private:
344 A &_addressSpace;
345 typename A::pint_t _addr;
346 };
347
348 template <typename A> class UnwindSectionLsdaArray {
349 public:
UnwindSectionLsdaArray(A & addressSpace,typename A::pint_t addr)350 UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
351 : _addressSpace(addressSpace), _addr(addr) {}
352
functionOffset(uint32_t index) const353 uint32_t functionOffset(uint32_t index) const {
354 return _addressSpace.get32(
355 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
356 index, functionOffset));
357 }
lsdaOffset(uint32_t index) const358 uint32_t lsdaOffset(uint32_t index) const {
359 return _addressSpace.get32(
360 _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
361 index, lsdaOffset));
362 }
363
364 private:
365 A &_addressSpace;
366 typename A::pint_t _addr;
367 };
368 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
369
370 class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
371 public:
372 // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
373 // This avoids an unnecessary dependency to libc++abi.
operator delete(void *,size_t)374 void operator delete(void *, size_t) {}
375
~AbstractUnwindCursor()376 virtual ~AbstractUnwindCursor() {}
validReg(int)377 virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
getReg(int)378 virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
setReg(int,unw_word_t)379 virtual void setReg(int, unw_word_t) {
380 _LIBUNWIND_ABORT("setReg not implemented");
381 }
validFloatReg(int)382 virtual bool validFloatReg(int) {
383 _LIBUNWIND_ABORT("validFloatReg not implemented");
384 }
getFloatReg(int)385 virtual unw_fpreg_t getFloatReg(int) {
386 _LIBUNWIND_ABORT("getFloatReg not implemented");
387 }
setFloatReg(int,unw_fpreg_t)388 virtual void setFloatReg(int, unw_fpreg_t) {
389 _LIBUNWIND_ABORT("setFloatReg not implemented");
390 }
step()391 virtual int step() { _LIBUNWIND_ABORT("step not implemented"); }
getInfo(unw_proc_info_t *)392 virtual void getInfo(unw_proc_info_t *) {
393 _LIBUNWIND_ABORT("getInfo not implemented");
394 }
jumpto()395 virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
isSignalFrame()396 virtual bool isSignalFrame() {
397 _LIBUNWIND_ABORT("isSignalFrame not implemented");
398 }
getFunctionName(char *,size_t,unw_word_t *)399 virtual bool getFunctionName(char *, size_t, unw_word_t *) {
400 _LIBUNWIND_ABORT("getFunctionName not implemented");
401 }
setInfoBasedOnIPRegister(bool=false)402 virtual void setInfoBasedOnIPRegister(bool = false) {
403 _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
404 }
getRegisterName(int)405 virtual const char *getRegisterName(int) {
406 _LIBUNWIND_ABORT("getRegisterName not implemented");
407 }
408 #ifdef __arm__
saveVFPAsX()409 virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
410 #endif
411 };
412
413 /// UnwindCursor contains all state (including all register values) during
414 /// an unwind. This is normally stack allocated inside a unw_cursor_t.
415 template <typename A, typename R>
416 class UnwindCursor : public AbstractUnwindCursor{
417 typedef typename A::pint_t pint_t;
418 public:
419 UnwindCursor(unw_context_t *context, A &as);
420 UnwindCursor(A &as, void *threadArg);
~UnwindCursor()421 virtual ~UnwindCursor() {}
422 virtual bool validReg(int);
423 virtual unw_word_t getReg(int);
424 virtual void setReg(int, unw_word_t);
425 virtual bool validFloatReg(int);
426 virtual unw_fpreg_t getFloatReg(int);
427 virtual void setFloatReg(int, unw_fpreg_t);
428 virtual int step();
429 virtual void getInfo(unw_proc_info_t *);
430 virtual void jumpto();
431 virtual bool isSignalFrame();
432 virtual bool getFunctionName(char *buf, size_t len, unw_word_t *off);
433 virtual void setInfoBasedOnIPRegister(bool isReturnAddress = false);
434 virtual const char *getRegisterName(int num);
435 #ifdef __arm__
436 virtual void saveVFPAsX();
437 #endif
438
439 private:
440
441 #if _LIBUNWIND_ARM_EHABI
442 bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections §s);
443
stepWithEHABI()444 int stepWithEHABI() {
445 size_t len = 0;
446 size_t off = 0;
447 // FIXME: Calling decode_eht_entry() here is violating the libunwind
448 // abstraction layer.
449 const uint32_t *ehtp =
450 decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
451 &off, &len);
452 if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
453 _URC_CONTINUE_UNWIND)
454 return UNW_STEP_END;
455 return UNW_STEP_SUCCESS;
456 }
457 #endif
458
459 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
460 bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections §s,
461 uint32_t fdeSectionOffsetHint=0);
stepWithDwarfFDE()462 int stepWithDwarfFDE() {
463 return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace,
464 (pint_t)this->getReg(UNW_REG_IP),
465 (pint_t)_info.unwind_info,
466 _registers);
467 }
468 #endif
469
470 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
471 bool getInfoFromCompactEncodingSection(pint_t pc,
472 const UnwindInfoSections §s);
stepWithCompactEncoding()473 int stepWithCompactEncoding() {
474 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
475 if ( compactSaysUseDwarf() )
476 return stepWithDwarfFDE();
477 #endif
478 R dummy;
479 return stepWithCompactEncoding(dummy);
480 }
481
stepWithCompactEncoding(Registers_x86_64 &)482 int stepWithCompactEncoding(Registers_x86_64 &) {
483 return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
484 _info.format, _info.start_ip, _addressSpace, _registers);
485 }
486
stepWithCompactEncoding(Registers_x86 &)487 int stepWithCompactEncoding(Registers_x86 &) {
488 return CompactUnwinder_x86<A>::stepWithCompactEncoding(
489 _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
490 }
491
stepWithCompactEncoding(Registers_ppc &)492 int stepWithCompactEncoding(Registers_ppc &) {
493 return UNW_EINVAL;
494 }
495
stepWithCompactEncoding(Registers_arm64 &)496 int stepWithCompactEncoding(Registers_arm64 &) {
497 return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
498 _info.format, _info.start_ip, _addressSpace, _registers);
499 }
500
compactSaysUseDwarf(uint32_t * offset=NULL) const501 bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
502 R dummy;
503 return compactSaysUseDwarf(dummy, offset);
504 }
505
compactSaysUseDwarf(Registers_x86_64 &,uint32_t * offset) const506 bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
507 if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
508 if (offset)
509 *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
510 return true;
511 }
512 return false;
513 }
514
compactSaysUseDwarf(Registers_x86 &,uint32_t * offset) const515 bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
516 if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
517 if (offset)
518 *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
519 return true;
520 }
521 return false;
522 }
523
compactSaysUseDwarf(Registers_ppc &,uint32_t *) const524 bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
525 return true;
526 }
527
compactSaysUseDwarf(Registers_arm64 &,uint32_t * offset) const528 bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
529 if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
530 if (offset)
531 *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
532 return true;
533 }
534 return false;
535 }
536 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
537
538 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
dwarfEncoding() const539 compact_unwind_encoding_t dwarfEncoding() const {
540 R dummy;
541 return dwarfEncoding(dummy);
542 }
543
dwarfEncoding(Registers_x86_64 &) const544 compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
545 return UNWIND_X86_64_MODE_DWARF;
546 }
547
dwarfEncoding(Registers_x86 &) const548 compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
549 return UNWIND_X86_MODE_DWARF;
550 }
551
dwarfEncoding(Registers_ppc &) const552 compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
553 return 0;
554 }
555
dwarfEncoding(Registers_arm64 &) const556 compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
557 return UNWIND_ARM64_MODE_DWARF;
558 }
559 #endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
560
561
562 A &_addressSpace;
563 R _registers;
564 unw_proc_info_t _info;
565 bool _unwindInfoMissing;
566 bool _isSignalFrame;
567 };
568
569
570 template <typename A, typename R>
UnwindCursor(unw_context_t * context,A & as)571 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
572 : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
573 _isSignalFrame(false) {
574 static_assert(sizeof(UnwindCursor<A, R>) < sizeof(unw_cursor_t),
575 "UnwindCursor<> does not fit in unw_cursor_t");
576 memset(&_info, 0, sizeof(_info));
577 }
578
579 template <typename A, typename R>
UnwindCursor(A & as,void *)580 UnwindCursor<A, R>::UnwindCursor(A &as, void *)
581 : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
582 memset(&_info, 0, sizeof(_info));
583 // FIXME
584 // fill in _registers from thread arg
585 }
586
587
588 template <typename A, typename R>
validReg(int regNum)589 bool UnwindCursor<A, R>::validReg(int regNum) {
590 return _registers.validRegister(regNum);
591 }
592
593 template <typename A, typename R>
getReg(int regNum)594 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
595 return _registers.getRegister(regNum);
596 }
597
598 template <typename A, typename R>
setReg(int regNum,unw_word_t value)599 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
600 _registers.setRegister(regNum, (typename A::pint_t)value);
601 }
602
603 template <typename A, typename R>
validFloatReg(int regNum)604 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
605 return _registers.validFloatRegister(regNum);
606 }
607
608 template <typename A, typename R>
getFloatReg(int regNum)609 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
610 return _registers.getFloatRegister(regNum);
611 }
612
613 template <typename A, typename R>
setFloatReg(int regNum,unw_fpreg_t value)614 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
615 _registers.setFloatRegister(regNum, value);
616 }
617
jumpto()618 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
619 _registers.jumpto();
620 }
621
622 #ifdef __arm__
saveVFPAsX()623 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
624 _registers.saveVFPAsX();
625 }
626 #endif
627
628 template <typename A, typename R>
getRegisterName(int regNum)629 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
630 return _registers.getRegisterName(regNum);
631 }
632
isSignalFrame()633 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
634 return _isSignalFrame;
635 }
636
637 #if _LIBUNWIND_ARM_EHABI
638 struct EHABIIndexEntry {
639 uint32_t functionOffset;
640 uint32_t data;
641 };
642
643 template<typename A>
644 struct EHABISectionIterator {
645 typedef EHABISectionIterator _Self;
646
647 typedef std::random_access_iterator_tag iterator_category;
648 typedef typename A::pint_t value_type;
649 typedef typename A::pint_t* pointer;
650 typedef typename A::pint_t& reference;
651 typedef size_t size_type;
652 typedef size_t difference_type;
653
beginlibunwind::EHABISectionIterator654 static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
655 return _Self(addressSpace, sects, 0);
656 }
endlibunwind::EHABISectionIterator657 static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
658 return _Self(addressSpace, sects, sects.arm_section_length);
659 }
660
EHABISectionIteratorlibunwind::EHABISectionIterator661 EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
662 : _i(i), _addressSpace(&addressSpace), _sects(§s) {}
663
operator ++libunwind::EHABISectionIterator664 _Self& operator++() { ++_i; return *this; }
operator +=libunwind::EHABISectionIterator665 _Self& operator+=(size_t a) { _i += a; return *this; }
operator --libunwind::EHABISectionIterator666 _Self& operator--() { assert(_i > 0); --_i; return *this; }
operator -=libunwind::EHABISectionIterator667 _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
668
operator +libunwind::EHABISectionIterator669 _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
operator -libunwind::EHABISectionIterator670 _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
671
operator -libunwind::EHABISectionIterator672 size_t operator-(const _Self& other) { return _i - other._i; }
673
operator ==libunwind::EHABISectionIterator674 bool operator==(const _Self& other) const {
675 assert(_addressSpace == other._addressSpace);
676 assert(_sects == other._sects);
677 return _i == other._i;
678 }
679
operator *libunwind::EHABISectionIterator680 typename A::pint_t operator*() const { return functionAddress(); }
681
functionAddresslibunwind::EHABISectionIterator682 typename A::pint_t functionAddress() const {
683 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
684 EHABIIndexEntry, _i, functionOffset);
685 return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
686 }
687
dataAddresslibunwind::EHABISectionIterator688 typename A::pint_t dataAddress() {
689 typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
690 EHABIIndexEntry, _i, data);
691 return indexAddr;
692 }
693
694 private:
695 size_t _i;
696 A* _addressSpace;
697 const UnwindInfoSections* _sects;
698 };
699
700 template <typename A, typename R>
getInfoFromEHABISection(pint_t pc,const UnwindInfoSections & sects)701 bool UnwindCursor<A, R>::getInfoFromEHABISection(
702 pint_t pc,
703 const UnwindInfoSections §s) {
704 EHABISectionIterator<A> begin =
705 EHABISectionIterator<A>::begin(_addressSpace, sects);
706 EHABISectionIterator<A> end =
707 EHABISectionIterator<A>::end(_addressSpace, sects);
708
709 EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc);
710 if (itNextPC == begin || itNextPC == end)
711 return false;
712 EHABISectionIterator<A> itThisPC = itNextPC - 1;
713
714 pint_t thisPC = itThisPC.functionAddress();
715 pint_t nextPC = itNextPC.functionAddress();
716 pint_t indexDataAddr = itThisPC.dataAddress();
717
718 if (indexDataAddr == 0)
719 return false;
720
721 uint32_t indexData = _addressSpace.get32(indexDataAddr);
722 if (indexData == UNW_EXIDX_CANTUNWIND)
723 return false;
724
725 // If the high bit is set, the exception handling table entry is inline inside
726 // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
727 // the table points at an offset in the exception handling table (section 5 EHABI).
728 pint_t exceptionTableAddr;
729 uint32_t exceptionTableData;
730 bool isSingleWordEHT;
731 if (indexData & 0x80000000) {
732 exceptionTableAddr = indexDataAddr;
733 // TODO(ajwong): Should this data be 0?
734 exceptionTableData = indexData;
735 isSingleWordEHT = true;
736 } else {
737 exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
738 exceptionTableData = _addressSpace.get32(exceptionTableAddr);
739 isSingleWordEHT = false;
740 }
741
742 // Now we know the 3 things:
743 // exceptionTableAddr -- exception handler table entry.
744 // exceptionTableData -- the data inside the first word of the eht entry.
745 // isSingleWordEHT -- whether the entry is in the index.
746 unw_word_t personalityRoutine = 0xbadf00d;
747 bool scope32 = false;
748 uintptr_t lsda;
749
750 // If the high bit in the exception handling table entry is set, the entry is
751 // in compact form (section 6.3 EHABI).
752 if (exceptionTableData & 0x80000000) {
753 // Grab the index of the personality routine from the compact form.
754 uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
755 uint32_t extraWords = 0;
756 switch (choice) {
757 case 0:
758 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
759 extraWords = 0;
760 scope32 = false;
761 lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
762 break;
763 case 1:
764 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
765 extraWords = (exceptionTableData & 0x00ff0000) >> 16;
766 scope32 = false;
767 lsda = exceptionTableAddr + (extraWords + 1) * 4;
768 break;
769 case 2:
770 personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
771 extraWords = (exceptionTableData & 0x00ff0000) >> 16;
772 scope32 = true;
773 lsda = exceptionTableAddr + (extraWords + 1) * 4;
774 break;
775 default:
776 _LIBUNWIND_ABORT("unknown personality routine");
777 return false;
778 }
779
780 if (isSingleWordEHT) {
781 if (extraWords != 0) {
782 _LIBUNWIND_ABORT("index inlined table detected but pr function "
783 "requires extra words");
784 return false;
785 }
786 }
787 } else {
788 pint_t personalityAddr =
789 exceptionTableAddr + signExtendPrel31(exceptionTableData);
790 personalityRoutine = personalityAddr;
791
792 // ARM EHABI # 6.2, # 9.2
793 //
794 // +---- ehtp
795 // v
796 // +--------------------------------------+
797 // | +--------+--------+--------+-------+ |
798 // | |0| prel31 to personalityRoutine | |
799 // | +--------+--------+--------+-------+ |
800 // | | N | unwind opcodes | | <-- UnwindData
801 // | +--------+--------+--------+-------+ |
802 // | | Word 2 unwind opcodes | |
803 // | +--------+--------+--------+-------+ |
804 // | ... |
805 // | +--------+--------+--------+-------+ |
806 // | | Word N unwind opcodes | |
807 // | +--------+--------+--------+-------+ |
808 // | | LSDA | | <-- lsda
809 // | | ... | |
810 // | +--------+--------+--------+-------+ |
811 // +--------------------------------------+
812
813 uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
814 uint32_t FirstDataWord = *UnwindData;
815 size_t N = ((FirstDataWord >> 24) & 0xff);
816 size_t NDataWords = N + 1;
817 lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
818 }
819
820 _info.start_ip = thisPC;
821 _info.end_ip = nextPC;
822 _info.handler = personalityRoutine;
823 _info.unwind_info = exceptionTableAddr;
824 _info.lsda = lsda;
825 // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
826 _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0; // Use enum?
827
828 return true;
829 }
830 #endif
831
832 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
833 template <typename A, typename R>
getInfoFromDwarfSection(pint_t pc,const UnwindInfoSections & sects,uint32_t fdeSectionOffsetHint)834 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
835 const UnwindInfoSections §s,
836 uint32_t fdeSectionOffsetHint) {
837 typename CFI_Parser<A>::FDE_Info fdeInfo;
838 typename CFI_Parser<A>::CIE_Info cieInfo;
839 bool foundFDE = false;
840 bool foundInCache = false;
841 // If compact encoding table gave offset into dwarf section, go directly there
842 if (fdeSectionOffsetHint != 0) {
843 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
844 (uint32_t)sects.dwarf_section_length,
845 sects.dwarf_section + fdeSectionOffsetHint,
846 &fdeInfo, &cieInfo);
847 }
848 #if _LIBUNWIND_SUPPORT_DWARF_INDEX
849 if (!foundFDE && (sects.dwarf_index_section != 0)) {
850 foundFDE = EHHeaderParser<A>::findFDE(
851 _addressSpace, pc, sects.dwarf_index_section,
852 (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
853 }
854 #endif
855 if (!foundFDE) {
856 // otherwise, search cache of previously found FDEs.
857 pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
858 if (cachedFDE != 0) {
859 foundFDE =
860 CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
861 (uint32_t)sects.dwarf_section_length,
862 cachedFDE, &fdeInfo, &cieInfo);
863 foundInCache = foundFDE;
864 }
865 }
866 if (!foundFDE) {
867 // Still not found, do full scan of __eh_frame section.
868 foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
869 (uint32_t)sects.dwarf_section_length, 0,
870 &fdeInfo, &cieInfo);
871 }
872 if (foundFDE) {
873 typename CFI_Parser<A>::PrologInfo prolog;
874 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
875 &prolog)) {
876 // Save off parsed FDE info
877 _info.start_ip = fdeInfo.pcStart;
878 _info.end_ip = fdeInfo.pcEnd;
879 _info.lsda = fdeInfo.lsda;
880 _info.handler = cieInfo.personality;
881 _info.gp = prolog.spExtraArgSize;
882 _info.flags = 0;
883 _info.format = dwarfEncoding();
884 _info.unwind_info = fdeInfo.fdeStart;
885 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
886 _info.extra = (unw_word_t) sects.dso_base;
887
888 // Add to cache (to make next lookup faster) if we had no hint
889 // and there was no index.
890 if (!foundInCache && (fdeSectionOffsetHint == 0)) {
891 #if _LIBUNWIND_SUPPORT_DWARF_INDEX
892 if (sects.dwarf_index_section == 0)
893 #endif
894 DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
895 fdeInfo.fdeStart);
896 }
897 return true;
898 }
899 }
900 //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX\n", (uint64_t)pc);
901 return false;
902 }
903 #endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
904
905
906 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
907 template <typename A, typename R>
getInfoFromCompactEncodingSection(pint_t pc,const UnwindInfoSections & sects)908 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
909 const UnwindInfoSections §s) {
910 const bool log = false;
911 if (log)
912 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
913 (uint64_t)pc, (uint64_t)sects.dso_base);
914
915 const UnwindSectionHeader<A> sectionHeader(_addressSpace,
916 sects.compact_unwind_section);
917 if (sectionHeader.version() != UNWIND_SECTION_VERSION)
918 return false;
919
920 // do a binary search of top level index to find page with unwind info
921 pint_t targetFunctionOffset = pc - sects.dso_base;
922 const UnwindSectionIndexArray<A> topIndex(_addressSpace,
923 sects.compact_unwind_section
924 + sectionHeader.indexSectionOffset());
925 uint32_t low = 0;
926 uint32_t high = sectionHeader.indexCount();
927 uint32_t last = high - 1;
928 while (low < high) {
929 uint32_t mid = (low + high) / 2;
930 //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
931 //mid, low, high, topIndex.functionOffset(mid));
932 if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
933 if ((mid == last) ||
934 (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
935 low = mid;
936 break;
937 } else {
938 low = mid + 1;
939 }
940 } else {
941 high = mid;
942 }
943 }
944 const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
945 const uint32_t firstLevelNextPageFunctionOffset =
946 topIndex.functionOffset(low + 1);
947 const pint_t secondLevelAddr =
948 sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
949 const pint_t lsdaArrayStartAddr =
950 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
951 const pint_t lsdaArrayEndAddr =
952 sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
953 if (log)
954 fprintf(stderr, "\tfirst level search for result index=%d "
955 "to secondLevelAddr=0x%llX\n",
956 low, (uint64_t) secondLevelAddr);
957 // do a binary search of second level page index
958 uint32_t encoding = 0;
959 pint_t funcStart = 0;
960 pint_t funcEnd = 0;
961 pint_t lsda = 0;
962 pint_t personality = 0;
963 uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
964 if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
965 // regular page
966 UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
967 secondLevelAddr);
968 UnwindSectionRegularArray<A> pageIndex(
969 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
970 // binary search looks for entry with e where index[e].offset <= pc <
971 // index[e+1].offset
972 if (log)
973 fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
974 "regular page starting at secondLevelAddr=0x%llX\n",
975 (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
976 low = 0;
977 high = pageHeader.entryCount();
978 while (low < high) {
979 uint32_t mid = (low + high) / 2;
980 if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
981 if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
982 // at end of table
983 low = mid;
984 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
985 break;
986 } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
987 // next is too big, so we found it
988 low = mid;
989 funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
990 break;
991 } else {
992 low = mid + 1;
993 }
994 } else {
995 high = mid;
996 }
997 }
998 encoding = pageIndex.encoding(low);
999 funcStart = pageIndex.functionOffset(low) + sects.dso_base;
1000 if (pc < funcStart) {
1001 if (log)
1002 fprintf(
1003 stderr,
1004 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1005 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1006 return false;
1007 }
1008 if (pc > funcEnd) {
1009 if (log)
1010 fprintf(
1011 stderr,
1012 "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1013 (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1014 return false;
1015 }
1016 } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
1017 // compressed page
1018 UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
1019 secondLevelAddr);
1020 UnwindSectionCompressedArray<A> pageIndex(
1021 _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1022 const uint32_t targetFunctionPageOffset =
1023 (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
1024 // binary search looks for entry with e where index[e].offset <= pc <
1025 // index[e+1].offset
1026 if (log)
1027 fprintf(stderr, "\tbinary search of compressed page starting at "
1028 "secondLevelAddr=0x%llX\n",
1029 (uint64_t) secondLevelAddr);
1030 low = 0;
1031 last = pageHeader.entryCount() - 1;
1032 high = pageHeader.entryCount();
1033 while (low < high) {
1034 uint32_t mid = (low + high) / 2;
1035 if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
1036 if ((mid == last) ||
1037 (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
1038 low = mid;
1039 break;
1040 } else {
1041 low = mid + 1;
1042 }
1043 } else {
1044 high = mid;
1045 }
1046 }
1047 funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
1048 + sects.dso_base;
1049 if (low < last)
1050 funcEnd =
1051 pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
1052 + sects.dso_base;
1053 else
1054 funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1055 if (pc < funcStart) {
1056 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second "
1057 "level compressed unwind table. funcStart=0x%llX\n",
1058 (uint64_t) pc, (uint64_t) funcStart);
1059 return false;
1060 }
1061 if (pc > funcEnd) {
1062 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second "
1063 "level compressed unwind table. funcEnd=0x%llX\n",
1064 (uint64_t) pc, (uint64_t) funcEnd);
1065 return false;
1066 }
1067 uint16_t encodingIndex = pageIndex.encodingIndex(low);
1068 if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
1069 // encoding is in common table in section header
1070 encoding = _addressSpace.get32(
1071 sects.compact_unwind_section +
1072 sectionHeader.commonEncodingsArraySectionOffset() +
1073 encodingIndex * sizeof(uint32_t));
1074 } else {
1075 // encoding is in page specific table
1076 uint16_t pageEncodingIndex =
1077 encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
1078 encoding = _addressSpace.get32(secondLevelAddr +
1079 pageHeader.encodingsPageOffset() +
1080 pageEncodingIndex * sizeof(uint32_t));
1081 }
1082 } else {
1083 _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second "
1084 "level page\n",
1085 (uint64_t) sects.compact_unwind_section);
1086 return false;
1087 }
1088
1089 // look up LSDA, if encoding says function has one
1090 if (encoding & UNWIND_HAS_LSDA) {
1091 UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
1092 uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
1093 low = 0;
1094 high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
1095 sizeof(unwind_info_section_header_lsda_index_entry);
1096 // binary search looks for entry with exact match for functionOffset
1097 if (log)
1098 fprintf(stderr,
1099 "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
1100 funcStartOffset);
1101 while (low < high) {
1102 uint32_t mid = (low + high) / 2;
1103 if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
1104 lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
1105 break;
1106 } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
1107 low = mid + 1;
1108 } else {
1109 high = mid;
1110 }
1111 }
1112 if (lsda == 0) {
1113 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
1114 "pc=0x%0llX, but lsda table has no entry\n",
1115 encoding, (uint64_t) pc);
1116 return false;
1117 }
1118 }
1119
1120 // extact personality routine, if encoding says function has one
1121 uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
1122 (__builtin_ctz(UNWIND_PERSONALITY_MASK));
1123 if (personalityIndex != 0) {
1124 --personalityIndex; // change 1-based to zero-based index
1125 if (personalityIndex > sectionHeader.personalityArrayCount()) {
1126 _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d, "
1127 "but personality table has only %d entires\n",
1128 encoding, personalityIndex,
1129 sectionHeader.personalityArrayCount());
1130 return false;
1131 }
1132 int32_t personalityDelta = (int32_t)_addressSpace.get32(
1133 sects.compact_unwind_section +
1134 sectionHeader.personalityArraySectionOffset() +
1135 personalityIndex * sizeof(uint32_t));
1136 pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
1137 personality = _addressSpace.getP(personalityPointer);
1138 if (log)
1139 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1140 "personalityDelta=0x%08X, personality=0x%08llX\n",
1141 (uint64_t) pc, personalityDelta, (uint64_t) personality);
1142 }
1143
1144 if (log)
1145 fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1146 "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
1147 (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
1148 _info.start_ip = funcStart;
1149 _info.end_ip = funcEnd;
1150 _info.lsda = lsda;
1151 _info.handler = personality;
1152 _info.gp = 0;
1153 _info.flags = 0;
1154 _info.format = encoding;
1155 _info.unwind_info = 0;
1156 _info.unwind_info_size = 0;
1157 _info.extra = sects.dso_base;
1158 return true;
1159 }
1160 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1161
1162
1163 template <typename A, typename R>
setInfoBasedOnIPRegister(bool isReturnAddress)1164 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
1165 pint_t pc = (pint_t)this->getReg(UNW_REG_IP);
1166 #if _LIBUNWIND_ARM_EHABI
1167 // Remove the thumb bit so the IP represents the actual instruction address.
1168 // This matches the behaviour of _Unwind_GetIP on arm.
1169 pc &= (pint_t)~0x1;
1170 #endif
1171
1172 // If the last line of a function is a "throw" the compiler sometimes
1173 // emits no instructions after the call to __cxa_throw. This means
1174 // the return address is actually the start of the next function.
1175 // To disambiguate this, back up the pc when we know it is a return
1176 // address.
1177 if (isReturnAddress)
1178 --pc;
1179
1180 // Ask address space object to find unwind sections for this pc.
1181 UnwindInfoSections sects;
1182 if (_addressSpace.findUnwindSections(pc, sects)) {
1183 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1184 // If there is a compact unwind encoding table, look there first.
1185 if (sects.compact_unwind_section != 0) {
1186 if (this->getInfoFromCompactEncodingSection(pc, sects)) {
1187 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1188 // Found info in table, done unless encoding says to use dwarf.
1189 uint32_t dwarfOffset;
1190 if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
1191 if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
1192 // found info in dwarf, done
1193 return;
1194 }
1195 }
1196 #endif
1197 // If unwind table has entry, but entry says there is no unwind info,
1198 // record that we have no unwind info.
1199 if (_info.format == 0)
1200 _unwindInfoMissing = true;
1201 return;
1202 }
1203 }
1204 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1205
1206 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1207 // If there is dwarf unwind info, look there next.
1208 if (sects.dwarf_section != 0) {
1209 if (this->getInfoFromDwarfSection(pc, sects)) {
1210 // found info in dwarf, done
1211 return;
1212 }
1213 }
1214 #endif
1215
1216 #if _LIBUNWIND_ARM_EHABI
1217 // If there is ARM EHABI unwind info, look there next.
1218 if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
1219 return;
1220 #endif
1221 }
1222
1223 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1224 // There is no static unwind info for this pc. Look to see if an FDE was
1225 // dynamically registered for it.
1226 pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc);
1227 if (cachedFDE != 0) {
1228 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
1229 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
1230 const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace,
1231 cachedFDE, &fdeInfo, &cieInfo);
1232 if (msg == NULL) {
1233 typename CFI_Parser<A>::PrologInfo prolog;
1234 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo,
1235 pc, &prolog)) {
1236 // save off parsed FDE info
1237 _info.start_ip = fdeInfo.pcStart;
1238 _info.end_ip = fdeInfo.pcEnd;
1239 _info.lsda = fdeInfo.lsda;
1240 _info.handler = cieInfo.personality;
1241 _info.gp = prolog.spExtraArgSize;
1242 // Some frameless functions need SP
1243 // altered when resuming in function.
1244 _info.flags = 0;
1245 _info.format = dwarfEncoding();
1246 _info.unwind_info = fdeInfo.fdeStart;
1247 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
1248 _info.extra = 0;
1249 return;
1250 }
1251 }
1252 }
1253
1254 // Lastly, ask AddressSpace object about platform specific ways to locate
1255 // other FDEs.
1256 pint_t fde;
1257 if (_addressSpace.findOtherFDE(pc, fde)) {
1258 CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
1259 CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
1260 if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
1261 // Double check this FDE is for a function that includes the pc.
1262 if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) {
1263 typename CFI_Parser<A>::PrologInfo prolog;
1264 if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo,
1265 cieInfo, pc, &prolog)) {
1266 // save off parsed FDE info
1267 _info.start_ip = fdeInfo.pcStart;
1268 _info.end_ip = fdeInfo.pcEnd;
1269 _info.lsda = fdeInfo.lsda;
1270 _info.handler = cieInfo.personality;
1271 _info.gp = prolog.spExtraArgSize;
1272 _info.flags = 0;
1273 _info.format = dwarfEncoding();
1274 _info.unwind_info = fdeInfo.fdeStart;
1275 _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
1276 _info.extra = 0;
1277 return;
1278 }
1279 }
1280 }
1281 }
1282 #endif // #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1283
1284 // no unwind info, flag that we can't reliably unwind
1285 _unwindInfoMissing = true;
1286 }
1287
1288 template <typename A, typename R>
step()1289 int UnwindCursor<A, R>::step() {
1290 // Bottom of stack is defined is when unwind info cannot be found.
1291 if (_unwindInfoMissing)
1292 return UNW_STEP_END;
1293
1294 // Use unwinding info to modify register set as if function returned.
1295 int result;
1296 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1297 result = this->stepWithCompactEncoding();
1298 #elif _LIBUNWIND_SUPPORT_DWARF_UNWIND
1299 result = this->stepWithDwarfFDE();
1300 #elif _LIBUNWIND_ARM_EHABI
1301 result = this->stepWithEHABI();
1302 #else
1303 #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
1304 _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
1305 _LIBUNWIND_ARM_EHABI
1306 #endif
1307
1308 // update info based on new PC
1309 if (result == UNW_STEP_SUCCESS) {
1310 this->setInfoBasedOnIPRegister(true);
1311 if (_unwindInfoMissing)
1312 return UNW_STEP_END;
1313 if (_info.gp)
1314 setReg(UNW_REG_SP, getReg(UNW_REG_SP) + _info.gp);
1315 }
1316
1317 return result;
1318 }
1319
1320 template <typename A, typename R>
getInfo(unw_proc_info_t * info)1321 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
1322 *info = _info;
1323 }
1324
1325 template <typename A, typename R>
getFunctionName(char * buf,size_t bufLen,unw_word_t * offset)1326 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
1327 unw_word_t *offset) {
1328 return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
1329 buf, bufLen, offset);
1330 }
1331
1332 } // namespace libunwind
1333
1334 #endif // __UNWINDCURSOR_HPP__
1335