1 //===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the SDNode class and derived classes, which are used to
11 // represent the nodes and operations present in a SelectionDAG.  These nodes
12 // and operations are machine code level operations, with some similarities to
13 // the GCC RTL representation.
14 //
15 // Clients should include the SelectionDAG.h file instead of this file directly.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
20 #define LLVM_CODEGEN_SELECTIONDAGNODES_H
21 
22 #include "llvm/ADT/BitVector.h"
23 #include "llvm/ADT/FoldingSet.h"
24 #include "llvm/ADT/GraphTraits.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/ilist_node.h"
29 #include "llvm/ADT/iterator_range.h"
30 #include "llvm/CodeGen/ISDOpcodes.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/ValueTypes.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/Support/DataTypes.h"
37 #include "llvm/Support/MathExtras.h"
38 #include <cassert>
39 
40 namespace llvm {
41 
42 class SelectionDAG;
43 class GlobalValue;
44 class MachineBasicBlock;
45 class MachineConstantPoolValue;
46 class SDNode;
47 class BinaryWithFlagsSDNode;
48 class Value;
49 class MCSymbol;
50 template <typename T> struct DenseMapInfo;
51 template <typename T> struct simplify_type;
52 template <typename T> struct ilist_traits;
53 
54 void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
55                     bool force = false);
56 
57 /// This represents a list of ValueType's that has been intern'd by
58 /// a SelectionDAG.  Instances of this simple value class are returned by
59 /// SelectionDAG::getVTList(...).
60 ///
61 struct SDVTList {
62   const EVT *VTs;
63   unsigned int NumVTs;
64 };
65 
66 namespace ISD {
67   /// Node predicates
68 
69   /// Return true if the specified node is a
70   /// BUILD_VECTOR where all of the elements are ~0 or undef.
71   bool isBuildVectorAllOnes(const SDNode *N);
72 
73   /// Return true if the specified node is a
74   /// BUILD_VECTOR where all of the elements are 0 or undef.
75   bool isBuildVectorAllZeros(const SDNode *N);
76 
77   /// \brief Return true if the specified node is a BUILD_VECTOR node of
78   /// all ConstantSDNode or undef.
79   bool isBuildVectorOfConstantSDNodes(const SDNode *N);
80 
81   /// \brief Return true if the specified node is a BUILD_VECTOR node of
82   /// all ConstantFPSDNode or undef.
83   bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
84 
85   /// Return true if the node has at least one operand
86   /// and all operands of the specified node are ISD::UNDEF.
87   bool allOperandsUndef(const SDNode *N);
88 }  // end llvm:ISD namespace
89 
90 //===----------------------------------------------------------------------===//
91 /// Unlike LLVM values, Selection DAG nodes may return multiple
92 /// values as the result of a computation.  Many nodes return multiple values,
93 /// from loads (which define a token and a return value) to ADDC (which returns
94 /// a result and a carry value), to calls (which may return an arbitrary number
95 /// of values).
96 ///
97 /// As such, each use of a SelectionDAG computation must indicate the node that
98 /// computes it as well as which return value to use from that node.  This pair
99 /// of information is represented with the SDValue value type.
100 ///
101 class SDValue {
102   friend struct DenseMapInfo<SDValue>;
103 
104   SDNode *Node;       // The node defining the value we are using.
105   unsigned ResNo;     // Which return value of the node we are using.
106 public:
107   SDValue() : Node(nullptr), ResNo(0) {}
108   SDValue(SDNode *node, unsigned resno);
109 
110   /// get the index which selects a specific result in the SDNode
111   unsigned getResNo() const { return ResNo; }
112 
113   /// get the SDNode which holds the desired result
114   SDNode *getNode() const { return Node; }
115 
116   /// set the SDNode
117   void setNode(SDNode *N) { Node = N; }
118 
119   inline SDNode *operator->() const { return Node; }
120 
121   bool operator==(const SDValue &O) const {
122     return Node == O.Node && ResNo == O.ResNo;
123   }
124   bool operator!=(const SDValue &O) const {
125     return !operator==(O);
126   }
127   bool operator<(const SDValue &O) const {
128     return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
129   }
130   explicit operator bool() const {
131     return Node != nullptr;
132   }
133 
134   SDValue getValue(unsigned R) const {
135     return SDValue(Node, R);
136   }
137 
138   /// Return true if this node is an operand of N.
139   bool isOperandOf(const SDNode *N) const;
140 
141   /// Return the ValueType of the referenced return value.
142   inline EVT getValueType() const;
143 
144   /// Return the simple ValueType of the referenced return value.
145   MVT getSimpleValueType() const {
146     return getValueType().getSimpleVT();
147   }
148 
149   /// Returns the size of the value in bits.
150   unsigned getValueSizeInBits() const {
151     return getValueType().getSizeInBits();
152   }
153 
154   unsigned getScalarValueSizeInBits() const {
155     return getValueType().getScalarType().getSizeInBits();
156   }
157 
158   // Forwarding methods - These forward to the corresponding methods in SDNode.
159   inline unsigned getOpcode() const;
160   inline unsigned getNumOperands() const;
161   inline const SDValue &getOperand(unsigned i) const;
162   inline uint64_t getConstantOperandVal(unsigned i) const;
163   inline bool isTargetMemoryOpcode() const;
164   inline bool isTargetOpcode() const;
165   inline bool isMachineOpcode() const;
166   inline bool isUndef() const;
167   inline unsigned getMachineOpcode() const;
168   inline const DebugLoc &getDebugLoc() const;
169   inline void dump() const;
170   inline void dumpr() const;
171 
172   /// Return true if this operand (which must be a chain) reaches the
173   /// specified operand without crossing any side-effecting instructions.
174   /// In practice, this looks through token factors and non-volatile loads.
175   /// In order to remain efficient, this only
176   /// looks a couple of nodes in, it does not do an exhaustive search.
177   bool reachesChainWithoutSideEffects(SDValue Dest,
178                                       unsigned Depth = 2) const;
179 
180   /// Return true if there are no nodes using value ResNo of Node.
181   inline bool use_empty() const;
182 
183   /// Return true if there is exactly one node using value ResNo of Node.
184   inline bool hasOneUse() const;
185 };
186 
187 
188 template<> struct DenseMapInfo<SDValue> {
189   static inline SDValue getEmptyKey() {
190     SDValue V;
191     V.ResNo = -1U;
192     return V;
193   }
194   static inline SDValue getTombstoneKey() {
195     SDValue V;
196     V.ResNo = -2U;
197     return V;
198   }
199   static unsigned getHashValue(const SDValue &Val) {
200     return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
201             (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
202   }
203   static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
204     return LHS == RHS;
205   }
206 };
207 template <> struct isPodLike<SDValue> { static const bool value = true; };
208 
209 
210 /// Allow casting operators to work directly on
211 /// SDValues as if they were SDNode*'s.
212 template<> struct simplify_type<SDValue> {
213   typedef SDNode* SimpleType;
214   static SimpleType getSimplifiedValue(SDValue &Val) {
215     return Val.getNode();
216   }
217 };
218 template<> struct simplify_type<const SDValue> {
219   typedef /*const*/ SDNode* SimpleType;
220   static SimpleType getSimplifiedValue(const SDValue &Val) {
221     return Val.getNode();
222   }
223 };
224 
225 /// Represents a use of a SDNode. This class holds an SDValue,
226 /// which records the SDNode being used and the result number, a
227 /// pointer to the SDNode using the value, and Next and Prev pointers,
228 /// which link together all the uses of an SDNode.
229 ///
230 class SDUse {
231   /// Val - The value being used.
232   SDValue Val;
233   /// User - The user of this value.
234   SDNode *User;
235   /// Prev, Next - Pointers to the uses list of the SDNode referred by
236   /// this operand.
237   SDUse **Prev, *Next;
238 
239   SDUse(const SDUse &U) = delete;
240   void operator=(const SDUse &U) = delete;
241 
242 public:
243   SDUse() : Val(), User(nullptr), Prev(nullptr), Next(nullptr) {}
244 
245   /// Normally SDUse will just implicitly convert to an SDValue that it holds.
246   operator const SDValue&() const { return Val; }
247 
248   /// If implicit conversion to SDValue doesn't work, the get() method returns
249   /// the SDValue.
250   const SDValue &get() const { return Val; }
251 
252   /// This returns the SDNode that contains this Use.
253   SDNode *getUser() { return User; }
254 
255   /// Get the next SDUse in the use list.
256   SDUse *getNext() const { return Next; }
257 
258   /// Convenience function for get().getNode().
259   SDNode *getNode() const { return Val.getNode(); }
260   /// Convenience function for get().getResNo().
261   unsigned getResNo() const { return Val.getResNo(); }
262   /// Convenience function for get().getValueType().
263   EVT getValueType() const { return Val.getValueType(); }
264 
265   /// Convenience function for get().operator==
266   bool operator==(const SDValue &V) const {
267     return Val == V;
268   }
269 
270   /// Convenience function for get().operator!=
271   bool operator!=(const SDValue &V) const {
272     return Val != V;
273   }
274 
275   /// Convenience function for get().operator<
276   bool operator<(const SDValue &V) const {
277     return Val < V;
278   }
279 
280 private:
281   friend class SelectionDAG;
282   friend class SDNode;
283 
284   void setUser(SDNode *p) { User = p; }
285 
286   /// Remove this use from its existing use list, assign it the
287   /// given value, and add it to the new value's node's use list.
288   inline void set(const SDValue &V);
289   /// Like set, but only supports initializing a newly-allocated
290   /// SDUse with a non-null value.
291   inline void setInitial(const SDValue &V);
292   /// Like set, but only sets the Node portion of the value,
293   /// leaving the ResNo portion unmodified.
294   inline void setNode(SDNode *N);
295 
296   void addToList(SDUse **List) {
297     Next = *List;
298     if (Next) Next->Prev = &Next;
299     Prev = List;
300     *List = this;
301   }
302 
303   void removeFromList() {
304     *Prev = Next;
305     if (Next) Next->Prev = Prev;
306   }
307 };
308 
309 /// simplify_type specializations - Allow casting operators to work directly on
310 /// SDValues as if they were SDNode*'s.
311 template<> struct simplify_type<SDUse> {
312   typedef SDNode* SimpleType;
313   static SimpleType getSimplifiedValue(SDUse &Val) {
314     return Val.getNode();
315   }
316 };
317 
318 /// These are IR-level optimization flags that may be propagated to SDNodes.
319 /// TODO: This data structure should be shared by the IR optimizer and the
320 /// the backend.
321 struct SDNodeFlags {
322 private:
323   bool NoUnsignedWrap : 1;
324   bool NoSignedWrap : 1;
325   bool Exact : 1;
326   bool UnsafeAlgebra : 1;
327   bool NoNaNs : 1;
328   bool NoInfs : 1;
329   bool NoSignedZeros : 1;
330   bool AllowReciprocal : 1;
331 
332 public:
333   /// Default constructor turns off all optimization flags.
334   SDNodeFlags() {
335     NoUnsignedWrap = false;
336     NoSignedWrap = false;
337     Exact = false;
338     UnsafeAlgebra = false;
339     NoNaNs = false;
340     NoInfs = false;
341     NoSignedZeros = false;
342     AllowReciprocal = false;
343   }
344 
345   // These are mutators for each flag.
346   void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
347   void setNoSignedWrap(bool b) { NoSignedWrap = b; }
348   void setExact(bool b) { Exact = b; }
349   void setUnsafeAlgebra(bool b) { UnsafeAlgebra = b; }
350   void setNoNaNs(bool b) { NoNaNs = b; }
351   void setNoInfs(bool b) { NoInfs = b; }
352   void setNoSignedZeros(bool b) { NoSignedZeros = b; }
353   void setAllowReciprocal(bool b) { AllowReciprocal = b; }
354 
355   // These are accessors for each flag.
356   bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
357   bool hasNoSignedWrap() const { return NoSignedWrap; }
358   bool hasExact() const { return Exact; }
359   bool hasUnsafeAlgebra() const { return UnsafeAlgebra; }
360   bool hasNoNaNs() const { return NoNaNs; }
361   bool hasNoInfs() const { return NoInfs; }
362   bool hasNoSignedZeros() const { return NoSignedZeros; }
363   bool hasAllowReciprocal() const { return AllowReciprocal; }
364 
365   /// Return a raw encoding of the flags.
366   /// This function should only be used to add data to the NodeID value.
367   unsigned getRawFlags() const {
368     return (NoUnsignedWrap << 0) | (NoSignedWrap << 1) | (Exact << 2) |
369     (UnsafeAlgebra << 3) | (NoNaNs << 4) | (NoInfs << 5) |
370     (NoSignedZeros << 6) | (AllowReciprocal << 7);
371   }
372 };
373 
374 /// Represents one node in the SelectionDAG.
375 ///
376 class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
377 private:
378   /// The operation that this node performs.
379   int16_t NodeType;
380 
381   /// This is true if OperandList was new[]'d.  If true,
382   /// then they will be delete[]'d when the node is destroyed.
383   uint16_t OperandsNeedDelete : 1;
384 
385   /// This tracks whether this node has one or more dbg_value
386   /// nodes corresponding to it.
387   uint16_t HasDebugValue : 1;
388 
389 protected:
390   /// This member is defined by this class, but is not used for
391   /// anything.  Subclasses can use it to hold whatever state they find useful.
392   /// This field is initialized to zero by the ctor.
393   uint16_t SubclassData : 14;
394 
395 private:
396   /// Unique id per SDNode in the DAG.
397   int NodeId;
398 
399   /// The values that are used by this operation.
400   SDUse *OperandList;
401 
402   /// The types of the values this node defines.  SDNode's may
403   /// define multiple values simultaneously.
404   const EVT *ValueList;
405 
406   /// List of uses for this SDNode.
407   SDUse *UseList;
408 
409   /// The number of entries in the Operand/Value list.
410   unsigned short NumOperands, NumValues;
411 
412   // The ordering of the SDNodes. It roughly corresponds to the ordering of the
413   // original LLVM instructions.
414   // This is used for turning off scheduling, because we'll forgo
415   // the normal scheduling algorithms and output the instructions according to
416   // this ordering.
417   unsigned IROrder;
418 
419   /// Source line information.
420   DebugLoc debugLoc;
421 
422   /// Return a pointer to the specified value type.
423   static const EVT *getValueTypeList(EVT VT);
424 
425   friend class SelectionDAG;
426   friend struct ilist_traits<SDNode>;
427 
428 public:
429   /// Unique and persistent id per SDNode in the DAG.
430   /// Used for debug printing.
431   uint16_t PersistentId;
432 
433   //===--------------------------------------------------------------------===//
434   //  Accessors
435   //
436 
437   /// Return the SelectionDAG opcode value for this node. For
438   /// pre-isel nodes (those for which isMachineOpcode returns false), these
439   /// are the opcode values in the ISD and <target>ISD namespaces. For
440   /// post-isel opcodes, see getMachineOpcode.
441   unsigned getOpcode()  const { return (unsigned short)NodeType; }
442 
443   /// Test if this node has a target-specific opcode (in the
444   /// \<target\>ISD namespace).
445   bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
446 
447   /// Test if this node has a target-specific
448   /// memory-referencing opcode (in the \<target\>ISD namespace and
449   /// greater than FIRST_TARGET_MEMORY_OPCODE).
450   bool isTargetMemoryOpcode() const {
451     return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
452   }
453 
454   /// Return true if the type of the node type undefined.
455   bool isUndef() const { return NodeType == ISD::UNDEF; }
456 
457   /// Test if this node is a memory intrinsic (with valid pointer information).
458   /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
459   /// non-memory intrinsics (with chains) that are not really instances of
460   /// MemSDNode. For such nodes, we need some extra state to determine the
461   /// proper classof relationship.
462   bool isMemIntrinsic() const {
463     return (NodeType == ISD::INTRINSIC_W_CHAIN ||
464             NodeType == ISD::INTRINSIC_VOID) && ((SubclassData >> 13) & 1);
465   }
466 
467   /// Test if this node has a post-isel opcode, directly
468   /// corresponding to a MachineInstr opcode.
469   bool isMachineOpcode() const { return NodeType < 0; }
470 
471   /// This may only be called if isMachineOpcode returns
472   /// true. It returns the MachineInstr opcode value that the node's opcode
473   /// corresponds to.
474   unsigned getMachineOpcode() const {
475     assert(isMachineOpcode() && "Not a MachineInstr opcode!");
476     return ~NodeType;
477   }
478 
479   /// Get this bit.
480   bool getHasDebugValue() const { return HasDebugValue; }
481 
482   /// Set this bit.
483   void setHasDebugValue(bool b) { HasDebugValue = b; }
484 
485   /// Return true if there are no uses of this node.
486   bool use_empty() const { return UseList == nullptr; }
487 
488   /// Return true if there is exactly one use of this node.
489   bool hasOneUse() const {
490     return !use_empty() && std::next(use_begin()) == use_end();
491   }
492 
493   /// Return the number of uses of this node. This method takes
494   /// time proportional to the number of uses.
495   size_t use_size() const { return std::distance(use_begin(), use_end()); }
496 
497   /// Return the unique node id.
498   int getNodeId() const { return NodeId; }
499 
500   /// Set unique node id.
501   void setNodeId(int Id) { NodeId = Id; }
502 
503   /// Return the node ordering.
504   unsigned getIROrder() const { return IROrder; }
505 
506   /// Set the node ordering.
507   void setIROrder(unsigned Order) { IROrder = Order; }
508 
509   /// Return the source location info.
510   const DebugLoc &getDebugLoc() const { return debugLoc; }
511 
512   /// Set source location info.  Try to avoid this, putting
513   /// it in the constructor is preferable.
514   void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
515 
516   /// This class provides iterator support for SDUse
517   /// operands that use a specific SDNode.
518   class use_iterator
519     : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
520     SDUse *Op;
521     explicit use_iterator(SDUse *op) : Op(op) {
522     }
523     friend class SDNode;
524   public:
525     typedef std::iterator<std::forward_iterator_tag,
526                           SDUse, ptrdiff_t>::reference reference;
527     typedef std::iterator<std::forward_iterator_tag,
528                           SDUse, ptrdiff_t>::pointer pointer;
529 
530     use_iterator(const use_iterator &I) : Op(I.Op) {}
531     use_iterator() : Op(nullptr) {}
532 
533     bool operator==(const use_iterator &x) const {
534       return Op == x.Op;
535     }
536     bool operator!=(const use_iterator &x) const {
537       return !operator==(x);
538     }
539 
540     /// Return true if this iterator is at the end of uses list.
541     bool atEnd() const { return Op == nullptr; }
542 
543     // Iterator traversal: forward iteration only.
544     use_iterator &operator++() {          // Preincrement
545       assert(Op && "Cannot increment end iterator!");
546       Op = Op->getNext();
547       return *this;
548     }
549 
550     use_iterator operator++(int) {        // Postincrement
551       use_iterator tmp = *this; ++*this; return tmp;
552     }
553 
554     /// Retrieve a pointer to the current user node.
555     SDNode *operator*() const {
556       assert(Op && "Cannot dereference end iterator!");
557       return Op->getUser();
558     }
559 
560     SDNode *operator->() const { return operator*(); }
561 
562     SDUse &getUse() const { return *Op; }
563 
564     /// Retrieve the operand # of this use in its user.
565     unsigned getOperandNo() const {
566       assert(Op && "Cannot dereference end iterator!");
567       return (unsigned)(Op - Op->getUser()->OperandList);
568     }
569   };
570 
571   /// Provide iteration support to walk over all uses of an SDNode.
572   use_iterator use_begin() const {
573     return use_iterator(UseList);
574   }
575 
576   static use_iterator use_end() { return use_iterator(nullptr); }
577 
578   inline iterator_range<use_iterator> uses() {
579     return make_range(use_begin(), use_end());
580   }
581   inline iterator_range<use_iterator> uses() const {
582     return make_range(use_begin(), use_end());
583   }
584 
585   /// Return true if there are exactly NUSES uses of the indicated value.
586   /// This method ignores uses of other values defined by this operation.
587   bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
588 
589   /// Return true if there are any use of the indicated value.
590   /// This method ignores uses of other values defined by this operation.
591   bool hasAnyUseOfValue(unsigned Value) const;
592 
593   /// Return true if this node is the only use of N.
594   bool isOnlyUserOf(const SDNode *N) const;
595 
596   /// Return true if this node is an operand of N.
597   bool isOperandOf(const SDNode *N) const;
598 
599   /// Return true if this node is a predecessor of N.
600   /// NOTE: Implemented on top of hasPredecessor and every bit as
601   /// expensive. Use carefully.
602   bool isPredecessorOf(const SDNode *N) const {
603     return N->hasPredecessor(this);
604   }
605 
606   /// Return true if N is a predecessor of this node.
607   /// N is either an operand of this node, or can be reached by recursively
608   /// traversing up the operands.
609   /// NOTE: This is an expensive method. Use it carefully.
610   bool hasPredecessor(const SDNode *N) const;
611 
612   /// Return true if N is a predecessor of this node.
613   /// N is either an operand of this node, or can be reached by recursively
614   /// traversing up the operands.
615   /// In this helper the Visited and worklist sets are held externally to
616   /// cache predecessors over multiple invocations. If you want to test for
617   /// multiple predecessors this method is preferable to multiple calls to
618   /// hasPredecessor. Be sure to clear Visited and Worklist if the DAG
619   /// changes.
620   /// NOTE: This is still very expensive. Use carefully.
621   bool hasPredecessorHelper(const SDNode *N,
622                             SmallPtrSetImpl<const SDNode *> &Visited,
623                             SmallVectorImpl<const SDNode *> &Worklist) const;
624 
625   /// Return the number of values used by this operation.
626   unsigned getNumOperands() const { return NumOperands; }
627 
628   /// Helper method returns the integer value of a ConstantSDNode operand.
629   uint64_t getConstantOperandVal(unsigned Num) const;
630 
631   const SDValue &getOperand(unsigned Num) const {
632     assert(Num < NumOperands && "Invalid child # of SDNode!");
633     return OperandList[Num];
634   }
635 
636   typedef SDUse* op_iterator;
637   op_iterator op_begin() const { return OperandList; }
638   op_iterator op_end() const { return OperandList+NumOperands; }
639   ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
640 
641   /// Iterator for directly iterating over the operand SDValue's.
642   struct value_op_iterator
643       : iterator_adaptor_base<value_op_iterator, op_iterator,
644                               std::random_access_iterator_tag, SDValue,
645                               ptrdiff_t, value_op_iterator *,
646                               value_op_iterator *> {
647     explicit value_op_iterator(SDUse *U = nullptr)
648       : iterator_adaptor_base(U) {}
649 
650     const SDValue &operator*() const { return I->get(); }
651   };
652 
653   iterator_range<value_op_iterator> op_values() const {
654     return make_range(value_op_iterator(op_begin()),
655                       value_op_iterator(op_end()));
656   }
657 
658   SDVTList getVTList() const {
659     SDVTList X = { ValueList, NumValues };
660     return X;
661   }
662 
663   /// If this node has a glue operand, return the node
664   /// to which the glue operand points. Otherwise return NULL.
665   SDNode *getGluedNode() const {
666     if (getNumOperands() != 0 &&
667         getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
668       return getOperand(getNumOperands()-1).getNode();
669     return nullptr;
670   }
671 
672   /// If this node has a glue value with a user, return
673   /// the user (there is at most one). Otherwise return NULL.
674   SDNode *getGluedUser() const {
675     for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
676       if (UI.getUse().get().getValueType() == MVT::Glue)
677         return *UI;
678     return nullptr;
679   }
680 
681   /// This could be defined as a virtual function and implemented more simply
682   /// and directly, but it is not to avoid creating a vtable for this class.
683   const SDNodeFlags *getFlags() const;
684 
685   /// Return the number of values defined/returned by this operator.
686   unsigned getNumValues() const { return NumValues; }
687 
688   /// Return the type of a specified result.
689   EVT getValueType(unsigned ResNo) const {
690     assert(ResNo < NumValues && "Illegal result number!");
691     return ValueList[ResNo];
692   }
693 
694   /// Return the type of a specified result as a simple type.
695   MVT getSimpleValueType(unsigned ResNo) const {
696     return getValueType(ResNo).getSimpleVT();
697   }
698 
699   /// Returns MVT::getSizeInBits(getValueType(ResNo)).
700   unsigned getValueSizeInBits(unsigned ResNo) const {
701     return getValueType(ResNo).getSizeInBits();
702   }
703 
704   typedef const EVT* value_iterator;
705   value_iterator value_begin() const { return ValueList; }
706   value_iterator value_end() const { return ValueList+NumValues; }
707 
708   /// Return the opcode of this operation for printing.
709   std::string getOperationName(const SelectionDAG *G = nullptr) const;
710   static const char* getIndexedModeName(ISD::MemIndexedMode AM);
711   void print_types(raw_ostream &OS, const SelectionDAG *G) const;
712   void print_details(raw_ostream &OS, const SelectionDAG *G) const;
713   void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
714   void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
715 
716   /// Print a SelectionDAG node and all children down to
717   /// the leaves.  The given SelectionDAG allows target-specific nodes
718   /// to be printed in human-readable form.  Unlike printr, this will
719   /// print the whole DAG, including children that appear multiple
720   /// times.
721   ///
722   void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
723 
724   /// Print a SelectionDAG node and children up to
725   /// depth "depth."  The given SelectionDAG allows target-specific
726   /// nodes to be printed in human-readable form.  Unlike printr, this
727   /// will print children that appear multiple times wherever they are
728   /// used.
729   ///
730   void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
731                        unsigned depth = 100) const;
732 
733 
734   /// Dump this node, for debugging.
735   void dump() const;
736 
737   /// Dump (recursively) this node and its use-def subgraph.
738   void dumpr() const;
739 
740   /// Dump this node, for debugging.
741   /// The given SelectionDAG allows target-specific nodes to be printed
742   /// in human-readable form.
743   void dump(const SelectionDAG *G) const;
744 
745   /// Dump (recursively) this node and its use-def subgraph.
746   /// The given SelectionDAG allows target-specific nodes to be printed
747   /// in human-readable form.
748   void dumpr(const SelectionDAG *G) const;
749 
750   /// printrFull to dbgs().  The given SelectionDAG allows
751   /// target-specific nodes to be printed in human-readable form.
752   /// Unlike dumpr, this will print the whole DAG, including children
753   /// that appear multiple times.
754   void dumprFull(const SelectionDAG *G = nullptr) const;
755 
756   /// printrWithDepth to dbgs().  The given
757   /// SelectionDAG allows target-specific nodes to be printed in
758   /// human-readable form.  Unlike dumpr, this will print children
759   /// that appear multiple times wherever they are used.
760   ///
761   void dumprWithDepth(const SelectionDAG *G = nullptr,
762                       unsigned depth = 100) const;
763 
764   /// Gather unique data for the node.
765   void Profile(FoldingSetNodeID &ID) const;
766 
767   /// This method should only be used by the SDUse class.
768   void addUse(SDUse &U) { U.addToList(&UseList); }
769 
770 protected:
771   static SDVTList getSDVTList(EVT VT) {
772     SDVTList Ret = { getValueTypeList(VT), 1 };
773     return Ret;
774   }
775 
776   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
777          ArrayRef<SDValue> Ops)
778       : NodeType(Opc), OperandsNeedDelete(true), HasDebugValue(false),
779         SubclassData(0), NodeId(-1),
780         OperandList(Ops.size() ? new SDUse[Ops.size()] : nullptr),
781         ValueList(VTs.VTs), UseList(nullptr), NumOperands(Ops.size()),
782         NumValues(VTs.NumVTs), IROrder(Order), debugLoc(std::move(dl)) {
783     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
784     assert(NumOperands == Ops.size() &&
785            "NumOperands wasn't wide enough for its operands!");
786     assert(NumValues == VTs.NumVTs &&
787            "NumValues wasn't wide enough for its operands!");
788     for (unsigned i = 0; i != Ops.size(); ++i) {
789       assert(OperandList && "no operands available");
790       OperandList[i].setUser(this);
791       OperandList[i].setInitial(Ops[i]);
792     }
793     checkForCycles(this);
794   }
795 
796   /// This constructor adds no operands itself; operands can be
797   /// set later with InitOperands.
798   SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
799       : NodeType(Opc), OperandsNeedDelete(false), HasDebugValue(false),
800         SubclassData(0), NodeId(-1), OperandList(nullptr), ValueList(VTs.VTs),
801         UseList(nullptr), NumOperands(0), NumValues(VTs.NumVTs),
802         IROrder(Order), debugLoc(std::move(dl)) {
803     assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
804     assert(NumValues == VTs.NumVTs &&
805            "NumValues wasn't wide enough for its operands!");
806   }
807 
808   /// Initialize the operands list of this with 1 operand.
809   void InitOperands(SDUse *Ops, const SDValue &Op0) {
810     Ops[0].setUser(this);
811     Ops[0].setInitial(Op0);
812     NumOperands = 1;
813     OperandList = Ops;
814     checkForCycles(this);
815   }
816 
817   /// Initialize the operands list of this with 2 operands.
818   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
819     Ops[0].setUser(this);
820     Ops[0].setInitial(Op0);
821     Ops[1].setUser(this);
822     Ops[1].setInitial(Op1);
823     NumOperands = 2;
824     OperandList = Ops;
825     checkForCycles(this);
826   }
827 
828   /// Initialize the operands list of this with 3 operands.
829   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
830                     const SDValue &Op2) {
831     Ops[0].setUser(this);
832     Ops[0].setInitial(Op0);
833     Ops[1].setUser(this);
834     Ops[1].setInitial(Op1);
835     Ops[2].setUser(this);
836     Ops[2].setInitial(Op2);
837     NumOperands = 3;
838     OperandList = Ops;
839     checkForCycles(this);
840   }
841 
842   /// Initialize the operands list of this with 4 operands.
843   void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
844                     const SDValue &Op2, const SDValue &Op3) {
845     Ops[0].setUser(this);
846     Ops[0].setInitial(Op0);
847     Ops[1].setUser(this);
848     Ops[1].setInitial(Op1);
849     Ops[2].setUser(this);
850     Ops[2].setInitial(Op2);
851     Ops[3].setUser(this);
852     Ops[3].setInitial(Op3);
853     NumOperands = 4;
854     OperandList = Ops;
855     checkForCycles(this);
856   }
857 
858   /// Initialize the operands list of this with N operands.
859   void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
860     for (unsigned i = 0; i != N; ++i) {
861       Ops[i].setUser(this);
862       Ops[i].setInitial(Vals[i]);
863     }
864     NumOperands = N;
865     assert(NumOperands == N &&
866            "NumOperands wasn't wide enough for its operands!");
867     OperandList = Ops;
868     checkForCycles(this);
869   }
870 
871   /// Release the operands and set this node to have zero operands.
872   void DropOperands();
873 };
874 
875 /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
876 /// into SDNode creation functions.
877 /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
878 /// from the original Instruction, and IROrder is the ordinal position of
879 /// the instruction.
880 /// When an SDNode is created after the DAG is being built, both DebugLoc and
881 /// the IROrder are propagated from the original SDNode.
882 /// So SDLoc class provides two constructors besides the default one, one to
883 /// be used by the DAGBuilder, the other to be used by others.
884 class SDLoc {
885 private:
886   // Ptr could be used for either Instruction* or SDNode*. It is used for
887   // Instruction* if IROrder is not -1.
888   const void *Ptr;
889   int IROrder;
890 
891 public:
892   SDLoc() : Ptr(nullptr), IROrder(0) {}
893   SDLoc(const SDNode *N) : Ptr(N), IROrder(-1) {
894     assert(N && "null SDNode");
895   }
896   SDLoc(const SDValue V) : Ptr(V.getNode()), IROrder(-1) {
897     assert(Ptr && "null SDNode");
898   }
899   SDLoc(const Instruction *I, int Order) : Ptr(I), IROrder(Order) {
900     assert(Order >= 0 && "bad IROrder");
901   }
902   unsigned getIROrder() {
903     if (IROrder >= 0 || Ptr == nullptr) {
904       return (unsigned)IROrder;
905     }
906     const SDNode *N = (const SDNode*)(Ptr);
907     return N->getIROrder();
908   }
909   DebugLoc getDebugLoc() {
910     if (!Ptr) {
911       return DebugLoc();
912     }
913     if (IROrder >= 0) {
914       const Instruction *I = (const Instruction*)(Ptr);
915       return I->getDebugLoc();
916     }
917     const SDNode *N = (const SDNode*)(Ptr);
918     return N->getDebugLoc();
919   }
920 };
921 
922 
923 // Define inline functions from the SDValue class.
924 
925 inline SDValue::SDValue(SDNode *node, unsigned resno)
926     : Node(node), ResNo(resno) {
927   assert((!Node || ResNo < Node->getNumValues()) &&
928          "Invalid result number for the given node!");
929   assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
930 }
931 
932 inline unsigned SDValue::getOpcode() const {
933   return Node->getOpcode();
934 }
935 inline EVT SDValue::getValueType() const {
936   return Node->getValueType(ResNo);
937 }
938 inline unsigned SDValue::getNumOperands() const {
939   return Node->getNumOperands();
940 }
941 inline const SDValue &SDValue::getOperand(unsigned i) const {
942   return Node->getOperand(i);
943 }
944 inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
945   return Node->getConstantOperandVal(i);
946 }
947 inline bool SDValue::isTargetOpcode() const {
948   return Node->isTargetOpcode();
949 }
950 inline bool SDValue::isTargetMemoryOpcode() const {
951   return Node->isTargetMemoryOpcode();
952 }
953 inline bool SDValue::isMachineOpcode() const {
954   return Node->isMachineOpcode();
955 }
956 inline unsigned SDValue::getMachineOpcode() const {
957   return Node->getMachineOpcode();
958 }
959 inline bool SDValue::isUndef() const {
960   return Node->isUndef();
961 }
962 inline bool SDValue::use_empty() const {
963   return !Node->hasAnyUseOfValue(ResNo);
964 }
965 inline bool SDValue::hasOneUse() const {
966   return Node->hasNUsesOfValue(1, ResNo);
967 }
968 inline const DebugLoc &SDValue::getDebugLoc() const {
969   return Node->getDebugLoc();
970 }
971 inline void SDValue::dump() const {
972   return Node->dump();
973 }
974 inline void SDValue::dumpr() const {
975   return Node->dumpr();
976 }
977 // Define inline functions from the SDUse class.
978 
979 inline void SDUse::set(const SDValue &V) {
980   if (Val.getNode()) removeFromList();
981   Val = V;
982   if (V.getNode()) V.getNode()->addUse(*this);
983 }
984 
985 inline void SDUse::setInitial(const SDValue &V) {
986   Val = V;
987   V.getNode()->addUse(*this);
988 }
989 
990 inline void SDUse::setNode(SDNode *N) {
991   if (Val.getNode()) removeFromList();
992   Val.setNode(N);
993   if (N) N->addUse(*this);
994 }
995 
996 /// This class is used for single-operand SDNodes.  This is solely
997 /// to allow co-allocation of node operands with the node itself.
998 class UnarySDNode : public SDNode {
999   SDUse Op;
1000 public:
1001   UnarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1002               SDValue X)
1003     : SDNode(Opc, Order, dl, VTs) {
1004     InitOperands(&Op, X);
1005   }
1006 };
1007 
1008 /// This class is used for two-operand SDNodes.  This is solely
1009 /// to allow co-allocation of node operands with the node itself.
1010 class BinarySDNode : public SDNode {
1011   SDUse Ops[2];
1012 public:
1013   BinarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1014                SDValue X, SDValue Y)
1015     : SDNode(Opc, Order, dl, VTs) {
1016     InitOperands(Ops, X, Y);
1017   }
1018 };
1019 
1020 /// Returns true if the opcode is a binary operation with flags.
1021 static bool isBinOpWithFlags(unsigned Opcode) {
1022   switch (Opcode) {
1023   case ISD::SDIV:
1024   case ISD::UDIV:
1025   case ISD::SRA:
1026   case ISD::SRL:
1027   case ISD::MUL:
1028   case ISD::ADD:
1029   case ISD::SUB:
1030   case ISD::SHL:
1031   case ISD::FADD:
1032   case ISD::FDIV:
1033   case ISD::FMUL:
1034   case ISD::FREM:
1035   case ISD::FSUB:
1036     return true;
1037   default:
1038     return false;
1039   }
1040 }
1041 
1042 /// This class is an extension of BinarySDNode
1043 /// used from those opcodes that have associated extra flags.
1044 class BinaryWithFlagsSDNode : public BinarySDNode {
1045 public:
1046   SDNodeFlags Flags;
1047   BinaryWithFlagsSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1048                         SDValue X, SDValue Y, const SDNodeFlags &NodeFlags)
1049       : BinarySDNode(Opc, Order, dl, VTs, X, Y), Flags(NodeFlags) {}
1050   static bool classof(const SDNode *N) {
1051     return isBinOpWithFlags(N->getOpcode());
1052   }
1053 };
1054 
1055 /// This class is used for three-operand SDNodes. This is solely
1056 /// to allow co-allocation of node operands with the node itself.
1057 class TernarySDNode : public SDNode {
1058   SDUse Ops[3];
1059 public:
1060   TernarySDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1061                 SDValue X, SDValue Y, SDValue Z)
1062     : SDNode(Opc, Order, dl, VTs) {
1063     InitOperands(Ops, X, Y, Z);
1064   }
1065 };
1066 
1067 
1068 /// This class is used to form a handle around another node that
1069 /// is persistent and is updated across invocations of replaceAllUsesWith on its
1070 /// operand.  This node should be directly created by end-users and not added to
1071 /// the AllNodes list.
1072 class HandleSDNode : public SDNode {
1073   SDUse Op;
1074 public:
1075   explicit HandleSDNode(SDValue X)
1076     : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
1077     // HandleSDNodes are never inserted into the DAG, so they won't be
1078     // auto-numbered. Use ID 65535 as a sentinel.
1079     PersistentId = 0xffff;
1080     InitOperands(&Op, X);
1081   }
1082   ~HandleSDNode();
1083   const SDValue &getValue() const { return Op; }
1084 };
1085 
1086 class AddrSpaceCastSDNode : public UnarySDNode {
1087 private:
1088   unsigned SrcAddrSpace;
1089   unsigned DestAddrSpace;
1090 
1091 public:
1092   AddrSpaceCastSDNode(unsigned Order, DebugLoc dl, EVT VT, SDValue X,
1093                       unsigned SrcAS, unsigned DestAS);
1094 
1095   unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
1096   unsigned getDestAddressSpace() const { return DestAddrSpace; }
1097 
1098   static bool classof(const SDNode *N) {
1099     return N->getOpcode() == ISD::ADDRSPACECAST;
1100   }
1101 };
1102 
1103 /// This is an abstract virtual class for memory operations.
1104 class MemSDNode : public SDNode {
1105 private:
1106   // VT of in-memory value.
1107   EVT MemoryVT;
1108 
1109 protected:
1110   /// Memory reference information.
1111   MachineMemOperand *MMO;
1112 
1113 public:
1114   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1115             EVT MemoryVT, MachineMemOperand *MMO);
1116 
1117   MemSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1118             ArrayRef<SDValue> Ops, EVT MemoryVT, MachineMemOperand *MMO);
1119 
1120   bool readMem() const { return MMO->isLoad(); }
1121   bool writeMem() const { return MMO->isStore(); }
1122 
1123   /// Returns alignment and volatility of the memory access
1124   unsigned getOriginalAlignment() const {
1125     return MMO->getBaseAlignment();
1126   }
1127   unsigned getAlignment() const {
1128     return MMO->getAlignment();
1129   }
1130 
1131   /// Return the SubclassData value, which contains an
1132   /// encoding of the volatile flag, as well as bits used by subclasses. This
1133   /// function should only be used to compute a FoldingSetNodeID value.
1134   unsigned getRawSubclassData() const {
1135     return SubclassData;
1136   }
1137 
1138   // We access subclass data here so that we can check consistency
1139   // with MachineMemOperand information.
1140   bool isVolatile() const { return (SubclassData >> 5) & 1; }
1141   bool isNonTemporal() const { return (SubclassData >> 6) & 1; }
1142   bool isInvariant() const { return (SubclassData >> 7) & 1; }
1143 
1144   AtomicOrdering getOrdering() const {
1145     return AtomicOrdering((SubclassData >> 8) & 15);
1146   }
1147   SynchronizationScope getSynchScope() const {
1148     return SynchronizationScope((SubclassData >> 12) & 1);
1149   }
1150 
1151   // Returns the offset from the location of the access.
1152   int64_t getSrcValueOffset() const { return MMO->getOffset(); }
1153 
1154   /// Returns the AA info that describes the dereference.
1155   AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
1156 
1157   /// Returns the Ranges that describes the dereference.
1158   const MDNode *getRanges() const { return MMO->getRanges(); }
1159 
1160   /// Return the type of the in-memory value.
1161   EVT getMemoryVT() const { return MemoryVT; }
1162 
1163   /// Return a MachineMemOperand object describing the memory
1164   /// reference performed by operation.
1165   MachineMemOperand *getMemOperand() const { return MMO; }
1166 
1167   const MachinePointerInfo &getPointerInfo() const {
1168     return MMO->getPointerInfo();
1169   }
1170 
1171   /// Return the address space for the associated pointer
1172   unsigned getAddressSpace() const {
1173     return getPointerInfo().getAddrSpace();
1174   }
1175 
1176   /// Update this MemSDNode's MachineMemOperand information
1177   /// to reflect the alignment of NewMMO, if it has a greater alignment.
1178   /// This must only be used when the new alignment applies to all users of
1179   /// this MachineMemOperand.
1180   void refineAlignment(const MachineMemOperand *NewMMO) {
1181     MMO->refineAlignment(NewMMO);
1182   }
1183 
1184   const SDValue &getChain() const { return getOperand(0); }
1185   const SDValue &getBasePtr() const {
1186     return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
1187   }
1188 
1189   // Methods to support isa and dyn_cast
1190   static bool classof(const SDNode *N) {
1191     // For some targets, we lower some target intrinsics to a MemIntrinsicNode
1192     // with either an intrinsic or a target opcode.
1193     return N->getOpcode() == ISD::LOAD                ||
1194            N->getOpcode() == ISD::STORE               ||
1195            N->getOpcode() == ISD::PREFETCH            ||
1196            N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1197            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1198            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1199            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1200            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1201            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1202            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1203            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1204            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1205            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1206            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1207            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1208            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1209            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1210            N->getOpcode() == ISD::ATOMIC_STORE        ||
1211            N->getOpcode() == ISD::MLOAD               ||
1212            N->getOpcode() == ISD::MSTORE              ||
1213            N->getOpcode() == ISD::MGATHER             ||
1214            N->getOpcode() == ISD::MSCATTER            ||
1215            N->isMemIntrinsic()                        ||
1216            N->isTargetMemoryOpcode();
1217   }
1218 };
1219 
1220 /// This is an SDNode representing atomic operations.
1221 class AtomicSDNode : public MemSDNode {
1222   SDUse Ops[4];
1223 
1224   /// For cmpxchg instructions, the ordering requirements when a store does not
1225   /// occur.
1226   AtomicOrdering FailureOrdering;
1227 
1228   void InitAtomic(AtomicOrdering SuccessOrdering,
1229                   AtomicOrdering FailureOrdering,
1230                   SynchronizationScope SynchScope) {
1231     // This must match encodeMemSDNodeFlags() in SelectionDAG.cpp.
1232     assert((SuccessOrdering & 15) == SuccessOrdering &&
1233            "Ordering may not require more than 4 bits!");
1234     assert((FailureOrdering & 15) == FailureOrdering &&
1235            "Ordering may not require more than 4 bits!");
1236     assert((SynchScope & 1) == SynchScope &&
1237            "SynchScope may not require more than 1 bit!");
1238     SubclassData |= SuccessOrdering << 8;
1239     SubclassData |= SynchScope << 12;
1240     this->FailureOrdering = FailureOrdering;
1241     assert(getSuccessOrdering() == SuccessOrdering &&
1242            "Ordering encoding error!");
1243     assert(getFailureOrdering() == FailureOrdering &&
1244            "Ordering encoding error!");
1245     assert(getSynchScope() == SynchScope && "Synch-scope encoding error!");
1246   }
1247 
1248 public:
1249   // Opc:   opcode for atomic
1250   // VTL:    value type list
1251   // Chain:  memory chain for operaand
1252   // Ptr:    address to update as a SDValue
1253   // Cmp:    compare value
1254   // Swp:    swap value
1255   // SrcVal: address to update as a Value (used for MemOperand)
1256   // Align:  alignment of memory
1257   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
1258                EVT MemVT, SDValue Chain, SDValue Ptr, SDValue Cmp, SDValue Swp,
1259                MachineMemOperand *MMO, AtomicOrdering Ordering,
1260                SynchronizationScope SynchScope)
1261       : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1262     InitAtomic(Ordering, Ordering, SynchScope);
1263     InitOperands(Ops, Chain, Ptr, Cmp, Swp);
1264   }
1265   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
1266                EVT MemVT,
1267                SDValue Chain, SDValue Ptr,
1268                SDValue Val, MachineMemOperand *MMO,
1269                AtomicOrdering Ordering, SynchronizationScope SynchScope)
1270     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1271     InitAtomic(Ordering, Ordering, SynchScope);
1272     InitOperands(Ops, Chain, Ptr, Val);
1273   }
1274   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL,
1275                EVT MemVT,
1276                SDValue Chain, SDValue Ptr,
1277                MachineMemOperand *MMO,
1278                AtomicOrdering Ordering, SynchronizationScope SynchScope)
1279     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1280     InitAtomic(Ordering, Ordering, SynchScope);
1281     InitOperands(Ops, Chain, Ptr);
1282   }
1283   AtomicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTL, EVT MemVT,
1284                const SDValue* AllOps, SDUse *DynOps, unsigned NumOps,
1285                MachineMemOperand *MMO,
1286                AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
1287                SynchronizationScope SynchScope)
1288     : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
1289     InitAtomic(SuccessOrdering, FailureOrdering, SynchScope);
1290     assert((DynOps || NumOps <= array_lengthof(Ops)) &&
1291            "Too many ops for internal storage!");
1292     InitOperands(DynOps ? DynOps : Ops, AllOps, NumOps);
1293   }
1294 
1295   const SDValue &getBasePtr() const { return getOperand(1); }
1296   const SDValue &getVal() const { return getOperand(2); }
1297 
1298   AtomicOrdering getSuccessOrdering() const {
1299     return getOrdering();
1300   }
1301 
1302   // Not quite enough room in SubclassData for everything, so failure gets its
1303   // own field.
1304   AtomicOrdering getFailureOrdering() const {
1305     return FailureOrdering;
1306   }
1307 
1308   bool isCompareAndSwap() const {
1309     unsigned Op = getOpcode();
1310     return Op == ISD::ATOMIC_CMP_SWAP || Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
1311   }
1312 
1313   // Methods to support isa and dyn_cast
1314   static bool classof(const SDNode *N) {
1315     return N->getOpcode() == ISD::ATOMIC_CMP_SWAP     ||
1316            N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
1317            N->getOpcode() == ISD::ATOMIC_SWAP         ||
1318            N->getOpcode() == ISD::ATOMIC_LOAD_ADD     ||
1319            N->getOpcode() == ISD::ATOMIC_LOAD_SUB     ||
1320            N->getOpcode() == ISD::ATOMIC_LOAD_AND     ||
1321            N->getOpcode() == ISD::ATOMIC_LOAD_OR      ||
1322            N->getOpcode() == ISD::ATOMIC_LOAD_XOR     ||
1323            N->getOpcode() == ISD::ATOMIC_LOAD_NAND    ||
1324            N->getOpcode() == ISD::ATOMIC_LOAD_MIN     ||
1325            N->getOpcode() == ISD::ATOMIC_LOAD_MAX     ||
1326            N->getOpcode() == ISD::ATOMIC_LOAD_UMIN    ||
1327            N->getOpcode() == ISD::ATOMIC_LOAD_UMAX    ||
1328            N->getOpcode() == ISD::ATOMIC_LOAD         ||
1329            N->getOpcode() == ISD::ATOMIC_STORE;
1330   }
1331 };
1332 
1333 /// This SDNode is used for target intrinsics that touch
1334 /// memory and need an associated MachineMemOperand. Its opcode may be
1335 /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
1336 /// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
1337 class MemIntrinsicSDNode : public MemSDNode {
1338 public:
1339   MemIntrinsicSDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs,
1340                      ArrayRef<SDValue> Ops, EVT MemoryVT,
1341                      MachineMemOperand *MMO)
1342     : MemSDNode(Opc, Order, dl, VTs, Ops, MemoryVT, MMO) {
1343     SubclassData |= 1u << 13;
1344   }
1345 
1346   // Methods to support isa and dyn_cast
1347   static bool classof(const SDNode *N) {
1348     // We lower some target intrinsics to their target opcode
1349     // early a node with a target opcode can be of this class
1350     return N->isMemIntrinsic()             ||
1351            N->getOpcode() == ISD::PREFETCH ||
1352            N->isTargetMemoryOpcode();
1353   }
1354 };
1355 
1356 /// This SDNode is used to implement the code generator
1357 /// support for the llvm IR shufflevector instruction.  It combines elements
1358 /// from two input vectors into a new input vector, with the selection and
1359 /// ordering of elements determined by an array of integers, referred to as
1360 /// the shuffle mask.  For input vectors of width N, mask indices of 0..N-1
1361 /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
1362 /// An index of -1 is treated as undef, such that the code generator may put
1363 /// any value in the corresponding element of the result.
1364 class ShuffleVectorSDNode : public SDNode {
1365   SDUse Ops[2];
1366 
1367   // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
1368   // is freed when the SelectionDAG object is destroyed.
1369   const int *Mask;
1370 protected:
1371   friend class SelectionDAG;
1372   ShuffleVectorSDNode(EVT VT, unsigned Order, DebugLoc dl, SDValue N1,
1373                       SDValue N2, const int *M)
1374     : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {
1375     InitOperands(Ops, N1, N2);
1376   }
1377 public:
1378 
1379   ArrayRef<int> getMask() const {
1380     EVT VT = getValueType(0);
1381     return makeArrayRef(Mask, VT.getVectorNumElements());
1382   }
1383   int getMaskElt(unsigned Idx) const {
1384     assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
1385     return Mask[Idx];
1386   }
1387 
1388   bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
1389   int  getSplatIndex() const {
1390     assert(isSplat() && "Cannot get splat index for non-splat!");
1391     EVT VT = getValueType(0);
1392     for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
1393       if (Mask[i] >= 0)
1394         return Mask[i];
1395     }
1396     llvm_unreachable("Splat with all undef indices?");
1397   }
1398   static bool isSplatMask(const int *Mask, EVT VT);
1399 
1400   /// Change values in a shuffle permute mask assuming
1401   /// the two vector operands have swapped position.
1402   static void commuteMask(SmallVectorImpl<int> &Mask) {
1403     unsigned NumElems = Mask.size();
1404     for (unsigned i = 0; i != NumElems; ++i) {
1405       int idx = Mask[i];
1406       if (idx < 0)
1407         continue;
1408       else if (idx < (int)NumElems)
1409         Mask[i] = idx + NumElems;
1410       else
1411         Mask[i] = idx - NumElems;
1412     }
1413   }
1414 
1415   static bool classof(const SDNode *N) {
1416     return N->getOpcode() == ISD::VECTOR_SHUFFLE;
1417   }
1418 };
1419 
1420 class ConstantSDNode : public SDNode {
1421   const ConstantInt *Value;
1422   friend class SelectionDAG;
1423   ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val,
1424                  DebugLoc DL, EVT VT)
1425     : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
1426              0, DL, getSDVTList(VT)), Value(val) {
1427     SubclassData |= (uint16_t)isOpaque;
1428   }
1429 public:
1430 
1431   const ConstantInt *getConstantIntValue() const { return Value; }
1432   const APInt &getAPIntValue() const { return Value->getValue(); }
1433   uint64_t getZExtValue() const { return Value->getZExtValue(); }
1434   int64_t getSExtValue() const { return Value->getSExtValue(); }
1435 
1436   bool isOne() const { return Value->isOne(); }
1437   bool isNullValue() const { return Value->isNullValue(); }
1438   bool isAllOnesValue() const { return Value->isAllOnesValue(); }
1439 
1440   bool isOpaque() const { return SubclassData & 1; }
1441 
1442   static bool classof(const SDNode *N) {
1443     return N->getOpcode() == ISD::Constant ||
1444            N->getOpcode() == ISD::TargetConstant;
1445   }
1446 };
1447 
1448 class ConstantFPSDNode : public SDNode {
1449   const ConstantFP *Value;
1450   friend class SelectionDAG;
1451   ConstantFPSDNode(bool isTarget, const ConstantFP *val, DebugLoc DL, EVT VT)
1452     : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
1453              0, DL, getSDVTList(VT)), Value(val) {
1454   }
1455 public:
1456 
1457   const APFloat& getValueAPF() const { return Value->getValueAPF(); }
1458   const ConstantFP *getConstantFPValue() const { return Value; }
1459 
1460   /// Return true if the value is positive or negative zero.
1461   bool isZero() const { return Value->isZero(); }
1462 
1463   /// Return true if the value is a NaN.
1464   bool isNaN() const { return Value->isNaN(); }
1465 
1466   /// Return true if the value is an infinity
1467   bool isInfinity() const { return Value->isInfinity(); }
1468 
1469   /// Return true if the value is negative.
1470   bool isNegative() const { return Value->isNegative(); }
1471 
1472   /// We don't rely on operator== working on double values, as
1473   /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
1474   /// As such, this method can be used to do an exact bit-for-bit comparison of
1475   /// two floating point values.
1476 
1477   /// We leave the version with the double argument here because it's just so
1478   /// convenient to write "2.0" and the like.  Without this function we'd
1479   /// have to duplicate its logic everywhere it's called.
1480   bool isExactlyValue(double V) const {
1481     bool ignored;
1482     APFloat Tmp(V);
1483     Tmp.convert(Value->getValueAPF().getSemantics(),
1484                 APFloat::rmNearestTiesToEven, &ignored);
1485     return isExactlyValue(Tmp);
1486   }
1487   bool isExactlyValue(const APFloat& V) const;
1488 
1489   static bool isValueValidForType(EVT VT, const APFloat& Val);
1490 
1491   static bool classof(const SDNode *N) {
1492     return N->getOpcode() == ISD::ConstantFP ||
1493            N->getOpcode() == ISD::TargetConstantFP;
1494   }
1495 };
1496 
1497 /// Returns true if \p V is a constant integer zero.
1498 bool isNullConstant(SDValue V);
1499 /// Returns true if \p V is an FP constant with a value of positive zero.
1500 bool isNullFPConstant(SDValue V);
1501 /// Returns true if \p V is an integer constant with all bits set.
1502 bool isAllOnesConstant(SDValue V);
1503 /// Returns true if \p V is a constant integer one.
1504 bool isOneConstant(SDValue V);
1505 
1506 class GlobalAddressSDNode : public SDNode {
1507   const GlobalValue *TheGlobal;
1508   int64_t Offset;
1509   unsigned char TargetFlags;
1510   friend class SelectionDAG;
1511   GlobalAddressSDNode(unsigned Opc, unsigned Order, DebugLoc DL,
1512                       const GlobalValue *GA, EVT VT, int64_t o,
1513                       unsigned char TargetFlags);
1514 public:
1515 
1516   const GlobalValue *getGlobal() const { return TheGlobal; }
1517   int64_t getOffset() const { return Offset; }
1518   unsigned char getTargetFlags() const { return TargetFlags; }
1519   // Return the address space this GlobalAddress belongs to.
1520   unsigned getAddressSpace() const;
1521 
1522   static bool classof(const SDNode *N) {
1523     return N->getOpcode() == ISD::GlobalAddress ||
1524            N->getOpcode() == ISD::TargetGlobalAddress ||
1525            N->getOpcode() == ISD::GlobalTLSAddress ||
1526            N->getOpcode() == ISD::TargetGlobalTLSAddress;
1527   }
1528 };
1529 
1530 class FrameIndexSDNode : public SDNode {
1531   int FI;
1532   friend class SelectionDAG;
1533   FrameIndexSDNode(int fi, EVT VT, bool isTarg)
1534     : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
1535       0, DebugLoc(), getSDVTList(VT)), FI(fi) {
1536   }
1537 public:
1538 
1539   int getIndex() const { return FI; }
1540 
1541   static bool classof(const SDNode *N) {
1542     return N->getOpcode() == ISD::FrameIndex ||
1543            N->getOpcode() == ISD::TargetFrameIndex;
1544   }
1545 };
1546 
1547 class JumpTableSDNode : public SDNode {
1548   int JTI;
1549   unsigned char TargetFlags;
1550   friend class SelectionDAG;
1551   JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
1552     : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
1553       0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
1554   }
1555 public:
1556 
1557   int getIndex() const { return JTI; }
1558   unsigned char getTargetFlags() const { return TargetFlags; }
1559 
1560   static bool classof(const SDNode *N) {
1561     return N->getOpcode() == ISD::JumpTable ||
1562            N->getOpcode() == ISD::TargetJumpTable;
1563   }
1564 };
1565 
1566 class ConstantPoolSDNode : public SDNode {
1567   union {
1568     const Constant *ConstVal;
1569     MachineConstantPoolValue *MachineCPVal;
1570   } Val;
1571   int Offset;  // It's a MachineConstantPoolValue if top bit is set.
1572   unsigned Alignment;  // Minimum alignment requirement of CP (not log2 value).
1573   unsigned char TargetFlags;
1574   friend class SelectionDAG;
1575   ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
1576                      unsigned Align, unsigned char TF)
1577     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1578              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1579              TargetFlags(TF) {
1580     assert(Offset >= 0 && "Offset is too large");
1581     Val.ConstVal = c;
1582   }
1583   ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
1584                      EVT VT, int o, unsigned Align, unsigned char TF)
1585     : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
1586              DebugLoc(), getSDVTList(VT)), Offset(o), Alignment(Align),
1587              TargetFlags(TF) {
1588     assert(Offset >= 0 && "Offset is too large");
1589     Val.MachineCPVal = v;
1590     Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
1591   }
1592 public:
1593 
1594   bool isMachineConstantPoolEntry() const {
1595     return Offset < 0;
1596   }
1597 
1598   const Constant *getConstVal() const {
1599     assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
1600     return Val.ConstVal;
1601   }
1602 
1603   MachineConstantPoolValue *getMachineCPVal() const {
1604     assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
1605     return Val.MachineCPVal;
1606   }
1607 
1608   int getOffset() const {
1609     return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
1610   }
1611 
1612   // Return the alignment of this constant pool object, which is either 0 (for
1613   // default alignment) or the desired value.
1614   unsigned getAlignment() const { return Alignment; }
1615   unsigned char getTargetFlags() const { return TargetFlags; }
1616 
1617   Type *getType() const;
1618 
1619   static bool classof(const SDNode *N) {
1620     return N->getOpcode() == ISD::ConstantPool ||
1621            N->getOpcode() == ISD::TargetConstantPool;
1622   }
1623 };
1624 
1625 /// Completely target-dependent object reference.
1626 class TargetIndexSDNode : public SDNode {
1627   unsigned char TargetFlags;
1628   int Index;
1629   int64_t Offset;
1630   friend class SelectionDAG;
1631 public:
1632 
1633   TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned char TF)
1634     : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
1635       TargetFlags(TF), Index(Idx), Offset(Ofs) {}
1636 public:
1637 
1638   unsigned char getTargetFlags() const { return TargetFlags; }
1639   int getIndex() const { return Index; }
1640   int64_t getOffset() const { return Offset; }
1641 
1642   static bool classof(const SDNode *N) {
1643     return N->getOpcode() == ISD::TargetIndex;
1644   }
1645 };
1646 
1647 class BasicBlockSDNode : public SDNode {
1648   MachineBasicBlock *MBB;
1649   friend class SelectionDAG;
1650   /// Debug info is meaningful and potentially useful here, but we create
1651   /// blocks out of order when they're jumped to, which makes it a bit
1652   /// harder.  Let's see if we need it first.
1653   explicit BasicBlockSDNode(MachineBasicBlock *mbb)
1654     : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
1655   {}
1656 public:
1657 
1658   MachineBasicBlock *getBasicBlock() const { return MBB; }
1659 
1660   static bool classof(const SDNode *N) {
1661     return N->getOpcode() == ISD::BasicBlock;
1662   }
1663 };
1664 
1665 /// A "pseudo-class" with methods for operating on BUILD_VECTORs.
1666 class BuildVectorSDNode : public SDNode {
1667   // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
1668   explicit BuildVectorSDNode() = delete;
1669 public:
1670   /// Check if this is a constant splat, and if so, find the
1671   /// smallest element size that splats the vector.  If MinSplatBits is
1672   /// nonzero, the element size must be at least that large.  Note that the
1673   /// splat element may be the entire vector (i.e., a one element vector).
1674   /// Returns the splat element value in SplatValue.  Any undefined bits in
1675   /// that value are zero, and the corresponding bits in the SplatUndef mask
1676   /// are set.  The SplatBitSize value is set to the splat element size in
1677   /// bits.  HasAnyUndefs is set to true if any bits in the vector are
1678   /// undefined.  isBigEndian describes the endianness of the target.
1679   bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
1680                        unsigned &SplatBitSize, bool &HasAnyUndefs,
1681                        unsigned MinSplatBits = 0,
1682                        bool isBigEndian = false) const;
1683 
1684   /// \brief Returns the splatted value or a null value if this is not a splat.
1685   ///
1686   /// If passed a non-null UndefElements bitvector, it will resize it to match
1687   /// the vector width and set the bits where elements are undef.
1688   SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
1689 
1690   /// \brief Returns the splatted constant or null if this is not a constant
1691   /// splat.
1692   ///
1693   /// If passed a non-null UndefElements bitvector, it will resize it to match
1694   /// the vector width and set the bits where elements are undef.
1695   ConstantSDNode *
1696   getConstantSplatNode(BitVector *UndefElements = nullptr) const;
1697 
1698   /// \brief Returns the splatted constant FP or null if this is not a constant
1699   /// FP splat.
1700   ///
1701   /// If passed a non-null UndefElements bitvector, it will resize it to match
1702   /// the vector width and set the bits where elements are undef.
1703   ConstantFPSDNode *
1704   getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
1705 
1706   /// \brief If this is a constant FP splat and the splatted constant FP is an
1707   /// exact power or 2, return the log base 2 integer value.  Otherwise,
1708   /// return -1.
1709   ///
1710   /// The BitWidth specifies the necessary bit precision.
1711   int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
1712                                           uint32_t BitWidth) const;
1713 
1714   bool isConstant() const;
1715 
1716   static inline bool classof(const SDNode *N) {
1717     return N->getOpcode() == ISD::BUILD_VECTOR;
1718   }
1719 };
1720 
1721 /// An SDNode that holds an arbitrary LLVM IR Value. This is
1722 /// used when the SelectionDAG needs to make a simple reference to something
1723 /// in the LLVM IR representation.
1724 ///
1725 class SrcValueSDNode : public SDNode {
1726   const Value *V;
1727   friend class SelectionDAG;
1728   /// Create a SrcValue for a general value.
1729   explicit SrcValueSDNode(const Value *v)
1730     : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
1731 
1732 public:
1733   /// Return the contained Value.
1734   const Value *getValue() const { return V; }
1735 
1736   static bool classof(const SDNode *N) {
1737     return N->getOpcode() == ISD::SRCVALUE;
1738   }
1739 };
1740 
1741 class MDNodeSDNode : public SDNode {
1742   const MDNode *MD;
1743   friend class SelectionDAG;
1744   explicit MDNodeSDNode(const MDNode *md)
1745   : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
1746   {}
1747 public:
1748 
1749   const MDNode *getMD() const { return MD; }
1750 
1751   static bool classof(const SDNode *N) {
1752     return N->getOpcode() == ISD::MDNODE_SDNODE;
1753   }
1754 };
1755 
1756 class RegisterSDNode : public SDNode {
1757   unsigned Reg;
1758   friend class SelectionDAG;
1759   RegisterSDNode(unsigned reg, EVT VT)
1760     : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {
1761   }
1762 public:
1763 
1764   unsigned getReg() const { return Reg; }
1765 
1766   static bool classof(const SDNode *N) {
1767     return N->getOpcode() == ISD::Register;
1768   }
1769 };
1770 
1771 class RegisterMaskSDNode : public SDNode {
1772   // The memory for RegMask is not owned by the node.
1773   const uint32_t *RegMask;
1774   friend class SelectionDAG;
1775   RegisterMaskSDNode(const uint32_t *mask)
1776     : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
1777       RegMask(mask) {}
1778 public:
1779 
1780   const uint32_t *getRegMask() const { return RegMask; }
1781 
1782   static bool classof(const SDNode *N) {
1783     return N->getOpcode() == ISD::RegisterMask;
1784   }
1785 };
1786 
1787 class BlockAddressSDNode : public SDNode {
1788   const BlockAddress *BA;
1789   int64_t Offset;
1790   unsigned char TargetFlags;
1791   friend class SelectionDAG;
1792   BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
1793                      int64_t o, unsigned char Flags)
1794     : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
1795              BA(ba), Offset(o), TargetFlags(Flags) {
1796   }
1797 public:
1798   const BlockAddress *getBlockAddress() const { return BA; }
1799   int64_t getOffset() const { return Offset; }
1800   unsigned char getTargetFlags() const { return TargetFlags; }
1801 
1802   static bool classof(const SDNode *N) {
1803     return N->getOpcode() == ISD::BlockAddress ||
1804            N->getOpcode() == ISD::TargetBlockAddress;
1805   }
1806 };
1807 
1808 class EHLabelSDNode : public SDNode {
1809   SDUse Chain;
1810   MCSymbol *Label;
1811   friend class SelectionDAG;
1812   EHLabelSDNode(unsigned Order, DebugLoc dl, SDValue ch, MCSymbol *L)
1813     : SDNode(ISD::EH_LABEL, Order, dl, getSDVTList(MVT::Other)), Label(L) {
1814     InitOperands(&Chain, ch);
1815   }
1816 public:
1817   MCSymbol *getLabel() const { return Label; }
1818 
1819   static bool classof(const SDNode *N) {
1820     return N->getOpcode() == ISD::EH_LABEL;
1821   }
1822 };
1823 
1824 class ExternalSymbolSDNode : public SDNode {
1825   const char *Symbol;
1826   unsigned char TargetFlags;
1827 
1828   friend class SelectionDAG;
1829   ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
1830     : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
1831              0, DebugLoc(), getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
1832   }
1833 public:
1834 
1835   const char *getSymbol() const { return Symbol; }
1836   unsigned char getTargetFlags() const { return TargetFlags; }
1837 
1838   static bool classof(const SDNode *N) {
1839     return N->getOpcode() == ISD::ExternalSymbol ||
1840            N->getOpcode() == ISD::TargetExternalSymbol;
1841   }
1842 };
1843 
1844 class MCSymbolSDNode : public SDNode {
1845   MCSymbol *Symbol;
1846 
1847   friend class SelectionDAG;
1848   MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
1849       : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
1850 
1851 public:
1852   MCSymbol *getMCSymbol() const { return Symbol; }
1853 
1854   static bool classof(const SDNode *N) {
1855     return N->getOpcode() == ISD::MCSymbol;
1856   }
1857 };
1858 
1859 class CondCodeSDNode : public SDNode {
1860   ISD::CondCode Condition;
1861   friend class SelectionDAG;
1862   explicit CondCodeSDNode(ISD::CondCode Cond)
1863     : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
1864       Condition(Cond) {
1865   }
1866 public:
1867 
1868   ISD::CondCode get() const { return Condition; }
1869 
1870   static bool classof(const SDNode *N) {
1871     return N->getOpcode() == ISD::CONDCODE;
1872   }
1873 };
1874 
1875 /// NOTE: avoid using this node as this may disappear in the
1876 /// future and most targets don't support it.
1877 class CvtRndSatSDNode : public SDNode {
1878   ISD::CvtCode CvtCode;
1879   friend class SelectionDAG;
1880   explicit CvtRndSatSDNode(EVT VT, unsigned Order, DebugLoc dl,
1881                            ArrayRef<SDValue> Ops, ISD::CvtCode Code)
1882     : SDNode(ISD::CONVERT_RNDSAT, Order, dl, getSDVTList(VT), Ops),
1883       CvtCode(Code) {
1884     assert(Ops.size() == 5 && "wrong number of operations");
1885   }
1886 public:
1887   ISD::CvtCode getCvtCode() const { return CvtCode; }
1888 
1889   static bool classof(const SDNode *N) {
1890     return N->getOpcode() == ISD::CONVERT_RNDSAT;
1891   }
1892 };
1893 
1894 /// This class is used to represent EVT's, which are used
1895 /// to parameterize some operations.
1896 class VTSDNode : public SDNode {
1897   EVT ValueType;
1898   friend class SelectionDAG;
1899   explicit VTSDNode(EVT VT)
1900     : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
1901       ValueType(VT) {
1902   }
1903 public:
1904 
1905   EVT getVT() const { return ValueType; }
1906 
1907   static bool classof(const SDNode *N) {
1908     return N->getOpcode() == ISD::VALUETYPE;
1909   }
1910 };
1911 
1912 /// Base class for LoadSDNode and StoreSDNode
1913 class LSBaseSDNode : public MemSDNode {
1914   //! Operand array for load and store
1915   /*!
1916     \note Moving this array to the base class captures more
1917     common functionality shared between LoadSDNode and
1918     StoreSDNode
1919    */
1920   SDUse Ops[4];
1921 public:
1922   LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
1923                SDValue *Operands, unsigned numOperands,
1924                SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
1925                MachineMemOperand *MMO)
1926     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
1927     SubclassData |= AM << 2;
1928     assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
1929     InitOperands(Ops, Operands, numOperands);
1930     assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
1931            "Only indexed loads and stores have a non-undef offset operand");
1932   }
1933 
1934   const SDValue &getOffset() const {
1935     return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
1936   }
1937 
1938   /// Return the addressing mode for this load or store:
1939   /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
1940   ISD::MemIndexedMode getAddressingMode() const {
1941     return ISD::MemIndexedMode((SubclassData >> 2) & 7);
1942   }
1943 
1944   /// Return true if this is a pre/post inc/dec load/store.
1945   bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
1946 
1947   /// Return true if this is NOT a pre/post inc/dec load/store.
1948   bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
1949 
1950   static bool classof(const SDNode *N) {
1951     return N->getOpcode() == ISD::LOAD ||
1952            N->getOpcode() == ISD::STORE;
1953   }
1954 };
1955 
1956 /// This class is used to represent ISD::LOAD nodes.
1957 class LoadSDNode : public LSBaseSDNode {
1958   friend class SelectionDAG;
1959   LoadSDNode(SDValue *ChainPtrOff, unsigned Order, DebugLoc dl, SDVTList VTs,
1960              ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
1961              MachineMemOperand *MMO)
1962     : LSBaseSDNode(ISD::LOAD, Order, dl, ChainPtrOff, 3, VTs, AM, MemVT, MMO) {
1963     SubclassData |= (unsigned short)ETy;
1964     assert(getExtensionType() == ETy && "LoadExtType encoding error!");
1965     assert(readMem() && "Load MachineMemOperand is not a load!");
1966     assert(!writeMem() && "Load MachineMemOperand is a store!");
1967   }
1968 public:
1969 
1970   /// Return whether this is a plain node,
1971   /// or one of the varieties of value-extending loads.
1972   ISD::LoadExtType getExtensionType() const {
1973     return ISD::LoadExtType(SubclassData & 3);
1974   }
1975 
1976   const SDValue &getBasePtr() const { return getOperand(1); }
1977   const SDValue &getOffset() const { return getOperand(2); }
1978 
1979   static bool classof(const SDNode *N) {
1980     return N->getOpcode() == ISD::LOAD;
1981   }
1982 };
1983 
1984 /// This class is used to represent ISD::STORE nodes.
1985 class StoreSDNode : public LSBaseSDNode {
1986   friend class SelectionDAG;
1987   StoreSDNode(SDValue *ChainValuePtrOff, unsigned Order, DebugLoc dl,
1988               SDVTList VTs, ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
1989               MachineMemOperand *MMO)
1990     : LSBaseSDNode(ISD::STORE, Order, dl, ChainValuePtrOff, 4,
1991                    VTs, AM, MemVT, MMO) {
1992     SubclassData |= (unsigned short)isTrunc;
1993     assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
1994     assert(!readMem() && "Store MachineMemOperand is a load!");
1995     assert(writeMem() && "Store MachineMemOperand is not a store!");
1996   }
1997 public:
1998 
1999   /// Return true if the op does a truncation before store.
2000   /// For integers this is the same as doing a TRUNCATE and storing the result.
2001   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2002   bool isTruncatingStore() const { return SubclassData & 1; }
2003 
2004   const SDValue &getValue() const { return getOperand(1); }
2005   const SDValue &getBasePtr() const { return getOperand(2); }
2006   const SDValue &getOffset() const { return getOperand(3); }
2007 
2008   static bool classof(const SDNode *N) {
2009     return N->getOpcode() == ISD::STORE;
2010   }
2011 };
2012 
2013 /// This base class is used to represent MLOAD and MSTORE nodes
2014 class MaskedLoadStoreSDNode : public MemSDNode {
2015   // Operands
2016   SDUse Ops[4];
2017 public:
2018   friend class SelectionDAG;
2019   MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
2020                         SDValue *Operands, unsigned numOperands, SDVTList VTs,
2021                         EVT MemVT, MachineMemOperand *MMO)
2022       : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2023     InitOperands(Ops, Operands, numOperands);
2024   }
2025 
2026   // In the both nodes address is Op1, mask is Op2:
2027   // MaskedLoadSDNode (Chain, ptr, mask, src0), src0 is a passthru value
2028   // MaskedStoreSDNode (Chain, ptr, mask, data)
2029   // Mask is a vector of i1 elements
2030   const SDValue &getBasePtr() const { return getOperand(1); }
2031   const SDValue &getMask() const    { return getOperand(2); }
2032 
2033   static bool classof(const SDNode *N) {
2034     return N->getOpcode() == ISD::MLOAD ||
2035            N->getOpcode() == ISD::MSTORE;
2036   }
2037 };
2038 
2039 /// This class is used to represent an MLOAD node
2040 class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
2041 public:
2042   friend class SelectionDAG;
2043   MaskedLoadSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
2044                    unsigned numOperands, SDVTList VTs, ISD::LoadExtType ETy,
2045                    EVT MemVT, MachineMemOperand *MMO)
2046     : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, Operands, numOperands,
2047                             VTs, MemVT, MMO) {
2048     SubclassData |= (unsigned short)ETy;
2049   }
2050 
2051   ISD::LoadExtType getExtensionType() const {
2052     return ISD::LoadExtType(SubclassData & 3);
2053   }
2054   const SDValue &getSrc0() const { return getOperand(3); }
2055   static bool classof(const SDNode *N) {
2056     return N->getOpcode() == ISD::MLOAD;
2057   }
2058 };
2059 
2060 /// This class is used to represent an MSTORE node
2061 class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
2062 
2063 public:
2064   friend class SelectionDAG;
2065   MaskedStoreSDNode(unsigned Order, DebugLoc dl, SDValue *Operands,
2066                     unsigned numOperands, SDVTList VTs, bool isTrunc, EVT MemVT,
2067                     MachineMemOperand *MMO)
2068     : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, Operands, numOperands,
2069                             VTs, MemVT, MMO) {
2070       SubclassData |= (unsigned short)isTrunc;
2071   }
2072   /// Return true if the op does a truncation before store.
2073   /// For integers this is the same as doing a TRUNCATE and storing the result.
2074   /// For floats, it is the same as doing an FP_ROUND and storing the result.
2075   bool isTruncatingStore() const { return SubclassData & 1; }
2076 
2077   const SDValue &getValue() const { return getOperand(3); }
2078 
2079   static bool classof(const SDNode *N) {
2080     return N->getOpcode() == ISD::MSTORE;
2081   }
2082 };
2083 
2084 /// This is a base class used to represent
2085 /// MGATHER and MSCATTER nodes
2086 ///
2087 class MaskedGatherScatterSDNode : public MemSDNode {
2088   // Operands
2089   SDUse Ops[5];
2090 public:
2091   friend class SelectionDAG;
2092   MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, DebugLoc dl,
2093                             ArrayRef<SDValue> Operands, SDVTList VTs, EVT MemVT,
2094                             MachineMemOperand *MMO)
2095     : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
2096     assert(Operands.size() == 5 && "Incompatible number of operands");
2097     InitOperands(Ops, Operands.data(), Operands.size());
2098   }
2099 
2100   // In the both nodes address is Op1, mask is Op2:
2101   // MaskedGatherSDNode  (Chain, src0, mask, base, index), src0 is a passthru value
2102   // MaskedScatterSDNode (Chain, value, mask, base, index)
2103   // Mask is a vector of i1 elements
2104   const SDValue &getBasePtr() const { return getOperand(3); }
2105   const SDValue &getIndex()   const { return getOperand(4); }
2106   const SDValue &getMask()    const { return getOperand(2); }
2107   const SDValue &getValue()   const { return getOperand(1); }
2108 
2109   static bool classof(const SDNode *N) {
2110     return N->getOpcode() == ISD::MGATHER ||
2111            N->getOpcode() == ISD::MSCATTER;
2112   }
2113 };
2114 
2115 /// This class is used to represent an MGATHER node
2116 ///
2117 class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
2118 public:
2119   friend class SelectionDAG;
2120   MaskedGatherSDNode(unsigned Order, DebugLoc dl, ArrayRef<SDValue> Operands,
2121                      SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
2122     : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, Operands, VTs, MemVT,
2123                                 MMO) {
2124     assert(getValue().getValueType() == getValueType(0) &&
2125            "Incompatible type of the PassThru value in MaskedGatherSDNode");
2126     assert(getMask().getValueType().getVectorNumElements() ==
2127            getValueType(0).getVectorNumElements() &&
2128            "Vector width mismatch between mask and data");
2129     assert(getIndex().getValueType().getVectorNumElements() ==
2130            getValueType(0).getVectorNumElements() &&
2131            "Vector width mismatch between index and data");
2132   }
2133 
2134   static bool classof(const SDNode *N) {
2135     return N->getOpcode() == ISD::MGATHER;
2136   }
2137 };
2138 
2139 /// This class is used to represent an MSCATTER node
2140 ///
2141 class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
2142 
2143 public:
2144   friend class SelectionDAG;
2145   MaskedScatterSDNode(unsigned Order, DebugLoc dl,ArrayRef<SDValue> Operands,
2146                       SDVTList VTs, EVT MemVT, MachineMemOperand *MMO)
2147     : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, Operands, VTs, MemVT,
2148                                 MMO) {
2149     assert(getMask().getValueType().getVectorNumElements() ==
2150            getValue().getValueType().getVectorNumElements() &&
2151            "Vector width mismatch between mask and data");
2152     assert(getIndex().getValueType().getVectorNumElements() ==
2153            getValue().getValueType().getVectorNumElements() &&
2154            "Vector width mismatch between index and data");
2155   }
2156 
2157   static bool classof(const SDNode *N) {
2158     return N->getOpcode() == ISD::MSCATTER;
2159   }
2160 };
2161 
2162 /// An SDNode that represents everything that will be needed
2163 /// to construct a MachineInstr. These nodes are created during the
2164 /// instruction selection proper phase.
2165 class MachineSDNode : public SDNode {
2166 public:
2167   typedef MachineMemOperand **mmo_iterator;
2168 
2169 private:
2170   friend class SelectionDAG;
2171   MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc DL, SDVTList VTs)
2172     : SDNode(Opc, Order, DL, VTs), MemRefs(nullptr), MemRefsEnd(nullptr) {}
2173 
2174   /// Operands for this instruction, if they fit here. If
2175   /// they don't, this field is unused.
2176   SDUse LocalOperands[4];
2177 
2178   /// Memory reference descriptions for this instruction.
2179   mmo_iterator MemRefs;
2180   mmo_iterator MemRefsEnd;
2181 
2182 public:
2183   mmo_iterator memoperands_begin() const { return MemRefs; }
2184   mmo_iterator memoperands_end() const { return MemRefsEnd; }
2185   bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
2186 
2187   /// Assign this MachineSDNodes's memory reference descriptor
2188   /// list. This does not transfer ownership.
2189   void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
2190     for (mmo_iterator MMI = NewMemRefs, MME = NewMemRefsEnd; MMI != MME; ++MMI)
2191       assert(*MMI && "Null mem ref detected!");
2192     MemRefs = NewMemRefs;
2193     MemRefsEnd = NewMemRefsEnd;
2194   }
2195 
2196   static bool classof(const SDNode *N) {
2197     return N->isMachineOpcode();
2198   }
2199 };
2200 
2201 class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
2202                                             SDNode, ptrdiff_t> {
2203   const SDNode *Node;
2204   unsigned Operand;
2205 
2206   SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
2207 public:
2208   bool operator==(const SDNodeIterator& x) const {
2209     return Operand == x.Operand;
2210   }
2211   bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
2212 
2213   pointer operator*() const {
2214     return Node->getOperand(Operand).getNode();
2215   }
2216   pointer operator->() const { return operator*(); }
2217 
2218   SDNodeIterator& operator++() {                // Preincrement
2219     ++Operand;
2220     return *this;
2221   }
2222   SDNodeIterator operator++(int) { // Postincrement
2223     SDNodeIterator tmp = *this; ++*this; return tmp;
2224   }
2225   size_t operator-(SDNodeIterator Other) const {
2226     assert(Node == Other.Node &&
2227            "Cannot compare iterators of two different nodes!");
2228     return Operand - Other.Operand;
2229   }
2230 
2231   static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
2232   static SDNodeIterator end  (const SDNode *N) {
2233     return SDNodeIterator(N, N->getNumOperands());
2234   }
2235 
2236   unsigned getOperand() const { return Operand; }
2237   const SDNode *getNode() const { return Node; }
2238 };
2239 
2240 template <> struct GraphTraits<SDNode*> {
2241   typedef SDNode NodeType;
2242   typedef SDNodeIterator ChildIteratorType;
2243   static inline NodeType *getEntryNode(SDNode *N) { return N; }
2244   static inline ChildIteratorType child_begin(NodeType *N) {
2245     return SDNodeIterator::begin(N);
2246   }
2247   static inline ChildIteratorType child_end(NodeType *N) {
2248     return SDNodeIterator::end(N);
2249   }
2250 };
2251 
2252 /// The largest SDNode class.
2253 typedef MaskedGatherScatterSDNode LargestSDNode;
2254 
2255 /// The SDNode class with the greatest alignment requirement.
2256 typedef GlobalAddressSDNode MostAlignedSDNode;
2257 
2258 namespace ISD {
2259   /// Returns true if the specified node is a non-extending and unindexed load.
2260   inline bool isNormalLoad(const SDNode *N) {
2261     const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
2262     return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
2263       Ld->getAddressingMode() == ISD::UNINDEXED;
2264   }
2265 
2266   /// Returns true if the specified node is a non-extending load.
2267   inline bool isNON_EXTLoad(const SDNode *N) {
2268     return isa<LoadSDNode>(N) &&
2269       cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
2270   }
2271 
2272   /// Returns true if the specified node is a EXTLOAD.
2273   inline bool isEXTLoad(const SDNode *N) {
2274     return isa<LoadSDNode>(N) &&
2275       cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
2276   }
2277 
2278   /// Returns true if the specified node is a SEXTLOAD.
2279   inline bool isSEXTLoad(const SDNode *N) {
2280     return isa<LoadSDNode>(N) &&
2281       cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
2282   }
2283 
2284   /// Returns true if the specified node is a ZEXTLOAD.
2285   inline bool isZEXTLoad(const SDNode *N) {
2286     return isa<LoadSDNode>(N) &&
2287       cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
2288   }
2289 
2290   /// Returns true if the specified node is an unindexed load.
2291   inline bool isUNINDEXEDLoad(const SDNode *N) {
2292     return isa<LoadSDNode>(N) &&
2293       cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2294   }
2295 
2296   /// Returns true if the specified node is a non-truncating
2297   /// and unindexed store.
2298   inline bool isNormalStore(const SDNode *N) {
2299     const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
2300     return St && !St->isTruncatingStore() &&
2301       St->getAddressingMode() == ISD::UNINDEXED;
2302   }
2303 
2304   /// Returns true if the specified node is a non-truncating store.
2305   inline bool isNON_TRUNCStore(const SDNode *N) {
2306     return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
2307   }
2308 
2309   /// Returns true if the specified node is a truncating store.
2310   inline bool isTRUNCStore(const SDNode *N) {
2311     return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
2312   }
2313 
2314   /// Returns true if the specified node is an unindexed store.
2315   inline bool isUNINDEXEDStore(const SDNode *N) {
2316     return isa<StoreSDNode>(N) &&
2317       cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
2318   }
2319 }
2320 
2321 } // end llvm namespace
2322 
2323 #endif
2324