1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "linker/arm64/relative_patcher_arm64.h"
18 
19 #include "arch/arm64/instruction_set_features_arm64.h"
20 #include "art_method.h"
21 #include "compiled_method.h"
22 #include "driver/compiler_driver.h"
23 #include "linker/output_stream.h"
24 #include "oat.h"
25 #include "oat_quick_method_header.h"
26 #include "utils/arm64/assembler_arm64.h"
27 
28 namespace art {
29 namespace linker {
30 
31 namespace {
32 
IsAdrpPatch(const LinkerPatch & patch)33 inline bool IsAdrpPatch(const LinkerPatch& patch) {
34   LinkerPatch::Type type = patch.GetType();
35   return
36       (type == LinkerPatch::Type::kStringRelative || type == LinkerPatch::Type::kDexCacheArray) &&
37       patch.LiteralOffset() == patch.PcInsnOffset();
38 }
39 
40 }  // anonymous namespace
41 
Arm64RelativePatcher(RelativePatcherTargetProvider * provider,const Arm64InstructionSetFeatures * features)42 Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
43                                            const Arm64InstructionSetFeatures* features)
44     : ArmBaseRelativePatcher(provider, kArm64, CompileThunkCode(),
45                              kMaxPositiveDisplacement, kMaxNegativeDisplacement),
46       fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
47       reserved_adrp_thunks_(0u),
48       processed_adrp_thunks_(0u) {
49   if (fix_cortex_a53_843419_) {
50     adrp_thunk_locations_.reserve(16u);
51     current_method_thunks_.reserve(16u * kAdrpThunkSize);
52   }
53 }
54 
ReserveSpace(uint32_t offset,const CompiledMethod * compiled_method,MethodReference method_ref)55 uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
56                                             const CompiledMethod* compiled_method,
57                                             MethodReference method_ref) {
58   if (!fix_cortex_a53_843419_) {
59     DCHECK(adrp_thunk_locations_.empty());
60     return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
61   }
62 
63   // Add thunks for previous method if any.
64   if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
65     size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
66     offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
67     reserved_adrp_thunks_ = adrp_thunk_locations_.size();
68   }
69 
70   // Count the number of ADRP insns as the upper bound on the number of thunks needed
71   // and use it to reserve space for other linker patches.
72   size_t num_adrp = 0u;
73   DCHECK(compiled_method != nullptr);
74   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
75     if (IsAdrpPatch(patch)) {
76       ++num_adrp;
77     }
78   }
79   offset = ReserveSpaceInternal(offset, compiled_method, method_ref, kAdrpThunkSize * num_adrp);
80   if (num_adrp == 0u) {
81     return offset;
82   }
83 
84   // Now that we have the actual offset where the code will be placed, locate the ADRP insns
85   // that actually require the thunk.
86   uint32_t quick_code_offset = compiled_method->AlignCode(offset) + sizeof(OatQuickMethodHeader);
87   ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
88   uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
89   DCHECK(compiled_method != nullptr);
90   for (const LinkerPatch& patch : compiled_method->GetPatches()) {
91     if (IsAdrpPatch(patch)) {
92       uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
93       if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
94         adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
95         thunk_offset += kAdrpThunkSize;
96       }
97     }
98   }
99   return offset;
100 }
101 
ReserveSpaceEnd(uint32_t offset)102 uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
103   if (!fix_cortex_a53_843419_) {
104     DCHECK(adrp_thunk_locations_.empty());
105   } else {
106     // Add thunks for the last method if any.
107     if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
108       size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
109       offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
110       reserved_adrp_thunks_ = adrp_thunk_locations_.size();
111     }
112   }
113   return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
114 }
115 
WriteThunks(OutputStream * out,uint32_t offset)116 uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
117   if (fix_cortex_a53_843419_) {
118     if (!current_method_thunks_.empty()) {
119       uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
120       if (kIsDebugBuild) {
121         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
122         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
123         CHECK_LE(num_thunks, processed_adrp_thunks_);
124         for (size_t i = 0u; i != num_thunks; ++i) {
125           const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
126           CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
127         }
128       }
129       uint32_t aligned_code_delta = aligned_offset - offset;
130       if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
131         return 0u;
132       }
133       if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
134         return 0u;
135       }
136       offset = aligned_offset + current_method_thunks_.size();
137       current_method_thunks_.clear();
138     }
139   }
140   return ArmBaseRelativePatcher::WriteThunks(out, offset);
141 }
142 
PatchCall(std::vector<uint8_t> * code,uint32_t literal_offset,uint32_t patch_offset,uint32_t target_offset)143 void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
144                                      uint32_t literal_offset,
145                                      uint32_t patch_offset, uint32_t
146                                      target_offset) {
147   DCHECK_LE(literal_offset + 4u, code->size());
148   DCHECK_EQ(literal_offset & 3u, 0u);
149   DCHECK_EQ(patch_offset & 3u, 0u);
150   DCHECK_EQ(target_offset & 3u, 0u);
151   uint32_t displacement = CalculateDisplacement(patch_offset, target_offset & ~1u);
152   DCHECK_EQ(displacement & 3u, 0u);
153   DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u);  // 28-bit signed.
154   uint32_t insn = (displacement & 0x0fffffffu) >> 2;
155   insn |= 0x94000000;  // BL
156 
157   // Check that we're just overwriting an existing BL.
158   DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
159   // Write the new BL.
160   SetInsn(code, literal_offset, insn);
161 }
162 
PatchPcRelativeReference(std::vector<uint8_t> * code,const LinkerPatch & patch,uint32_t patch_offset,uint32_t target_offset)163 void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
164                                                     const LinkerPatch& patch,
165                                                     uint32_t patch_offset,
166                                                     uint32_t target_offset) {
167   DCHECK_EQ(patch_offset & 3u, 0u);
168   DCHECK_EQ(target_offset & 3u, 0u);
169   uint32_t literal_offset = patch.LiteralOffset();
170   uint32_t insn = GetInsn(code, literal_offset);
171   uint32_t pc_insn_offset = patch.PcInsnOffset();
172   uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
173   bool wide = (insn & 0x40000000) != 0;
174   uint32_t shift = wide ? 3u : 2u;
175   if (literal_offset == pc_insn_offset) {
176     // Check it's an ADRP with imm == 0 (unset).
177     DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
178         << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
179     if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
180         adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
181       DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
182                                      literal_offset, patch_offset));
183       uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
184       uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
185       uint32_t adrp = PatchAdrp(insn, adrp_disp);
186 
187       uint32_t out_disp = thunk_offset - patch_offset;
188       DCHECK_EQ(out_disp & 3u, 0u);
189       DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u);  // 28-bit signed.
190       insn = (out_disp & 0x0fffffffu) >> shift;
191       insn |= 0x14000000;  // B <thunk>
192 
193       uint32_t back_disp = -out_disp;
194       DCHECK_EQ(back_disp & 3u, 0u);
195       DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u);  // 28-bit signed.
196       uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
197       b_back |= 0x14000000;  // B <back>
198       size_t thunks_code_offset = current_method_thunks_.size();
199       current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
200       SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
201       SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
202       static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
203 
204       processed_adrp_thunks_ += 1u;
205     } else {
206       insn = PatchAdrp(insn, disp);
207     }
208     // Write the new ADRP (or B to the erratum 843419 thunk).
209     SetInsn(code, literal_offset, insn);
210   } else {
211     if ((insn & 0xfffffc00) == 0x91000000) {
212       // ADD immediate, 64-bit with imm12 == 0 (unset).
213       DCHECK(patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType();
214       shift = 0u;  // No shift for ADD.
215     } else {
216       // LDR 32-bit or 64-bit with imm12 == 0 (unset).
217       DCHECK(patch.GetType() == LinkerPatch::Type::kDexCacheArray) << patch.GetType();
218       DCHECK_EQ(insn & 0xbffffc00, 0xb9400000) << std::hex << insn;
219     }
220     if (kIsDebugBuild) {
221       uint32_t adrp = GetInsn(code, pc_insn_offset);
222       if ((adrp & 0x9f000000u) != 0x90000000u) {
223         CHECK(fix_cortex_a53_843419_);
224         CHECK_EQ(adrp & 0xfc000000u, 0x14000000u);  // B <thunk>
225         CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
226         size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
227         CHECK_LE(num_thunks, processed_adrp_thunks_);
228         uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
229         for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
230           CHECK_NE(i, processed_adrp_thunks_);
231           if (adrp_thunk_locations_[i].first == b_offset) {
232             size_t idx = num_thunks - (processed_adrp_thunks_ - i);
233             adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
234             break;
235           }
236         }
237       }
238       CHECK_EQ(adrp & 0x9f00001fu,                    // Check that pc_insn_offset points
239                0x90000000 | ((insn >> 5) & 0x1fu));   // to ADRP with matching register.
240     }
241     uint32_t imm12 = (disp & 0xfffu) >> shift;
242     insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
243     SetInsn(code, literal_offset, insn);
244   }
245 }
246 
CompileThunkCode()247 std::vector<uint8_t> Arm64RelativePatcher::CompileThunkCode() {
248   // The thunk just uses the entry point in the ArtMethod. This works even for calls
249   // to the generic JNI and interpreter trampolines.
250   ArenaPool pool;
251   ArenaAllocator arena(&pool);
252   arm64::Arm64Assembler assembler(&arena);
253   Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
254       kArm64PointerSize).Int32Value());
255   assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
256   // Ensure we emit the literal pool.
257   assembler.FinalizeCode();
258   std::vector<uint8_t> thunk_code(assembler.CodeSize());
259   MemoryRegion code(thunk_code.data(), thunk_code.size());
260   assembler.FinalizeInstructions(code);
261   return thunk_code;
262 }
263 
PatchAdrp(uint32_t adrp,uint32_t disp)264 uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
265   return (adrp & 0x9f00001fu) |  // Clear offset bits, keep ADRP with destination reg.
266       // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
267       ((disp & 0x00003000u) << (29 - 12)) |
268       // The next 16 bits are encoded in bits 5-22.
269       ((disp & 0xffffc000u) >> (12 + 2 - 5)) |
270       // Since the target_offset is based on the beginning of the oat file and the
271       // image space precedes the oat file, the target_offset into image space will
272       // be negative yet passed as uint32_t. Therefore we limit the displacement
273       // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
274       // the highest bit of the displacement. This is encoded in bit 23.
275       ((disp & 0x80000000u) >> (31 - 23));
276 }
277 
NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,uint32_t literal_offset,uint32_t patch_offset)278 bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
279                                                    uint32_t literal_offset,
280                                                    uint32_t patch_offset) {
281   DCHECK_EQ(patch_offset & 0x3u, 0u);
282   if ((patch_offset & 0xff8) == 0xff8) {  // ...ff8 or ...ffc
283     uint32_t adrp = GetInsn(code, literal_offset);
284     DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
285     uint32_t next_offset = patch_offset + 4u;
286     uint32_t next_insn = GetInsn(code, literal_offset + 4u);
287 
288     // Below we avoid patching sequences where the adrp is followed by a load which can easily
289     // be proved to be aligned.
290 
291     // First check if the next insn is the LDR using the result of the ADRP.
292     // LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
293     if ((next_insn & 0xffc00000) == 0xb9400000 &&
294         (((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
295       return false;
296     }
297 
298     // And since LinkerPatch::Type::kStringRelative is using the result of the ADRP
299     // for an ADD immediate, check for that as well. We generalize a bit to include
300     // ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination or stores
301     // the result to a different register.
302     if ((next_insn & 0x1f000000) == 0x11000000 &&
303         ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
304       return false;
305     }
306 
307     // LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
308     if ((next_insn & 0xff000000) == 0x18000000) {
309       return false;
310     }
311 
312     // LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
313     if ((next_insn & 0xff000000) == 0x58000000) {
314       bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
315       return !is_aligned_load;
316     }
317 
318     // LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
319     // guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
320     if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
321       return false;
322     }
323     return true;
324   }
325   return false;
326 }
327 
SetInsn(std::vector<uint8_t> * code,uint32_t offset,uint32_t value)328 void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
329   DCHECK_LE(offset + 4u, code->size());
330   DCHECK_EQ(offset & 3u, 0u);
331   uint8_t* addr = &(*code)[offset];
332   addr[0] = (value >> 0) & 0xff;
333   addr[1] = (value >> 8) & 0xff;
334   addr[2] = (value >> 16) & 0xff;
335   addr[3] = (value >> 24) & 0xff;
336 }
337 
GetInsn(ArrayRef<const uint8_t> code,uint32_t offset)338 uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
339   DCHECK_LE(offset + 4u, code.size());
340   DCHECK_EQ(offset & 3u, 0u);
341   const uint8_t* addr = &code[offset];
342   return
343       (static_cast<uint32_t>(addr[0]) << 0) +
344       (static_cast<uint32_t>(addr[1]) << 8) +
345       (static_cast<uint32_t>(addr[2]) << 16)+
346       (static_cast<uint32_t>(addr[3]) << 24);
347 }
348 
349 template <typename Alloc>
GetInsn(std::vector<uint8_t,Alloc> * code,uint32_t offset)350 uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
351   return GetInsn(ArrayRef<const uint8_t>(*code), offset);
352 }
353 
354 }  // namespace linker
355 }  // namespace art
356