1 //===-- tsan_mman.cc ------------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 //===----------------------------------------------------------------------===//
13 #include "sanitizer_common/sanitizer_allocator_interface.h"
14 #include "sanitizer_common/sanitizer_common.h"
15 #include "sanitizer_common/sanitizer_placement_new.h"
16 #include "tsan_mman.h"
17 #include "tsan_rtl.h"
18 #include "tsan_report.h"
19 #include "tsan_flags.h"
20
21 // May be overriden by front-end.
22 SANITIZER_WEAK_DEFAULT_IMPL
__sanitizer_malloc_hook(void * ptr,uptr size)23 void __sanitizer_malloc_hook(void *ptr, uptr size) {
24 (void)ptr;
25 (void)size;
26 }
27
28 SANITIZER_WEAK_DEFAULT_IMPL
__sanitizer_free_hook(void * ptr)29 void __sanitizer_free_hook(void *ptr) {
30 (void)ptr;
31 }
32
33 namespace __tsan {
34
35 struct MapUnmapCallback {
OnMap__tsan::MapUnmapCallback36 void OnMap(uptr p, uptr size) const { }
OnUnmap__tsan::MapUnmapCallback37 void OnUnmap(uptr p, uptr size) const {
38 // We are about to unmap a chunk of user memory.
39 // Mark the corresponding shadow memory as not needed.
40 DontNeedShadowFor(p, size);
41 // Mark the corresponding meta shadow memory as not needed.
42 // Note the block does not contain any meta info at this point
43 // (this happens after free).
44 const uptr kMetaRatio = kMetaShadowCell / kMetaShadowSize;
45 const uptr kPageSize = GetPageSizeCached() * kMetaRatio;
46 // Block came from LargeMmapAllocator, so must be large.
47 // We rely on this in the calculations below.
48 CHECK_GE(size, 2 * kPageSize);
49 uptr diff = RoundUp(p, kPageSize) - p;
50 if (diff != 0) {
51 p += diff;
52 size -= diff;
53 }
54 diff = p + size - RoundDown(p + size, kPageSize);
55 if (diff != 0)
56 size -= diff;
57 FlushUnneededShadowMemory((uptr)MemToMeta(p), size / kMetaRatio);
58 }
59 };
60
61 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
allocator()62 Allocator *allocator() {
63 return reinterpret_cast<Allocator*>(&allocator_placeholder);
64 }
65
InitializeAllocator()66 void InitializeAllocator() {
67 allocator()->Init(common_flags()->allocator_may_return_null);
68 }
69
AllocatorThreadStart(ThreadState * thr)70 void AllocatorThreadStart(ThreadState *thr) {
71 allocator()->InitCache(&thr->alloc_cache);
72 internal_allocator()->InitCache(&thr->internal_alloc_cache);
73 }
74
AllocatorThreadFinish(ThreadState * thr)75 void AllocatorThreadFinish(ThreadState *thr) {
76 allocator()->DestroyCache(&thr->alloc_cache);
77 internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
78 }
79
AllocatorPrintStats()80 void AllocatorPrintStats() {
81 allocator()->PrintStats();
82 }
83
SignalUnsafeCall(ThreadState * thr,uptr pc)84 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
85 if (atomic_load_relaxed(&thr->in_signal_handler) == 0 ||
86 !flags()->report_signal_unsafe)
87 return;
88 VarSizeStackTrace stack;
89 ObtainCurrentStack(thr, pc, &stack);
90 if (IsFiredSuppression(ctx, ReportTypeSignalUnsafe, stack))
91 return;
92 ThreadRegistryLock l(ctx->thread_registry);
93 ScopedReport rep(ReportTypeSignalUnsafe);
94 rep.AddStack(stack, true);
95 OutputReport(thr, rep);
96 }
97
user_alloc(ThreadState * thr,uptr pc,uptr sz,uptr align,bool signal)98 void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align, bool signal) {
99 if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
100 return allocator()->ReturnNullOrDie();
101 void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
102 if (p == 0)
103 return 0;
104 if (ctx && ctx->initialized)
105 OnUserAlloc(thr, pc, (uptr)p, sz, true);
106 if (signal)
107 SignalUnsafeCall(thr, pc);
108 return p;
109 }
110
user_calloc(ThreadState * thr,uptr pc,uptr size,uptr n)111 void *user_calloc(ThreadState *thr, uptr pc, uptr size, uptr n) {
112 if (CallocShouldReturnNullDueToOverflow(size, n))
113 return allocator()->ReturnNullOrDie();
114 void *p = user_alloc(thr, pc, n * size);
115 if (p)
116 internal_memset(p, 0, n * size);
117 return p;
118 }
119
user_free(ThreadState * thr,uptr pc,void * p,bool signal)120 void user_free(ThreadState *thr, uptr pc, void *p, bool signal) {
121 if (ctx && ctx->initialized)
122 OnUserFree(thr, pc, (uptr)p, true);
123 allocator()->Deallocate(&thr->alloc_cache, p);
124 if (signal)
125 SignalUnsafeCall(thr, pc);
126 }
127
OnUserAlloc(ThreadState * thr,uptr pc,uptr p,uptr sz,bool write)128 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
129 DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
130 ctx->metamap.AllocBlock(thr, pc, p, sz);
131 if (write && thr->ignore_reads_and_writes == 0)
132 MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
133 else
134 MemoryResetRange(thr, pc, (uptr)p, sz);
135 }
136
OnUserFree(ThreadState * thr,uptr pc,uptr p,bool write)137 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
138 CHECK_NE(p, (void*)0);
139 uptr sz = ctx->metamap.FreeBlock(thr, pc, p);
140 DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
141 if (write && thr->ignore_reads_and_writes == 0)
142 MemoryRangeFreed(thr, pc, (uptr)p, sz);
143 }
144
user_realloc(ThreadState * thr,uptr pc,void * p,uptr sz)145 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
146 void *p2 = 0;
147 // FIXME: Handle "shrinking" more efficiently,
148 // it seems that some software actually does this.
149 if (sz) {
150 p2 = user_alloc(thr, pc, sz);
151 if (p2 == 0)
152 return 0;
153 if (p) {
154 uptr oldsz = user_alloc_usable_size(p);
155 internal_memcpy(p2, p, min(oldsz, sz));
156 }
157 }
158 if (p)
159 user_free(thr, pc, p);
160 return p2;
161 }
162
user_alloc_usable_size(const void * p)163 uptr user_alloc_usable_size(const void *p) {
164 if (p == 0)
165 return 0;
166 MBlock *b = ctx->metamap.GetBlock((uptr)p);
167 return b ? b->siz : 0;
168 }
169
invoke_malloc_hook(void * ptr,uptr size)170 void invoke_malloc_hook(void *ptr, uptr size) {
171 ThreadState *thr = cur_thread();
172 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
173 return;
174 __sanitizer_malloc_hook(ptr, size);
175 }
176
invoke_free_hook(void * ptr)177 void invoke_free_hook(void *ptr) {
178 ThreadState *thr = cur_thread();
179 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
180 return;
181 __sanitizer_free_hook(ptr);
182 }
183
internal_alloc(MBlockType typ,uptr sz)184 void *internal_alloc(MBlockType typ, uptr sz) {
185 ThreadState *thr = cur_thread();
186 if (thr->nomalloc) {
187 thr->nomalloc = 0; // CHECK calls internal_malloc().
188 CHECK(0);
189 }
190 return InternalAlloc(sz, &thr->internal_alloc_cache);
191 }
192
internal_free(void * p)193 void internal_free(void *p) {
194 ThreadState *thr = cur_thread();
195 if (thr->nomalloc) {
196 thr->nomalloc = 0; // CHECK calls internal_malloc().
197 CHECK(0);
198 }
199 InternalFree(p, &thr->internal_alloc_cache);
200 }
201
202 } // namespace __tsan
203
204 using namespace __tsan;
205
206 extern "C" {
__sanitizer_get_current_allocated_bytes()207 uptr __sanitizer_get_current_allocated_bytes() {
208 uptr stats[AllocatorStatCount];
209 allocator()->GetStats(stats);
210 return stats[AllocatorStatAllocated];
211 }
212
__sanitizer_get_heap_size()213 uptr __sanitizer_get_heap_size() {
214 uptr stats[AllocatorStatCount];
215 allocator()->GetStats(stats);
216 return stats[AllocatorStatMapped];
217 }
218
__sanitizer_get_free_bytes()219 uptr __sanitizer_get_free_bytes() {
220 return 1;
221 }
222
__sanitizer_get_unmapped_bytes()223 uptr __sanitizer_get_unmapped_bytes() {
224 return 1;
225 }
226
__sanitizer_get_estimated_allocated_size(uptr size)227 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
228 return size;
229 }
230
__sanitizer_get_ownership(const void * p)231 int __sanitizer_get_ownership(const void *p) {
232 return allocator()->GetBlockBegin(p) != 0;
233 }
234
__sanitizer_get_allocated_size(const void * p)235 uptr __sanitizer_get_allocated_size(const void *p) {
236 return user_alloc_usable_size(p);
237 }
238
__tsan_on_thread_idle()239 void __tsan_on_thread_idle() {
240 ThreadState *thr = cur_thread();
241 allocator()->SwallowCache(&thr->alloc_cache);
242 internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
243 ctx->metamap.OnThreadIdle(thr);
244 }
245 } // extern "C"
246