1 
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4 
5 � Copyright  1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6   All rights reserved.
7 
8  1.    INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12 
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17 
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24 
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28 
29 2.    COPYRIGHT LICENSE
30 
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33 
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36 
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41 
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44 
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47 
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52 
53 3.    NO PATENT LICENSE
54 
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58 
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61 
62 4.    DISCLAIMER
63 
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72 
73 5.    CONTACT INFORMATION
74 
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79 
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83 
84 /*****************************  MPEG-4 AAC Decoder  **************************
85 
86    Author(s):   Josef Hoepfl
87    Description: temporal noise shaping tool
88 
89 ******************************************************************************/
90 
91 #include "aacdec_tns.h"
92 #include "aac_rom.h"
93 #include "FDK_bitstream.h"
94 #include "channelinfo.h"
95 
96 
97 
98 /*!
99   \brief Reset tns data
100 
101   The function resets the tns data
102 
103   \return  none
104 */
CTns_Reset(CTnsData * pTnsData)105 void CTns_Reset(CTnsData *pTnsData)
106 {
107   /* Note: the following FDKmemclear should not be required. */
108   FDKmemclear(pTnsData->Filter, TNS_MAX_WINDOWS*TNS_MAXIMUM_FILTERS*sizeof(CFilter));
109   FDKmemclear(pTnsData->NumberOfFilters, TNS_MAX_WINDOWS*sizeof(UCHAR));
110   pTnsData->DataPresent = 0;
111   pTnsData->Active = 0;
112 }
113 
CTns_ReadDataPresentFlag(HANDLE_FDK_BITSTREAM bs,CTnsData * pTnsData)114 void CTns_ReadDataPresentFlag(HANDLE_FDK_BITSTREAM bs,    /*!< pointer to bitstream */
115                               CTnsData *pTnsData)         /*!< pointer to aac decoder channel info */
116 {
117   pTnsData->DataPresent = (UCHAR) FDKreadBits(bs,1);
118 }
119 
120 /*!
121   \brief Read tns data from bitstream
122 
123   The function reads the elements for tns from
124   the bitstream.
125 
126   \return  none
127 */
CTns_Read(HANDLE_FDK_BITSTREAM bs,CTnsData * pTnsData,const CIcsInfo * pIcsInfo,const UINT flags)128 AAC_DECODER_ERROR CTns_Read(HANDLE_FDK_BITSTREAM bs,
129                             CTnsData *pTnsData,
130                             const CIcsInfo *pIcsInfo,
131                             const UINT flags)
132 {
133   UCHAR n_filt,order;
134   UCHAR length,coef_res,coef_compress;
135   UCHAR window;
136   UCHAR wins_per_frame = GetWindowsPerFrame(pIcsInfo);
137   UCHAR isLongFlag = IsLongBlock(pIcsInfo);
138   AAC_DECODER_ERROR ErrorStatus = AAC_DEC_OK;
139 
140   if (!pTnsData->DataPresent) {
141     return ErrorStatus;
142   }
143 
144   for (window = 0; window < wins_per_frame; window++)
145   {
146     pTnsData->NumberOfFilters[window] = n_filt = (UCHAR) FDKreadBits(bs, isLongFlag ? 2 : 1);
147 
148     if (pTnsData->NumberOfFilters[window] > TNS_MAXIMUM_FILTERS){
149         pTnsData->NumberOfFilters[window] = n_filt = TNS_MAXIMUM_FILTERS;
150     }
151 
152     if (n_filt)
153     {
154       int index;
155       UCHAR nextstopband;
156 
157       coef_res = (UCHAR) FDKreadBits(bs,1);
158 
159       nextstopband = GetScaleFactorBandsTotal(pIcsInfo);
160 
161       for (index=0; index < n_filt; index++)
162       {
163         CFilter *filter = &pTnsData->Filter[window][index];
164 
165         length = (UCHAR)FDKreadBits(bs, isLongFlag ? 6 : 4);
166 
167         if (length > nextstopband){
168           length = nextstopband;
169         }
170 
171         filter->StartBand = nextstopband - length;
172         filter->StopBand  = nextstopband;
173         nextstopband = filter->StartBand;
174 
175         {
176           filter->Order = order = (UCHAR) FDKreadBits(bs, isLongFlag ? 5 : 3);
177         }
178 
179         if (filter->Order > TNS_MAXIMUM_ORDER){
180           filter->Order = order = TNS_MAXIMUM_ORDER;
181         }
182 
183         if (order)
184         {
185           UCHAR coef,s_mask;
186           UCHAR i;
187           SCHAR n_mask;
188           static const UCHAR sgn_mask[] = {  0x2,  0x4,  0x8 };
189           static const SCHAR neg_mask[] = { ~0x3, ~0x7, ~0xF };
190 
191           filter->Direction = FDKreadBits(bs,1) ? -1 : 1;
192 
193           coef_compress = (UCHAR) FDKreadBits(bs,1);
194 
195           filter->Resolution = coef_res + 3;
196 
197           s_mask = sgn_mask[coef_res + 1 - coef_compress];
198           n_mask = neg_mask[coef_res + 1 - coef_compress];
199 
200           for (i=0; i < order; i++)
201           {
202             coef = (UCHAR) FDKreadBits(bs,filter->Resolution - coef_compress);
203             filter->Coeff[i] = (coef & s_mask) ? (coef | n_mask) : coef;
204           }
205         }
206       }
207     }
208   }
209 
210   pTnsData->Active = 1;
211 
212   return ErrorStatus;
213 }
214 
215 
CTns_Filter(FIXP_DBL * spec,int size,int inc,FIXP_TCC coeff[],int order)216 static void CTns_Filter (FIXP_DBL *spec, int size, int inc, FIXP_TCC coeff [], int order)
217 {
218   // - Simple all-pole filter of order "order" defined by
219   //   y(n) =  x(n) - a(2)*y(n-1) - ... - a(order+1)*y(n-order)
220   //
221   // - The state variables of the filter are initialized to zero every time
222   //
223   // - The output data is written over the input data ("in-place operation")
224   //
225   // - An input vector of "size" samples is processed and the index increment
226   //   to the next data sample is given by "inc"
227 
228   int i,j,N;
229   FIXP_DBL *pSpec;
230   FIXP_DBL maxVal=FL2FXCONST_DBL(0.0);
231   INT s;
232 
233   FDK_ASSERT(order <= TNS_MAXIMUM_ORDER);
234   C_ALLOC_SCRATCH_START(state, FIXP_DBL, TNS_MAXIMUM_ORDER);
235   FDKmemclear(state, order*sizeof(FIXP_DBL));
236 
237   for (i=0; i<size; i++) {
238     maxVal = fixMax(maxVal,fixp_abs(spec[i]));
239   }
240 
241   if ( maxVal > FL2FXCONST_DBL(0.03125*0.70710678118) )
242     s = fixMax(CntLeadingZeros(maxVal)-6,0);
243   else
244     s = fixMax(CntLeadingZeros(maxVal)-5,0);
245 
246   s = fixMin(s,2);
247   s = s-1;
248 
249   if (inc == -1)
250     pSpec = &spec[size - 1];
251   else
252     pSpec = &spec[0];
253 
254   FIXP_TCC *pCoeff;
255 
256 #define FIRST_PART_FLTR                                              \
257     FIXP_DBL x, *pState = state;                                     \
258     pCoeff = coeff;                                                  \
259                                                                      \
260     if (s < 0)                                                       \
261       x = (pSpec [0]>>1) + fMultDiv2 (*pCoeff++, pState [0]) ;       \
262     else                                                             \
263       x = (pSpec [0]<<s) + fMultDiv2 (*pCoeff++, pState [0]) ;
264 
265 #define INNER_FLTR_INLINE                                            \
266       x = fMultAddDiv2 (x, *pCoeff, pState [1]);                     \
267       pState [0] = pState [1] - (fMultDiv2 (*pCoeff++, x) <<2) ;     \
268       pState++;
269 
270 #define LAST_PART_FLTR                                               \
271       if (s < 0)                                                     \
272         *pSpec = x << 1;                                             \
273       else                                                           \
274         *pSpec = x >> s;                                             \
275       *pState =(-x) << 1;                                            \
276       pSpec   += inc ;
277 
278 
279    if (order>8)
280    {
281       N = (order-1)&7;
282 
283       for (i = size ; i != 0 ; i--)
284       {
285         FIRST_PART_FLTR
286 
287         for (j = N; j > 0 ; j--) { INNER_FLTR_INLINE }
288 
289         INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE
290         INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE
291 
292         LAST_PART_FLTR
293       }
294 
295    } else if (order>4) {
296 
297       N = (order-1)&3;
298 
299       for (i = size ; i != 0 ; i--)
300       {
301         FIRST_PART_FLTR
302         for (j = N; j > 0 ; j--) { INNER_FLTR_INLINE }
303 
304         INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE INNER_FLTR_INLINE
305 
306         LAST_PART_FLTR
307       }
308 
309    } else {
310 
311       N = order-1;
312 
313       for (i = size ; i != 0 ; i--)
314       {
315         FIRST_PART_FLTR
316 
317         for (j = N; j > 0 ; j--) { INNER_FLTR_INLINE }
318 
319         LAST_PART_FLTR
320       }
321    }
322 
323    C_ALLOC_SCRATCH_END(state, FIXP_DBL, TNS_MAXIMUM_ORDER);
324 }
325 
326 /*!
327   \brief Apply tns to spectral lines
328 
329   The function applies the tns to the spectrum,
330 
331   \return  none
332 */
CTns_Apply(CTnsData * RESTRICT pTnsData,const CIcsInfo * pIcsInfo,SPECTRAL_PTR pSpectralCoefficient,const SamplingRateInfo * pSamplingRateInfo,const INT granuleLength)333 void CTns_Apply (
334         CTnsData *RESTRICT pTnsData, /*!< pointer to aac decoder info */
335         const CIcsInfo *pIcsInfo,
336         SPECTRAL_PTR pSpectralCoefficient,
337         const SamplingRateInfo *pSamplingRateInfo,
338         const INT granuleLength
339         )
340 {
341   int window,index,start,stop,size;
342 
343 
344   if (pTnsData->Active)
345   {
346       C_AALLOC_SCRATCH_START(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER);
347 
348       for (window=0; window < GetWindowsPerFrame(pIcsInfo); window++)
349       {
350         FIXP_DBL *pSpectrum = SPEC(pSpectralCoefficient, window, granuleLength);
351 
352         for (index=0; index < pTnsData->NumberOfFilters[window]; index++)
353         {
354           CFilter *RESTRICT filter = &pTnsData->Filter[window][index];
355 
356           if (filter->Order > 0)
357           {
358              FIXP_TCC *pCoeff;
359              int tns_max_bands;
360 
361              pCoeff = &coeff[filter->Order-1];
362              if (filter->Resolution == 3)
363              {
364                int i;
365                for (i=0; i < filter->Order; i++)
366                  *pCoeff-- = FDKaacDec_tnsCoeff3[filter->Coeff[i]+4];
367              }
368              else
369              {
370                int i;
371                for (i=0; i < filter->Order; i++)
372                  *pCoeff-- = FDKaacDec_tnsCoeff4[filter->Coeff[i]+8];
373              }
374 
375              switch (granuleLength) {
376                case 480:
377                  tns_max_bands = tns_max_bands_tbl_480[pSamplingRateInfo->samplingRateIndex];
378                  break;
379                case 512:
380                  tns_max_bands = tns_max_bands_tbl_512[pSamplingRateInfo->samplingRateIndex];
381                  break;
382                default:
383                  tns_max_bands = GetMaximumTnsBands(pIcsInfo, pSamplingRateInfo->samplingRateIndex);
384                  break;
385              }
386 
387              start = fixMin( fixMin(filter->StartBand, tns_max_bands),
388                              GetScaleFactorBandsTransmitted(pIcsInfo) );
389 
390              start = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[start];
391 
392              stop = fixMin( fixMin(filter->StopBand, tns_max_bands),
393                             GetScaleFactorBandsTransmitted(pIcsInfo) );
394 
395              stop = GetScaleFactorBandOffsets(pIcsInfo, pSamplingRateInfo)[stop];
396 
397              size = stop - start;
398 
399              if (size > 0) {
400                CTns_Filter(&pSpectrum[start],
401                             size,
402                             filter->Direction,
403                             coeff,
404                             filter->Order );
405              }
406           }
407         }
408       }
409       C_AALLOC_SCRATCH_END(coeff, FIXP_TCC, TNS_MAXIMUM_ORDER);
410   }
411 
412 }
413