1 //===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16 
17 #include "llvm/ADT/iterator_range.h"
18 #include "llvm/IR/Use.h"
19 #include "llvm/Support/CBindingWrapping.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm/Support/Compiler.h"
22 
23 namespace llvm {
24 
25 class APInt;
26 class Argument;
27 class AssemblyAnnotationWriter;
28 class BasicBlock;
29 class Constant;
30 class DataLayout;
31 class Function;
32 class GlobalAlias;
33 class GlobalObject;
34 class GlobalValue;
35 class GlobalVariable;
36 class InlineAsm;
37 class Instruction;
38 class LLVMContext;
39 class Module;
40 class ModuleSlotTracker;
41 class StringRef;
42 class Twine;
43 class Type;
44 class ValueHandleBase;
45 class ValueSymbolTable;
46 class raw_ostream;
47 
48 template<typename ValueTy> class StringMapEntry;
49 typedef StringMapEntry<Value*> ValueName;
50 
51 //===----------------------------------------------------------------------===//
52 //                                 Value Class
53 //===----------------------------------------------------------------------===//
54 
55 /// \brief LLVM Value Representation
56 ///
57 /// This is a very important LLVM class. It is the base class of all values
58 /// computed by a program that may be used as operands to other values. Value is
59 /// the super class of other important classes such as Instruction and Function.
60 /// All Values have a Type. Type is not a subclass of Value. Some values can
61 /// have a name and they belong to some Module.  Setting the name on the Value
62 /// automatically updates the module's symbol table.
63 ///
64 /// Every value has a "use list" that keeps track of which other Values are
65 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
66 /// objects that watch it and listen to RAUW and Destroy events.  See
67 /// llvm/IR/ValueHandle.h for details.
68 class Value {
69   Type *VTy;
70   Use *UseList;
71 
72   friend class ValueAsMetadata; // Allow access to IsUsedByMD.
73   friend class ValueHandleBase;
74 
75   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
76   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
77 protected:
78   /// \brief Hold subclass data that can be dropped.
79   ///
80   /// This member is similar to SubclassData, however it is for holding
81   /// information which may be used to aid optimization, but which may be
82   /// cleared to zero without affecting conservative interpretation.
83   unsigned char SubclassOptionalData : 7;
84 
85 private:
86   /// \brief Hold arbitrary subclass data.
87   ///
88   /// This member is defined by this class, but is not used for anything.
89   /// Subclasses can use it to hold whatever state they find useful.  This
90   /// field is initialized to zero by the ctor.
91   unsigned short SubclassData;
92 
93 protected:
94   /// \brief The number of operands in the subclass.
95   ///
96   /// This member is defined by this class, but not used for anything.
97   /// Subclasses can use it to store their number of operands, if they have
98   /// any.
99   ///
100   /// This is stored here to save space in User on 64-bit hosts.  Since most
101   /// instances of Value have operands, 32-bit hosts aren't significantly
102   /// affected.
103   ///
104   /// Note, this should *NOT* be used directly by any class other than User.
105   /// User uses this value to find the Use list.
106   enum : unsigned { NumUserOperandsBits = 28 };
107   unsigned NumUserOperands : NumUserOperandsBits;
108 
109   bool IsUsedByMD : 1;
110   bool HasName : 1;
111   bool HasHungOffUses : 1;
112   bool HasDescriptor : 1;
113 
114 private:
115   template <typename UseT> // UseT == 'Use' or 'const Use'
116   class use_iterator_impl
117       : public std::iterator<std::forward_iterator_tag, UseT *> {
118     UseT *U;
use_iterator_impl(UseT * u)119     explicit use_iterator_impl(UseT *u) : U(u) {}
120     friend class Value;
121 
122   public:
use_iterator_impl()123     use_iterator_impl() : U() {}
124 
125     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
126     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
127 
128     use_iterator_impl &operator++() { // Preincrement
129       assert(U && "Cannot increment end iterator!");
130       U = U->getNext();
131       return *this;
132     }
133     use_iterator_impl operator++(int) { // Postincrement
134       auto tmp = *this;
135       ++*this;
136       return tmp;
137     }
138 
139     UseT &operator*() const {
140       assert(U && "Cannot dereference end iterator!");
141       return *U;
142     }
143 
144     UseT *operator->() const { return &operator*(); }
145 
146     operator use_iterator_impl<const UseT>() const {
147       return use_iterator_impl<const UseT>(U);
148     }
149   };
150 
151   template <typename UserTy> // UserTy == 'User' or 'const User'
152   class user_iterator_impl
153       : public std::iterator<std::forward_iterator_tag, UserTy *> {
154     use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)155     explicit user_iterator_impl(Use *U) : UI(U) {}
156     friend class Value;
157 
158   public:
user_iterator_impl()159     user_iterator_impl() {}
160 
161     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
162     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
163 
164     /// \brief Returns true if this iterator is equal to user_end() on the value.
atEnd()165     bool atEnd() const { return *this == user_iterator_impl(); }
166 
167     user_iterator_impl &operator++() { // Preincrement
168       ++UI;
169       return *this;
170     }
171     user_iterator_impl operator++(int) { // Postincrement
172       auto tmp = *this;
173       ++*this;
174       return tmp;
175     }
176 
177     // Retrieve a pointer to the current User.
178     UserTy *operator*() const {
179       return UI->getUser();
180     }
181 
182     UserTy *operator->() const { return operator*(); }
183 
184     operator user_iterator_impl<const UserTy>() const {
185       return user_iterator_impl<const UserTy>(*UI);
186     }
187 
getUse()188     Use &getUse() const { return *UI; }
189   };
190 
191   void operator=(const Value &) = delete;
192   Value(const Value &) = delete;
193 
194 protected:
195   Value(Type *Ty, unsigned scid);
196 public:
197   virtual ~Value();
198 
199   /// \brief Support for debugging, callable in GDB: V->dump()
200   void dump() const;
201 
202   /// \brief Implement operator<< on Value.
203   /// @{
204   void print(raw_ostream &O, bool IsForDebug = false) const;
205   void print(raw_ostream &O, ModuleSlotTracker &MST,
206              bool IsForDebug = false) const;
207   /// @}
208 
209   /// \brief Print the name of this Value out to the specified raw_ostream.
210   ///
211   /// This is useful when you just want to print 'int %reg126', not the
212   /// instruction that generated it. If you specify a Module for context, then
213   /// even constanst get pretty-printed; for example, the type of a null
214   /// pointer is printed symbolically.
215   /// @{
216   void printAsOperand(raw_ostream &O, bool PrintType = true,
217                       const Module *M = nullptr) const;
218   void printAsOperand(raw_ostream &O, bool PrintType,
219                       ModuleSlotTracker &MST) const;
220   /// @}
221 
222   /// \brief All values are typed, get the type of this value.
getType()223   Type *getType() const { return VTy; }
224 
225   /// \brief All values hold a context through their type.
226   LLVMContext &getContext() const;
227 
228   // \brief All values can potentially be named.
hasName()229   bool hasName() const { return HasName; }
230   ValueName *getValueName() const;
231   void setValueName(ValueName *VN);
232 
233 private:
234   void destroyValueName();
235   void setNameImpl(const Twine &Name);
236 
237 public:
238   /// \brief Return a constant reference to the value's name.
239   ///
240   /// This is cheap and guaranteed to return the same reference as long as the
241   /// value is not modified.
242   StringRef getName() const;
243 
244   /// \brief Change the name of the value.
245   ///
246   /// Choose a new unique name if the provided name is taken.
247   ///
248   /// \param Name The new name; or "" if the value's name should be removed.
249   void setName(const Twine &Name);
250 
251 
252   /// \brief Transfer the name from V to this value.
253   ///
254   /// After taking V's name, sets V's name to empty.
255   ///
256   /// \note It is an error to call V->takeName(V).
257   void takeName(Value *V);
258 
259   /// \brief Change all uses of this to point to a new Value.
260   ///
261   /// Go through the uses list for this definition and make each use point to
262   /// "V" instead of "this".  After this completes, 'this's use list is
263   /// guaranteed to be empty.
264   void replaceAllUsesWith(Value *V);
265 
266   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
267   /// make each use point to "V" instead of "this" when the use is outside the
268   /// block. 'This's use list is expected to have at least one element.
269   /// Unlike replaceAllUsesWith this function does not support basic block
270   /// values or constant users.
271   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
272 
273   //----------------------------------------------------------------------
274   // Methods for handling the chain of uses of this Value.
275   //
276   // Materializing a function can introduce new uses, so these methods come in
277   // two variants:
278   // The methods that start with materialized_ check the uses that are
279   // currently known given which functions are materialized. Be very careful
280   // when using them since you might not get all uses.
281   // The methods that don't start with materialized_ assert that modules is
282   // fully materialized.
283 #ifdef NDEBUG
assertModuleIsMaterialized()284   void assertModuleIsMaterialized() const {}
285 #else
286   void assertModuleIsMaterialized() const;
287 #endif
288 
use_empty()289   bool use_empty() const {
290     assertModuleIsMaterialized();
291     return UseList == nullptr;
292   }
293 
294   typedef use_iterator_impl<Use> use_iterator;
295   typedef use_iterator_impl<const Use> const_use_iterator;
materialized_use_begin()296   use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()297   const_use_iterator materialized_use_begin() const {
298     return const_use_iterator(UseList);
299   }
use_begin()300   use_iterator use_begin() {
301     assertModuleIsMaterialized();
302     return materialized_use_begin();
303   }
use_begin()304   const_use_iterator use_begin() const {
305     assertModuleIsMaterialized();
306     return materialized_use_begin();
307   }
use_end()308   use_iterator use_end() { return use_iterator(); }
use_end()309   const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()310   iterator_range<use_iterator> materialized_uses() {
311     return make_range(materialized_use_begin(), use_end());
312   }
materialized_uses()313   iterator_range<const_use_iterator> materialized_uses() const {
314     return make_range(materialized_use_begin(), use_end());
315   }
uses()316   iterator_range<use_iterator> uses() {
317     assertModuleIsMaterialized();
318     return materialized_uses();
319   }
uses()320   iterator_range<const_use_iterator> uses() const {
321     assertModuleIsMaterialized();
322     return materialized_uses();
323   }
324 
user_empty()325   bool user_empty() const {
326     assertModuleIsMaterialized();
327     return UseList == nullptr;
328   }
329 
330   typedef user_iterator_impl<User> user_iterator;
331   typedef user_iterator_impl<const User> const_user_iterator;
materialized_user_begin()332   user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()333   const_user_iterator materialized_user_begin() const {
334     return const_user_iterator(UseList);
335   }
user_begin()336   user_iterator user_begin() {
337     assertModuleIsMaterialized();
338     return materialized_user_begin();
339   }
user_begin()340   const_user_iterator user_begin() const {
341     assertModuleIsMaterialized();
342     return materialized_user_begin();
343   }
user_end()344   user_iterator user_end() { return user_iterator(); }
user_end()345   const_user_iterator user_end() const { return const_user_iterator(); }
user_back()346   User *user_back() {
347     assertModuleIsMaterialized();
348     return *materialized_user_begin();
349   }
user_back()350   const User *user_back() const {
351     assertModuleIsMaterialized();
352     return *materialized_user_begin();
353   }
users()354   iterator_range<user_iterator> users() {
355     assertModuleIsMaterialized();
356     return make_range(materialized_user_begin(), user_end());
357   }
users()358   iterator_range<const_user_iterator> users() const {
359     assertModuleIsMaterialized();
360     return make_range(materialized_user_begin(), user_end());
361   }
362 
363   /// \brief Return true if there is exactly one user of this value.
364   ///
365   /// This is specialized because it is a common request and does not require
366   /// traversing the whole use list.
hasOneUse()367   bool hasOneUse() const {
368     const_use_iterator I = use_begin(), E = use_end();
369     if (I == E) return false;
370     return ++I == E;
371   }
372 
373   /// \brief Return true if this Value has exactly N users.
374   bool hasNUses(unsigned N) const;
375 
376   /// \brief Return true if this value has N users or more.
377   ///
378   /// This is logically equivalent to getNumUses() >= N.
379   bool hasNUsesOrMore(unsigned N) const;
380 
381   /// \brief Check if this value is used in the specified basic block.
382   bool isUsedInBasicBlock(const BasicBlock *BB) const;
383 
384   /// \brief This method computes the number of uses of this Value.
385   ///
386   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
387   /// hasNUsesOrMore to check for specific values.
388   unsigned getNumUses() const;
389 
390   /// \brief This method should only be used by the Use class.
addUse(Use & U)391   void addUse(Use &U) { U.addToList(&UseList); }
392 
393   /// \brief Concrete subclass of this.
394   ///
395   /// An enumeration for keeping track of the concrete subclass of Value that
396   /// is actually instantiated. Values of this enumeration are kept in the
397   /// Value classes SubclassID field. They are used for concrete type
398   /// identification.
399   enum ValueTy {
400 #define HANDLE_VALUE(Name) Name##Val,
401 #include "llvm/IR/Value.def"
402 
403     // Markers:
404 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
405 #include "llvm/IR/Value.def"
406   };
407 
408   /// \brief Return an ID for the concrete type of this object.
409   ///
410   /// This is used to implement the classof checks.  This should not be used
411   /// for any other purpose, as the values may change as LLVM evolves.  Also,
412   /// note that for instructions, the Instruction's opcode is added to
413   /// InstructionVal. So this means three things:
414   /// # there is no value with code InstructionVal (no opcode==0).
415   /// # there are more possible values for the value type than in ValueTy enum.
416   /// # the InstructionVal enumerator must be the highest valued enumerator in
417   ///   the ValueTy enum.
getValueID()418   unsigned getValueID() const {
419     return SubclassID;
420   }
421 
422   /// \brief Return the raw optional flags value contained in this value.
423   ///
424   /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()425   unsigned getRawSubclassOptionalData() const {
426     return SubclassOptionalData;
427   }
428 
429   /// \brief Clear the optional flags contained in this value.
clearSubclassOptionalData()430   void clearSubclassOptionalData() {
431     SubclassOptionalData = 0;
432   }
433 
434   /// \brief Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)435   bool hasSameSubclassOptionalData(const Value *V) const {
436     return SubclassOptionalData == V->SubclassOptionalData;
437   }
438 
439   /// \brief Clear any optional flags not set in the given Value.
intersectOptionalDataWith(const Value * V)440   void intersectOptionalDataWith(const Value *V) {
441     SubclassOptionalData &= V->SubclassOptionalData;
442   }
443 
444   /// \brief Return true if there is a value handle associated with this value.
hasValueHandle()445   bool hasValueHandle() const { return HasValueHandle; }
446 
447   /// \brief Return true if there is metadata referencing this value.
isUsedByMetadata()448   bool isUsedByMetadata() const { return IsUsedByMD; }
449 
450   /// \brief Strip off pointer casts, all-zero GEPs, and aliases.
451   ///
452   /// Returns the original uncasted value.  If this is called on a non-pointer
453   /// value, it returns 'this'.
454   Value *stripPointerCasts();
stripPointerCasts()455   const Value *stripPointerCasts() const {
456     return const_cast<Value*>(this)->stripPointerCasts();
457   }
458 
459   /// \brief Strip off pointer casts and all-zero GEPs.
460   ///
461   /// Returns the original uncasted value.  If this is called on a non-pointer
462   /// value, it returns 'this'.
463   Value *stripPointerCastsNoFollowAliases();
stripPointerCastsNoFollowAliases()464   const Value *stripPointerCastsNoFollowAliases() const {
465     return const_cast<Value*>(this)->stripPointerCastsNoFollowAliases();
466   }
467 
468   /// \brief Strip off pointer casts and all-constant inbounds GEPs.
469   ///
470   /// Returns the original pointer value.  If this is called on a non-pointer
471   /// value, it returns 'this'.
472   Value *stripInBoundsConstantOffsets();
stripInBoundsConstantOffsets()473   const Value *stripInBoundsConstantOffsets() const {
474     return const_cast<Value*>(this)->stripInBoundsConstantOffsets();
475   }
476 
477   /// \brief Accumulate offsets from \a stripInBoundsConstantOffsets().
478   ///
479   /// Stores the resulting constant offset stripped into the APInt provided.
480   /// The provided APInt will be extended or truncated as needed to be the
481   /// correct bitwidth for an offset of this pointer type.
482   ///
483   /// If this is called on a non-pointer value, it returns 'this'.
484   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
485                                                    APInt &Offset);
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)486   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
487                                                          APInt &Offset) const {
488     return const_cast<Value *>(this)
489         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
490   }
491 
492   /// \brief Strip off pointer casts and inbounds GEPs.
493   ///
494   /// Returns the original pointer value.  If this is called on a non-pointer
495   /// value, it returns 'this'.
496   Value *stripInBoundsOffsets();
stripInBoundsOffsets()497   const Value *stripInBoundsOffsets() const {
498     return const_cast<Value*>(this)->stripInBoundsOffsets();
499   }
500 
501   /// \brief Translate PHI node to its predecessor from the given basic block.
502   ///
503   /// If this value is a PHI node with CurBB as its parent, return the value in
504   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
505   /// useful if you want to know the value something has in a predecessor
506   /// block.
507   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
508 
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)509   const Value *DoPHITranslation(const BasicBlock *CurBB,
510                                 const BasicBlock *PredBB) const{
511     return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
512   }
513 
514   /// \brief The maximum alignment for instructions.
515   ///
516   /// This is the greatest alignment value supported by load, store, and alloca
517   /// instructions, and global values.
518   static const unsigned MaxAlignmentExponent = 29;
519   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
520 
521   /// \brief Mutate the type of this Value to be of the specified type.
522   ///
523   /// Note that this is an extremely dangerous operation which can create
524   /// completely invalid IR very easily.  It is strongly recommended that you
525   /// recreate IR objects with the right types instead of mutating them in
526   /// place.
mutateType(Type * Ty)527   void mutateType(Type *Ty) {
528     VTy = Ty;
529   }
530 
531   /// \brief Sort the use-list.
532   ///
533   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
534   /// expected to compare two \a Use references.
535   template <class Compare> void sortUseList(Compare Cmp);
536 
537   /// \brief Reverse the use-list.
538   void reverseUseList();
539 
540 private:
541   /// \brief Merge two lists together.
542   ///
543   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
544   /// "equal" items from L before items from R.
545   ///
546   /// \return the first element in the list.
547   ///
548   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
549   template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)550   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
551     Use *Merged;
552     Use **Next = &Merged;
553 
554     for (;;) {
555       if (!L) {
556         *Next = R;
557         break;
558       }
559       if (!R) {
560         *Next = L;
561         break;
562       }
563       if (Cmp(*R, *L)) {
564         *Next = R;
565         Next = &R->Next;
566         R = R->Next;
567       } else {
568         *Next = L;
569         Next = &L->Next;
570         L = L->Next;
571       }
572     }
573 
574     return Merged;
575   }
576 
577   /// \brief Tail-recursive helper for \a mergeUseLists().
578   ///
579   /// \param[out] Next the first element in the list.
580   template <class Compare>
581   static void mergeUseListsImpl(Use *L, Use *R, Use **Next, Compare Cmp);
582 
583 protected:
getSubclassDataFromValue()584   unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)585   void setValueSubclassData(unsigned short D) { SubclassData = D; }
586 };
587 
588 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
589   V.print(OS);
590   return OS;
591 }
592 
set(Value * V)593 void Use::set(Value *V) {
594   if (Val) removeFromList();
595   Val = V;
596   if (V) V->addUse(*this);
597 }
598 
sortUseList(Compare Cmp)599 template <class Compare> void Value::sortUseList(Compare Cmp) {
600   if (!UseList || !UseList->Next)
601     // No need to sort 0 or 1 uses.
602     return;
603 
604   // Note: this function completely ignores Prev pointers until the end when
605   // they're fixed en masse.
606 
607   // Create a binomial vector of sorted lists, visiting uses one at a time and
608   // merging lists as necessary.
609   const unsigned MaxSlots = 32;
610   Use *Slots[MaxSlots];
611 
612   // Collect the first use, turning it into a single-item list.
613   Use *Next = UseList->Next;
614   UseList->Next = nullptr;
615   unsigned NumSlots = 1;
616   Slots[0] = UseList;
617 
618   // Collect all but the last use.
619   while (Next->Next) {
620     Use *Current = Next;
621     Next = Current->Next;
622 
623     // Turn Current into a single-item list.
624     Current->Next = nullptr;
625 
626     // Save Current in the first available slot, merging on collisions.
627     unsigned I;
628     for (I = 0; I < NumSlots; ++I) {
629       if (!Slots[I])
630         break;
631 
632       // Merge two lists, doubling the size of Current and emptying slot I.
633       //
634       // Since the uses in Slots[I] originally preceded those in Current, send
635       // Slots[I] in as the left parameter to maintain a stable sort.
636       Current = mergeUseLists(Slots[I], Current, Cmp);
637       Slots[I] = nullptr;
638     }
639     // Check if this is a new slot.
640     if (I == NumSlots) {
641       ++NumSlots;
642       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
643     }
644 
645     // Found an open slot.
646     Slots[I] = Current;
647   }
648 
649   // Merge all the lists together.
650   assert(Next && "Expected one more Use");
651   assert(!Next->Next && "Expected only one Use");
652   UseList = Next;
653   for (unsigned I = 0; I < NumSlots; ++I)
654     if (Slots[I])
655       // Since the uses in Slots[I] originally preceded those in UseList, send
656       // Slots[I] in as the left parameter to maintain a stable sort.
657       UseList = mergeUseLists(Slots[I], UseList, Cmp);
658 
659   // Fix the Prev pointers.
660   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
661     I->setPrev(Prev);
662     Prev = &I->Next;
663   }
664 }
665 
666 // isa - Provide some specializations of isa so that we don't have to include
667 // the subtype header files to test to see if the value is a subclass...
668 //
669 template <> struct isa_impl<Constant, Value> {
670   static inline bool doit(const Value &Val) {
671     return Val.getValueID() >= Value::ConstantFirstVal &&
672       Val.getValueID() <= Value::ConstantLastVal;
673   }
674 };
675 
676 template <> struct isa_impl<Argument, Value> {
677   static inline bool doit (const Value &Val) {
678     return Val.getValueID() == Value::ArgumentVal;
679   }
680 };
681 
682 template <> struct isa_impl<InlineAsm, Value> {
683   static inline bool doit(const Value &Val) {
684     return Val.getValueID() == Value::InlineAsmVal;
685   }
686 };
687 
688 template <> struct isa_impl<Instruction, Value> {
689   static inline bool doit(const Value &Val) {
690     return Val.getValueID() >= Value::InstructionVal;
691   }
692 };
693 
694 template <> struct isa_impl<BasicBlock, Value> {
695   static inline bool doit(const Value &Val) {
696     return Val.getValueID() == Value::BasicBlockVal;
697   }
698 };
699 
700 template <> struct isa_impl<Function, Value> {
701   static inline bool doit(const Value &Val) {
702     return Val.getValueID() == Value::FunctionVal;
703   }
704 };
705 
706 template <> struct isa_impl<GlobalVariable, Value> {
707   static inline bool doit(const Value &Val) {
708     return Val.getValueID() == Value::GlobalVariableVal;
709   }
710 };
711 
712 template <> struct isa_impl<GlobalAlias, Value> {
713   static inline bool doit(const Value &Val) {
714     return Val.getValueID() == Value::GlobalAliasVal;
715   }
716 };
717 
718 template <> struct isa_impl<GlobalValue, Value> {
719   static inline bool doit(const Value &Val) {
720     return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
721   }
722 };
723 
724 template <> struct isa_impl<GlobalObject, Value> {
725   static inline bool doit(const Value &Val) {
726     return isa<GlobalVariable>(Val) || isa<Function>(Val);
727   }
728 };
729 
730 // Value* is only 4-byte aligned.
731 template<>
732 class PointerLikeTypeTraits<Value*> {
733   typedef Value* PT;
734 public:
735   static inline void *getAsVoidPointer(PT P) { return P; }
736   static inline PT getFromVoidPointer(void *P) {
737     return static_cast<PT>(P);
738   }
739   enum { NumLowBitsAvailable = 2 };
740 };
741 
742 // Create wrappers for C Binding types (see CBindingWrapping.h).
743 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
744 
745 /* Specialized opaque value conversions.
746  */
747 inline Value **unwrap(LLVMValueRef *Vals) {
748   return reinterpret_cast<Value**>(Vals);
749 }
750 
751 template<typename T>
752 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
753 #ifdef DEBUG
754   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
755     cast<T>(*I);
756 #endif
757   (void)Length;
758   return reinterpret_cast<T**>(Vals);
759 }
760 
761 inline LLVMValueRef *wrap(const Value **Vals) {
762   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
763 }
764 
765 } // End llvm namespace
766 
767 #endif
768