1 //===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements type-related semantic analysis.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/TypeLoc.h"
24 #include "clang/AST/TypeLocVisitor.h"
25 #include "clang/Lex/Preprocessor.h"
26 #include "clang/Basic/PartialDiagnostic.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/Lex/Preprocessor.h"
29 #include "clang/Sema/DeclSpec.h"
30 #include "clang/Sema/DelayedDiagnostic.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/ScopeInfo.h"
33 #include "clang/Sema/Template.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/Support/ErrorHandling.h"
37
38 using namespace clang;
39
40 enum TypeDiagSelector {
41 TDS_Function,
42 TDS_Pointer,
43 TDS_ObjCObjOrBlock
44 };
45
46 /// isOmittedBlockReturnType - Return true if this declarator is missing a
47 /// return type because this is a omitted return type on a block literal.
isOmittedBlockReturnType(const Declarator & D)48 static bool isOmittedBlockReturnType(const Declarator &D) {
49 if (D.getContext() != Declarator::BlockLiteralContext ||
50 D.getDeclSpec().hasTypeSpecifier())
51 return false;
52
53 if (D.getNumTypeObjects() == 0)
54 return true; // ^{ ... }
55
56 if (D.getNumTypeObjects() == 1 &&
57 D.getTypeObject(0).Kind == DeclaratorChunk::Function)
58 return true; // ^(int X, float Y) { ... }
59
60 return false;
61 }
62
63 /// diagnoseBadTypeAttribute - Diagnoses a type attribute which
64 /// doesn't apply to the given type.
diagnoseBadTypeAttribute(Sema & S,const AttributeList & attr,QualType type)65 static void diagnoseBadTypeAttribute(Sema &S, const AttributeList &attr,
66 QualType type) {
67 TypeDiagSelector WhichType;
68 bool useExpansionLoc = true;
69 switch (attr.getKind()) {
70 case AttributeList::AT_ObjCGC: WhichType = TDS_Pointer; break;
71 case AttributeList::AT_ObjCOwnership: WhichType = TDS_ObjCObjOrBlock; break;
72 default:
73 // Assume everything else was a function attribute.
74 WhichType = TDS_Function;
75 useExpansionLoc = false;
76 break;
77 }
78
79 SourceLocation loc = attr.getLoc();
80 StringRef name = attr.getName()->getName();
81
82 // The GC attributes are usually written with macros; special-case them.
83 IdentifierInfo *II = attr.isArgIdent(0) ? attr.getArgAsIdent(0)->Ident
84 : nullptr;
85 if (useExpansionLoc && loc.isMacroID() && II) {
86 if (II->isStr("strong")) {
87 if (S.findMacroSpelling(loc, "__strong")) name = "__strong";
88 } else if (II->isStr("weak")) {
89 if (S.findMacroSpelling(loc, "__weak")) name = "__weak";
90 }
91 }
92
93 S.Diag(loc, diag::warn_type_attribute_wrong_type) << name << WhichType
94 << type;
95 }
96
97 // objc_gc applies to Objective-C pointers or, otherwise, to the
98 // smallest available pointer type (i.e. 'void*' in 'void**').
99 #define OBJC_POINTER_TYPE_ATTRS_CASELIST \
100 case AttributeList::AT_ObjCGC: \
101 case AttributeList::AT_ObjCOwnership
102
103 // Function type attributes.
104 #define FUNCTION_TYPE_ATTRS_CASELIST \
105 case AttributeList::AT_NoReturn: \
106 case AttributeList::AT_CDecl: \
107 case AttributeList::AT_FastCall: \
108 case AttributeList::AT_StdCall: \
109 case AttributeList::AT_ThisCall: \
110 case AttributeList::AT_Pascal: \
111 case AttributeList::AT_VectorCall: \
112 case AttributeList::AT_MSABI: \
113 case AttributeList::AT_SysVABI: \
114 case AttributeList::AT_Regparm: \
115 case AttributeList::AT_Pcs: \
116 case AttributeList::AT_IntelOclBicc
117
118 // Microsoft-specific type qualifiers.
119 #define MS_TYPE_ATTRS_CASELIST \
120 case AttributeList::AT_Ptr32: \
121 case AttributeList::AT_Ptr64: \
122 case AttributeList::AT_SPtr: \
123 case AttributeList::AT_UPtr
124
125 // Nullability qualifiers.
126 #define NULLABILITY_TYPE_ATTRS_CASELIST \
127 case AttributeList::AT_TypeNonNull: \
128 case AttributeList::AT_TypeNullable: \
129 case AttributeList::AT_TypeNullUnspecified
130
131 namespace {
132 /// An object which stores processing state for the entire
133 /// GetTypeForDeclarator process.
134 class TypeProcessingState {
135 Sema &sema;
136
137 /// The declarator being processed.
138 Declarator &declarator;
139
140 /// The index of the declarator chunk we're currently processing.
141 /// May be the total number of valid chunks, indicating the
142 /// DeclSpec.
143 unsigned chunkIndex;
144
145 /// Whether there are non-trivial modifications to the decl spec.
146 bool trivial;
147
148 /// Whether we saved the attributes in the decl spec.
149 bool hasSavedAttrs;
150
151 /// The original set of attributes on the DeclSpec.
152 SmallVector<AttributeList*, 2> savedAttrs;
153
154 /// A list of attributes to diagnose the uselessness of when the
155 /// processing is complete.
156 SmallVector<AttributeList*, 2> ignoredTypeAttrs;
157
158 public:
TypeProcessingState(Sema & sema,Declarator & declarator)159 TypeProcessingState(Sema &sema, Declarator &declarator)
160 : sema(sema), declarator(declarator),
161 chunkIndex(declarator.getNumTypeObjects()),
162 trivial(true), hasSavedAttrs(false) {}
163
getSema() const164 Sema &getSema() const {
165 return sema;
166 }
167
getDeclarator() const168 Declarator &getDeclarator() const {
169 return declarator;
170 }
171
isProcessingDeclSpec() const172 bool isProcessingDeclSpec() const {
173 return chunkIndex == declarator.getNumTypeObjects();
174 }
175
getCurrentChunkIndex() const176 unsigned getCurrentChunkIndex() const {
177 return chunkIndex;
178 }
179
setCurrentChunkIndex(unsigned idx)180 void setCurrentChunkIndex(unsigned idx) {
181 assert(idx <= declarator.getNumTypeObjects());
182 chunkIndex = idx;
183 }
184
getCurrentAttrListRef() const185 AttributeList *&getCurrentAttrListRef() const {
186 if (isProcessingDeclSpec())
187 return getMutableDeclSpec().getAttributes().getListRef();
188 return declarator.getTypeObject(chunkIndex).getAttrListRef();
189 }
190
191 /// Save the current set of attributes on the DeclSpec.
saveDeclSpecAttrs()192 void saveDeclSpecAttrs() {
193 // Don't try to save them multiple times.
194 if (hasSavedAttrs) return;
195
196 DeclSpec &spec = getMutableDeclSpec();
197 for (AttributeList *attr = spec.getAttributes().getList(); attr;
198 attr = attr->getNext())
199 savedAttrs.push_back(attr);
200 trivial &= savedAttrs.empty();
201 hasSavedAttrs = true;
202 }
203
204 /// Record that we had nowhere to put the given type attribute.
205 /// We will diagnose such attributes later.
addIgnoredTypeAttr(AttributeList & attr)206 void addIgnoredTypeAttr(AttributeList &attr) {
207 ignoredTypeAttrs.push_back(&attr);
208 }
209
210 /// Diagnose all the ignored type attributes, given that the
211 /// declarator worked out to the given type.
diagnoseIgnoredTypeAttrs(QualType type) const212 void diagnoseIgnoredTypeAttrs(QualType type) const {
213 for (auto *Attr : ignoredTypeAttrs)
214 diagnoseBadTypeAttribute(getSema(), *Attr, type);
215 }
216
~TypeProcessingState()217 ~TypeProcessingState() {
218 if (trivial) return;
219
220 restoreDeclSpecAttrs();
221 }
222
223 private:
getMutableDeclSpec() const224 DeclSpec &getMutableDeclSpec() const {
225 return const_cast<DeclSpec&>(declarator.getDeclSpec());
226 }
227
restoreDeclSpecAttrs()228 void restoreDeclSpecAttrs() {
229 assert(hasSavedAttrs);
230
231 if (savedAttrs.empty()) {
232 getMutableDeclSpec().getAttributes().set(nullptr);
233 return;
234 }
235
236 getMutableDeclSpec().getAttributes().set(savedAttrs[0]);
237 for (unsigned i = 0, e = savedAttrs.size() - 1; i != e; ++i)
238 savedAttrs[i]->setNext(savedAttrs[i+1]);
239 savedAttrs.back()->setNext(nullptr);
240 }
241 };
242 }
243
spliceAttrIntoList(AttributeList & attr,AttributeList * & head)244 static void spliceAttrIntoList(AttributeList &attr, AttributeList *&head) {
245 attr.setNext(head);
246 head = &attr;
247 }
248
spliceAttrOutOfList(AttributeList & attr,AttributeList * & head)249 static void spliceAttrOutOfList(AttributeList &attr, AttributeList *&head) {
250 if (head == &attr) {
251 head = attr.getNext();
252 return;
253 }
254
255 AttributeList *cur = head;
256 while (true) {
257 assert(cur && cur->getNext() && "ran out of attrs?");
258 if (cur->getNext() == &attr) {
259 cur->setNext(attr.getNext());
260 return;
261 }
262 cur = cur->getNext();
263 }
264 }
265
moveAttrFromListToList(AttributeList & attr,AttributeList * & fromList,AttributeList * & toList)266 static void moveAttrFromListToList(AttributeList &attr,
267 AttributeList *&fromList,
268 AttributeList *&toList) {
269 spliceAttrOutOfList(attr, fromList);
270 spliceAttrIntoList(attr, toList);
271 }
272
273 /// The location of a type attribute.
274 enum TypeAttrLocation {
275 /// The attribute is in the decl-specifier-seq.
276 TAL_DeclSpec,
277 /// The attribute is part of a DeclaratorChunk.
278 TAL_DeclChunk,
279 /// The attribute is immediately after the declaration's name.
280 TAL_DeclName
281 };
282
283 static void processTypeAttrs(TypeProcessingState &state,
284 QualType &type, TypeAttrLocation TAL,
285 AttributeList *attrs);
286
287 static bool handleFunctionTypeAttr(TypeProcessingState &state,
288 AttributeList &attr,
289 QualType &type);
290
291 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &state,
292 AttributeList &attr,
293 QualType &type);
294
295 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
296 AttributeList &attr, QualType &type);
297
298 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
299 AttributeList &attr, QualType &type);
300
handleObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)301 static bool handleObjCPointerTypeAttr(TypeProcessingState &state,
302 AttributeList &attr, QualType &type) {
303 if (attr.getKind() == AttributeList::AT_ObjCGC)
304 return handleObjCGCTypeAttr(state, attr, type);
305 assert(attr.getKind() == AttributeList::AT_ObjCOwnership);
306 return handleObjCOwnershipTypeAttr(state, attr, type);
307 }
308
309 /// Given the index of a declarator chunk, check whether that chunk
310 /// directly specifies the return type of a function and, if so, find
311 /// an appropriate place for it.
312 ///
313 /// \param i - a notional index which the search will start
314 /// immediately inside
315 ///
316 /// \param onlyBlockPointers Whether we should only look into block
317 /// pointer types (vs. all pointer types).
maybeMovePastReturnType(Declarator & declarator,unsigned i,bool onlyBlockPointers)318 static DeclaratorChunk *maybeMovePastReturnType(Declarator &declarator,
319 unsigned i,
320 bool onlyBlockPointers) {
321 assert(i <= declarator.getNumTypeObjects());
322
323 DeclaratorChunk *result = nullptr;
324
325 // First, look inwards past parens for a function declarator.
326 for (; i != 0; --i) {
327 DeclaratorChunk &fnChunk = declarator.getTypeObject(i-1);
328 switch (fnChunk.Kind) {
329 case DeclaratorChunk::Paren:
330 continue;
331
332 // If we find anything except a function, bail out.
333 case DeclaratorChunk::Pointer:
334 case DeclaratorChunk::BlockPointer:
335 case DeclaratorChunk::Array:
336 case DeclaratorChunk::Reference:
337 case DeclaratorChunk::MemberPointer:
338 return result;
339
340 // If we do find a function declarator, scan inwards from that,
341 // looking for a (block-)pointer declarator.
342 case DeclaratorChunk::Function:
343 for (--i; i != 0; --i) {
344 DeclaratorChunk &ptrChunk = declarator.getTypeObject(i-1);
345 switch (ptrChunk.Kind) {
346 case DeclaratorChunk::Paren:
347 case DeclaratorChunk::Array:
348 case DeclaratorChunk::Function:
349 case DeclaratorChunk::Reference:
350 continue;
351
352 case DeclaratorChunk::MemberPointer:
353 case DeclaratorChunk::Pointer:
354 if (onlyBlockPointers)
355 continue;
356
357 // fallthrough
358
359 case DeclaratorChunk::BlockPointer:
360 result = &ptrChunk;
361 goto continue_outer;
362 }
363 llvm_unreachable("bad declarator chunk kind");
364 }
365
366 // If we run out of declarators doing that, we're done.
367 return result;
368 }
369 llvm_unreachable("bad declarator chunk kind");
370
371 // Okay, reconsider from our new point.
372 continue_outer: ;
373 }
374
375 // Ran out of chunks, bail out.
376 return result;
377 }
378
379 /// Given that an objc_gc attribute was written somewhere on a
380 /// declaration *other* than on the declarator itself (for which, use
381 /// distributeObjCPointerTypeAttrFromDeclarator), and given that it
382 /// didn't apply in whatever position it was written in, try to move
383 /// it to a more appropriate position.
distributeObjCPointerTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)384 static void distributeObjCPointerTypeAttr(TypeProcessingState &state,
385 AttributeList &attr,
386 QualType type) {
387 Declarator &declarator = state.getDeclarator();
388
389 // Move it to the outermost normal or block pointer declarator.
390 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
391 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
392 switch (chunk.Kind) {
393 case DeclaratorChunk::Pointer:
394 case DeclaratorChunk::BlockPointer: {
395 // But don't move an ARC ownership attribute to the return type
396 // of a block.
397 DeclaratorChunk *destChunk = nullptr;
398 if (state.isProcessingDeclSpec() &&
399 attr.getKind() == AttributeList::AT_ObjCOwnership)
400 destChunk = maybeMovePastReturnType(declarator, i - 1,
401 /*onlyBlockPointers=*/true);
402 if (!destChunk) destChunk = &chunk;
403
404 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
405 destChunk->getAttrListRef());
406 return;
407 }
408
409 case DeclaratorChunk::Paren:
410 case DeclaratorChunk::Array:
411 continue;
412
413 // We may be starting at the return type of a block.
414 case DeclaratorChunk::Function:
415 if (state.isProcessingDeclSpec() &&
416 attr.getKind() == AttributeList::AT_ObjCOwnership) {
417 if (DeclaratorChunk *dest = maybeMovePastReturnType(
418 declarator, i,
419 /*onlyBlockPointers=*/true)) {
420 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
421 dest->getAttrListRef());
422 return;
423 }
424 }
425 goto error;
426
427 // Don't walk through these.
428 case DeclaratorChunk::Reference:
429 case DeclaratorChunk::MemberPointer:
430 goto error;
431 }
432 }
433 error:
434
435 diagnoseBadTypeAttribute(state.getSema(), attr, type);
436 }
437
438 /// Distribute an objc_gc type attribute that was written on the
439 /// declarator.
440 static void
distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)441 distributeObjCPointerTypeAttrFromDeclarator(TypeProcessingState &state,
442 AttributeList &attr,
443 QualType &declSpecType) {
444 Declarator &declarator = state.getDeclarator();
445
446 // objc_gc goes on the innermost pointer to something that's not a
447 // pointer.
448 unsigned innermost = -1U;
449 bool considerDeclSpec = true;
450 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
451 DeclaratorChunk &chunk = declarator.getTypeObject(i);
452 switch (chunk.Kind) {
453 case DeclaratorChunk::Pointer:
454 case DeclaratorChunk::BlockPointer:
455 innermost = i;
456 continue;
457
458 case DeclaratorChunk::Reference:
459 case DeclaratorChunk::MemberPointer:
460 case DeclaratorChunk::Paren:
461 case DeclaratorChunk::Array:
462 continue;
463
464 case DeclaratorChunk::Function:
465 considerDeclSpec = false;
466 goto done;
467 }
468 }
469 done:
470
471 // That might actually be the decl spec if we weren't blocked by
472 // anything in the declarator.
473 if (considerDeclSpec) {
474 if (handleObjCPointerTypeAttr(state, attr, declSpecType)) {
475 // Splice the attribute into the decl spec. Prevents the
476 // attribute from being applied multiple times and gives
477 // the source-location-filler something to work with.
478 state.saveDeclSpecAttrs();
479 moveAttrFromListToList(attr, declarator.getAttrListRef(),
480 declarator.getMutableDeclSpec().getAttributes().getListRef());
481 return;
482 }
483 }
484
485 // Otherwise, if we found an appropriate chunk, splice the attribute
486 // into it.
487 if (innermost != -1U) {
488 moveAttrFromListToList(attr, declarator.getAttrListRef(),
489 declarator.getTypeObject(innermost).getAttrListRef());
490 return;
491 }
492
493 // Otherwise, diagnose when we're done building the type.
494 spliceAttrOutOfList(attr, declarator.getAttrListRef());
495 state.addIgnoredTypeAttr(attr);
496 }
497
498 /// A function type attribute was written somewhere in a declaration
499 /// *other* than on the declarator itself or in the decl spec. Given
500 /// that it didn't apply in whatever position it was written in, try
501 /// to move it to a more appropriate position.
distributeFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType type)502 static void distributeFunctionTypeAttr(TypeProcessingState &state,
503 AttributeList &attr,
504 QualType type) {
505 Declarator &declarator = state.getDeclarator();
506
507 // Try to push the attribute from the return type of a function to
508 // the function itself.
509 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
510 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
511 switch (chunk.Kind) {
512 case DeclaratorChunk::Function:
513 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
514 chunk.getAttrListRef());
515 return;
516
517 case DeclaratorChunk::Paren:
518 case DeclaratorChunk::Pointer:
519 case DeclaratorChunk::BlockPointer:
520 case DeclaratorChunk::Array:
521 case DeclaratorChunk::Reference:
522 case DeclaratorChunk::MemberPointer:
523 continue;
524 }
525 }
526
527 diagnoseBadTypeAttribute(state.getSema(), attr, type);
528 }
529
530 /// Try to distribute a function type attribute to the innermost
531 /// function chunk or type. Returns true if the attribute was
532 /// distributed, false if no location was found.
533 static bool
distributeFunctionTypeAttrToInnermost(TypeProcessingState & state,AttributeList & attr,AttributeList * & attrList,QualType & declSpecType)534 distributeFunctionTypeAttrToInnermost(TypeProcessingState &state,
535 AttributeList &attr,
536 AttributeList *&attrList,
537 QualType &declSpecType) {
538 Declarator &declarator = state.getDeclarator();
539
540 // Put it on the innermost function chunk, if there is one.
541 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
542 DeclaratorChunk &chunk = declarator.getTypeObject(i);
543 if (chunk.Kind != DeclaratorChunk::Function) continue;
544
545 moveAttrFromListToList(attr, attrList, chunk.getAttrListRef());
546 return true;
547 }
548
549 return handleFunctionTypeAttr(state, attr, declSpecType);
550 }
551
552 /// A function type attribute was written in the decl spec. Try to
553 /// apply it somewhere.
554 static void
distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)555 distributeFunctionTypeAttrFromDeclSpec(TypeProcessingState &state,
556 AttributeList &attr,
557 QualType &declSpecType) {
558 state.saveDeclSpecAttrs();
559
560 // C++11 attributes before the decl specifiers actually appertain to
561 // the declarators. Move them straight there. We don't support the
562 // 'put them wherever you like' semantics we allow for GNU attributes.
563 if (attr.isCXX11Attribute()) {
564 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
565 state.getDeclarator().getAttrListRef());
566 return;
567 }
568
569 // Try to distribute to the innermost.
570 if (distributeFunctionTypeAttrToInnermost(state, attr,
571 state.getCurrentAttrListRef(),
572 declSpecType))
573 return;
574
575 // If that failed, diagnose the bad attribute when the declarator is
576 // fully built.
577 state.addIgnoredTypeAttr(attr);
578 }
579
580 /// A function type attribute was written on the declarator. Try to
581 /// apply it somewhere.
582 static void
distributeFunctionTypeAttrFromDeclarator(TypeProcessingState & state,AttributeList & attr,QualType & declSpecType)583 distributeFunctionTypeAttrFromDeclarator(TypeProcessingState &state,
584 AttributeList &attr,
585 QualType &declSpecType) {
586 Declarator &declarator = state.getDeclarator();
587
588 // Try to distribute to the innermost.
589 if (distributeFunctionTypeAttrToInnermost(state, attr,
590 declarator.getAttrListRef(),
591 declSpecType))
592 return;
593
594 // If that failed, diagnose the bad attribute when the declarator is
595 // fully built.
596 spliceAttrOutOfList(attr, declarator.getAttrListRef());
597 state.addIgnoredTypeAttr(attr);
598 }
599
600 /// \brief Given that there are attributes written on the declarator
601 /// itself, try to distribute any type attributes to the appropriate
602 /// declarator chunk.
603 ///
604 /// These are attributes like the following:
605 /// int f ATTR;
606 /// int (f ATTR)();
607 /// but not necessarily this:
608 /// int f() ATTR;
distributeTypeAttrsFromDeclarator(TypeProcessingState & state,QualType & declSpecType)609 static void distributeTypeAttrsFromDeclarator(TypeProcessingState &state,
610 QualType &declSpecType) {
611 // Collect all the type attributes from the declarator itself.
612 assert(state.getDeclarator().getAttributes() && "declarator has no attrs!");
613 AttributeList *attr = state.getDeclarator().getAttributes();
614 AttributeList *next;
615 do {
616 next = attr->getNext();
617
618 // Do not distribute C++11 attributes. They have strict rules for what
619 // they appertain to.
620 if (attr->isCXX11Attribute())
621 continue;
622
623 switch (attr->getKind()) {
624 OBJC_POINTER_TYPE_ATTRS_CASELIST:
625 distributeObjCPointerTypeAttrFromDeclarator(state, *attr, declSpecType);
626 break;
627
628 case AttributeList::AT_NSReturnsRetained:
629 if (!state.getSema().getLangOpts().ObjCAutoRefCount)
630 break;
631 // fallthrough
632
633 FUNCTION_TYPE_ATTRS_CASELIST:
634 distributeFunctionTypeAttrFromDeclarator(state, *attr, declSpecType);
635 break;
636
637 MS_TYPE_ATTRS_CASELIST:
638 // Microsoft type attributes cannot go after the declarator-id.
639 continue;
640
641 NULLABILITY_TYPE_ATTRS_CASELIST:
642 // Nullability specifiers cannot go after the declarator-id.
643
644 // Objective-C __kindof does not get distributed.
645 case AttributeList::AT_ObjCKindOf:
646 continue;
647
648 default:
649 break;
650 }
651 } while ((attr = next));
652 }
653
654 /// Add a synthetic '()' to a block-literal declarator if it is
655 /// required, given the return type.
maybeSynthesizeBlockSignature(TypeProcessingState & state,QualType declSpecType)656 static void maybeSynthesizeBlockSignature(TypeProcessingState &state,
657 QualType declSpecType) {
658 Declarator &declarator = state.getDeclarator();
659
660 // First, check whether the declarator would produce a function,
661 // i.e. whether the innermost semantic chunk is a function.
662 if (declarator.isFunctionDeclarator()) {
663 // If so, make that declarator a prototyped declarator.
664 declarator.getFunctionTypeInfo().hasPrototype = true;
665 return;
666 }
667
668 // If there are any type objects, the type as written won't name a
669 // function, regardless of the decl spec type. This is because a
670 // block signature declarator is always an abstract-declarator, and
671 // abstract-declarators can't just be parentheses chunks. Therefore
672 // we need to build a function chunk unless there are no type
673 // objects and the decl spec type is a function.
674 if (!declarator.getNumTypeObjects() && declSpecType->isFunctionType())
675 return;
676
677 // Note that there *are* cases with invalid declarators where
678 // declarators consist solely of parentheses. In general, these
679 // occur only in failed efforts to make function declarators, so
680 // faking up the function chunk is still the right thing to do.
681
682 // Otherwise, we need to fake up a function declarator.
683 SourceLocation loc = declarator.getLocStart();
684
685 // ...and *prepend* it to the declarator.
686 SourceLocation NoLoc;
687 declarator.AddInnermostTypeInfo(DeclaratorChunk::getFunction(
688 /*HasProto=*/true,
689 /*IsAmbiguous=*/false,
690 /*LParenLoc=*/NoLoc,
691 /*ArgInfo=*/nullptr,
692 /*NumArgs=*/0,
693 /*EllipsisLoc=*/NoLoc,
694 /*RParenLoc=*/NoLoc,
695 /*TypeQuals=*/0,
696 /*RefQualifierIsLvalueRef=*/true,
697 /*RefQualifierLoc=*/NoLoc,
698 /*ConstQualifierLoc=*/NoLoc,
699 /*VolatileQualifierLoc=*/NoLoc,
700 /*RestrictQualifierLoc=*/NoLoc,
701 /*MutableLoc=*/NoLoc, EST_None,
702 /*ESpecRange=*/SourceRange(),
703 /*Exceptions=*/nullptr,
704 /*ExceptionRanges=*/nullptr,
705 /*NumExceptions=*/0,
706 /*NoexceptExpr=*/nullptr,
707 /*ExceptionSpecTokens=*/nullptr,
708 loc, loc, declarator));
709
710 // For consistency, make sure the state still has us as processing
711 // the decl spec.
712 assert(state.getCurrentChunkIndex() == declarator.getNumTypeObjects() - 1);
713 state.setCurrentChunkIndex(declarator.getNumTypeObjects());
714 }
715
diagnoseAndRemoveTypeQualifiers(Sema & S,const DeclSpec & DS,unsigned & TypeQuals,QualType TypeSoFar,unsigned RemoveTQs,unsigned DiagID)716 static void diagnoseAndRemoveTypeQualifiers(Sema &S, const DeclSpec &DS,
717 unsigned &TypeQuals,
718 QualType TypeSoFar,
719 unsigned RemoveTQs,
720 unsigned DiagID) {
721 // If this occurs outside a template instantiation, warn the user about
722 // it; they probably didn't mean to specify a redundant qualifier.
723 typedef std::pair<DeclSpec::TQ, SourceLocation> QualLoc;
724 for (QualLoc Qual : {QualLoc(DeclSpec::TQ_const, DS.getConstSpecLoc()),
725 QualLoc(DeclSpec::TQ_volatile, DS.getVolatileSpecLoc()),
726 QualLoc(DeclSpec::TQ_atomic, DS.getAtomicSpecLoc())}) {
727 if (!(RemoveTQs & Qual.first))
728 continue;
729
730 if (S.ActiveTemplateInstantiations.empty()) {
731 if (TypeQuals & Qual.first)
732 S.Diag(Qual.second, DiagID)
733 << DeclSpec::getSpecifierName(Qual.first) << TypeSoFar
734 << FixItHint::CreateRemoval(Qual.second);
735 }
736
737 TypeQuals &= ~Qual.first;
738 }
739 }
740
741 /// Apply Objective-C type arguments to the given type.
applyObjCTypeArgs(Sema & S,SourceLocation loc,QualType type,ArrayRef<TypeSourceInfo * > typeArgs,SourceRange typeArgsRange,bool failOnError=false)742 static QualType applyObjCTypeArgs(Sema &S, SourceLocation loc, QualType type,
743 ArrayRef<TypeSourceInfo *> typeArgs,
744 SourceRange typeArgsRange,
745 bool failOnError = false) {
746 // We can only apply type arguments to an Objective-C class type.
747 const auto *objcObjectType = type->getAs<ObjCObjectType>();
748 if (!objcObjectType || !objcObjectType->getInterface()) {
749 S.Diag(loc, diag::err_objc_type_args_non_class)
750 << type
751 << typeArgsRange;
752
753 if (failOnError)
754 return QualType();
755 return type;
756 }
757
758 // The class type must be parameterized.
759 ObjCInterfaceDecl *objcClass = objcObjectType->getInterface();
760 ObjCTypeParamList *typeParams = objcClass->getTypeParamList();
761 if (!typeParams) {
762 S.Diag(loc, diag::err_objc_type_args_non_parameterized_class)
763 << objcClass->getDeclName()
764 << FixItHint::CreateRemoval(typeArgsRange);
765
766 if (failOnError)
767 return QualType();
768
769 return type;
770 }
771
772 // The type must not already be specialized.
773 if (objcObjectType->isSpecialized()) {
774 S.Diag(loc, diag::err_objc_type_args_specialized_class)
775 << type
776 << FixItHint::CreateRemoval(typeArgsRange);
777
778 if (failOnError)
779 return QualType();
780
781 return type;
782 }
783
784 // Check the type arguments.
785 SmallVector<QualType, 4> finalTypeArgs;
786 unsigned numTypeParams = typeParams->size();
787 bool anyPackExpansions = false;
788 for (unsigned i = 0, n = typeArgs.size(); i != n; ++i) {
789 TypeSourceInfo *typeArgInfo = typeArgs[i];
790 QualType typeArg = typeArgInfo->getType();
791
792 // Type arguments cannot have explicit qualifiers or nullability.
793 // We ignore indirect sources of these, e.g. behind typedefs or
794 // template arguments.
795 if (TypeLoc qual = typeArgInfo->getTypeLoc().findExplicitQualifierLoc()) {
796 bool diagnosed = false;
797 SourceRange rangeToRemove;
798 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
799 rangeToRemove = attr.getLocalSourceRange();
800 if (attr.getTypePtr()->getImmediateNullability()) {
801 typeArg = attr.getTypePtr()->getModifiedType();
802 S.Diag(attr.getLocStart(),
803 diag::err_objc_type_arg_explicit_nullability)
804 << typeArg << FixItHint::CreateRemoval(rangeToRemove);
805 diagnosed = true;
806 }
807 }
808
809 if (!diagnosed) {
810 S.Diag(qual.getLocStart(), diag::err_objc_type_arg_qualified)
811 << typeArg << typeArg.getQualifiers().getAsString()
812 << FixItHint::CreateRemoval(rangeToRemove);
813 }
814 }
815
816 // Remove qualifiers even if they're non-local.
817 typeArg = typeArg.getUnqualifiedType();
818
819 finalTypeArgs.push_back(typeArg);
820
821 if (typeArg->getAs<PackExpansionType>())
822 anyPackExpansions = true;
823
824 // Find the corresponding type parameter, if there is one.
825 ObjCTypeParamDecl *typeParam = nullptr;
826 if (!anyPackExpansions) {
827 if (i < numTypeParams) {
828 typeParam = typeParams->begin()[i];
829 } else {
830 // Too many arguments.
831 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
832 << false
833 << objcClass->getDeclName()
834 << (unsigned)typeArgs.size()
835 << numTypeParams;
836 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
837 << objcClass;
838
839 if (failOnError)
840 return QualType();
841
842 return type;
843 }
844 }
845
846 // Objective-C object pointer types must be substitutable for the bounds.
847 if (const auto *typeArgObjC = typeArg->getAs<ObjCObjectPointerType>()) {
848 // If we don't have a type parameter to match against, assume
849 // everything is fine. There was a prior pack expansion that
850 // means we won't be able to match anything.
851 if (!typeParam) {
852 assert(anyPackExpansions && "Too many arguments?");
853 continue;
854 }
855
856 // Retrieve the bound.
857 QualType bound = typeParam->getUnderlyingType();
858 const auto *boundObjC = bound->getAs<ObjCObjectPointerType>();
859
860 // Determine whether the type argument is substitutable for the bound.
861 if (typeArgObjC->isObjCIdType()) {
862 // When the type argument is 'id', the only acceptable type
863 // parameter bound is 'id'.
864 if (boundObjC->isObjCIdType())
865 continue;
866 } else if (S.Context.canAssignObjCInterfaces(boundObjC, typeArgObjC)) {
867 // Otherwise, we follow the assignability rules.
868 continue;
869 }
870
871 // Diagnose the mismatch.
872 S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
873 diag::err_objc_type_arg_does_not_match_bound)
874 << typeArg << bound << typeParam->getDeclName();
875 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
876 << typeParam->getDeclName();
877
878 if (failOnError)
879 return QualType();
880
881 return type;
882 }
883
884 // Block pointer types are permitted for unqualified 'id' bounds.
885 if (typeArg->isBlockPointerType()) {
886 // If we don't have a type parameter to match against, assume
887 // everything is fine. There was a prior pack expansion that
888 // means we won't be able to match anything.
889 if (!typeParam) {
890 assert(anyPackExpansions && "Too many arguments?");
891 continue;
892 }
893
894 // Retrieve the bound.
895 QualType bound = typeParam->getUnderlyingType();
896 if (bound->isBlockCompatibleObjCPointerType(S.Context))
897 continue;
898
899 // Diagnose the mismatch.
900 S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
901 diag::err_objc_type_arg_does_not_match_bound)
902 << typeArg << bound << typeParam->getDeclName();
903 S.Diag(typeParam->getLocation(), diag::note_objc_type_param_here)
904 << typeParam->getDeclName();
905
906 if (failOnError)
907 return QualType();
908
909 return type;
910 }
911
912 // Dependent types will be checked at instantiation time.
913 if (typeArg->isDependentType()) {
914 continue;
915 }
916
917 // Diagnose non-id-compatible type arguments.
918 S.Diag(typeArgInfo->getTypeLoc().getLocStart(),
919 diag::err_objc_type_arg_not_id_compatible)
920 << typeArg
921 << typeArgInfo->getTypeLoc().getSourceRange();
922
923 if (failOnError)
924 return QualType();
925
926 return type;
927 }
928
929 // Make sure we didn't have the wrong number of arguments.
930 if (!anyPackExpansions && finalTypeArgs.size() != numTypeParams) {
931 S.Diag(loc, diag::err_objc_type_args_wrong_arity)
932 << (typeArgs.size() < typeParams->size())
933 << objcClass->getDeclName()
934 << (unsigned)finalTypeArgs.size()
935 << (unsigned)numTypeParams;
936 S.Diag(objcClass->getLocation(), diag::note_previous_decl)
937 << objcClass;
938
939 if (failOnError)
940 return QualType();
941
942 return type;
943 }
944
945 // Success. Form the specialized type.
946 return S.Context.getObjCObjectType(type, finalTypeArgs, { }, false);
947 }
948
949 /// Apply Objective-C protocol qualifiers to the given type.
applyObjCProtocolQualifiers(Sema & S,SourceLocation loc,SourceRange range,QualType type,ArrayRef<ObjCProtocolDecl * > protocols,const SourceLocation * protocolLocs,bool failOnError=false)950 static QualType applyObjCProtocolQualifiers(
951 Sema &S, SourceLocation loc, SourceRange range, QualType type,
952 ArrayRef<ObjCProtocolDecl *> protocols,
953 const SourceLocation *protocolLocs,
954 bool failOnError = false) {
955 ASTContext &ctx = S.Context;
956 if (const ObjCObjectType *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
957 // FIXME: Check for protocols to which the class type is already
958 // known to conform.
959
960 return ctx.getObjCObjectType(objT->getBaseType(),
961 objT->getTypeArgsAsWritten(),
962 protocols,
963 objT->isKindOfTypeAsWritten());
964 }
965
966 if (type->isObjCObjectType()) {
967 // Silently overwrite any existing protocol qualifiers.
968 // TODO: determine whether that's the right thing to do.
969
970 // FIXME: Check for protocols to which the class type is already
971 // known to conform.
972 return ctx.getObjCObjectType(type, { }, protocols, false);
973 }
974
975 // id<protocol-list>
976 if (type->isObjCIdType()) {
977 const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
978 type = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, { }, protocols,
979 objPtr->isKindOfType());
980 return ctx.getObjCObjectPointerType(type);
981 }
982
983 // Class<protocol-list>
984 if (type->isObjCClassType()) {
985 const ObjCObjectPointerType *objPtr = type->castAs<ObjCObjectPointerType>();
986 type = ctx.getObjCObjectType(ctx.ObjCBuiltinClassTy, { }, protocols,
987 objPtr->isKindOfType());
988 return ctx.getObjCObjectPointerType(type);
989 }
990
991 S.Diag(loc, diag::err_invalid_protocol_qualifiers)
992 << range;
993
994 if (failOnError)
995 return QualType();
996
997 return type;
998 }
999
BuildObjCObjectType(QualType BaseType,SourceLocation Loc,SourceLocation TypeArgsLAngleLoc,ArrayRef<TypeSourceInfo * > TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<ObjCProtocolDecl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc,bool FailOnError)1000 QualType Sema::BuildObjCObjectType(QualType BaseType,
1001 SourceLocation Loc,
1002 SourceLocation TypeArgsLAngleLoc,
1003 ArrayRef<TypeSourceInfo *> TypeArgs,
1004 SourceLocation TypeArgsRAngleLoc,
1005 SourceLocation ProtocolLAngleLoc,
1006 ArrayRef<ObjCProtocolDecl *> Protocols,
1007 ArrayRef<SourceLocation> ProtocolLocs,
1008 SourceLocation ProtocolRAngleLoc,
1009 bool FailOnError) {
1010 QualType Result = BaseType;
1011 if (!TypeArgs.empty()) {
1012 Result = applyObjCTypeArgs(*this, Loc, Result, TypeArgs,
1013 SourceRange(TypeArgsLAngleLoc,
1014 TypeArgsRAngleLoc),
1015 FailOnError);
1016 if (FailOnError && Result.isNull())
1017 return QualType();
1018 }
1019
1020 if (!Protocols.empty()) {
1021 Result = applyObjCProtocolQualifiers(*this, Loc,
1022 SourceRange(ProtocolLAngleLoc,
1023 ProtocolRAngleLoc),
1024 Result, Protocols,
1025 ProtocolLocs.data(),
1026 FailOnError);
1027 if (FailOnError && Result.isNull())
1028 return QualType();
1029 }
1030
1031 return Result;
1032 }
1033
actOnObjCProtocolQualifierType(SourceLocation lAngleLoc,ArrayRef<Decl * > protocols,ArrayRef<SourceLocation> protocolLocs,SourceLocation rAngleLoc)1034 TypeResult Sema::actOnObjCProtocolQualifierType(
1035 SourceLocation lAngleLoc,
1036 ArrayRef<Decl *> protocols,
1037 ArrayRef<SourceLocation> protocolLocs,
1038 SourceLocation rAngleLoc) {
1039 // Form id<protocol-list>.
1040 QualType Result = Context.getObjCObjectType(
1041 Context.ObjCBuiltinIdTy, { },
1042 llvm::makeArrayRef(
1043 (ObjCProtocolDecl * const *)protocols.data(),
1044 protocols.size()),
1045 false);
1046 Result = Context.getObjCObjectPointerType(Result);
1047
1048 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1049 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1050
1051 auto ObjCObjectPointerTL = ResultTL.castAs<ObjCObjectPointerTypeLoc>();
1052 ObjCObjectPointerTL.setStarLoc(SourceLocation()); // implicit
1053
1054 auto ObjCObjectTL = ObjCObjectPointerTL.getPointeeLoc()
1055 .castAs<ObjCObjectTypeLoc>();
1056 ObjCObjectTL.setHasBaseTypeAsWritten(false);
1057 ObjCObjectTL.getBaseLoc().initialize(Context, SourceLocation());
1058
1059 // No type arguments.
1060 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1061 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1062
1063 // Fill in protocol qualifiers.
1064 ObjCObjectTL.setProtocolLAngleLoc(lAngleLoc);
1065 ObjCObjectTL.setProtocolRAngleLoc(rAngleLoc);
1066 for (unsigned i = 0, n = protocols.size(); i != n; ++i)
1067 ObjCObjectTL.setProtocolLoc(i, protocolLocs[i]);
1068
1069 // We're done. Return the completed type to the parser.
1070 return CreateParsedType(Result, ResultTInfo);
1071 }
1072
actOnObjCTypeArgsAndProtocolQualifiers(Scope * S,SourceLocation Loc,ParsedType BaseType,SourceLocation TypeArgsLAngleLoc,ArrayRef<ParsedType> TypeArgs,SourceLocation TypeArgsRAngleLoc,SourceLocation ProtocolLAngleLoc,ArrayRef<Decl * > Protocols,ArrayRef<SourceLocation> ProtocolLocs,SourceLocation ProtocolRAngleLoc)1073 TypeResult Sema::actOnObjCTypeArgsAndProtocolQualifiers(
1074 Scope *S,
1075 SourceLocation Loc,
1076 ParsedType BaseType,
1077 SourceLocation TypeArgsLAngleLoc,
1078 ArrayRef<ParsedType> TypeArgs,
1079 SourceLocation TypeArgsRAngleLoc,
1080 SourceLocation ProtocolLAngleLoc,
1081 ArrayRef<Decl *> Protocols,
1082 ArrayRef<SourceLocation> ProtocolLocs,
1083 SourceLocation ProtocolRAngleLoc) {
1084 TypeSourceInfo *BaseTypeInfo = nullptr;
1085 QualType T = GetTypeFromParser(BaseType, &BaseTypeInfo);
1086 if (T.isNull())
1087 return true;
1088
1089 // Handle missing type-source info.
1090 if (!BaseTypeInfo)
1091 BaseTypeInfo = Context.getTrivialTypeSourceInfo(T, Loc);
1092
1093 // Extract type arguments.
1094 SmallVector<TypeSourceInfo *, 4> ActualTypeArgInfos;
1095 for (unsigned i = 0, n = TypeArgs.size(); i != n; ++i) {
1096 TypeSourceInfo *TypeArgInfo = nullptr;
1097 QualType TypeArg = GetTypeFromParser(TypeArgs[i], &TypeArgInfo);
1098 if (TypeArg.isNull()) {
1099 ActualTypeArgInfos.clear();
1100 break;
1101 }
1102
1103 assert(TypeArgInfo && "No type source info?");
1104 ActualTypeArgInfos.push_back(TypeArgInfo);
1105 }
1106
1107 // Build the object type.
1108 QualType Result = BuildObjCObjectType(
1109 T, BaseTypeInfo->getTypeLoc().getSourceRange().getBegin(),
1110 TypeArgsLAngleLoc, ActualTypeArgInfos, TypeArgsRAngleLoc,
1111 ProtocolLAngleLoc,
1112 llvm::makeArrayRef((ObjCProtocolDecl * const *)Protocols.data(),
1113 Protocols.size()),
1114 ProtocolLocs, ProtocolRAngleLoc,
1115 /*FailOnError=*/false);
1116
1117 if (Result == T)
1118 return BaseType;
1119
1120 // Create source information for this type.
1121 TypeSourceInfo *ResultTInfo = Context.CreateTypeSourceInfo(Result);
1122 TypeLoc ResultTL = ResultTInfo->getTypeLoc();
1123
1124 // For id<Proto1, Proto2> or Class<Proto1, Proto2>, we'll have an
1125 // object pointer type. Fill in source information for it.
1126 if (auto ObjCObjectPointerTL = ResultTL.getAs<ObjCObjectPointerTypeLoc>()) {
1127 // The '*' is implicit.
1128 ObjCObjectPointerTL.setStarLoc(SourceLocation());
1129 ResultTL = ObjCObjectPointerTL.getPointeeLoc();
1130 }
1131
1132 auto ObjCObjectTL = ResultTL.castAs<ObjCObjectTypeLoc>();
1133
1134 // Type argument information.
1135 if (ObjCObjectTL.getNumTypeArgs() > 0) {
1136 assert(ObjCObjectTL.getNumTypeArgs() == ActualTypeArgInfos.size());
1137 ObjCObjectTL.setTypeArgsLAngleLoc(TypeArgsLAngleLoc);
1138 ObjCObjectTL.setTypeArgsRAngleLoc(TypeArgsRAngleLoc);
1139 for (unsigned i = 0, n = ActualTypeArgInfos.size(); i != n; ++i)
1140 ObjCObjectTL.setTypeArgTInfo(i, ActualTypeArgInfos[i]);
1141 } else {
1142 ObjCObjectTL.setTypeArgsLAngleLoc(SourceLocation());
1143 ObjCObjectTL.setTypeArgsRAngleLoc(SourceLocation());
1144 }
1145
1146 // Protocol qualifier information.
1147 if (ObjCObjectTL.getNumProtocols() > 0) {
1148 assert(ObjCObjectTL.getNumProtocols() == Protocols.size());
1149 ObjCObjectTL.setProtocolLAngleLoc(ProtocolLAngleLoc);
1150 ObjCObjectTL.setProtocolRAngleLoc(ProtocolRAngleLoc);
1151 for (unsigned i = 0, n = Protocols.size(); i != n; ++i)
1152 ObjCObjectTL.setProtocolLoc(i, ProtocolLocs[i]);
1153 } else {
1154 ObjCObjectTL.setProtocolLAngleLoc(SourceLocation());
1155 ObjCObjectTL.setProtocolRAngleLoc(SourceLocation());
1156 }
1157
1158 // Base type.
1159 ObjCObjectTL.setHasBaseTypeAsWritten(true);
1160 if (ObjCObjectTL.getType() == T)
1161 ObjCObjectTL.getBaseLoc().initializeFullCopy(BaseTypeInfo->getTypeLoc());
1162 else
1163 ObjCObjectTL.getBaseLoc().initialize(Context, Loc);
1164
1165 // We're done. Return the completed type to the parser.
1166 return CreateParsedType(Result, ResultTInfo);
1167 }
1168
1169 /// \brief Convert the specified declspec to the appropriate type
1170 /// object.
1171 /// \param state Specifies the declarator containing the declaration specifier
1172 /// to be converted, along with other associated processing state.
1173 /// \returns The type described by the declaration specifiers. This function
1174 /// never returns null.
ConvertDeclSpecToType(TypeProcessingState & state)1175 static QualType ConvertDeclSpecToType(TypeProcessingState &state) {
1176 // FIXME: Should move the logic from DeclSpec::Finish to here for validity
1177 // checking.
1178
1179 Sema &S = state.getSema();
1180 Declarator &declarator = state.getDeclarator();
1181 const DeclSpec &DS = declarator.getDeclSpec();
1182 SourceLocation DeclLoc = declarator.getIdentifierLoc();
1183 if (DeclLoc.isInvalid())
1184 DeclLoc = DS.getLocStart();
1185
1186 ASTContext &Context = S.Context;
1187
1188 QualType Result;
1189 switch (DS.getTypeSpecType()) {
1190 case DeclSpec::TST_void:
1191 Result = Context.VoidTy;
1192 break;
1193 case DeclSpec::TST_char:
1194 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1195 Result = Context.CharTy;
1196 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
1197 Result = Context.SignedCharTy;
1198 else {
1199 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1200 "Unknown TSS value");
1201 Result = Context.UnsignedCharTy;
1202 }
1203 break;
1204 case DeclSpec::TST_wchar:
1205 if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
1206 Result = Context.WCharTy;
1207 else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
1208 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1209 << DS.getSpecifierName(DS.getTypeSpecType(),
1210 Context.getPrintingPolicy());
1211 Result = Context.getSignedWCharType();
1212 } else {
1213 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
1214 "Unknown TSS value");
1215 S.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
1216 << DS.getSpecifierName(DS.getTypeSpecType(),
1217 Context.getPrintingPolicy());
1218 Result = Context.getUnsignedWCharType();
1219 }
1220 break;
1221 case DeclSpec::TST_char16:
1222 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1223 "Unknown TSS value");
1224 Result = Context.Char16Ty;
1225 break;
1226 case DeclSpec::TST_char32:
1227 assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
1228 "Unknown TSS value");
1229 Result = Context.Char32Ty;
1230 break;
1231 case DeclSpec::TST_unspecified:
1232 // If this is a missing declspec in a block literal return context, then it
1233 // is inferred from the return statements inside the block.
1234 // The declspec is always missing in a lambda expr context; it is either
1235 // specified with a trailing return type or inferred.
1236 if (S.getLangOpts().CPlusPlus14 &&
1237 declarator.getContext() == Declarator::LambdaExprContext) {
1238 // In C++1y, a lambda's implicit return type is 'auto'.
1239 Result = Context.getAutoDeductType();
1240 break;
1241 } else if (declarator.getContext() == Declarator::LambdaExprContext ||
1242 isOmittedBlockReturnType(declarator)) {
1243 Result = Context.DependentTy;
1244 break;
1245 }
1246
1247 // Unspecified typespec defaults to int in C90. However, the C90 grammar
1248 // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
1249 // type-qualifier, or storage-class-specifier. If not, emit an extwarn.
1250 // Note that the one exception to this is function definitions, which are
1251 // allowed to be completely missing a declspec. This is handled in the
1252 // parser already though by it pretending to have seen an 'int' in this
1253 // case.
1254 if (S.getLangOpts().ImplicitInt) {
1255 // In C89 mode, we only warn if there is a completely missing declspec
1256 // when one is not allowed.
1257 if (DS.isEmpty()) {
1258 S.Diag(DeclLoc, diag::ext_missing_declspec)
1259 << DS.getSourceRange()
1260 << FixItHint::CreateInsertion(DS.getLocStart(), "int");
1261 }
1262 } else if (!DS.hasTypeSpecifier()) {
1263 // C99 and C++ require a type specifier. For example, C99 6.7.2p2 says:
1264 // "At least one type specifier shall be given in the declaration
1265 // specifiers in each declaration, and in the specifier-qualifier list in
1266 // each struct declaration and type name."
1267 if (S.getLangOpts().CPlusPlus) {
1268 S.Diag(DeclLoc, diag::err_missing_type_specifier)
1269 << DS.getSourceRange();
1270
1271 // When this occurs in C++ code, often something is very broken with the
1272 // value being declared, poison it as invalid so we don't get chains of
1273 // errors.
1274 declarator.setInvalidType(true);
1275 } else {
1276 S.Diag(DeclLoc, diag::ext_missing_type_specifier)
1277 << DS.getSourceRange();
1278 }
1279 }
1280
1281 // FALL THROUGH.
1282 case DeclSpec::TST_int: {
1283 if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
1284 switch (DS.getTypeSpecWidth()) {
1285 case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
1286 case DeclSpec::TSW_short: Result = Context.ShortTy; break;
1287 case DeclSpec::TSW_long: Result = Context.LongTy; break;
1288 case DeclSpec::TSW_longlong:
1289 Result = Context.LongLongTy;
1290
1291 // 'long long' is a C99 or C++11 feature.
1292 if (!S.getLangOpts().C99) {
1293 if (S.getLangOpts().CPlusPlus)
1294 S.Diag(DS.getTypeSpecWidthLoc(),
1295 S.getLangOpts().CPlusPlus11 ?
1296 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1297 else
1298 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1299 }
1300 break;
1301 }
1302 } else {
1303 switch (DS.getTypeSpecWidth()) {
1304 case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
1305 case DeclSpec::TSW_short: Result = Context.UnsignedShortTy; break;
1306 case DeclSpec::TSW_long: Result = Context.UnsignedLongTy; break;
1307 case DeclSpec::TSW_longlong:
1308 Result = Context.UnsignedLongLongTy;
1309
1310 // 'long long' is a C99 or C++11 feature.
1311 if (!S.getLangOpts().C99) {
1312 if (S.getLangOpts().CPlusPlus)
1313 S.Diag(DS.getTypeSpecWidthLoc(),
1314 S.getLangOpts().CPlusPlus11 ?
1315 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
1316 else
1317 S.Diag(DS.getTypeSpecWidthLoc(), diag::ext_c99_longlong);
1318 }
1319 break;
1320 }
1321 }
1322 break;
1323 }
1324 case DeclSpec::TST_int128:
1325 if (!S.Context.getTargetInfo().hasInt128Type())
1326 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_int128_unsupported);
1327 if (DS.getTypeSpecSign() == DeclSpec::TSS_unsigned)
1328 Result = Context.UnsignedInt128Ty;
1329 else
1330 Result = Context.Int128Ty;
1331 break;
1332 case DeclSpec::TST_half: Result = Context.HalfTy; break;
1333 case DeclSpec::TST_float: Result = Context.FloatTy; break;
1334 case DeclSpec::TST_double:
1335 if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
1336 Result = Context.LongDoubleTy;
1337 else
1338 Result = Context.DoubleTy;
1339
1340 if (S.getLangOpts().OpenCL &&
1341 !((S.getLangOpts().OpenCLVersion >= 120) ||
1342 S.getOpenCLOptions().cl_khr_fp64)) {
1343 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1344 << Result << "cl_khr_fp64";
1345 declarator.setInvalidType(true);
1346 }
1347 break;
1348 case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
1349 case DeclSpec::TST_decimal32: // _Decimal32
1350 case DeclSpec::TST_decimal64: // _Decimal64
1351 case DeclSpec::TST_decimal128: // _Decimal128
1352 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
1353 Result = Context.IntTy;
1354 declarator.setInvalidType(true);
1355 break;
1356 case DeclSpec::TST_class:
1357 case DeclSpec::TST_enum:
1358 case DeclSpec::TST_union:
1359 case DeclSpec::TST_struct:
1360 case DeclSpec::TST_interface: {
1361 TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
1362 if (!D) {
1363 // This can happen in C++ with ambiguous lookups.
1364 Result = Context.IntTy;
1365 declarator.setInvalidType(true);
1366 break;
1367 }
1368
1369 // If the type is deprecated or unavailable, diagnose it.
1370 S.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeNameLoc());
1371
1372 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1373 DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
1374
1375 // TypeQuals handled by caller.
1376 Result = Context.getTypeDeclType(D);
1377
1378 // In both C and C++, make an ElaboratedType.
1379 ElaboratedTypeKeyword Keyword
1380 = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
1381 Result = S.getElaboratedType(Keyword, DS.getTypeSpecScope(), Result);
1382 break;
1383 }
1384 case DeclSpec::TST_typename: {
1385 assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
1386 DS.getTypeSpecSign() == 0 &&
1387 "Can't handle qualifiers on typedef names yet!");
1388 Result = S.GetTypeFromParser(DS.getRepAsType());
1389 if (Result.isNull()) {
1390 declarator.setInvalidType(true);
1391 } else if (S.getLangOpts().OpenCL) {
1392 if (Result->getAs<AtomicType>()) {
1393 StringRef TypeName = Result.getBaseTypeIdentifier()->getName();
1394 bool NoExtTypes =
1395 llvm::StringSwitch<bool>(TypeName)
1396 .Cases("atomic_int", "atomic_uint", "atomic_float",
1397 "atomic_flag", true)
1398 .Default(false);
1399 if (!S.getOpenCLOptions().cl_khr_int64_base_atomics && !NoExtTypes) {
1400 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1401 << Result << "cl_khr_int64_base_atomics";
1402 declarator.setInvalidType(true);
1403 }
1404 if (!S.getOpenCLOptions().cl_khr_int64_extended_atomics &&
1405 !NoExtTypes) {
1406 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1407 << Result << "cl_khr_int64_extended_atomics";
1408 declarator.setInvalidType(true);
1409 }
1410 if (!S.getOpenCLOptions().cl_khr_fp64 &&
1411 !TypeName.compare("atomic_double")) {
1412 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1413 << Result << "cl_khr_fp64";
1414 declarator.setInvalidType(true);
1415 }
1416 } else if (!S.getOpenCLOptions().cl_khr_gl_msaa_sharing &&
1417 (Result->isImage2dMSAAT() || Result->isImage2dArrayMSAAT() ||
1418 Result->isImage2dArrayMSAATDepth() ||
1419 Result->isImage2dMSAATDepth())) {
1420 S.Diag(DS.getTypeSpecTypeLoc(), diag::err_type_requires_extension)
1421 << Result << "cl_khr_gl_msaa_sharing";
1422 declarator.setInvalidType(true);
1423 }
1424 }
1425
1426 // TypeQuals handled by caller.
1427 break;
1428 }
1429 case DeclSpec::TST_typeofType:
1430 // FIXME: Preserve type source info.
1431 Result = S.GetTypeFromParser(DS.getRepAsType());
1432 assert(!Result.isNull() && "Didn't get a type for typeof?");
1433 if (!Result->isDependentType())
1434 if (const TagType *TT = Result->getAs<TagType>())
1435 S.DiagnoseUseOfDecl(TT->getDecl(), DS.getTypeSpecTypeLoc());
1436 // TypeQuals handled by caller.
1437 Result = Context.getTypeOfType(Result);
1438 break;
1439 case DeclSpec::TST_typeofExpr: {
1440 Expr *E = DS.getRepAsExpr();
1441 assert(E && "Didn't get an expression for typeof?");
1442 // TypeQuals handled by caller.
1443 Result = S.BuildTypeofExprType(E, DS.getTypeSpecTypeLoc());
1444 if (Result.isNull()) {
1445 Result = Context.IntTy;
1446 declarator.setInvalidType(true);
1447 }
1448 break;
1449 }
1450 case DeclSpec::TST_decltype: {
1451 Expr *E = DS.getRepAsExpr();
1452 assert(E && "Didn't get an expression for decltype?");
1453 // TypeQuals handled by caller.
1454 Result = S.BuildDecltypeType(E, DS.getTypeSpecTypeLoc());
1455 if (Result.isNull()) {
1456 Result = Context.IntTy;
1457 declarator.setInvalidType(true);
1458 }
1459 break;
1460 }
1461 case DeclSpec::TST_underlyingType:
1462 Result = S.GetTypeFromParser(DS.getRepAsType());
1463 assert(!Result.isNull() && "Didn't get a type for __underlying_type?");
1464 Result = S.BuildUnaryTransformType(Result,
1465 UnaryTransformType::EnumUnderlyingType,
1466 DS.getTypeSpecTypeLoc());
1467 if (Result.isNull()) {
1468 Result = Context.IntTy;
1469 declarator.setInvalidType(true);
1470 }
1471 break;
1472
1473 case DeclSpec::TST_auto:
1474 // TypeQuals handled by caller.
1475 // If auto is mentioned in a lambda parameter context, convert it to a
1476 // template parameter type immediately, with the appropriate depth and
1477 // index, and update sema's state (LambdaScopeInfo) for the current lambda
1478 // being analyzed (which tracks the invented type template parameter).
1479 if (declarator.getContext() == Declarator::LambdaExprParameterContext) {
1480 sema::LambdaScopeInfo *LSI = S.getCurLambda();
1481 assert(LSI && "No LambdaScopeInfo on the stack!");
1482 const unsigned TemplateParameterDepth = LSI->AutoTemplateParameterDepth;
1483 const unsigned AutoParameterPosition = LSI->AutoTemplateParams.size();
1484 const bool IsParameterPack = declarator.hasEllipsis();
1485
1486 // Turns out we must create the TemplateTypeParmDecl here to
1487 // retrieve the corresponding template parameter type.
1488 TemplateTypeParmDecl *CorrespondingTemplateParam =
1489 TemplateTypeParmDecl::Create(Context,
1490 // Temporarily add to the TranslationUnit DeclContext. When the
1491 // associated TemplateParameterList is attached to a template
1492 // declaration (such as FunctionTemplateDecl), the DeclContext
1493 // for each template parameter gets updated appropriately via
1494 // a call to AdoptTemplateParameterList.
1495 Context.getTranslationUnitDecl(),
1496 /*KeyLoc*/ SourceLocation(),
1497 /*NameLoc*/ declarator.getLocStart(),
1498 TemplateParameterDepth,
1499 AutoParameterPosition, // our template param index
1500 /* Identifier*/ nullptr, false, IsParameterPack);
1501 LSI->AutoTemplateParams.push_back(CorrespondingTemplateParam);
1502 // Replace the 'auto' in the function parameter with this invented
1503 // template type parameter.
1504 Result = QualType(CorrespondingTemplateParam->getTypeForDecl(), 0);
1505 } else {
1506 Result = Context.getAutoType(QualType(), AutoTypeKeyword::Auto, false);
1507 }
1508 break;
1509
1510 case DeclSpec::TST_auto_type:
1511 Result = Context.getAutoType(QualType(), AutoTypeKeyword::GNUAutoType, false);
1512 break;
1513
1514 case DeclSpec::TST_decltype_auto:
1515 Result = Context.getAutoType(QualType(), AutoTypeKeyword::DecltypeAuto,
1516 /*IsDependent*/ false);
1517 break;
1518
1519 case DeclSpec::TST_unknown_anytype:
1520 Result = Context.UnknownAnyTy;
1521 break;
1522
1523 case DeclSpec::TST_atomic:
1524 Result = S.GetTypeFromParser(DS.getRepAsType());
1525 assert(!Result.isNull() && "Didn't get a type for _Atomic?");
1526 Result = S.BuildAtomicType(Result, DS.getTypeSpecTypeLoc());
1527 if (Result.isNull()) {
1528 Result = Context.IntTy;
1529 declarator.setInvalidType(true);
1530 }
1531 break;
1532
1533 case DeclSpec::TST_error:
1534 Result = Context.IntTy;
1535 declarator.setInvalidType(true);
1536 break;
1537 }
1538
1539 // Handle complex types.
1540 if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
1541 if (S.getLangOpts().Freestanding)
1542 S.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
1543 Result = Context.getComplexType(Result);
1544 } else if (DS.isTypeAltiVecVector()) {
1545 unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
1546 assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
1547 VectorType::VectorKind VecKind = VectorType::AltiVecVector;
1548 if (DS.isTypeAltiVecPixel())
1549 VecKind = VectorType::AltiVecPixel;
1550 else if (DS.isTypeAltiVecBool())
1551 VecKind = VectorType::AltiVecBool;
1552 Result = Context.getVectorType(Result, 128/typeSize, VecKind);
1553 }
1554
1555 // FIXME: Imaginary.
1556 if (DS.getTypeSpecComplex() == DeclSpec::TSC_imaginary)
1557 S.Diag(DS.getTypeSpecComplexLoc(), diag::err_imaginary_not_supported);
1558
1559 // Before we process any type attributes, synthesize a block literal
1560 // function declarator if necessary.
1561 if (declarator.getContext() == Declarator::BlockLiteralContext)
1562 maybeSynthesizeBlockSignature(state, Result);
1563
1564 // Apply any type attributes from the decl spec. This may cause the
1565 // list of type attributes to be temporarily saved while the type
1566 // attributes are pushed around.
1567 processTypeAttrs(state, Result, TAL_DeclSpec, DS.getAttributes().getList());
1568
1569 // Apply const/volatile/restrict qualifiers to T.
1570 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1571 // Warn about CV qualifiers on function types.
1572 // C99 6.7.3p8:
1573 // If the specification of a function type includes any type qualifiers,
1574 // the behavior is undefined.
1575 // C++11 [dcl.fct]p7:
1576 // The effect of a cv-qualifier-seq in a function declarator is not the
1577 // same as adding cv-qualification on top of the function type. In the
1578 // latter case, the cv-qualifiers are ignored.
1579 if (TypeQuals && Result->isFunctionType()) {
1580 diagnoseAndRemoveTypeQualifiers(
1581 S, DS, TypeQuals, Result, DeclSpec::TQ_const | DeclSpec::TQ_volatile,
1582 S.getLangOpts().CPlusPlus
1583 ? diag::warn_typecheck_function_qualifiers_ignored
1584 : diag::warn_typecheck_function_qualifiers_unspecified);
1585 // No diagnostic for 'restrict' or '_Atomic' applied to a
1586 // function type; we'll diagnose those later, in BuildQualifiedType.
1587 }
1588
1589 // C++11 [dcl.ref]p1:
1590 // Cv-qualified references are ill-formed except when the
1591 // cv-qualifiers are introduced through the use of a typedef-name
1592 // or decltype-specifier, in which case the cv-qualifiers are ignored.
1593 //
1594 // There don't appear to be any other contexts in which a cv-qualified
1595 // reference type could be formed, so the 'ill-formed' clause here appears
1596 // to never happen.
1597 if (TypeQuals && Result->isReferenceType()) {
1598 diagnoseAndRemoveTypeQualifiers(
1599 S, DS, TypeQuals, Result,
1600 DeclSpec::TQ_const | DeclSpec::TQ_volatile | DeclSpec::TQ_atomic,
1601 diag::warn_typecheck_reference_qualifiers);
1602 }
1603
1604 // C90 6.5.3 constraints: "The same type qualifier shall not appear more
1605 // than once in the same specifier-list or qualifier-list, either directly
1606 // or via one or more typedefs."
1607 if (!S.getLangOpts().C99 && !S.getLangOpts().CPlusPlus
1608 && TypeQuals & Result.getCVRQualifiers()) {
1609 if (TypeQuals & DeclSpec::TQ_const && Result.isConstQualified()) {
1610 S.Diag(DS.getConstSpecLoc(), diag::ext_duplicate_declspec)
1611 << "const";
1612 }
1613
1614 if (TypeQuals & DeclSpec::TQ_volatile && Result.isVolatileQualified()) {
1615 S.Diag(DS.getVolatileSpecLoc(), diag::ext_duplicate_declspec)
1616 << "volatile";
1617 }
1618
1619 // C90 doesn't have restrict nor _Atomic, so it doesn't force us to
1620 // produce a warning in this case.
1621 }
1622
1623 QualType Qualified = S.BuildQualifiedType(Result, DeclLoc, TypeQuals, &DS);
1624
1625 // If adding qualifiers fails, just use the unqualified type.
1626 if (Qualified.isNull())
1627 declarator.setInvalidType(true);
1628 else
1629 Result = Qualified;
1630 }
1631
1632 assert(!Result.isNull() && "This function should not return a null type");
1633 return Result;
1634 }
1635
getPrintableNameForEntity(DeclarationName Entity)1636 static std::string getPrintableNameForEntity(DeclarationName Entity) {
1637 if (Entity)
1638 return Entity.getAsString();
1639
1640 return "type name";
1641 }
1642
BuildQualifiedType(QualType T,SourceLocation Loc,Qualifiers Qs,const DeclSpec * DS)1643 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1644 Qualifiers Qs, const DeclSpec *DS) {
1645 if (T.isNull())
1646 return QualType();
1647
1648 // Enforce C99 6.7.3p2: "Types other than pointer types derived from
1649 // object or incomplete types shall not be restrict-qualified."
1650 if (Qs.hasRestrict()) {
1651 unsigned DiagID = 0;
1652 QualType ProblemTy;
1653
1654 if (T->isAnyPointerType() || T->isReferenceType() ||
1655 T->isMemberPointerType()) {
1656 QualType EltTy;
1657 if (T->isObjCObjectPointerType())
1658 EltTy = T;
1659 else if (const MemberPointerType *PTy = T->getAs<MemberPointerType>())
1660 EltTy = PTy->getPointeeType();
1661 else
1662 EltTy = T->getPointeeType();
1663
1664 // If we have a pointer or reference, the pointee must have an object
1665 // incomplete type.
1666 if (!EltTy->isIncompleteOrObjectType()) {
1667 DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
1668 ProblemTy = EltTy;
1669 }
1670 } else if (!T->isDependentType()) {
1671 DiagID = diag::err_typecheck_invalid_restrict_not_pointer;
1672 ProblemTy = T;
1673 }
1674
1675 if (DiagID) {
1676 Diag(DS ? DS->getRestrictSpecLoc() : Loc, DiagID) << ProblemTy;
1677 Qs.removeRestrict();
1678 }
1679 }
1680
1681 return Context.getQualifiedType(T, Qs);
1682 }
1683
BuildQualifiedType(QualType T,SourceLocation Loc,unsigned CVRA,const DeclSpec * DS)1684 QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
1685 unsigned CVRA, const DeclSpec *DS) {
1686 if (T.isNull())
1687 return QualType();
1688
1689 // Convert from DeclSpec::TQ to Qualifiers::TQ by just dropping TQ_atomic.
1690 unsigned CVR = CVRA & ~DeclSpec::TQ_atomic;
1691
1692 // C11 6.7.3/5:
1693 // If the same qualifier appears more than once in the same
1694 // specifier-qualifier-list, either directly or via one or more typedefs,
1695 // the behavior is the same as if it appeared only once.
1696 //
1697 // It's not specified what happens when the _Atomic qualifier is applied to
1698 // a type specified with the _Atomic specifier, but we assume that this
1699 // should be treated as if the _Atomic qualifier appeared multiple times.
1700 if (CVRA & DeclSpec::TQ_atomic && !T->isAtomicType()) {
1701 // C11 6.7.3/5:
1702 // If other qualifiers appear along with the _Atomic qualifier in a
1703 // specifier-qualifier-list, the resulting type is the so-qualified
1704 // atomic type.
1705 //
1706 // Don't need to worry about array types here, since _Atomic can't be
1707 // applied to such types.
1708 SplitQualType Split = T.getSplitUnqualifiedType();
1709 T = BuildAtomicType(QualType(Split.Ty, 0),
1710 DS ? DS->getAtomicSpecLoc() : Loc);
1711 if (T.isNull())
1712 return T;
1713 Split.Quals.addCVRQualifiers(CVR);
1714 return BuildQualifiedType(T, Loc, Split.Quals);
1715 }
1716
1717 return BuildQualifiedType(T, Loc, Qualifiers::fromCVRMask(CVR), DS);
1718 }
1719
1720 /// \brief Build a paren type including \p T.
BuildParenType(QualType T)1721 QualType Sema::BuildParenType(QualType T) {
1722 return Context.getParenType(T);
1723 }
1724
1725 /// Given that we're building a pointer or reference to the given
inferARCLifetimeForPointee(Sema & S,QualType type,SourceLocation loc,bool isReference)1726 static QualType inferARCLifetimeForPointee(Sema &S, QualType type,
1727 SourceLocation loc,
1728 bool isReference) {
1729 // Bail out if retention is unrequired or already specified.
1730 if (!type->isObjCLifetimeType() ||
1731 type.getObjCLifetime() != Qualifiers::OCL_None)
1732 return type;
1733
1734 Qualifiers::ObjCLifetime implicitLifetime = Qualifiers::OCL_None;
1735
1736 // If the object type is const-qualified, we can safely use
1737 // __unsafe_unretained. This is safe (because there are no read
1738 // barriers), and it'll be safe to coerce anything but __weak* to
1739 // the resulting type.
1740 if (type.isConstQualified()) {
1741 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1742
1743 // Otherwise, check whether the static type does not require
1744 // retaining. This currently only triggers for Class (possibly
1745 // protocol-qualifed, and arrays thereof).
1746 } else if (type->isObjCARCImplicitlyUnretainedType()) {
1747 implicitLifetime = Qualifiers::OCL_ExplicitNone;
1748
1749 // If we are in an unevaluated context, like sizeof, skip adding a
1750 // qualification.
1751 } else if (S.isUnevaluatedContext()) {
1752 return type;
1753
1754 // If that failed, give an error and recover using __strong. __strong
1755 // is the option most likely to prevent spurious second-order diagnostics,
1756 // like when binding a reference to a field.
1757 } else {
1758 // These types can show up in private ivars in system headers, so
1759 // we need this to not be an error in those cases. Instead we
1760 // want to delay.
1761 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1762 S.DelayedDiagnostics.add(
1763 sema::DelayedDiagnostic::makeForbiddenType(loc,
1764 diag::err_arc_indirect_no_ownership, type, isReference));
1765 } else {
1766 S.Diag(loc, diag::err_arc_indirect_no_ownership) << type << isReference;
1767 }
1768 implicitLifetime = Qualifiers::OCL_Strong;
1769 }
1770 assert(implicitLifetime && "didn't infer any lifetime!");
1771
1772 Qualifiers qs;
1773 qs.addObjCLifetime(implicitLifetime);
1774 return S.Context.getQualifiedType(type, qs);
1775 }
1776
getFunctionQualifiersAsString(const FunctionProtoType * FnTy)1777 static std::string getFunctionQualifiersAsString(const FunctionProtoType *FnTy){
1778 std::string Quals =
1779 Qualifiers::fromCVRMask(FnTy->getTypeQuals()).getAsString();
1780
1781 switch (FnTy->getRefQualifier()) {
1782 case RQ_None:
1783 break;
1784
1785 case RQ_LValue:
1786 if (!Quals.empty())
1787 Quals += ' ';
1788 Quals += '&';
1789 break;
1790
1791 case RQ_RValue:
1792 if (!Quals.empty())
1793 Quals += ' ';
1794 Quals += "&&";
1795 break;
1796 }
1797
1798 return Quals;
1799 }
1800
1801 namespace {
1802 /// Kinds of declarator that cannot contain a qualified function type.
1803 ///
1804 /// C++98 [dcl.fct]p4 / C++11 [dcl.fct]p6:
1805 /// a function type with a cv-qualifier or a ref-qualifier can only appear
1806 /// at the topmost level of a type.
1807 ///
1808 /// Parens and member pointers are permitted. We don't diagnose array and
1809 /// function declarators, because they don't allow function types at all.
1810 ///
1811 /// The values of this enum are used in diagnostics.
1812 enum QualifiedFunctionKind { QFK_BlockPointer, QFK_Pointer, QFK_Reference };
1813 }
1814
1815 /// Check whether the type T is a qualified function type, and if it is,
1816 /// diagnose that it cannot be contained within the given kind of declarator.
checkQualifiedFunction(Sema & S,QualType T,SourceLocation Loc,QualifiedFunctionKind QFK)1817 static bool checkQualifiedFunction(Sema &S, QualType T, SourceLocation Loc,
1818 QualifiedFunctionKind QFK) {
1819 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
1820 const FunctionProtoType *FPT = T->getAs<FunctionProtoType>();
1821 if (!FPT || (FPT->getTypeQuals() == 0 && FPT->getRefQualifier() == RQ_None))
1822 return false;
1823
1824 S.Diag(Loc, diag::err_compound_qualified_function_type)
1825 << QFK << isa<FunctionType>(T.IgnoreParens()) << T
1826 << getFunctionQualifiersAsString(FPT);
1827 return true;
1828 }
1829
1830 /// \brief Build a pointer type.
1831 ///
1832 /// \param T The type to which we'll be building a pointer.
1833 ///
1834 /// \param Loc The location of the entity whose type involves this
1835 /// pointer type or, if there is no such entity, the location of the
1836 /// type that will have pointer type.
1837 ///
1838 /// \param Entity The name of the entity that involves the pointer
1839 /// type, if known.
1840 ///
1841 /// \returns A suitable pointer type, if there are no
1842 /// errors. Otherwise, returns a NULL type.
BuildPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)1843 QualType Sema::BuildPointerType(QualType T,
1844 SourceLocation Loc, DeclarationName Entity) {
1845 if (T->isReferenceType()) {
1846 // C++ 8.3.2p4: There shall be no ... pointers to references ...
1847 Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
1848 << getPrintableNameForEntity(Entity) << T;
1849 return QualType();
1850 }
1851
1852 if (checkQualifiedFunction(*this, T, Loc, QFK_Pointer))
1853 return QualType();
1854
1855 assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");
1856
1857 // In ARC, it is forbidden to build pointers to unqualified pointers.
1858 if (getLangOpts().ObjCAutoRefCount)
1859 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ false);
1860
1861 // Build the pointer type.
1862 return Context.getPointerType(T);
1863 }
1864
1865 /// \brief Build a reference type.
1866 ///
1867 /// \param T The type to which we'll be building a reference.
1868 ///
1869 /// \param Loc The location of the entity whose type involves this
1870 /// reference type or, if there is no such entity, the location of the
1871 /// type that will have reference type.
1872 ///
1873 /// \param Entity The name of the entity that involves the reference
1874 /// type, if known.
1875 ///
1876 /// \returns A suitable reference type, if there are no
1877 /// errors. Otherwise, returns a NULL type.
BuildReferenceType(QualType T,bool SpelledAsLValue,SourceLocation Loc,DeclarationName Entity)1878 QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
1879 SourceLocation Loc,
1880 DeclarationName Entity) {
1881 assert(Context.getCanonicalType(T) != Context.OverloadTy &&
1882 "Unresolved overloaded function type");
1883
1884 // C++0x [dcl.ref]p6:
1885 // If a typedef (7.1.3), a type template-parameter (14.3.1), or a
1886 // decltype-specifier (7.1.6.2) denotes a type TR that is a reference to a
1887 // type T, an attempt to create the type "lvalue reference to cv TR" creates
1888 // the type "lvalue reference to T", while an attempt to create the type
1889 // "rvalue reference to cv TR" creates the type TR.
1890 bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();
1891
1892 // C++ [dcl.ref]p4: There shall be no references to references.
1893 //
1894 // According to C++ DR 106, references to references are only
1895 // diagnosed when they are written directly (e.g., "int & &"),
1896 // but not when they happen via a typedef:
1897 //
1898 // typedef int& intref;
1899 // typedef intref& intref2;
1900 //
1901 // Parser::ParseDeclaratorInternal diagnoses the case where
1902 // references are written directly; here, we handle the
1903 // collapsing of references-to-references as described in C++0x.
1904 // DR 106 and 540 introduce reference-collapsing into C++98/03.
1905
1906 // C++ [dcl.ref]p1:
1907 // A declarator that specifies the type "reference to cv void"
1908 // is ill-formed.
1909 if (T->isVoidType()) {
1910 Diag(Loc, diag::err_reference_to_void);
1911 return QualType();
1912 }
1913
1914 if (checkQualifiedFunction(*this, T, Loc, QFK_Reference))
1915 return QualType();
1916
1917 // In ARC, it is forbidden to build references to unqualified pointers.
1918 if (getLangOpts().ObjCAutoRefCount)
1919 T = inferARCLifetimeForPointee(*this, T, Loc, /*reference*/ true);
1920
1921 // Handle restrict on references.
1922 if (LValueRef)
1923 return Context.getLValueReferenceType(T, SpelledAsLValue);
1924 return Context.getRValueReferenceType(T);
1925 }
1926
1927 /// Check whether the specified array size makes the array type a VLA. If so,
1928 /// return true, if not, return the size of the array in SizeVal.
isArraySizeVLA(Sema & S,Expr * ArraySize,llvm::APSInt & SizeVal)1929 static bool isArraySizeVLA(Sema &S, Expr *ArraySize, llvm::APSInt &SizeVal) {
1930 // If the size is an ICE, it certainly isn't a VLA. If we're in a GNU mode
1931 // (like gnu99, but not c99) accept any evaluatable value as an extension.
1932 class VLADiagnoser : public Sema::VerifyICEDiagnoser {
1933 public:
1934 VLADiagnoser() : Sema::VerifyICEDiagnoser(true) {}
1935
1936 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
1937 }
1938
1939 void diagnoseFold(Sema &S, SourceLocation Loc, SourceRange SR) override {
1940 S.Diag(Loc, diag::ext_vla_folded_to_constant) << SR;
1941 }
1942 } Diagnoser;
1943
1944 return S.VerifyIntegerConstantExpression(ArraySize, &SizeVal, Diagnoser,
1945 S.LangOpts.GNUMode).isInvalid();
1946 }
1947
1948
1949 /// \brief Build an array type.
1950 ///
1951 /// \param T The type of each element in the array.
1952 ///
1953 /// \param ASM C99 array size modifier (e.g., '*', 'static').
1954 ///
1955 /// \param ArraySize Expression describing the size of the array.
1956 ///
1957 /// \param Brackets The range from the opening '[' to the closing ']'.
1958 ///
1959 /// \param Entity The name of the entity that involves the array
1960 /// type, if known.
1961 ///
1962 /// \returns A suitable array type, if there are no errors. Otherwise,
1963 /// returns a NULL type.
BuildArrayType(QualType T,ArrayType::ArraySizeModifier ASM,Expr * ArraySize,unsigned Quals,SourceRange Brackets,DeclarationName Entity)1964 QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
1965 Expr *ArraySize, unsigned Quals,
1966 SourceRange Brackets, DeclarationName Entity) {
1967
1968 SourceLocation Loc = Brackets.getBegin();
1969 if (getLangOpts().CPlusPlus) {
1970 // C++ [dcl.array]p1:
1971 // T is called the array element type; this type shall not be a reference
1972 // type, the (possibly cv-qualified) type void, a function type or an
1973 // abstract class type.
1974 //
1975 // C++ [dcl.array]p3:
1976 // When several "array of" specifications are adjacent, [...] only the
1977 // first of the constant expressions that specify the bounds of the arrays
1978 // may be omitted.
1979 //
1980 // Note: function types are handled in the common path with C.
1981 if (T->isReferenceType()) {
1982 Diag(Loc, diag::err_illegal_decl_array_of_references)
1983 << getPrintableNameForEntity(Entity) << T;
1984 return QualType();
1985 }
1986
1987 if (T->isVoidType() || T->isIncompleteArrayType()) {
1988 Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
1989 return QualType();
1990 }
1991
1992 if (RequireNonAbstractType(Brackets.getBegin(), T,
1993 diag::err_array_of_abstract_type))
1994 return QualType();
1995
1996 // Mentioning a member pointer type for an array type causes us to lock in
1997 // an inheritance model, even if it's inside an unused typedef.
1998 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
1999 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
2000 if (!MPTy->getClass()->isDependentType())
2001 (void)isCompleteType(Loc, T);
2002
2003 } else {
2004 // C99 6.7.5.2p1: If the element type is an incomplete or function type,
2005 // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
2006 if (RequireCompleteType(Loc, T,
2007 diag::err_illegal_decl_array_incomplete_type))
2008 return QualType();
2009 }
2010
2011 if (T->isFunctionType()) {
2012 Diag(Loc, diag::err_illegal_decl_array_of_functions)
2013 << getPrintableNameForEntity(Entity) << T;
2014 return QualType();
2015 }
2016
2017 if (const RecordType *EltTy = T->getAs<RecordType>()) {
2018 // If the element type is a struct or union that contains a variadic
2019 // array, accept it as a GNU extension: C99 6.7.2.1p2.
2020 if (EltTy->getDecl()->hasFlexibleArrayMember())
2021 Diag(Loc, diag::ext_flexible_array_in_array) << T;
2022 } else if (T->isObjCObjectType()) {
2023 Diag(Loc, diag::err_objc_array_of_interfaces) << T;
2024 return QualType();
2025 }
2026
2027 // Do placeholder conversions on the array size expression.
2028 if (ArraySize && ArraySize->hasPlaceholderType()) {
2029 ExprResult Result = CheckPlaceholderExpr(ArraySize);
2030 if (Result.isInvalid()) return QualType();
2031 ArraySize = Result.get();
2032 }
2033
2034 // Do lvalue-to-rvalue conversions on the array size expression.
2035 if (ArraySize && !ArraySize->isRValue()) {
2036 ExprResult Result = DefaultLvalueConversion(ArraySize);
2037 if (Result.isInvalid())
2038 return QualType();
2039
2040 ArraySize = Result.get();
2041 }
2042
2043 // C99 6.7.5.2p1: The size expression shall have integer type.
2044 // C++11 allows contextual conversions to such types.
2045 if (!getLangOpts().CPlusPlus11 &&
2046 ArraySize && !ArraySize->isTypeDependent() &&
2047 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2048 Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2049 << ArraySize->getType() << ArraySize->getSourceRange();
2050 return QualType();
2051 }
2052
2053 llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
2054 if (!ArraySize) {
2055 if (ASM == ArrayType::Star)
2056 T = Context.getVariableArrayType(T, nullptr, ASM, Quals, Brackets);
2057 else
2058 T = Context.getIncompleteArrayType(T, ASM, Quals);
2059 } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
2060 T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
2061 } else if ((!T->isDependentType() && !T->isIncompleteType() &&
2062 !T->isConstantSizeType()) ||
2063 isArraySizeVLA(*this, ArraySize, ConstVal)) {
2064 // Even in C++11, don't allow contextual conversions in the array bound
2065 // of a VLA.
2066 if (getLangOpts().CPlusPlus11 &&
2067 !ArraySize->getType()->isIntegralOrUnscopedEnumerationType()) {
2068 Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
2069 << ArraySize->getType() << ArraySize->getSourceRange();
2070 return QualType();
2071 }
2072
2073 // C99: an array with an element type that has a non-constant-size is a VLA.
2074 // C99: an array with a non-ICE size is a VLA. We accept any expression
2075 // that we can fold to a non-zero positive value as an extension.
2076 T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
2077 } else {
2078 // C99 6.7.5.2p1: If the expression is a constant expression, it shall
2079 // have a value greater than zero.
2080 if (ConstVal.isSigned() && ConstVal.isNegative()) {
2081 if (Entity)
2082 Diag(ArraySize->getLocStart(), diag::err_decl_negative_array_size)
2083 << getPrintableNameForEntity(Entity) << ArraySize->getSourceRange();
2084 else
2085 Diag(ArraySize->getLocStart(), diag::err_typecheck_negative_array_size)
2086 << ArraySize->getSourceRange();
2087 return QualType();
2088 }
2089 if (ConstVal == 0) {
2090 // GCC accepts zero sized static arrays. We allow them when
2091 // we're not in a SFINAE context.
2092 Diag(ArraySize->getLocStart(),
2093 isSFINAEContext()? diag::err_typecheck_zero_array_size
2094 : diag::ext_typecheck_zero_array_size)
2095 << ArraySize->getSourceRange();
2096
2097 if (ASM == ArrayType::Static) {
2098 Diag(ArraySize->getLocStart(),
2099 diag::warn_typecheck_zero_static_array_size)
2100 << ArraySize->getSourceRange();
2101 ASM = ArrayType::Normal;
2102 }
2103 } else if (!T->isDependentType() && !T->isVariablyModifiedType() &&
2104 !T->isIncompleteType() && !T->isUndeducedType()) {
2105 // Is the array too large?
2106 unsigned ActiveSizeBits
2107 = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
2108 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2109 Diag(ArraySize->getLocStart(), diag::err_array_too_large)
2110 << ConstVal.toString(10)
2111 << ArraySize->getSourceRange();
2112 return QualType();
2113 }
2114 }
2115
2116 T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
2117 }
2118
2119 // OpenCL v1.2 s6.9.d: variable length arrays are not supported.
2120 if (getLangOpts().OpenCL && T->isVariableArrayType()) {
2121 Diag(Loc, diag::err_opencl_vla);
2122 return QualType();
2123 }
2124 // If this is not C99, extwarn about VLA's and C99 array size modifiers.
2125 if (!getLangOpts().C99) {
2126 if (T->isVariableArrayType()) {
2127 // Prohibit the use of non-POD types in VLAs.
2128 QualType BaseT = Context.getBaseElementType(T);
2129 if (!T->isDependentType() && isCompleteType(Loc, BaseT) &&
2130 !BaseT.isPODType(Context) && !BaseT->isObjCLifetimeType()) {
2131 Diag(Loc, diag::err_vla_non_pod) << BaseT;
2132 return QualType();
2133 }
2134 // Prohibit the use of VLAs during template argument deduction.
2135 else if (isSFINAEContext()) {
2136 Diag(Loc, diag::err_vla_in_sfinae);
2137 return QualType();
2138 }
2139 // Just extwarn about VLAs.
2140 else
2141 Diag(Loc, diag::ext_vla);
2142 } else if (ASM != ArrayType::Normal || Quals != 0)
2143 Diag(Loc,
2144 getLangOpts().CPlusPlus? diag::err_c99_array_usage_cxx
2145 : diag::ext_c99_array_usage) << ASM;
2146 }
2147
2148 if (T->isVariableArrayType()) {
2149 // Warn about VLAs for -Wvla.
2150 Diag(Loc, diag::warn_vla_used);
2151 }
2152
2153 return T;
2154 }
2155
2156 /// \brief Build an ext-vector type.
2157 ///
2158 /// Run the required checks for the extended vector type.
BuildExtVectorType(QualType T,Expr * ArraySize,SourceLocation AttrLoc)2159 QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
2160 SourceLocation AttrLoc) {
2161 // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2162 // in conjunction with complex types (pointers, arrays, functions, etc.).
2163 if (!T->isDependentType() &&
2164 !T->isIntegerType() && !T->isRealFloatingType()) {
2165 Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
2166 return QualType();
2167 }
2168
2169 if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
2170 llvm::APSInt vecSize(32);
2171 if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
2172 Diag(AttrLoc, diag::err_attribute_argument_type)
2173 << "ext_vector_type" << AANT_ArgumentIntegerConstant
2174 << ArraySize->getSourceRange();
2175 return QualType();
2176 }
2177
2178 // unlike gcc's vector_size attribute, the size is specified as the
2179 // number of elements, not the number of bytes.
2180 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2181
2182 if (vectorSize == 0) {
2183 Diag(AttrLoc, diag::err_attribute_zero_size)
2184 << ArraySize->getSourceRange();
2185 return QualType();
2186 }
2187
2188 if (VectorType::isVectorSizeTooLarge(vectorSize)) {
2189 Diag(AttrLoc, diag::err_attribute_size_too_large)
2190 << ArraySize->getSourceRange();
2191 return QualType();
2192 }
2193
2194 return Context.getExtVectorType(T, vectorSize);
2195 }
2196
2197 return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
2198 }
2199
CheckFunctionReturnType(QualType T,SourceLocation Loc)2200 bool Sema::CheckFunctionReturnType(QualType T, SourceLocation Loc) {
2201 if (T->isArrayType() || T->isFunctionType()) {
2202 Diag(Loc, diag::err_func_returning_array_function)
2203 << T->isFunctionType() << T;
2204 return true;
2205 }
2206
2207 // Functions cannot return half FP.
2208 if (T->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2209 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 1 <<
2210 FixItHint::CreateInsertion(Loc, "*");
2211 return true;
2212 }
2213
2214 // Methods cannot return interface types. All ObjC objects are
2215 // passed by reference.
2216 if (T->isObjCObjectType()) {
2217 Diag(Loc, diag::err_object_cannot_be_passed_returned_by_value) << 0 << T;
2218 return 0;
2219 }
2220
2221 return false;
2222 }
2223
BuildFunctionType(QualType T,MutableArrayRef<QualType> ParamTypes,SourceLocation Loc,DeclarationName Entity,const FunctionProtoType::ExtProtoInfo & EPI)2224 QualType Sema::BuildFunctionType(QualType T,
2225 MutableArrayRef<QualType> ParamTypes,
2226 SourceLocation Loc, DeclarationName Entity,
2227 const FunctionProtoType::ExtProtoInfo &EPI) {
2228 bool Invalid = false;
2229
2230 Invalid |= CheckFunctionReturnType(T, Loc);
2231
2232 for (unsigned Idx = 0, Cnt = ParamTypes.size(); Idx < Cnt; ++Idx) {
2233 // FIXME: Loc is too inprecise here, should use proper locations for args.
2234 QualType ParamType = Context.getAdjustedParameterType(ParamTypes[Idx]);
2235 if (ParamType->isVoidType()) {
2236 Diag(Loc, diag::err_param_with_void_type);
2237 Invalid = true;
2238 } else if (ParamType->isHalfType() && !getLangOpts().HalfArgsAndReturns) {
2239 // Disallow half FP arguments.
2240 Diag(Loc, diag::err_parameters_retval_cannot_have_fp16_type) << 0 <<
2241 FixItHint::CreateInsertion(Loc, "*");
2242 Invalid = true;
2243 }
2244
2245 ParamTypes[Idx] = ParamType;
2246 }
2247
2248 if (Invalid)
2249 return QualType();
2250
2251 return Context.getFunctionType(T, ParamTypes, EPI);
2252 }
2253
2254 /// \brief Build a member pointer type \c T Class::*.
2255 ///
2256 /// \param T the type to which the member pointer refers.
2257 /// \param Class the class type into which the member pointer points.
2258 /// \param Loc the location where this type begins
2259 /// \param Entity the name of the entity that will have this member pointer type
2260 ///
2261 /// \returns a member pointer type, if successful, or a NULL type if there was
2262 /// an error.
BuildMemberPointerType(QualType T,QualType Class,SourceLocation Loc,DeclarationName Entity)2263 QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
2264 SourceLocation Loc,
2265 DeclarationName Entity) {
2266 // Verify that we're not building a pointer to pointer to function with
2267 // exception specification.
2268 if (CheckDistantExceptionSpec(T)) {
2269 Diag(Loc, diag::err_distant_exception_spec);
2270 return QualType();
2271 }
2272
2273 // C++ 8.3.3p3: A pointer to member shall not point to ... a member
2274 // with reference type, or "cv void."
2275 if (T->isReferenceType()) {
2276 Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
2277 << getPrintableNameForEntity(Entity) << T;
2278 return QualType();
2279 }
2280
2281 if (T->isVoidType()) {
2282 Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
2283 << getPrintableNameForEntity(Entity);
2284 return QualType();
2285 }
2286
2287 if (!Class->isDependentType() && !Class->isRecordType()) {
2288 Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
2289 return QualType();
2290 }
2291
2292 // Adjust the default free function calling convention to the default method
2293 // calling convention.
2294 bool IsCtorOrDtor =
2295 (Entity.getNameKind() == DeclarationName::CXXConstructorName) ||
2296 (Entity.getNameKind() == DeclarationName::CXXDestructorName);
2297 if (T->isFunctionType())
2298 adjustMemberFunctionCC(T, /*IsStatic=*/false, IsCtorOrDtor, Loc);
2299
2300 return Context.getMemberPointerType(T, Class.getTypePtr());
2301 }
2302
2303 /// \brief Build a block pointer type.
2304 ///
2305 /// \param T The type to which we'll be building a block pointer.
2306 ///
2307 /// \param Loc The source location, used for diagnostics.
2308 ///
2309 /// \param Entity The name of the entity that involves the block pointer
2310 /// type, if known.
2311 ///
2312 /// \returns A suitable block pointer type, if there are no
2313 /// errors. Otherwise, returns a NULL type.
BuildBlockPointerType(QualType T,SourceLocation Loc,DeclarationName Entity)2314 QualType Sema::BuildBlockPointerType(QualType T,
2315 SourceLocation Loc,
2316 DeclarationName Entity) {
2317 if (!T->isFunctionType()) {
2318 Diag(Loc, diag::err_nonfunction_block_type);
2319 return QualType();
2320 }
2321
2322 if (checkQualifiedFunction(*this, T, Loc, QFK_BlockPointer))
2323 return QualType();
2324
2325 return Context.getBlockPointerType(T);
2326 }
2327
GetTypeFromParser(ParsedType Ty,TypeSourceInfo ** TInfo)2328 QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
2329 QualType QT = Ty.get();
2330 if (QT.isNull()) {
2331 if (TInfo) *TInfo = nullptr;
2332 return QualType();
2333 }
2334
2335 TypeSourceInfo *DI = nullptr;
2336 if (const LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
2337 QT = LIT->getType();
2338 DI = LIT->getTypeSourceInfo();
2339 }
2340
2341 if (TInfo) *TInfo = DI;
2342 return QT;
2343 }
2344
2345 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
2346 Qualifiers::ObjCLifetime ownership,
2347 unsigned chunkIndex);
2348
2349 /// Given that this is the declaration of a parameter under ARC,
2350 /// attempt to infer attributes and such for pointer-to-whatever
2351 /// types.
inferARCWriteback(TypeProcessingState & state,QualType & declSpecType)2352 static void inferARCWriteback(TypeProcessingState &state,
2353 QualType &declSpecType) {
2354 Sema &S = state.getSema();
2355 Declarator &declarator = state.getDeclarator();
2356
2357 // TODO: should we care about decl qualifiers?
2358
2359 // Check whether the declarator has the expected form. We walk
2360 // from the inside out in order to make the block logic work.
2361 unsigned outermostPointerIndex = 0;
2362 bool isBlockPointer = false;
2363 unsigned numPointers = 0;
2364 for (unsigned i = 0, e = declarator.getNumTypeObjects(); i != e; ++i) {
2365 unsigned chunkIndex = i;
2366 DeclaratorChunk &chunk = declarator.getTypeObject(chunkIndex);
2367 switch (chunk.Kind) {
2368 case DeclaratorChunk::Paren:
2369 // Ignore parens.
2370 break;
2371
2372 case DeclaratorChunk::Reference:
2373 case DeclaratorChunk::Pointer:
2374 // Count the number of pointers. Treat references
2375 // interchangeably as pointers; if they're mis-ordered, normal
2376 // type building will discover that.
2377 outermostPointerIndex = chunkIndex;
2378 numPointers++;
2379 break;
2380
2381 case DeclaratorChunk::BlockPointer:
2382 // If we have a pointer to block pointer, that's an acceptable
2383 // indirect reference; anything else is not an application of
2384 // the rules.
2385 if (numPointers != 1) return;
2386 numPointers++;
2387 outermostPointerIndex = chunkIndex;
2388 isBlockPointer = true;
2389
2390 // We don't care about pointer structure in return values here.
2391 goto done;
2392
2393 case DeclaratorChunk::Array: // suppress if written (id[])?
2394 case DeclaratorChunk::Function:
2395 case DeclaratorChunk::MemberPointer:
2396 return;
2397 }
2398 }
2399 done:
2400
2401 // If we have *one* pointer, then we want to throw the qualifier on
2402 // the declaration-specifiers, which means that it needs to be a
2403 // retainable object type.
2404 if (numPointers == 1) {
2405 // If it's not a retainable object type, the rule doesn't apply.
2406 if (!declSpecType->isObjCRetainableType()) return;
2407
2408 // If it already has lifetime, don't do anything.
2409 if (declSpecType.getObjCLifetime()) return;
2410
2411 // Otherwise, modify the type in-place.
2412 Qualifiers qs;
2413
2414 if (declSpecType->isObjCARCImplicitlyUnretainedType())
2415 qs.addObjCLifetime(Qualifiers::OCL_ExplicitNone);
2416 else
2417 qs.addObjCLifetime(Qualifiers::OCL_Autoreleasing);
2418 declSpecType = S.Context.getQualifiedType(declSpecType, qs);
2419
2420 // If we have *two* pointers, then we want to throw the qualifier on
2421 // the outermost pointer.
2422 } else if (numPointers == 2) {
2423 // If we don't have a block pointer, we need to check whether the
2424 // declaration-specifiers gave us something that will turn into a
2425 // retainable object pointer after we slap the first pointer on it.
2426 if (!isBlockPointer && !declSpecType->isObjCObjectType())
2427 return;
2428
2429 // Look for an explicit lifetime attribute there.
2430 DeclaratorChunk &chunk = declarator.getTypeObject(outermostPointerIndex);
2431 if (chunk.Kind != DeclaratorChunk::Pointer &&
2432 chunk.Kind != DeclaratorChunk::BlockPointer)
2433 return;
2434 for (const AttributeList *attr = chunk.getAttrs(); attr;
2435 attr = attr->getNext())
2436 if (attr->getKind() == AttributeList::AT_ObjCOwnership)
2437 return;
2438
2439 transferARCOwnershipToDeclaratorChunk(state, Qualifiers::OCL_Autoreleasing,
2440 outermostPointerIndex);
2441
2442 // Any other number of pointers/references does not trigger the rule.
2443 } else return;
2444
2445 // TODO: mark whether we did this inference?
2446 }
2447
diagnoseIgnoredQualifiers(unsigned DiagID,unsigned Quals,SourceLocation FallbackLoc,SourceLocation ConstQualLoc,SourceLocation VolatileQualLoc,SourceLocation RestrictQualLoc,SourceLocation AtomicQualLoc)2448 void Sema::diagnoseIgnoredQualifiers(unsigned DiagID, unsigned Quals,
2449 SourceLocation FallbackLoc,
2450 SourceLocation ConstQualLoc,
2451 SourceLocation VolatileQualLoc,
2452 SourceLocation RestrictQualLoc,
2453 SourceLocation AtomicQualLoc) {
2454 if (!Quals)
2455 return;
2456
2457 struct Qual {
2458 const char *Name;
2459 unsigned Mask;
2460 SourceLocation Loc;
2461 } const QualKinds[4] = {
2462 { "const", DeclSpec::TQ_const, ConstQualLoc },
2463 { "volatile", DeclSpec::TQ_volatile, VolatileQualLoc },
2464 { "restrict", DeclSpec::TQ_restrict, RestrictQualLoc },
2465 { "_Atomic", DeclSpec::TQ_atomic, AtomicQualLoc }
2466 };
2467
2468 SmallString<32> QualStr;
2469 unsigned NumQuals = 0;
2470 SourceLocation Loc;
2471 FixItHint FixIts[4];
2472
2473 // Build a string naming the redundant qualifiers.
2474 for (unsigned I = 0; I != 4; ++I) {
2475 if (Quals & QualKinds[I].Mask) {
2476 if (!QualStr.empty()) QualStr += ' ';
2477 QualStr += QualKinds[I].Name;
2478
2479 // If we have a location for the qualifier, offer a fixit.
2480 SourceLocation QualLoc = QualKinds[I].Loc;
2481 if (QualLoc.isValid()) {
2482 FixIts[NumQuals] = FixItHint::CreateRemoval(QualLoc);
2483 if (Loc.isInvalid() ||
2484 getSourceManager().isBeforeInTranslationUnit(QualLoc, Loc))
2485 Loc = QualLoc;
2486 }
2487
2488 ++NumQuals;
2489 }
2490 }
2491
2492 Diag(Loc.isInvalid() ? FallbackLoc : Loc, DiagID)
2493 << QualStr << NumQuals << FixIts[0] << FixIts[1] << FixIts[2] << FixIts[3];
2494 }
2495
2496 // Diagnose pointless type qualifiers on the return type of a function.
diagnoseRedundantReturnTypeQualifiers(Sema & S,QualType RetTy,Declarator & D,unsigned FunctionChunkIndex)2497 static void diagnoseRedundantReturnTypeQualifiers(Sema &S, QualType RetTy,
2498 Declarator &D,
2499 unsigned FunctionChunkIndex) {
2500 if (D.getTypeObject(FunctionChunkIndex).Fun.hasTrailingReturnType()) {
2501 // FIXME: TypeSourceInfo doesn't preserve location information for
2502 // qualifiers.
2503 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2504 RetTy.getLocalCVRQualifiers(),
2505 D.getIdentifierLoc());
2506 return;
2507 }
2508
2509 for (unsigned OuterChunkIndex = FunctionChunkIndex + 1,
2510 End = D.getNumTypeObjects();
2511 OuterChunkIndex != End; ++OuterChunkIndex) {
2512 DeclaratorChunk &OuterChunk = D.getTypeObject(OuterChunkIndex);
2513 switch (OuterChunk.Kind) {
2514 case DeclaratorChunk::Paren:
2515 continue;
2516
2517 case DeclaratorChunk::Pointer: {
2518 DeclaratorChunk::PointerTypeInfo &PTI = OuterChunk.Ptr;
2519 S.diagnoseIgnoredQualifiers(
2520 diag::warn_qual_return_type,
2521 PTI.TypeQuals,
2522 SourceLocation(),
2523 SourceLocation::getFromRawEncoding(PTI.ConstQualLoc),
2524 SourceLocation::getFromRawEncoding(PTI.VolatileQualLoc),
2525 SourceLocation::getFromRawEncoding(PTI.RestrictQualLoc),
2526 SourceLocation::getFromRawEncoding(PTI.AtomicQualLoc));
2527 return;
2528 }
2529
2530 case DeclaratorChunk::Function:
2531 case DeclaratorChunk::BlockPointer:
2532 case DeclaratorChunk::Reference:
2533 case DeclaratorChunk::Array:
2534 case DeclaratorChunk::MemberPointer:
2535 // FIXME: We can't currently provide an accurate source location and a
2536 // fix-it hint for these.
2537 unsigned AtomicQual = RetTy->isAtomicType() ? DeclSpec::TQ_atomic : 0;
2538 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2539 RetTy.getCVRQualifiers() | AtomicQual,
2540 D.getIdentifierLoc());
2541 return;
2542 }
2543
2544 llvm_unreachable("unknown declarator chunk kind");
2545 }
2546
2547 // If the qualifiers come from a conversion function type, don't diagnose
2548 // them -- they're not necessarily redundant, since such a conversion
2549 // operator can be explicitly called as "x.operator const int()".
2550 if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2551 return;
2552
2553 // Just parens all the way out to the decl specifiers. Diagnose any qualifiers
2554 // which are present there.
2555 S.diagnoseIgnoredQualifiers(diag::warn_qual_return_type,
2556 D.getDeclSpec().getTypeQualifiers(),
2557 D.getIdentifierLoc(),
2558 D.getDeclSpec().getConstSpecLoc(),
2559 D.getDeclSpec().getVolatileSpecLoc(),
2560 D.getDeclSpec().getRestrictSpecLoc(),
2561 D.getDeclSpec().getAtomicSpecLoc());
2562 }
2563
GetDeclSpecTypeForDeclarator(TypeProcessingState & state,TypeSourceInfo * & ReturnTypeInfo)2564 static QualType GetDeclSpecTypeForDeclarator(TypeProcessingState &state,
2565 TypeSourceInfo *&ReturnTypeInfo) {
2566 Sema &SemaRef = state.getSema();
2567 Declarator &D = state.getDeclarator();
2568 QualType T;
2569 ReturnTypeInfo = nullptr;
2570
2571 // The TagDecl owned by the DeclSpec.
2572 TagDecl *OwnedTagDecl = nullptr;
2573
2574 switch (D.getName().getKind()) {
2575 case UnqualifiedId::IK_ImplicitSelfParam:
2576 case UnqualifiedId::IK_OperatorFunctionId:
2577 case UnqualifiedId::IK_Identifier:
2578 case UnqualifiedId::IK_LiteralOperatorId:
2579 case UnqualifiedId::IK_TemplateId:
2580 T = ConvertDeclSpecToType(state);
2581
2582 if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
2583 OwnedTagDecl = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
2584 // Owned declaration is embedded in declarator.
2585 OwnedTagDecl->setEmbeddedInDeclarator(true);
2586 }
2587 break;
2588
2589 case UnqualifiedId::IK_ConstructorName:
2590 case UnqualifiedId::IK_ConstructorTemplateId:
2591 case UnqualifiedId::IK_DestructorName:
2592 // Constructors and destructors don't have return types. Use
2593 // "void" instead.
2594 T = SemaRef.Context.VoidTy;
2595 processTypeAttrs(state, T, TAL_DeclSpec,
2596 D.getDeclSpec().getAttributes().getList());
2597 break;
2598
2599 case UnqualifiedId::IK_ConversionFunctionId:
2600 // The result type of a conversion function is the type that it
2601 // converts to.
2602 T = SemaRef.GetTypeFromParser(D.getName().ConversionFunctionId,
2603 &ReturnTypeInfo);
2604 break;
2605 }
2606
2607 if (D.getAttributes())
2608 distributeTypeAttrsFromDeclarator(state, T);
2609
2610 // C++11 [dcl.spec.auto]p5: reject 'auto' if it is not in an allowed context.
2611 if (D.getDeclSpec().containsPlaceholderType()) {
2612 int Error = -1;
2613
2614 switch (D.getContext()) {
2615 case Declarator::LambdaExprContext:
2616 llvm_unreachable("Can't specify a type specifier in lambda grammar");
2617 case Declarator::ObjCParameterContext:
2618 case Declarator::ObjCResultContext:
2619 case Declarator::PrototypeContext:
2620 Error = 0;
2621 break;
2622 case Declarator::LambdaExprParameterContext:
2623 // In C++14, generic lambdas allow 'auto' in their parameters.
2624 if (!(SemaRef.getLangOpts().CPlusPlus14
2625 && D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto))
2626 Error = 16;
2627 break;
2628 case Declarator::MemberContext: {
2629 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
2630 D.isFunctionDeclarator())
2631 break;
2632 bool Cxx = SemaRef.getLangOpts().CPlusPlus;
2633 switch (cast<TagDecl>(SemaRef.CurContext)->getTagKind()) {
2634 case TTK_Enum: llvm_unreachable("unhandled tag kind");
2635 case TTK_Struct: Error = Cxx ? 1 : 2; /* Struct member */ break;
2636 case TTK_Union: Error = Cxx ? 3 : 4; /* Union member */ break;
2637 case TTK_Class: Error = 5; /* Class member */ break;
2638 case TTK_Interface: Error = 6; /* Interface member */ break;
2639 }
2640 break;
2641 }
2642 case Declarator::CXXCatchContext:
2643 case Declarator::ObjCCatchContext:
2644 Error = 7; // Exception declaration
2645 break;
2646 case Declarator::TemplateParamContext:
2647 Error = 8; // Template parameter
2648 break;
2649 case Declarator::BlockLiteralContext:
2650 Error = 9; // Block literal
2651 break;
2652 case Declarator::TemplateTypeArgContext:
2653 Error = 10; // Template type argument
2654 break;
2655 case Declarator::AliasDeclContext:
2656 case Declarator::AliasTemplateContext:
2657 Error = 12; // Type alias
2658 break;
2659 case Declarator::TrailingReturnContext:
2660 if (!SemaRef.getLangOpts().CPlusPlus14 ||
2661 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
2662 Error = 13; // Function return type
2663 break;
2664 case Declarator::ConversionIdContext:
2665 if (!SemaRef.getLangOpts().CPlusPlus14 ||
2666 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
2667 Error = 14; // conversion-type-id
2668 break;
2669 case Declarator::TypeNameContext:
2670 Error = 15; // Generic
2671 break;
2672 case Declarator::FileContext:
2673 case Declarator::BlockContext:
2674 case Declarator::ForContext:
2675 case Declarator::ConditionContext:
2676 break;
2677 case Declarator::CXXNewContext:
2678 if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type)
2679 Error = 17; // 'new' type
2680 break;
2681 case Declarator::KNRTypeListContext:
2682 Error = 18; // K&R function parameter
2683 break;
2684 }
2685
2686 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2687 Error = 11;
2688
2689 // In Objective-C it is an error to use 'auto' on a function declarator
2690 // (and everywhere for '__auto_type').
2691 if (D.isFunctionDeclarator() &&
2692 (!SemaRef.getLangOpts().CPlusPlus11 ||
2693 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto_type))
2694 Error = 13;
2695
2696 bool HaveTrailing = false;
2697
2698 // C++11 [dcl.spec.auto]p2: 'auto' is always fine if the declarator
2699 // contains a trailing return type. That is only legal at the outermost
2700 // level. Check all declarator chunks (outermost first) anyway, to give
2701 // better diagnostics.
2702 // We don't support '__auto_type' with trailing return types.
2703 if (SemaRef.getLangOpts().CPlusPlus11 &&
2704 D.getDeclSpec().getTypeSpecType() != DeclSpec::TST_auto_type) {
2705 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
2706 unsigned chunkIndex = e - i - 1;
2707 state.setCurrentChunkIndex(chunkIndex);
2708 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
2709 if (DeclType.Kind == DeclaratorChunk::Function) {
2710 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2711 if (FTI.hasTrailingReturnType()) {
2712 HaveTrailing = true;
2713 Error = -1;
2714 break;
2715 }
2716 }
2717 }
2718 }
2719
2720 SourceRange AutoRange = D.getDeclSpec().getTypeSpecTypeLoc();
2721 if (D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId)
2722 AutoRange = D.getName().getSourceRange();
2723
2724 if (Error != -1) {
2725 unsigned Keyword;
2726 switch (D.getDeclSpec().getTypeSpecType()) {
2727 case DeclSpec::TST_auto: Keyword = 0; break;
2728 case DeclSpec::TST_decltype_auto: Keyword = 1; break;
2729 case DeclSpec::TST_auto_type: Keyword = 2; break;
2730 default: llvm_unreachable("unknown auto TypeSpecType");
2731 }
2732 SemaRef.Diag(AutoRange.getBegin(), diag::err_auto_not_allowed)
2733 << Keyword << Error << AutoRange;
2734 T = SemaRef.Context.IntTy;
2735 D.setInvalidType(true);
2736 } else if (!HaveTrailing) {
2737 // If there was a trailing return type, we already got
2738 // warn_cxx98_compat_trailing_return_type in the parser.
2739 SemaRef.Diag(AutoRange.getBegin(),
2740 diag::warn_cxx98_compat_auto_type_specifier)
2741 << AutoRange;
2742 }
2743 }
2744
2745 if (SemaRef.getLangOpts().CPlusPlus &&
2746 OwnedTagDecl && OwnedTagDecl->isCompleteDefinition()) {
2747 // Check the contexts where C++ forbids the declaration of a new class
2748 // or enumeration in a type-specifier-seq.
2749 unsigned DiagID = 0;
2750 switch (D.getContext()) {
2751 case Declarator::TrailingReturnContext:
2752 // Class and enumeration definitions are syntactically not allowed in
2753 // trailing return types.
2754 llvm_unreachable("parser should not have allowed this");
2755 break;
2756 case Declarator::FileContext:
2757 case Declarator::MemberContext:
2758 case Declarator::BlockContext:
2759 case Declarator::ForContext:
2760 case Declarator::BlockLiteralContext:
2761 case Declarator::LambdaExprContext:
2762 // C++11 [dcl.type]p3:
2763 // A type-specifier-seq shall not define a class or enumeration unless
2764 // it appears in the type-id of an alias-declaration (7.1.3) that is not
2765 // the declaration of a template-declaration.
2766 case Declarator::AliasDeclContext:
2767 break;
2768 case Declarator::AliasTemplateContext:
2769 DiagID = diag::err_type_defined_in_alias_template;
2770 break;
2771 case Declarator::TypeNameContext:
2772 case Declarator::ConversionIdContext:
2773 case Declarator::TemplateParamContext:
2774 case Declarator::CXXNewContext:
2775 case Declarator::CXXCatchContext:
2776 case Declarator::ObjCCatchContext:
2777 case Declarator::TemplateTypeArgContext:
2778 DiagID = diag::err_type_defined_in_type_specifier;
2779 break;
2780 case Declarator::PrototypeContext:
2781 case Declarator::LambdaExprParameterContext:
2782 case Declarator::ObjCParameterContext:
2783 case Declarator::ObjCResultContext:
2784 case Declarator::KNRTypeListContext:
2785 // C++ [dcl.fct]p6:
2786 // Types shall not be defined in return or parameter types.
2787 DiagID = diag::err_type_defined_in_param_type;
2788 break;
2789 case Declarator::ConditionContext:
2790 // C++ 6.4p2:
2791 // The type-specifier-seq shall not contain typedef and shall not declare
2792 // a new class or enumeration.
2793 DiagID = diag::err_type_defined_in_condition;
2794 break;
2795 }
2796
2797 if (DiagID != 0) {
2798 SemaRef.Diag(OwnedTagDecl->getLocation(), DiagID)
2799 << SemaRef.Context.getTypeDeclType(OwnedTagDecl);
2800 D.setInvalidType(true);
2801 }
2802 }
2803
2804 assert(!T.isNull() && "This function should not return a null type");
2805 return T;
2806 }
2807
2808 /// Produce an appropriate diagnostic for an ambiguity between a function
2809 /// declarator and a C++ direct-initializer.
warnAboutAmbiguousFunction(Sema & S,Declarator & D,DeclaratorChunk & DeclType,QualType RT)2810 static void warnAboutAmbiguousFunction(Sema &S, Declarator &D,
2811 DeclaratorChunk &DeclType, QualType RT) {
2812 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
2813 assert(FTI.isAmbiguous && "no direct-initializer / function ambiguity");
2814
2815 // If the return type is void there is no ambiguity.
2816 if (RT->isVoidType())
2817 return;
2818
2819 // An initializer for a non-class type can have at most one argument.
2820 if (!RT->isRecordType() && FTI.NumParams > 1)
2821 return;
2822
2823 // An initializer for a reference must have exactly one argument.
2824 if (RT->isReferenceType() && FTI.NumParams != 1)
2825 return;
2826
2827 // Only warn if this declarator is declaring a function at block scope, and
2828 // doesn't have a storage class (such as 'extern') specified.
2829 if (!D.isFunctionDeclarator() ||
2830 D.getFunctionDefinitionKind() != FDK_Declaration ||
2831 !S.CurContext->isFunctionOrMethod() ||
2832 D.getDeclSpec().getStorageClassSpec()
2833 != DeclSpec::SCS_unspecified)
2834 return;
2835
2836 // Inside a condition, a direct initializer is not permitted. We allow one to
2837 // be parsed in order to give better diagnostics in condition parsing.
2838 if (D.getContext() == Declarator::ConditionContext)
2839 return;
2840
2841 SourceRange ParenRange(DeclType.Loc, DeclType.EndLoc);
2842
2843 S.Diag(DeclType.Loc,
2844 FTI.NumParams ? diag::warn_parens_disambiguated_as_function_declaration
2845 : diag::warn_empty_parens_are_function_decl)
2846 << ParenRange;
2847
2848 // If the declaration looks like:
2849 // T var1,
2850 // f();
2851 // and name lookup finds a function named 'f', then the ',' was
2852 // probably intended to be a ';'.
2853 if (!D.isFirstDeclarator() && D.getIdentifier()) {
2854 FullSourceLoc Comma(D.getCommaLoc(), S.SourceMgr);
2855 FullSourceLoc Name(D.getIdentifierLoc(), S.SourceMgr);
2856 if (Comma.getFileID() != Name.getFileID() ||
2857 Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
2858 LookupResult Result(S, D.getIdentifier(), SourceLocation(),
2859 Sema::LookupOrdinaryName);
2860 if (S.LookupName(Result, S.getCurScope()))
2861 S.Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
2862 << FixItHint::CreateReplacement(D.getCommaLoc(), ";")
2863 << D.getIdentifier();
2864 }
2865 }
2866
2867 if (FTI.NumParams > 0) {
2868 // For a declaration with parameters, eg. "T var(T());", suggest adding
2869 // parens around the first parameter to turn the declaration into a
2870 // variable declaration.
2871 SourceRange Range = FTI.Params[0].Param->getSourceRange();
2872 SourceLocation B = Range.getBegin();
2873 SourceLocation E = S.getLocForEndOfToken(Range.getEnd());
2874 // FIXME: Maybe we should suggest adding braces instead of parens
2875 // in C++11 for classes that don't have an initializer_list constructor.
2876 S.Diag(B, diag::note_additional_parens_for_variable_declaration)
2877 << FixItHint::CreateInsertion(B, "(")
2878 << FixItHint::CreateInsertion(E, ")");
2879 } else {
2880 // For a declaration without parameters, eg. "T var();", suggest replacing
2881 // the parens with an initializer to turn the declaration into a variable
2882 // declaration.
2883 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
2884
2885 // Empty parens mean value-initialization, and no parens mean
2886 // default initialization. These are equivalent if the default
2887 // constructor is user-provided or if zero-initialization is a
2888 // no-op.
2889 if (RD && RD->hasDefinition() &&
2890 (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
2891 S.Diag(DeclType.Loc, diag::note_empty_parens_default_ctor)
2892 << FixItHint::CreateRemoval(ParenRange);
2893 else {
2894 std::string Init =
2895 S.getFixItZeroInitializerForType(RT, ParenRange.getBegin());
2896 if (Init.empty() && S.LangOpts.CPlusPlus11)
2897 Init = "{}";
2898 if (!Init.empty())
2899 S.Diag(DeclType.Loc, diag::note_empty_parens_zero_initialize)
2900 << FixItHint::CreateReplacement(ParenRange, Init);
2901 }
2902 }
2903 }
2904
2905 /// Helper for figuring out the default CC for a function declarator type. If
2906 /// this is the outermost chunk, then we can determine the CC from the
2907 /// declarator context. If not, then this could be either a member function
2908 /// type or normal function type.
2909 static CallingConv
getCCForDeclaratorChunk(Sema & S,Declarator & D,const DeclaratorChunk::FunctionTypeInfo & FTI,unsigned ChunkIndex)2910 getCCForDeclaratorChunk(Sema &S, Declarator &D,
2911 const DeclaratorChunk::FunctionTypeInfo &FTI,
2912 unsigned ChunkIndex) {
2913 assert(D.getTypeObject(ChunkIndex).Kind == DeclaratorChunk::Function);
2914
2915 bool IsCXXInstanceMethod = false;
2916
2917 if (S.getLangOpts().CPlusPlus) {
2918 // Look inwards through parentheses to see if this chunk will form a
2919 // member pointer type or if we're the declarator. Any type attributes
2920 // between here and there will override the CC we choose here.
2921 unsigned I = ChunkIndex;
2922 bool FoundNonParen = false;
2923 while (I && !FoundNonParen) {
2924 --I;
2925 if (D.getTypeObject(I).Kind != DeclaratorChunk::Paren)
2926 FoundNonParen = true;
2927 }
2928
2929 if (FoundNonParen) {
2930 // If we're not the declarator, we're a regular function type unless we're
2931 // in a member pointer.
2932 IsCXXInstanceMethod =
2933 D.getTypeObject(I).Kind == DeclaratorChunk::MemberPointer;
2934 } else if (D.getContext() == Declarator::LambdaExprContext) {
2935 // This can only be a call operator for a lambda, which is an instance
2936 // method.
2937 IsCXXInstanceMethod = true;
2938 } else {
2939 // We're the innermost decl chunk, so must be a function declarator.
2940 assert(D.isFunctionDeclarator());
2941
2942 // If we're inside a record, we're declaring a method, but it could be
2943 // explicitly or implicitly static.
2944 IsCXXInstanceMethod =
2945 D.isFirstDeclarationOfMember() &&
2946 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
2947 !D.isStaticMember();
2948 }
2949 }
2950
2951 CallingConv CC = S.Context.getDefaultCallingConvention(FTI.isVariadic,
2952 IsCXXInstanceMethod);
2953
2954 // Attribute AT_OpenCLKernel affects the calling convention only on
2955 // the SPIR target, hence it cannot be treated as a calling
2956 // convention attribute. This is the simplest place to infer
2957 // "spir_kernel" for OpenCL kernels on SPIR.
2958 if (CC == CC_SpirFunction) {
2959 for (const AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
2960 Attr; Attr = Attr->getNext()) {
2961 if (Attr->getKind() == AttributeList::AT_OpenCLKernel) {
2962 CC = CC_SpirKernel;
2963 break;
2964 }
2965 }
2966 }
2967
2968 return CC;
2969 }
2970
2971 namespace {
2972 /// A simple notion of pointer kinds, which matches up with the various
2973 /// pointer declarators.
2974 enum class SimplePointerKind {
2975 Pointer,
2976 BlockPointer,
2977 MemberPointer,
2978 };
2979 }
2980
getNullabilityKeyword(NullabilityKind nullability)2981 IdentifierInfo *Sema::getNullabilityKeyword(NullabilityKind nullability) {
2982 switch (nullability) {
2983 case NullabilityKind::NonNull:
2984 if (!Ident__Nonnull)
2985 Ident__Nonnull = PP.getIdentifierInfo("_Nonnull");
2986 return Ident__Nonnull;
2987
2988 case NullabilityKind::Nullable:
2989 if (!Ident__Nullable)
2990 Ident__Nullable = PP.getIdentifierInfo("_Nullable");
2991 return Ident__Nullable;
2992
2993 case NullabilityKind::Unspecified:
2994 if (!Ident__Null_unspecified)
2995 Ident__Null_unspecified = PP.getIdentifierInfo("_Null_unspecified");
2996 return Ident__Null_unspecified;
2997 }
2998 llvm_unreachable("Unknown nullability kind.");
2999 }
3000
3001 /// Retrieve the identifier "NSError".
getNSErrorIdent()3002 IdentifierInfo *Sema::getNSErrorIdent() {
3003 if (!Ident_NSError)
3004 Ident_NSError = PP.getIdentifierInfo("NSError");
3005
3006 return Ident_NSError;
3007 }
3008
3009 /// Check whether there is a nullability attribute of any kind in the given
3010 /// attribute list.
hasNullabilityAttr(const AttributeList * attrs)3011 static bool hasNullabilityAttr(const AttributeList *attrs) {
3012 for (const AttributeList *attr = attrs; attr;
3013 attr = attr->getNext()) {
3014 if (attr->getKind() == AttributeList::AT_TypeNonNull ||
3015 attr->getKind() == AttributeList::AT_TypeNullable ||
3016 attr->getKind() == AttributeList::AT_TypeNullUnspecified)
3017 return true;
3018 }
3019
3020 return false;
3021 }
3022
3023 namespace {
3024 /// Describes the kind of a pointer a declarator describes.
3025 enum class PointerDeclaratorKind {
3026 // Not a pointer.
3027 NonPointer,
3028 // Single-level pointer.
3029 SingleLevelPointer,
3030 // Multi-level pointer (of any pointer kind).
3031 MultiLevelPointer,
3032 // CFFooRef*
3033 MaybePointerToCFRef,
3034 // CFErrorRef*
3035 CFErrorRefPointer,
3036 // NSError**
3037 NSErrorPointerPointer,
3038 };
3039 }
3040
3041 /// Classify the given declarator, whose type-specified is \c type, based on
3042 /// what kind of pointer it refers to.
3043 ///
3044 /// This is used to determine the default nullability.
classifyPointerDeclarator(Sema & S,QualType type,Declarator & declarator)3045 static PointerDeclaratorKind classifyPointerDeclarator(Sema &S,
3046 QualType type,
3047 Declarator &declarator) {
3048 unsigned numNormalPointers = 0;
3049
3050 // For any dependent type, we consider it a non-pointer.
3051 if (type->isDependentType())
3052 return PointerDeclaratorKind::NonPointer;
3053
3054 // Look through the declarator chunks to identify pointers.
3055 for (unsigned i = 0, n = declarator.getNumTypeObjects(); i != n; ++i) {
3056 DeclaratorChunk &chunk = declarator.getTypeObject(i);
3057 switch (chunk.Kind) {
3058 case DeclaratorChunk::Array:
3059 case DeclaratorChunk::Function:
3060 break;
3061
3062 case DeclaratorChunk::BlockPointer:
3063 case DeclaratorChunk::MemberPointer:
3064 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3065 : PointerDeclaratorKind::SingleLevelPointer;
3066
3067 case DeclaratorChunk::Paren:
3068 case DeclaratorChunk::Reference:
3069 continue;
3070
3071 case DeclaratorChunk::Pointer:
3072 ++numNormalPointers;
3073 if (numNormalPointers > 2)
3074 return PointerDeclaratorKind::MultiLevelPointer;
3075 continue;
3076 }
3077 }
3078
3079 // Then, dig into the type specifier itself.
3080 unsigned numTypeSpecifierPointers = 0;
3081 do {
3082 // Decompose normal pointers.
3083 if (auto ptrType = type->getAs<PointerType>()) {
3084 ++numNormalPointers;
3085
3086 if (numNormalPointers > 2)
3087 return PointerDeclaratorKind::MultiLevelPointer;
3088
3089 type = ptrType->getPointeeType();
3090 ++numTypeSpecifierPointers;
3091 continue;
3092 }
3093
3094 // Decompose block pointers.
3095 if (type->getAs<BlockPointerType>()) {
3096 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3097 : PointerDeclaratorKind::SingleLevelPointer;
3098 }
3099
3100 // Decompose member pointers.
3101 if (type->getAs<MemberPointerType>()) {
3102 return numNormalPointers > 0 ? PointerDeclaratorKind::MultiLevelPointer
3103 : PointerDeclaratorKind::SingleLevelPointer;
3104 }
3105
3106 // Look at Objective-C object pointers.
3107 if (auto objcObjectPtr = type->getAs<ObjCObjectPointerType>()) {
3108 ++numNormalPointers;
3109 ++numTypeSpecifierPointers;
3110
3111 // If this is NSError**, report that.
3112 if (auto objcClassDecl = objcObjectPtr->getInterfaceDecl()) {
3113 if (objcClassDecl->getIdentifier() == S.getNSErrorIdent() &&
3114 numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3115 return PointerDeclaratorKind::NSErrorPointerPointer;
3116 }
3117 }
3118
3119 break;
3120 }
3121
3122 // Look at Objective-C class types.
3123 if (auto objcClass = type->getAs<ObjCInterfaceType>()) {
3124 if (objcClass->getInterface()->getIdentifier() == S.getNSErrorIdent()) {
3125 if (numNormalPointers == 2 && numTypeSpecifierPointers < 2)
3126 return PointerDeclaratorKind::NSErrorPointerPointer;;
3127 }
3128
3129 break;
3130 }
3131
3132 // If at this point we haven't seen a pointer, we won't see one.
3133 if (numNormalPointers == 0)
3134 return PointerDeclaratorKind::NonPointer;
3135
3136 if (auto recordType = type->getAs<RecordType>()) {
3137 RecordDecl *recordDecl = recordType->getDecl();
3138
3139 bool isCFError = false;
3140 if (S.CFError) {
3141 // If we already know about CFError, test it directly.
3142 isCFError = (S.CFError == recordDecl);
3143 } else {
3144 // Check whether this is CFError, which we identify based on its bridge
3145 // to NSError.
3146 if (recordDecl->getTagKind() == TTK_Struct && numNormalPointers > 0) {
3147 if (auto bridgeAttr = recordDecl->getAttr<ObjCBridgeAttr>()) {
3148 if (bridgeAttr->getBridgedType() == S.getNSErrorIdent()) {
3149 S.CFError = recordDecl;
3150 isCFError = true;
3151 }
3152 }
3153 }
3154 }
3155
3156 // If this is CFErrorRef*, report it as such.
3157 if (isCFError && numNormalPointers == 2 && numTypeSpecifierPointers < 2) {
3158 return PointerDeclaratorKind::CFErrorRefPointer;
3159 }
3160 break;
3161 }
3162
3163 break;
3164 } while (true);
3165
3166
3167 switch (numNormalPointers) {
3168 case 0:
3169 return PointerDeclaratorKind::NonPointer;
3170
3171 case 1:
3172 return PointerDeclaratorKind::SingleLevelPointer;
3173
3174 case 2:
3175 return PointerDeclaratorKind::MaybePointerToCFRef;
3176
3177 default:
3178 return PointerDeclaratorKind::MultiLevelPointer;
3179 }
3180 }
3181
getNullabilityCompletenessCheckFileID(Sema & S,SourceLocation loc)3182 static FileID getNullabilityCompletenessCheckFileID(Sema &S,
3183 SourceLocation loc) {
3184 // If we're anywhere in a function, method, or closure context, don't perform
3185 // completeness checks.
3186 for (DeclContext *ctx = S.CurContext; ctx; ctx = ctx->getParent()) {
3187 if (ctx->isFunctionOrMethod())
3188 return FileID();
3189
3190 if (ctx->isFileContext())
3191 break;
3192 }
3193
3194 // We only care about the expansion location.
3195 loc = S.SourceMgr.getExpansionLoc(loc);
3196 FileID file = S.SourceMgr.getFileID(loc);
3197 if (file.isInvalid())
3198 return FileID();
3199
3200 // Retrieve file information.
3201 bool invalid = false;
3202 const SrcMgr::SLocEntry &sloc = S.SourceMgr.getSLocEntry(file, &invalid);
3203 if (invalid || !sloc.isFile())
3204 return FileID();
3205
3206 // We don't want to perform completeness checks on the main file or in
3207 // system headers.
3208 const SrcMgr::FileInfo &fileInfo = sloc.getFile();
3209 if (fileInfo.getIncludeLoc().isInvalid())
3210 return FileID();
3211 if (fileInfo.getFileCharacteristic() != SrcMgr::C_User &&
3212 S.Diags.getSuppressSystemWarnings()) {
3213 return FileID();
3214 }
3215
3216 return file;
3217 }
3218
3219 /// Check for consistent use of nullability.
checkNullabilityConsistency(TypeProcessingState & state,SimplePointerKind pointerKind,SourceLocation pointerLoc)3220 static void checkNullabilityConsistency(TypeProcessingState &state,
3221 SimplePointerKind pointerKind,
3222 SourceLocation pointerLoc) {
3223 Sema &S = state.getSema();
3224
3225 // Determine which file we're performing consistency checking for.
3226 FileID file = getNullabilityCompletenessCheckFileID(S, pointerLoc);
3227 if (file.isInvalid())
3228 return;
3229
3230 // If we haven't seen any type nullability in this file, we won't warn now
3231 // about anything.
3232 FileNullability &fileNullability = S.NullabilityMap[file];
3233 if (!fileNullability.SawTypeNullability) {
3234 // If this is the first pointer declarator in the file, record it.
3235 if (fileNullability.PointerLoc.isInvalid() &&
3236 !S.Context.getDiagnostics().isIgnored(diag::warn_nullability_missing,
3237 pointerLoc)) {
3238 fileNullability.PointerLoc = pointerLoc;
3239 fileNullability.PointerKind = static_cast<unsigned>(pointerKind);
3240 }
3241
3242 return;
3243 }
3244
3245 // Complain about missing nullability.
3246 S.Diag(pointerLoc, diag::warn_nullability_missing)
3247 << static_cast<unsigned>(pointerKind);
3248 }
3249
GetFullTypeForDeclarator(TypeProcessingState & state,QualType declSpecType,TypeSourceInfo * TInfo)3250 static TypeSourceInfo *GetFullTypeForDeclarator(TypeProcessingState &state,
3251 QualType declSpecType,
3252 TypeSourceInfo *TInfo) {
3253 // The TypeSourceInfo that this function returns will not be a null type.
3254 // If there is an error, this function will fill in a dummy type as fallback.
3255 QualType T = declSpecType;
3256 Declarator &D = state.getDeclarator();
3257 Sema &S = state.getSema();
3258 ASTContext &Context = S.Context;
3259 const LangOptions &LangOpts = S.getLangOpts();
3260
3261 // The name we're declaring, if any.
3262 DeclarationName Name;
3263 if (D.getIdentifier())
3264 Name = D.getIdentifier();
3265
3266 // Does this declaration declare a typedef-name?
3267 bool IsTypedefName =
3268 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef ||
3269 D.getContext() == Declarator::AliasDeclContext ||
3270 D.getContext() == Declarator::AliasTemplateContext;
3271
3272 // Does T refer to a function type with a cv-qualifier or a ref-qualifier?
3273 bool IsQualifiedFunction = T->isFunctionProtoType() &&
3274 (T->castAs<FunctionProtoType>()->getTypeQuals() != 0 ||
3275 T->castAs<FunctionProtoType>()->getRefQualifier() != RQ_None);
3276
3277 // If T is 'decltype(auto)', the only declarators we can have are parens
3278 // and at most one function declarator if this is a function declaration.
3279 if (const AutoType *AT = T->getAs<AutoType>()) {
3280 if (AT->isDecltypeAuto()) {
3281 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3282 unsigned Index = E - I - 1;
3283 DeclaratorChunk &DeclChunk = D.getTypeObject(Index);
3284 unsigned DiagId = diag::err_decltype_auto_compound_type;
3285 unsigned DiagKind = 0;
3286 switch (DeclChunk.Kind) {
3287 case DeclaratorChunk::Paren:
3288 continue;
3289 case DeclaratorChunk::Function: {
3290 unsigned FnIndex;
3291 if (D.isFunctionDeclarationContext() &&
3292 D.isFunctionDeclarator(FnIndex) && FnIndex == Index)
3293 continue;
3294 DiagId = diag::err_decltype_auto_function_declarator_not_declaration;
3295 break;
3296 }
3297 case DeclaratorChunk::Pointer:
3298 case DeclaratorChunk::BlockPointer:
3299 case DeclaratorChunk::MemberPointer:
3300 DiagKind = 0;
3301 break;
3302 case DeclaratorChunk::Reference:
3303 DiagKind = 1;
3304 break;
3305 case DeclaratorChunk::Array:
3306 DiagKind = 2;
3307 break;
3308 }
3309
3310 S.Diag(DeclChunk.Loc, DiagId) << DiagKind;
3311 D.setInvalidType(true);
3312 break;
3313 }
3314 }
3315 }
3316
3317 // Determine whether we should infer _Nonnull on pointer types.
3318 Optional<NullabilityKind> inferNullability;
3319 bool inferNullabilityCS = false;
3320 bool inferNullabilityInnerOnly = false;
3321 bool inferNullabilityInnerOnlyComplete = false;
3322
3323 // Are we in an assume-nonnull region?
3324 bool inAssumeNonNullRegion = false;
3325 if (S.PP.getPragmaAssumeNonNullLoc().isValid()) {
3326 inAssumeNonNullRegion = true;
3327 // Determine which file we saw the assume-nonnull region in.
3328 FileID file = getNullabilityCompletenessCheckFileID(
3329 S, S.PP.getPragmaAssumeNonNullLoc());
3330 if (file.isValid()) {
3331 FileNullability &fileNullability = S.NullabilityMap[file];
3332
3333 // If we haven't seen any type nullability before, now we have.
3334 if (!fileNullability.SawTypeNullability) {
3335 if (fileNullability.PointerLoc.isValid()) {
3336 S.Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
3337 << static_cast<unsigned>(fileNullability.PointerKind);
3338 }
3339
3340 fileNullability.SawTypeNullability = true;
3341 }
3342 }
3343 }
3344
3345 // Whether to complain about missing nullability specifiers or not.
3346 enum {
3347 /// Never complain.
3348 CAMN_No,
3349 /// Complain on the inner pointers (but not the outermost
3350 /// pointer).
3351 CAMN_InnerPointers,
3352 /// Complain about any pointers that don't have nullability
3353 /// specified or inferred.
3354 CAMN_Yes
3355 } complainAboutMissingNullability = CAMN_No;
3356 unsigned NumPointersRemaining = 0;
3357
3358 if (IsTypedefName) {
3359 // For typedefs, we do not infer any nullability (the default),
3360 // and we only complain about missing nullability specifiers on
3361 // inner pointers.
3362 complainAboutMissingNullability = CAMN_InnerPointers;
3363
3364 if (T->canHaveNullability() && !T->getNullability(S.Context)) {
3365 ++NumPointersRemaining;
3366 }
3367
3368 for (unsigned i = 0, n = D.getNumTypeObjects(); i != n; ++i) {
3369 DeclaratorChunk &chunk = D.getTypeObject(i);
3370 switch (chunk.Kind) {
3371 case DeclaratorChunk::Array:
3372 case DeclaratorChunk::Function:
3373 break;
3374
3375 case DeclaratorChunk::BlockPointer:
3376 case DeclaratorChunk::MemberPointer:
3377 ++NumPointersRemaining;
3378 break;
3379
3380 case DeclaratorChunk::Paren:
3381 case DeclaratorChunk::Reference:
3382 continue;
3383
3384 case DeclaratorChunk::Pointer:
3385 ++NumPointersRemaining;
3386 continue;
3387 }
3388 }
3389 } else {
3390 bool isFunctionOrMethod = false;
3391 switch (auto context = state.getDeclarator().getContext()) {
3392 case Declarator::ObjCParameterContext:
3393 case Declarator::ObjCResultContext:
3394 case Declarator::PrototypeContext:
3395 case Declarator::TrailingReturnContext:
3396 isFunctionOrMethod = true;
3397 // fallthrough
3398
3399 case Declarator::MemberContext:
3400 if (state.getDeclarator().isObjCIvar() && !isFunctionOrMethod) {
3401 complainAboutMissingNullability = CAMN_No;
3402 break;
3403 }
3404
3405 // Weak properties are inferred to be nullable.
3406 if (state.getDeclarator().isObjCWeakProperty() && inAssumeNonNullRegion) {
3407 inferNullability = NullabilityKind::Nullable;
3408 break;
3409 }
3410
3411 // fallthrough
3412
3413 case Declarator::FileContext:
3414 case Declarator::KNRTypeListContext:
3415 complainAboutMissingNullability = CAMN_Yes;
3416
3417 // Nullability inference depends on the type and declarator.
3418 switch (classifyPointerDeclarator(S, T, D)) {
3419 case PointerDeclaratorKind::NonPointer:
3420 case PointerDeclaratorKind::MultiLevelPointer:
3421 // Cannot infer nullability.
3422 break;
3423
3424 case PointerDeclaratorKind::SingleLevelPointer:
3425 // Infer _Nonnull if we are in an assumes-nonnull region.
3426 if (inAssumeNonNullRegion) {
3427 inferNullability = NullabilityKind::NonNull;
3428 inferNullabilityCS = (context == Declarator::ObjCParameterContext ||
3429 context == Declarator::ObjCResultContext);
3430 }
3431 break;
3432
3433 case PointerDeclaratorKind::CFErrorRefPointer:
3434 case PointerDeclaratorKind::NSErrorPointerPointer:
3435 // Within a function or method signature, infer _Nullable at both
3436 // levels.
3437 if (isFunctionOrMethod && inAssumeNonNullRegion)
3438 inferNullability = NullabilityKind::Nullable;
3439 break;
3440
3441 case PointerDeclaratorKind::MaybePointerToCFRef:
3442 if (isFunctionOrMethod) {
3443 // On pointer-to-pointer parameters marked cf_returns_retained or
3444 // cf_returns_not_retained, if the outer pointer is explicit then
3445 // infer the inner pointer as _Nullable.
3446 auto hasCFReturnsAttr = [](const AttributeList *NextAttr) -> bool {
3447 while (NextAttr) {
3448 if (NextAttr->getKind() == AttributeList::AT_CFReturnsRetained ||
3449 NextAttr->getKind() == AttributeList::AT_CFReturnsNotRetained)
3450 return true;
3451 NextAttr = NextAttr->getNext();
3452 }
3453 return false;
3454 };
3455 if (const auto *InnermostChunk = D.getInnermostNonParenChunk()) {
3456 if (hasCFReturnsAttr(D.getAttributes()) ||
3457 hasCFReturnsAttr(InnermostChunk->getAttrs()) ||
3458 hasCFReturnsAttr(D.getDeclSpec().getAttributes().getList())) {
3459 inferNullability = NullabilityKind::Nullable;
3460 inferNullabilityInnerOnly = true;
3461 }
3462 }
3463 }
3464 break;
3465 }
3466 break;
3467
3468 case Declarator::ConversionIdContext:
3469 complainAboutMissingNullability = CAMN_Yes;
3470 break;
3471
3472 case Declarator::AliasDeclContext:
3473 case Declarator::AliasTemplateContext:
3474 case Declarator::BlockContext:
3475 case Declarator::BlockLiteralContext:
3476 case Declarator::ConditionContext:
3477 case Declarator::CXXCatchContext:
3478 case Declarator::CXXNewContext:
3479 case Declarator::ForContext:
3480 case Declarator::LambdaExprContext:
3481 case Declarator::LambdaExprParameterContext:
3482 case Declarator::ObjCCatchContext:
3483 case Declarator::TemplateParamContext:
3484 case Declarator::TemplateTypeArgContext:
3485 case Declarator::TypeNameContext:
3486 // Don't infer in these contexts.
3487 break;
3488 }
3489 }
3490
3491 // Local function that checks the nullability for a given pointer declarator.
3492 // Returns true if _Nonnull was inferred.
3493 auto inferPointerNullability = [&](SimplePointerKind pointerKind,
3494 SourceLocation pointerLoc,
3495 AttributeList *&attrs) -> AttributeList * {
3496 // We've seen a pointer.
3497 if (NumPointersRemaining > 0)
3498 --NumPointersRemaining;
3499
3500 // If a nullability attribute is present, there's nothing to do.
3501 if (hasNullabilityAttr(attrs))
3502 return nullptr;
3503
3504 // If we're supposed to infer nullability, do so now.
3505 if (inferNullability && !inferNullabilityInnerOnlyComplete) {
3506 AttributeList::Syntax syntax
3507 = inferNullabilityCS ? AttributeList::AS_ContextSensitiveKeyword
3508 : AttributeList::AS_Keyword;
3509 AttributeList *nullabilityAttr = state.getDeclarator().getAttributePool()
3510 .create(
3511 S.getNullabilityKeyword(
3512 *inferNullability),
3513 SourceRange(pointerLoc),
3514 nullptr, SourceLocation(),
3515 nullptr, 0, syntax);
3516
3517 spliceAttrIntoList(*nullabilityAttr, attrs);
3518
3519 if (inferNullabilityCS) {
3520 state.getDeclarator().getMutableDeclSpec().getObjCQualifiers()
3521 ->setObjCDeclQualifier(ObjCDeclSpec::DQ_CSNullability);
3522 }
3523
3524 if (inferNullabilityInnerOnly)
3525 inferNullabilityInnerOnlyComplete = true;
3526 return nullabilityAttr;
3527 }
3528
3529 // If we're supposed to complain about missing nullability, do so
3530 // now if it's truly missing.
3531 switch (complainAboutMissingNullability) {
3532 case CAMN_No:
3533 break;
3534
3535 case CAMN_InnerPointers:
3536 if (NumPointersRemaining == 0)
3537 break;
3538 // Fallthrough.
3539
3540 case CAMN_Yes:
3541 checkNullabilityConsistency(state, pointerKind, pointerLoc);
3542 }
3543 return nullptr;
3544 };
3545
3546 // If the type itself could have nullability but does not, infer pointer
3547 // nullability and perform consistency checking.
3548 if (T->canHaveNullability() && S.ActiveTemplateInstantiations.empty() &&
3549 !T->getNullability(S.Context)) {
3550 SimplePointerKind pointerKind = SimplePointerKind::Pointer;
3551 if (T->isBlockPointerType())
3552 pointerKind = SimplePointerKind::BlockPointer;
3553 else if (T->isMemberPointerType())
3554 pointerKind = SimplePointerKind::MemberPointer;
3555
3556 if (auto *attr = inferPointerNullability(
3557 pointerKind, D.getDeclSpec().getTypeSpecTypeLoc(),
3558 D.getMutableDeclSpec().getAttributes().getListRef())) {
3559 T = Context.getAttributedType(
3560 AttributedType::getNullabilityAttrKind(*inferNullability), T, T);
3561 attr->setUsedAsTypeAttr();
3562 }
3563 }
3564
3565 // Walk the DeclTypeInfo, building the recursive type as we go.
3566 // DeclTypeInfos are ordered from the identifier out, which is
3567 // opposite of what we want :).
3568 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
3569 unsigned chunkIndex = e - i - 1;
3570 state.setCurrentChunkIndex(chunkIndex);
3571 DeclaratorChunk &DeclType = D.getTypeObject(chunkIndex);
3572 IsQualifiedFunction &= DeclType.Kind == DeclaratorChunk::Paren;
3573 switch (DeclType.Kind) {
3574 case DeclaratorChunk::Paren:
3575 T = S.BuildParenType(T);
3576 break;
3577 case DeclaratorChunk::BlockPointer:
3578 // If blocks are disabled, emit an error.
3579 if (!LangOpts.Blocks)
3580 S.Diag(DeclType.Loc, diag::err_blocks_disable);
3581
3582 // Handle pointer nullability.
3583 inferPointerNullability(SimplePointerKind::BlockPointer,
3584 DeclType.Loc, DeclType.getAttrListRef());
3585
3586 T = S.BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
3587 if (DeclType.Cls.TypeQuals)
3588 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
3589 break;
3590 case DeclaratorChunk::Pointer:
3591 // Verify that we're not building a pointer to pointer to function with
3592 // exception specification.
3593 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
3594 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
3595 D.setInvalidType(true);
3596 // Build the type anyway.
3597 }
3598
3599 // Handle pointer nullability
3600 inferPointerNullability(SimplePointerKind::Pointer, DeclType.Loc,
3601 DeclType.getAttrListRef());
3602
3603 if (LangOpts.ObjC1 && T->getAs<ObjCObjectType>()) {
3604 T = Context.getObjCObjectPointerType(T);
3605 if (DeclType.Ptr.TypeQuals)
3606 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
3607 break;
3608 }
3609 T = S.BuildPointerType(T, DeclType.Loc, Name);
3610 if (DeclType.Ptr.TypeQuals)
3611 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
3612
3613 break;
3614 case DeclaratorChunk::Reference: {
3615 // Verify that we're not building a reference to pointer to function with
3616 // exception specification.
3617 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
3618 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
3619 D.setInvalidType(true);
3620 // Build the type anyway.
3621 }
3622 T = S.BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);
3623
3624 if (DeclType.Ref.HasRestrict)
3625 T = S.BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
3626 break;
3627 }
3628 case DeclaratorChunk::Array: {
3629 // Verify that we're not building an array of pointers to function with
3630 // exception specification.
3631 if (LangOpts.CPlusPlus && S.CheckDistantExceptionSpec(T)) {
3632 S.Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
3633 D.setInvalidType(true);
3634 // Build the type anyway.
3635 }
3636 DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
3637 Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
3638 ArrayType::ArraySizeModifier ASM;
3639 if (ATI.isStar)
3640 ASM = ArrayType::Star;
3641 else if (ATI.hasStatic)
3642 ASM = ArrayType::Static;
3643 else
3644 ASM = ArrayType::Normal;
3645 if (ASM == ArrayType::Star && !D.isPrototypeContext()) {
3646 // FIXME: This check isn't quite right: it allows star in prototypes
3647 // for function definitions, and disallows some edge cases detailed
3648 // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
3649 S.Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
3650 ASM = ArrayType::Normal;
3651 D.setInvalidType(true);
3652 }
3653
3654 // C99 6.7.5.2p1: The optional type qualifiers and the keyword static
3655 // shall appear only in a declaration of a function parameter with an
3656 // array type, ...
3657 if (ASM == ArrayType::Static || ATI.TypeQuals) {
3658 if (!(D.isPrototypeContext() ||
3659 D.getContext() == Declarator::KNRTypeListContext)) {
3660 S.Diag(DeclType.Loc, diag::err_array_static_outside_prototype) <<
3661 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
3662 // Remove the 'static' and the type qualifiers.
3663 if (ASM == ArrayType::Static)
3664 ASM = ArrayType::Normal;
3665 ATI.TypeQuals = 0;
3666 D.setInvalidType(true);
3667 }
3668
3669 // C99 6.7.5.2p1: ... and then only in the outermost array type
3670 // derivation.
3671 unsigned x = chunkIndex;
3672 while (x != 0) {
3673 // Walk outwards along the declarator chunks.
3674 x--;
3675 const DeclaratorChunk &DC = D.getTypeObject(x);
3676 switch (DC.Kind) {
3677 case DeclaratorChunk::Paren:
3678 continue;
3679 case DeclaratorChunk::Array:
3680 case DeclaratorChunk::Pointer:
3681 case DeclaratorChunk::Reference:
3682 case DeclaratorChunk::MemberPointer:
3683 S.Diag(DeclType.Loc, diag::err_array_static_not_outermost) <<
3684 (ASM == ArrayType::Static ? "'static'" : "type qualifier");
3685 if (ASM == ArrayType::Static)
3686 ASM = ArrayType::Normal;
3687 ATI.TypeQuals = 0;
3688 D.setInvalidType(true);
3689 break;
3690 case DeclaratorChunk::Function:
3691 case DeclaratorChunk::BlockPointer:
3692 // These are invalid anyway, so just ignore.
3693 break;
3694 }
3695 }
3696 }
3697 const AutoType *AT = T->getContainedAutoType();
3698 // Allow arrays of auto if we are a generic lambda parameter.
3699 // i.e. [](auto (&array)[5]) { return array[0]; }; OK
3700 if (AT && D.getContext() != Declarator::LambdaExprParameterContext) {
3701 // We've already diagnosed this for decltype(auto).
3702 if (!AT->isDecltypeAuto())
3703 S.Diag(DeclType.Loc, diag::err_illegal_decl_array_of_auto)
3704 << getPrintableNameForEntity(Name) << T;
3705 T = QualType();
3706 break;
3707 }
3708
3709 T = S.BuildArrayType(T, ASM, ArraySize, ATI.TypeQuals,
3710 SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
3711 break;
3712 }
3713 case DeclaratorChunk::Function: {
3714 // If the function declarator has a prototype (i.e. it is not () and
3715 // does not have a K&R-style identifier list), then the arguments are part
3716 // of the type, otherwise the argument list is ().
3717 const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;
3718 IsQualifiedFunction = FTI.TypeQuals || FTI.hasRefQualifier();
3719
3720 // Check for auto functions and trailing return type and adjust the
3721 // return type accordingly.
3722 if (!D.isInvalidType()) {
3723 // trailing-return-type is only required if we're declaring a function,
3724 // and not, for instance, a pointer to a function.
3725 if (D.getDeclSpec().containsPlaceholderType() &&
3726 !FTI.hasTrailingReturnType() && chunkIndex == 0 &&
3727 !S.getLangOpts().CPlusPlus14) {
3728 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
3729 D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto
3730 ? diag::err_auto_missing_trailing_return
3731 : diag::err_deduced_return_type);
3732 T = Context.IntTy;
3733 D.setInvalidType(true);
3734 } else if (FTI.hasTrailingReturnType()) {
3735 // T must be exactly 'auto' at this point. See CWG issue 681.
3736 if (isa<ParenType>(T)) {
3737 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
3738 diag::err_trailing_return_in_parens)
3739 << T << D.getDeclSpec().getSourceRange();
3740 D.setInvalidType(true);
3741 } else if (D.getContext() != Declarator::LambdaExprContext &&
3742 (T.hasQualifiers() || !isa<AutoType>(T) ||
3743 cast<AutoType>(T)->getKeyword() != AutoTypeKeyword::Auto)) {
3744 S.Diag(D.getDeclSpec().getTypeSpecTypeLoc(),
3745 diag::err_trailing_return_without_auto)
3746 << T << D.getDeclSpec().getSourceRange();
3747 D.setInvalidType(true);
3748 }
3749 T = S.GetTypeFromParser(FTI.getTrailingReturnType(), &TInfo);
3750 if (T.isNull()) {
3751 // An error occurred parsing the trailing return type.
3752 T = Context.IntTy;
3753 D.setInvalidType(true);
3754 }
3755 }
3756 }
3757
3758 // C99 6.7.5.3p1: The return type may not be a function or array type.
3759 // For conversion functions, we'll diagnose this particular error later.
3760 if ((T->isArrayType() || T->isFunctionType()) &&
3761 (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
3762 unsigned diagID = diag::err_func_returning_array_function;
3763 // Last processing chunk in block context means this function chunk
3764 // represents the block.
3765 if (chunkIndex == 0 &&
3766 D.getContext() == Declarator::BlockLiteralContext)
3767 diagID = diag::err_block_returning_array_function;
3768 S.Diag(DeclType.Loc, diagID) << T->isFunctionType() << T;
3769 T = Context.IntTy;
3770 D.setInvalidType(true);
3771 }
3772
3773 // Do not allow returning half FP value.
3774 // FIXME: This really should be in BuildFunctionType.
3775 if (T->isHalfType()) {
3776 if (S.getLangOpts().OpenCL) {
3777 if (!S.getOpenCLOptions().cl_khr_fp16) {
3778 S.Diag(D.getIdentifierLoc(), diag::err_opencl_half_return) << T;
3779 D.setInvalidType(true);
3780 }
3781 } else if (!S.getLangOpts().HalfArgsAndReturns) {
3782 S.Diag(D.getIdentifierLoc(),
3783 diag::err_parameters_retval_cannot_have_fp16_type) << 1;
3784 D.setInvalidType(true);
3785 }
3786 }
3787
3788 // Methods cannot return interface types. All ObjC objects are
3789 // passed by reference.
3790 if (T->isObjCObjectType()) {
3791 SourceLocation DiagLoc, FixitLoc;
3792 if (TInfo) {
3793 DiagLoc = TInfo->getTypeLoc().getLocStart();
3794 FixitLoc = S.getLocForEndOfToken(TInfo->getTypeLoc().getLocEnd());
3795 } else {
3796 DiagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
3797 FixitLoc = S.getLocForEndOfToken(D.getDeclSpec().getLocEnd());
3798 }
3799 S.Diag(DiagLoc, diag::err_object_cannot_be_passed_returned_by_value)
3800 << 0 << T
3801 << FixItHint::CreateInsertion(FixitLoc, "*");
3802
3803 T = Context.getObjCObjectPointerType(T);
3804 if (TInfo) {
3805 TypeLocBuilder TLB;
3806 TLB.pushFullCopy(TInfo->getTypeLoc());
3807 ObjCObjectPointerTypeLoc TLoc = TLB.push<ObjCObjectPointerTypeLoc>(T);
3808 TLoc.setStarLoc(FixitLoc);
3809 TInfo = TLB.getTypeSourceInfo(Context, T);
3810 }
3811
3812 D.setInvalidType(true);
3813 }
3814
3815 // cv-qualifiers on return types are pointless except when the type is a
3816 // class type in C++.
3817 if ((T.getCVRQualifiers() || T->isAtomicType()) &&
3818 !(S.getLangOpts().CPlusPlus &&
3819 (T->isDependentType() || T->isRecordType()))) {
3820 if (T->isVoidType() && !S.getLangOpts().CPlusPlus &&
3821 D.getFunctionDefinitionKind() == FDK_Definition) {
3822 // [6.9.1/3] qualified void return is invalid on a C
3823 // function definition. Apparently ok on declarations and
3824 // in C++ though (!)
3825 S.Diag(DeclType.Loc, diag::err_func_returning_qualified_void) << T;
3826 } else
3827 diagnoseRedundantReturnTypeQualifiers(S, T, D, chunkIndex);
3828 }
3829
3830 // Objective-C ARC ownership qualifiers are ignored on the function
3831 // return type (by type canonicalization). Complain if this attribute
3832 // was written here.
3833 if (T.getQualifiers().hasObjCLifetime()) {
3834 SourceLocation AttrLoc;
3835 if (chunkIndex + 1 < D.getNumTypeObjects()) {
3836 DeclaratorChunk ReturnTypeChunk = D.getTypeObject(chunkIndex + 1);
3837 for (const AttributeList *Attr = ReturnTypeChunk.getAttrs();
3838 Attr; Attr = Attr->getNext()) {
3839 if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
3840 AttrLoc = Attr->getLoc();
3841 break;
3842 }
3843 }
3844 }
3845 if (AttrLoc.isInvalid()) {
3846 for (const AttributeList *Attr
3847 = D.getDeclSpec().getAttributes().getList();
3848 Attr; Attr = Attr->getNext()) {
3849 if (Attr->getKind() == AttributeList::AT_ObjCOwnership) {
3850 AttrLoc = Attr->getLoc();
3851 break;
3852 }
3853 }
3854 }
3855
3856 if (AttrLoc.isValid()) {
3857 // The ownership attributes are almost always written via
3858 // the predefined
3859 // __strong/__weak/__autoreleasing/__unsafe_unretained.
3860 if (AttrLoc.isMacroID())
3861 AttrLoc = S.SourceMgr.getImmediateExpansionRange(AttrLoc).first;
3862
3863 S.Diag(AttrLoc, diag::warn_arc_lifetime_result_type)
3864 << T.getQualifiers().getObjCLifetime();
3865 }
3866 }
3867
3868 if (LangOpts.CPlusPlus && D.getDeclSpec().hasTagDefinition()) {
3869 // C++ [dcl.fct]p6:
3870 // Types shall not be defined in return or parameter types.
3871 TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
3872 S.Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
3873 << Context.getTypeDeclType(Tag);
3874 }
3875
3876 // Exception specs are not allowed in typedefs. Complain, but add it
3877 // anyway.
3878 if (IsTypedefName && FTI.getExceptionSpecType())
3879 S.Diag(FTI.getExceptionSpecLocBeg(),
3880 diag::err_exception_spec_in_typedef)
3881 << (D.getContext() == Declarator::AliasDeclContext ||
3882 D.getContext() == Declarator::AliasTemplateContext);
3883
3884 // If we see "T var();" or "T var(T());" at block scope, it is probably
3885 // an attempt to initialize a variable, not a function declaration.
3886 if (FTI.isAmbiguous)
3887 warnAboutAmbiguousFunction(S, D, DeclType, T);
3888
3889 FunctionType::ExtInfo EI(getCCForDeclaratorChunk(S, D, FTI, chunkIndex));
3890
3891 if (!FTI.NumParams && !FTI.isVariadic && !LangOpts.CPlusPlus) {
3892 // Simple void foo(), where the incoming T is the result type.
3893 T = Context.getFunctionNoProtoType(T, EI);
3894 } else {
3895 // We allow a zero-parameter variadic function in C if the
3896 // function is marked with the "overloadable" attribute. Scan
3897 // for this attribute now.
3898 if (!FTI.NumParams && FTI.isVariadic && !LangOpts.CPlusPlus) {
3899 bool Overloadable = false;
3900 for (const AttributeList *Attrs = D.getAttributes();
3901 Attrs; Attrs = Attrs->getNext()) {
3902 if (Attrs->getKind() == AttributeList::AT_Overloadable) {
3903 Overloadable = true;
3904 break;
3905 }
3906 }
3907
3908 if (!Overloadable)
3909 S.Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_param);
3910 }
3911
3912 if (FTI.NumParams && FTI.Params[0].Param == nullptr) {
3913 // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
3914 // definition.
3915 S.Diag(FTI.Params[0].IdentLoc,
3916 diag::err_ident_list_in_fn_declaration);
3917 D.setInvalidType(true);
3918 // Recover by creating a K&R-style function type.
3919 T = Context.getFunctionNoProtoType(T, EI);
3920 break;
3921 }
3922
3923 FunctionProtoType::ExtProtoInfo EPI;
3924 EPI.ExtInfo = EI;
3925 EPI.Variadic = FTI.isVariadic;
3926 EPI.HasTrailingReturn = FTI.hasTrailingReturnType();
3927 EPI.TypeQuals = FTI.TypeQuals;
3928 EPI.RefQualifier = !FTI.hasRefQualifier()? RQ_None
3929 : FTI.RefQualifierIsLValueRef? RQ_LValue
3930 : RQ_RValue;
3931
3932 // Otherwise, we have a function with a parameter list that is
3933 // potentially variadic.
3934 SmallVector<QualType, 16> ParamTys;
3935 ParamTys.reserve(FTI.NumParams);
3936
3937 SmallVector<bool, 16> ConsumedParameters;
3938 ConsumedParameters.reserve(FTI.NumParams);
3939 bool HasAnyConsumedParameters = false;
3940
3941 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
3942 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
3943 QualType ParamTy = Param->getType();
3944 assert(!ParamTy.isNull() && "Couldn't parse type?");
3945
3946 // Look for 'void'. void is allowed only as a single parameter to a
3947 // function with no other parameters (C99 6.7.5.3p10). We record
3948 // int(void) as a FunctionProtoType with an empty parameter list.
3949 if (ParamTy->isVoidType()) {
3950 // If this is something like 'float(int, void)', reject it. 'void'
3951 // is an incomplete type (C99 6.2.5p19) and function decls cannot
3952 // have parameters of incomplete type.
3953 if (FTI.NumParams != 1 || FTI.isVariadic) {
3954 S.Diag(DeclType.Loc, diag::err_void_only_param);
3955 ParamTy = Context.IntTy;
3956 Param->setType(ParamTy);
3957 } else if (FTI.Params[i].Ident) {
3958 // Reject, but continue to parse 'int(void abc)'.
3959 S.Diag(FTI.Params[i].IdentLoc, diag::err_param_with_void_type);
3960 ParamTy = Context.IntTy;
3961 Param->setType(ParamTy);
3962 } else {
3963 // Reject, but continue to parse 'float(const void)'.
3964 if (ParamTy.hasQualifiers())
3965 S.Diag(DeclType.Loc, diag::err_void_param_qualified);
3966
3967 // Do not add 'void' to the list.
3968 break;
3969 }
3970 } else if (ParamTy->isHalfType()) {
3971 // Disallow half FP parameters.
3972 // FIXME: This really should be in BuildFunctionType.
3973 if (S.getLangOpts().OpenCL) {
3974 if (!S.getOpenCLOptions().cl_khr_fp16) {
3975 S.Diag(Param->getLocation(),
3976 diag::err_opencl_half_param) << ParamTy;
3977 D.setInvalidType();
3978 Param->setInvalidDecl();
3979 }
3980 } else if (!S.getLangOpts().HalfArgsAndReturns) {
3981 S.Diag(Param->getLocation(),
3982 diag::err_parameters_retval_cannot_have_fp16_type) << 0;
3983 D.setInvalidType();
3984 }
3985 } else if (!FTI.hasPrototype) {
3986 if (ParamTy->isPromotableIntegerType()) {
3987 ParamTy = Context.getPromotedIntegerType(ParamTy);
3988 Param->setKNRPromoted(true);
3989 } else if (const BuiltinType* BTy = ParamTy->getAs<BuiltinType>()) {
3990 if (BTy->getKind() == BuiltinType::Float) {
3991 ParamTy = Context.DoubleTy;
3992 Param->setKNRPromoted(true);
3993 }
3994 }
3995 }
3996
3997 if (LangOpts.ObjCAutoRefCount) {
3998 bool Consumed = Param->hasAttr<NSConsumedAttr>();
3999 ConsumedParameters.push_back(Consumed);
4000 HasAnyConsumedParameters |= Consumed;
4001 }
4002
4003 ParamTys.push_back(ParamTy);
4004 }
4005
4006 if (HasAnyConsumedParameters)
4007 EPI.ConsumedParameters = ConsumedParameters.data();
4008
4009 SmallVector<QualType, 4> Exceptions;
4010 SmallVector<ParsedType, 2> DynamicExceptions;
4011 SmallVector<SourceRange, 2> DynamicExceptionRanges;
4012 Expr *NoexceptExpr = nullptr;
4013
4014 if (FTI.getExceptionSpecType() == EST_Dynamic) {
4015 // FIXME: It's rather inefficient to have to split into two vectors
4016 // here.
4017 unsigned N = FTI.NumExceptions;
4018 DynamicExceptions.reserve(N);
4019 DynamicExceptionRanges.reserve(N);
4020 for (unsigned I = 0; I != N; ++I) {
4021 DynamicExceptions.push_back(FTI.Exceptions[I].Ty);
4022 DynamicExceptionRanges.push_back(FTI.Exceptions[I].Range);
4023 }
4024 } else if (FTI.getExceptionSpecType() == EST_ComputedNoexcept) {
4025 NoexceptExpr = FTI.NoexceptExpr;
4026 }
4027
4028 S.checkExceptionSpecification(D.isFunctionDeclarationContext(),
4029 FTI.getExceptionSpecType(),
4030 DynamicExceptions,
4031 DynamicExceptionRanges,
4032 NoexceptExpr,
4033 Exceptions,
4034 EPI.ExceptionSpec);
4035
4036 T = Context.getFunctionType(T, ParamTys, EPI);
4037 }
4038
4039 break;
4040 }
4041 case DeclaratorChunk::MemberPointer:
4042 // The scope spec must refer to a class, or be dependent.
4043 CXXScopeSpec &SS = DeclType.Mem.Scope();
4044 QualType ClsType;
4045
4046 // Handle pointer nullability.
4047 inferPointerNullability(SimplePointerKind::MemberPointer,
4048 DeclType.Loc, DeclType.getAttrListRef());
4049
4050 if (SS.isInvalid()) {
4051 // Avoid emitting extra errors if we already errored on the scope.
4052 D.setInvalidType(true);
4053 } else if (S.isDependentScopeSpecifier(SS) ||
4054 dyn_cast_or_null<CXXRecordDecl>(S.computeDeclContext(SS))) {
4055 NestedNameSpecifier *NNS = SS.getScopeRep();
4056 NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
4057 switch (NNS->getKind()) {
4058 case NestedNameSpecifier::Identifier:
4059 ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
4060 NNS->getAsIdentifier());
4061 break;
4062
4063 case NestedNameSpecifier::Namespace:
4064 case NestedNameSpecifier::NamespaceAlias:
4065 case NestedNameSpecifier::Global:
4066 case NestedNameSpecifier::Super:
4067 llvm_unreachable("Nested-name-specifier must name a type");
4068
4069 case NestedNameSpecifier::TypeSpec:
4070 case NestedNameSpecifier::TypeSpecWithTemplate:
4071 ClsType = QualType(NNS->getAsType(), 0);
4072 // Note: if the NNS has a prefix and ClsType is a nondependent
4073 // TemplateSpecializationType, then the NNS prefix is NOT included
4074 // in ClsType; hence we wrap ClsType into an ElaboratedType.
4075 // NOTE: in particular, no wrap occurs if ClsType already is an
4076 // Elaborated, DependentName, or DependentTemplateSpecialization.
4077 if (NNSPrefix && isa<TemplateSpecializationType>(NNS->getAsType()))
4078 ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
4079 break;
4080 }
4081 } else {
4082 S.Diag(DeclType.Mem.Scope().getBeginLoc(),
4083 diag::err_illegal_decl_mempointer_in_nonclass)
4084 << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
4085 << DeclType.Mem.Scope().getRange();
4086 D.setInvalidType(true);
4087 }
4088
4089 if (!ClsType.isNull())
4090 T = S.BuildMemberPointerType(T, ClsType, DeclType.Loc,
4091 D.getIdentifier());
4092 if (T.isNull()) {
4093 T = Context.IntTy;
4094 D.setInvalidType(true);
4095 } else if (DeclType.Mem.TypeQuals) {
4096 T = S.BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
4097 }
4098 break;
4099 }
4100
4101 if (T.isNull()) {
4102 D.setInvalidType(true);
4103 T = Context.IntTy;
4104 }
4105
4106 // See if there are any attributes on this declarator chunk.
4107 processTypeAttrs(state, T, TAL_DeclChunk,
4108 const_cast<AttributeList *>(DeclType.getAttrs()));
4109 }
4110
4111 assert(!T.isNull() && "T must not be null after this point");
4112
4113 if (LangOpts.CPlusPlus && T->isFunctionType()) {
4114 const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
4115 assert(FnTy && "Why oh why is there not a FunctionProtoType here?");
4116
4117 // C++ 8.3.5p4:
4118 // A cv-qualifier-seq shall only be part of the function type
4119 // for a nonstatic member function, the function type to which a pointer
4120 // to member refers, or the top-level function type of a function typedef
4121 // declaration.
4122 //
4123 // Core issue 547 also allows cv-qualifiers on function types that are
4124 // top-level template type arguments.
4125 bool FreeFunction;
4126 if (!D.getCXXScopeSpec().isSet()) {
4127 FreeFunction = ((D.getContext() != Declarator::MemberContext &&
4128 D.getContext() != Declarator::LambdaExprContext) ||
4129 D.getDeclSpec().isFriendSpecified());
4130 } else {
4131 DeclContext *DC = S.computeDeclContext(D.getCXXScopeSpec());
4132 FreeFunction = (DC && !DC->isRecord());
4133 }
4134
4135 // C++11 [dcl.fct]p6 (w/DR1417):
4136 // An attempt to specify a function type with a cv-qualifier-seq or a
4137 // ref-qualifier (including by typedef-name) is ill-formed unless it is:
4138 // - the function type for a non-static member function,
4139 // - the function type to which a pointer to member refers,
4140 // - the top-level function type of a function typedef declaration or
4141 // alias-declaration,
4142 // - the type-id in the default argument of a type-parameter, or
4143 // - the type-id of a template-argument for a type-parameter
4144 //
4145 // FIXME: Checking this here is insufficient. We accept-invalid on:
4146 //
4147 // template<typename T> struct S { void f(T); };
4148 // S<int() const> s;
4149 //
4150 // ... for instance.
4151 if (IsQualifiedFunction &&
4152 !(!FreeFunction &&
4153 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) &&
4154 !IsTypedefName &&
4155 D.getContext() != Declarator::TemplateTypeArgContext) {
4156 SourceLocation Loc = D.getLocStart();
4157 SourceRange RemovalRange;
4158 unsigned I;
4159 if (D.isFunctionDeclarator(I)) {
4160 SmallVector<SourceLocation, 4> RemovalLocs;
4161 const DeclaratorChunk &Chunk = D.getTypeObject(I);
4162 assert(Chunk.Kind == DeclaratorChunk::Function);
4163 if (Chunk.Fun.hasRefQualifier())
4164 RemovalLocs.push_back(Chunk.Fun.getRefQualifierLoc());
4165 if (Chunk.Fun.TypeQuals & Qualifiers::Const)
4166 RemovalLocs.push_back(Chunk.Fun.getConstQualifierLoc());
4167 if (Chunk.Fun.TypeQuals & Qualifiers::Volatile)
4168 RemovalLocs.push_back(Chunk.Fun.getVolatileQualifierLoc());
4169 if (Chunk.Fun.TypeQuals & Qualifiers::Restrict)
4170 RemovalLocs.push_back(Chunk.Fun.getRestrictQualifierLoc());
4171 if (!RemovalLocs.empty()) {
4172 std::sort(RemovalLocs.begin(), RemovalLocs.end(),
4173 BeforeThanCompare<SourceLocation>(S.getSourceManager()));
4174 RemovalRange = SourceRange(RemovalLocs.front(), RemovalLocs.back());
4175 Loc = RemovalLocs.front();
4176 }
4177 }
4178
4179 S.Diag(Loc, diag::err_invalid_qualified_function_type)
4180 << FreeFunction << D.isFunctionDeclarator() << T
4181 << getFunctionQualifiersAsString(FnTy)
4182 << FixItHint::CreateRemoval(RemovalRange);
4183
4184 // Strip the cv-qualifiers and ref-qualifiers from the type.
4185 FunctionProtoType::ExtProtoInfo EPI = FnTy->getExtProtoInfo();
4186 EPI.TypeQuals = 0;
4187 EPI.RefQualifier = RQ_None;
4188
4189 T = Context.getFunctionType(FnTy->getReturnType(), FnTy->getParamTypes(),
4190 EPI);
4191 // Rebuild any parens around the identifier in the function type.
4192 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4193 if (D.getTypeObject(i).Kind != DeclaratorChunk::Paren)
4194 break;
4195 T = S.BuildParenType(T);
4196 }
4197 }
4198 }
4199
4200 // Apply any undistributed attributes from the declarator.
4201 processTypeAttrs(state, T, TAL_DeclName, D.getAttributes());
4202
4203 // Diagnose any ignored type attributes.
4204 state.diagnoseIgnoredTypeAttrs(T);
4205
4206 // C++0x [dcl.constexpr]p9:
4207 // A constexpr specifier used in an object declaration declares the object
4208 // as const.
4209 if (D.getDeclSpec().isConstexprSpecified() && T->isObjectType()) {
4210 T.addConst();
4211 }
4212
4213 // If there was an ellipsis in the declarator, the declaration declares a
4214 // parameter pack whose type may be a pack expansion type.
4215 if (D.hasEllipsis()) {
4216 // C++0x [dcl.fct]p13:
4217 // A declarator-id or abstract-declarator containing an ellipsis shall
4218 // only be used in a parameter-declaration. Such a parameter-declaration
4219 // is a parameter pack (14.5.3). [...]
4220 switch (D.getContext()) {
4221 case Declarator::PrototypeContext:
4222 case Declarator::LambdaExprParameterContext:
4223 // C++0x [dcl.fct]p13:
4224 // [...] When it is part of a parameter-declaration-clause, the
4225 // parameter pack is a function parameter pack (14.5.3). The type T
4226 // of the declarator-id of the function parameter pack shall contain
4227 // a template parameter pack; each template parameter pack in T is
4228 // expanded by the function parameter pack.
4229 //
4230 // We represent function parameter packs as function parameters whose
4231 // type is a pack expansion.
4232 if (!T->containsUnexpandedParameterPack()) {
4233 S.Diag(D.getEllipsisLoc(),
4234 diag::err_function_parameter_pack_without_parameter_packs)
4235 << T << D.getSourceRange();
4236 D.setEllipsisLoc(SourceLocation());
4237 } else {
4238 T = Context.getPackExpansionType(T, None);
4239 }
4240 break;
4241 case Declarator::TemplateParamContext:
4242 // C++0x [temp.param]p15:
4243 // If a template-parameter is a [...] is a parameter-declaration that
4244 // declares a parameter pack (8.3.5), then the template-parameter is a
4245 // template parameter pack (14.5.3).
4246 //
4247 // Note: core issue 778 clarifies that, if there are any unexpanded
4248 // parameter packs in the type of the non-type template parameter, then
4249 // it expands those parameter packs.
4250 if (T->containsUnexpandedParameterPack())
4251 T = Context.getPackExpansionType(T, None);
4252 else
4253 S.Diag(D.getEllipsisLoc(),
4254 LangOpts.CPlusPlus11
4255 ? diag::warn_cxx98_compat_variadic_templates
4256 : diag::ext_variadic_templates);
4257 break;
4258
4259 case Declarator::FileContext:
4260 case Declarator::KNRTypeListContext:
4261 case Declarator::ObjCParameterContext: // FIXME: special diagnostic here?
4262 case Declarator::ObjCResultContext: // FIXME: special diagnostic here?
4263 case Declarator::TypeNameContext:
4264 case Declarator::CXXNewContext:
4265 case Declarator::AliasDeclContext:
4266 case Declarator::AliasTemplateContext:
4267 case Declarator::MemberContext:
4268 case Declarator::BlockContext:
4269 case Declarator::ForContext:
4270 case Declarator::ConditionContext:
4271 case Declarator::CXXCatchContext:
4272 case Declarator::ObjCCatchContext:
4273 case Declarator::BlockLiteralContext:
4274 case Declarator::LambdaExprContext:
4275 case Declarator::ConversionIdContext:
4276 case Declarator::TrailingReturnContext:
4277 case Declarator::TemplateTypeArgContext:
4278 // FIXME: We may want to allow parameter packs in block-literal contexts
4279 // in the future.
4280 S.Diag(D.getEllipsisLoc(),
4281 diag::err_ellipsis_in_declarator_not_parameter);
4282 D.setEllipsisLoc(SourceLocation());
4283 break;
4284 }
4285 }
4286
4287 assert(!T.isNull() && "T must not be null at the end of this function");
4288 if (D.isInvalidType())
4289 return Context.getTrivialTypeSourceInfo(T);
4290
4291 return S.GetTypeSourceInfoForDeclarator(D, T, TInfo);
4292 }
4293
4294 /// GetTypeForDeclarator - Convert the type for the specified
4295 /// declarator to Type instances.
4296 ///
4297 /// The result of this call will never be null, but the associated
4298 /// type may be a null type if there's an unrecoverable error.
GetTypeForDeclarator(Declarator & D,Scope * S)4299 TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S) {
4300 // Determine the type of the declarator. Not all forms of declarator
4301 // have a type.
4302
4303 TypeProcessingState state(*this, D);
4304
4305 TypeSourceInfo *ReturnTypeInfo = nullptr;
4306 QualType T = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
4307
4308 if (D.isPrototypeContext() && getLangOpts().ObjCAutoRefCount)
4309 inferARCWriteback(state, T);
4310
4311 return GetFullTypeForDeclarator(state, T, ReturnTypeInfo);
4312 }
4313
transferARCOwnershipToDeclSpec(Sema & S,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)4314 static void transferARCOwnershipToDeclSpec(Sema &S,
4315 QualType &declSpecTy,
4316 Qualifiers::ObjCLifetime ownership) {
4317 if (declSpecTy->isObjCRetainableType() &&
4318 declSpecTy.getObjCLifetime() == Qualifiers::OCL_None) {
4319 Qualifiers qs;
4320 qs.addObjCLifetime(ownership);
4321 declSpecTy = S.Context.getQualifiedType(declSpecTy, qs);
4322 }
4323 }
4324
transferARCOwnershipToDeclaratorChunk(TypeProcessingState & state,Qualifiers::ObjCLifetime ownership,unsigned chunkIndex)4325 static void transferARCOwnershipToDeclaratorChunk(TypeProcessingState &state,
4326 Qualifiers::ObjCLifetime ownership,
4327 unsigned chunkIndex) {
4328 Sema &S = state.getSema();
4329 Declarator &D = state.getDeclarator();
4330
4331 // Look for an explicit lifetime attribute.
4332 DeclaratorChunk &chunk = D.getTypeObject(chunkIndex);
4333 for (const AttributeList *attr = chunk.getAttrs(); attr;
4334 attr = attr->getNext())
4335 if (attr->getKind() == AttributeList::AT_ObjCOwnership)
4336 return;
4337
4338 const char *attrStr = nullptr;
4339 switch (ownership) {
4340 case Qualifiers::OCL_None: llvm_unreachable("no ownership!");
4341 case Qualifiers::OCL_ExplicitNone: attrStr = "none"; break;
4342 case Qualifiers::OCL_Strong: attrStr = "strong"; break;
4343 case Qualifiers::OCL_Weak: attrStr = "weak"; break;
4344 case Qualifiers::OCL_Autoreleasing: attrStr = "autoreleasing"; break;
4345 }
4346
4347 IdentifierLoc *Arg = new (S.Context) IdentifierLoc;
4348 Arg->Ident = &S.Context.Idents.get(attrStr);
4349 Arg->Loc = SourceLocation();
4350
4351 ArgsUnion Args(Arg);
4352
4353 // If there wasn't one, add one (with an invalid source location
4354 // so that we don't make an AttributedType for it).
4355 AttributeList *attr = D.getAttributePool()
4356 .create(&S.Context.Idents.get("objc_ownership"), SourceLocation(),
4357 /*scope*/ nullptr, SourceLocation(),
4358 /*args*/ &Args, 1, AttributeList::AS_GNU);
4359 spliceAttrIntoList(*attr, chunk.getAttrListRef());
4360
4361 // TODO: mark whether we did this inference?
4362 }
4363
4364 /// \brief Used for transferring ownership in casts resulting in l-values.
transferARCOwnership(TypeProcessingState & state,QualType & declSpecTy,Qualifiers::ObjCLifetime ownership)4365 static void transferARCOwnership(TypeProcessingState &state,
4366 QualType &declSpecTy,
4367 Qualifiers::ObjCLifetime ownership) {
4368 Sema &S = state.getSema();
4369 Declarator &D = state.getDeclarator();
4370
4371 int inner = -1;
4372 bool hasIndirection = false;
4373 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4374 DeclaratorChunk &chunk = D.getTypeObject(i);
4375 switch (chunk.Kind) {
4376 case DeclaratorChunk::Paren:
4377 // Ignore parens.
4378 break;
4379
4380 case DeclaratorChunk::Array:
4381 case DeclaratorChunk::Reference:
4382 case DeclaratorChunk::Pointer:
4383 if (inner != -1)
4384 hasIndirection = true;
4385 inner = i;
4386 break;
4387
4388 case DeclaratorChunk::BlockPointer:
4389 if (inner != -1)
4390 transferARCOwnershipToDeclaratorChunk(state, ownership, i);
4391 return;
4392
4393 case DeclaratorChunk::Function:
4394 case DeclaratorChunk::MemberPointer:
4395 return;
4396 }
4397 }
4398
4399 if (inner == -1)
4400 return;
4401
4402 DeclaratorChunk &chunk = D.getTypeObject(inner);
4403 if (chunk.Kind == DeclaratorChunk::Pointer) {
4404 if (declSpecTy->isObjCRetainableType())
4405 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
4406 if (declSpecTy->isObjCObjectType() && hasIndirection)
4407 return transferARCOwnershipToDeclaratorChunk(state, ownership, inner);
4408 } else {
4409 assert(chunk.Kind == DeclaratorChunk::Array ||
4410 chunk.Kind == DeclaratorChunk::Reference);
4411 return transferARCOwnershipToDeclSpec(S, declSpecTy, ownership);
4412 }
4413 }
4414
GetTypeForDeclaratorCast(Declarator & D,QualType FromTy)4415 TypeSourceInfo *Sema::GetTypeForDeclaratorCast(Declarator &D, QualType FromTy) {
4416 TypeProcessingState state(*this, D);
4417
4418 TypeSourceInfo *ReturnTypeInfo = nullptr;
4419 QualType declSpecTy = GetDeclSpecTypeForDeclarator(state, ReturnTypeInfo);
4420
4421 if (getLangOpts().ObjC1) {
4422 Qualifiers::ObjCLifetime ownership = Context.getInnerObjCOwnership(FromTy);
4423 if (ownership != Qualifiers::OCL_None)
4424 transferARCOwnership(state, declSpecTy, ownership);
4425 }
4426
4427 return GetFullTypeForDeclarator(state, declSpecTy, ReturnTypeInfo);
4428 }
4429
4430 /// Map an AttributedType::Kind to an AttributeList::Kind.
getAttrListKind(AttributedType::Kind kind)4431 static AttributeList::Kind getAttrListKind(AttributedType::Kind kind) {
4432 switch (kind) {
4433 case AttributedType::attr_address_space:
4434 return AttributeList::AT_AddressSpace;
4435 case AttributedType::attr_regparm:
4436 return AttributeList::AT_Regparm;
4437 case AttributedType::attr_vector_size:
4438 return AttributeList::AT_VectorSize;
4439 case AttributedType::attr_neon_vector_type:
4440 return AttributeList::AT_NeonVectorType;
4441 case AttributedType::attr_neon_polyvector_type:
4442 return AttributeList::AT_NeonPolyVectorType;
4443 case AttributedType::attr_objc_gc:
4444 return AttributeList::AT_ObjCGC;
4445 case AttributedType::attr_objc_ownership:
4446 case AttributedType::attr_objc_inert_unsafe_unretained:
4447 return AttributeList::AT_ObjCOwnership;
4448 case AttributedType::attr_noreturn:
4449 return AttributeList::AT_NoReturn;
4450 case AttributedType::attr_cdecl:
4451 return AttributeList::AT_CDecl;
4452 case AttributedType::attr_fastcall:
4453 return AttributeList::AT_FastCall;
4454 case AttributedType::attr_stdcall:
4455 return AttributeList::AT_StdCall;
4456 case AttributedType::attr_thiscall:
4457 return AttributeList::AT_ThisCall;
4458 case AttributedType::attr_pascal:
4459 return AttributeList::AT_Pascal;
4460 case AttributedType::attr_vectorcall:
4461 return AttributeList::AT_VectorCall;
4462 case AttributedType::attr_pcs:
4463 case AttributedType::attr_pcs_vfp:
4464 return AttributeList::AT_Pcs;
4465 case AttributedType::attr_inteloclbicc:
4466 return AttributeList::AT_IntelOclBicc;
4467 case AttributedType::attr_ms_abi:
4468 return AttributeList::AT_MSABI;
4469 case AttributedType::attr_sysv_abi:
4470 return AttributeList::AT_SysVABI;
4471 case AttributedType::attr_ptr32:
4472 return AttributeList::AT_Ptr32;
4473 case AttributedType::attr_ptr64:
4474 return AttributeList::AT_Ptr64;
4475 case AttributedType::attr_sptr:
4476 return AttributeList::AT_SPtr;
4477 case AttributedType::attr_uptr:
4478 return AttributeList::AT_UPtr;
4479 case AttributedType::attr_nonnull:
4480 return AttributeList::AT_TypeNonNull;
4481 case AttributedType::attr_nullable:
4482 return AttributeList::AT_TypeNullable;
4483 case AttributedType::attr_null_unspecified:
4484 return AttributeList::AT_TypeNullUnspecified;
4485 case AttributedType::attr_objc_kindof:
4486 return AttributeList::AT_ObjCKindOf;
4487 }
4488 llvm_unreachable("unexpected attribute kind!");
4489 }
4490
fillAttributedTypeLoc(AttributedTypeLoc TL,const AttributeList * attrs,const AttributeList * DeclAttrs=nullptr)4491 static void fillAttributedTypeLoc(AttributedTypeLoc TL,
4492 const AttributeList *attrs,
4493 const AttributeList *DeclAttrs = nullptr) {
4494 // DeclAttrs and attrs cannot be both empty.
4495 assert((attrs || DeclAttrs) &&
4496 "no type attributes in the expected location!");
4497
4498 AttributeList::Kind parsedKind = getAttrListKind(TL.getAttrKind());
4499 // Try to search for an attribute of matching kind in attrs list.
4500 while (attrs && attrs->getKind() != parsedKind)
4501 attrs = attrs->getNext();
4502 if (!attrs) {
4503 // No matching type attribute in attrs list found.
4504 // Try searching through C++11 attributes in the declarator attribute list.
4505 while (DeclAttrs && (!DeclAttrs->isCXX11Attribute() ||
4506 DeclAttrs->getKind() != parsedKind))
4507 DeclAttrs = DeclAttrs->getNext();
4508 attrs = DeclAttrs;
4509 }
4510
4511 assert(attrs && "no matching type attribute in expected location!");
4512
4513 TL.setAttrNameLoc(attrs->getLoc());
4514 if (TL.hasAttrExprOperand()) {
4515 assert(attrs->isArgExpr(0) && "mismatched attribute operand kind");
4516 TL.setAttrExprOperand(attrs->getArgAsExpr(0));
4517 } else if (TL.hasAttrEnumOperand()) {
4518 assert((attrs->isArgIdent(0) || attrs->isArgExpr(0)) &&
4519 "unexpected attribute operand kind");
4520 if (attrs->isArgIdent(0))
4521 TL.setAttrEnumOperandLoc(attrs->getArgAsIdent(0)->Loc);
4522 else
4523 TL.setAttrEnumOperandLoc(attrs->getArgAsExpr(0)->getExprLoc());
4524 }
4525
4526 // FIXME: preserve this information to here.
4527 if (TL.hasAttrOperand())
4528 TL.setAttrOperandParensRange(SourceRange());
4529 }
4530
4531 namespace {
4532 class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
4533 ASTContext &Context;
4534 const DeclSpec &DS;
4535
4536 public:
TypeSpecLocFiller(ASTContext & Context,const DeclSpec & DS)4537 TypeSpecLocFiller(ASTContext &Context, const DeclSpec &DS)
4538 : Context(Context), DS(DS) {}
4539
VisitAttributedTypeLoc(AttributedTypeLoc TL)4540 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
4541 fillAttributedTypeLoc(TL, DS.getAttributes().getList());
4542 Visit(TL.getModifiedLoc());
4543 }
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)4544 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
4545 Visit(TL.getUnqualifiedLoc());
4546 }
VisitTypedefTypeLoc(TypedefTypeLoc TL)4547 void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
4548 TL.setNameLoc(DS.getTypeSpecTypeLoc());
4549 }
VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL)4550 void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
4551 TL.setNameLoc(DS.getTypeSpecTypeLoc());
4552 // FIXME. We should have DS.getTypeSpecTypeEndLoc(). But, it requires
4553 // addition field. What we have is good enough for dispay of location
4554 // of 'fixit' on interface name.
4555 TL.setNameEndLoc(DS.getLocEnd());
4556 }
VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL)4557 void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
4558 TypeSourceInfo *RepTInfo = nullptr;
4559 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
4560 TL.copy(RepTInfo->getTypeLoc());
4561 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)4562 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
4563 TypeSourceInfo *RepTInfo = nullptr;
4564 Sema::GetTypeFromParser(DS.getRepAsType(), &RepTInfo);
4565 TL.copy(RepTInfo->getTypeLoc());
4566 }
VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL)4567 void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
4568 TypeSourceInfo *TInfo = nullptr;
4569 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4570
4571 // If we got no declarator info from previous Sema routines,
4572 // just fill with the typespec loc.
4573 if (!TInfo) {
4574 TL.initialize(Context, DS.getTypeSpecTypeNameLoc());
4575 return;
4576 }
4577
4578 TypeLoc OldTL = TInfo->getTypeLoc();
4579 if (TInfo->getType()->getAs<ElaboratedType>()) {
4580 ElaboratedTypeLoc ElabTL = OldTL.castAs<ElaboratedTypeLoc>();
4581 TemplateSpecializationTypeLoc NamedTL = ElabTL.getNamedTypeLoc()
4582 .castAs<TemplateSpecializationTypeLoc>();
4583 TL.copy(NamedTL);
4584 } else {
4585 TL.copy(OldTL.castAs<TemplateSpecializationTypeLoc>());
4586 assert(TL.getRAngleLoc() == OldTL.castAs<TemplateSpecializationTypeLoc>().getRAngleLoc());
4587 }
4588
4589 }
VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL)4590 void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
4591 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
4592 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
4593 TL.setParensRange(DS.getTypeofParensRange());
4594 }
VisitTypeOfTypeLoc(TypeOfTypeLoc TL)4595 void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
4596 assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
4597 TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
4598 TL.setParensRange(DS.getTypeofParensRange());
4599 assert(DS.getRepAsType());
4600 TypeSourceInfo *TInfo = nullptr;
4601 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4602 TL.setUnderlyingTInfo(TInfo);
4603 }
VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL)4604 void VisitUnaryTransformTypeLoc(UnaryTransformTypeLoc TL) {
4605 // FIXME: This holds only because we only have one unary transform.
4606 assert(DS.getTypeSpecType() == DeclSpec::TST_underlyingType);
4607 TL.setKWLoc(DS.getTypeSpecTypeLoc());
4608 TL.setParensRange(DS.getTypeofParensRange());
4609 assert(DS.getRepAsType());
4610 TypeSourceInfo *TInfo = nullptr;
4611 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4612 TL.setUnderlyingTInfo(TInfo);
4613 }
VisitBuiltinTypeLoc(BuiltinTypeLoc TL)4614 void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
4615 // By default, use the source location of the type specifier.
4616 TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
4617 if (TL.needsExtraLocalData()) {
4618 // Set info for the written builtin specifiers.
4619 TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
4620 // Try to have a meaningful source location.
4621 if (TL.getWrittenSignSpec() != TSS_unspecified)
4622 // Sign spec loc overrides the others (e.g., 'unsigned long').
4623 TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
4624 else if (TL.getWrittenWidthSpec() != TSW_unspecified)
4625 // Width spec loc overrides type spec loc (e.g., 'short int').
4626 TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
4627 }
4628 }
VisitElaboratedTypeLoc(ElaboratedTypeLoc TL)4629 void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
4630 ElaboratedTypeKeyword Keyword
4631 = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
4632 if (DS.getTypeSpecType() == TST_typename) {
4633 TypeSourceInfo *TInfo = nullptr;
4634 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4635 if (TInfo) {
4636 TL.copy(TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>());
4637 return;
4638 }
4639 }
4640 TL.setElaboratedKeywordLoc(Keyword != ETK_None
4641 ? DS.getTypeSpecTypeLoc()
4642 : SourceLocation());
4643 const CXXScopeSpec& SS = DS.getTypeSpecScope();
4644 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4645 Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
4646 }
VisitDependentNameTypeLoc(DependentNameTypeLoc TL)4647 void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
4648 assert(DS.getTypeSpecType() == TST_typename);
4649 TypeSourceInfo *TInfo = nullptr;
4650 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4651 assert(TInfo);
4652 TL.copy(TInfo->getTypeLoc().castAs<DependentNameTypeLoc>());
4653 }
VisitDependentTemplateSpecializationTypeLoc(DependentTemplateSpecializationTypeLoc TL)4654 void VisitDependentTemplateSpecializationTypeLoc(
4655 DependentTemplateSpecializationTypeLoc TL) {
4656 assert(DS.getTypeSpecType() == TST_typename);
4657 TypeSourceInfo *TInfo = nullptr;
4658 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4659 assert(TInfo);
4660 TL.copy(
4661 TInfo->getTypeLoc().castAs<DependentTemplateSpecializationTypeLoc>());
4662 }
VisitTagTypeLoc(TagTypeLoc TL)4663 void VisitTagTypeLoc(TagTypeLoc TL) {
4664 TL.setNameLoc(DS.getTypeSpecTypeNameLoc());
4665 }
VisitAtomicTypeLoc(AtomicTypeLoc TL)4666 void VisitAtomicTypeLoc(AtomicTypeLoc TL) {
4667 // An AtomicTypeLoc can come from either an _Atomic(...) type specifier
4668 // or an _Atomic qualifier.
4669 if (DS.getTypeSpecType() == DeclSpec::TST_atomic) {
4670 TL.setKWLoc(DS.getTypeSpecTypeLoc());
4671 TL.setParensRange(DS.getTypeofParensRange());
4672
4673 TypeSourceInfo *TInfo = nullptr;
4674 Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
4675 assert(TInfo);
4676 TL.getValueLoc().initializeFullCopy(TInfo->getTypeLoc());
4677 } else {
4678 TL.setKWLoc(DS.getAtomicSpecLoc());
4679 // No parens, to indicate this was spelled as an _Atomic qualifier.
4680 TL.setParensRange(SourceRange());
4681 Visit(TL.getValueLoc());
4682 }
4683 }
4684
VisitTypeLoc(TypeLoc TL)4685 void VisitTypeLoc(TypeLoc TL) {
4686 // FIXME: add other typespec types and change this to an assert.
4687 TL.initialize(Context, DS.getTypeSpecTypeLoc());
4688 }
4689 };
4690
4691 class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
4692 ASTContext &Context;
4693 const DeclaratorChunk &Chunk;
4694
4695 public:
DeclaratorLocFiller(ASTContext & Context,const DeclaratorChunk & Chunk)4696 DeclaratorLocFiller(ASTContext &Context, const DeclaratorChunk &Chunk)
4697 : Context(Context), Chunk(Chunk) {}
4698
VisitQualifiedTypeLoc(QualifiedTypeLoc TL)4699 void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
4700 llvm_unreachable("qualified type locs not expected here!");
4701 }
VisitDecayedTypeLoc(DecayedTypeLoc TL)4702 void VisitDecayedTypeLoc(DecayedTypeLoc TL) {
4703 llvm_unreachable("decayed type locs not expected here!");
4704 }
4705
VisitAttributedTypeLoc(AttributedTypeLoc TL)4706 void VisitAttributedTypeLoc(AttributedTypeLoc TL) {
4707 fillAttributedTypeLoc(TL, Chunk.getAttrs());
4708 }
VisitAdjustedTypeLoc(AdjustedTypeLoc TL)4709 void VisitAdjustedTypeLoc(AdjustedTypeLoc TL) {
4710 // nothing
4711 }
VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL)4712 void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
4713 assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
4714 TL.setCaretLoc(Chunk.Loc);
4715 }
VisitPointerTypeLoc(PointerTypeLoc TL)4716 void VisitPointerTypeLoc(PointerTypeLoc TL) {
4717 assert(Chunk.Kind == DeclaratorChunk::Pointer);
4718 TL.setStarLoc(Chunk.Loc);
4719 }
VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL)4720 void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
4721 assert(Chunk.Kind == DeclaratorChunk::Pointer);
4722 TL.setStarLoc(Chunk.Loc);
4723 }
VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL)4724 void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
4725 assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
4726 const CXXScopeSpec& SS = Chunk.Mem.Scope();
4727 NestedNameSpecifierLoc NNSLoc = SS.getWithLocInContext(Context);
4728
4729 const Type* ClsTy = TL.getClass();
4730 QualType ClsQT = QualType(ClsTy, 0);
4731 TypeSourceInfo *ClsTInfo = Context.CreateTypeSourceInfo(ClsQT, 0);
4732 // Now copy source location info into the type loc component.
4733 TypeLoc ClsTL = ClsTInfo->getTypeLoc();
4734 switch (NNSLoc.getNestedNameSpecifier()->getKind()) {
4735 case NestedNameSpecifier::Identifier:
4736 assert(isa<DependentNameType>(ClsTy) && "Unexpected TypeLoc");
4737 {
4738 DependentNameTypeLoc DNTLoc = ClsTL.castAs<DependentNameTypeLoc>();
4739 DNTLoc.setElaboratedKeywordLoc(SourceLocation());
4740 DNTLoc.setQualifierLoc(NNSLoc.getPrefix());
4741 DNTLoc.setNameLoc(NNSLoc.getLocalBeginLoc());
4742 }
4743 break;
4744
4745 case NestedNameSpecifier::TypeSpec:
4746 case NestedNameSpecifier::TypeSpecWithTemplate:
4747 if (isa<ElaboratedType>(ClsTy)) {
4748 ElaboratedTypeLoc ETLoc = ClsTL.castAs<ElaboratedTypeLoc>();
4749 ETLoc.setElaboratedKeywordLoc(SourceLocation());
4750 ETLoc.setQualifierLoc(NNSLoc.getPrefix());
4751 TypeLoc NamedTL = ETLoc.getNamedTypeLoc();
4752 NamedTL.initializeFullCopy(NNSLoc.getTypeLoc());
4753 } else {
4754 ClsTL.initializeFullCopy(NNSLoc.getTypeLoc());
4755 }
4756 break;
4757
4758 case NestedNameSpecifier::Namespace:
4759 case NestedNameSpecifier::NamespaceAlias:
4760 case NestedNameSpecifier::Global:
4761 case NestedNameSpecifier::Super:
4762 llvm_unreachable("Nested-name-specifier must name a type");
4763 }
4764
4765 // Finally fill in MemberPointerLocInfo fields.
4766 TL.setStarLoc(Chunk.Loc);
4767 TL.setClassTInfo(ClsTInfo);
4768 }
VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL)4769 void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
4770 assert(Chunk.Kind == DeclaratorChunk::Reference);
4771 // 'Amp' is misleading: this might have been originally
4772 /// spelled with AmpAmp.
4773 TL.setAmpLoc(Chunk.Loc);
4774 }
VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL)4775 void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
4776 assert(Chunk.Kind == DeclaratorChunk::Reference);
4777 assert(!Chunk.Ref.LValueRef);
4778 TL.setAmpAmpLoc(Chunk.Loc);
4779 }
VisitArrayTypeLoc(ArrayTypeLoc TL)4780 void VisitArrayTypeLoc(ArrayTypeLoc TL) {
4781 assert(Chunk.Kind == DeclaratorChunk::Array);
4782 TL.setLBracketLoc(Chunk.Loc);
4783 TL.setRBracketLoc(Chunk.EndLoc);
4784 TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
4785 }
VisitFunctionTypeLoc(FunctionTypeLoc TL)4786 void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
4787 assert(Chunk.Kind == DeclaratorChunk::Function);
4788 TL.setLocalRangeBegin(Chunk.Loc);
4789 TL.setLocalRangeEnd(Chunk.EndLoc);
4790
4791 const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
4792 TL.setLParenLoc(FTI.getLParenLoc());
4793 TL.setRParenLoc(FTI.getRParenLoc());
4794 for (unsigned i = 0, e = TL.getNumParams(), tpi = 0; i != e; ++i) {
4795 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
4796 TL.setParam(tpi++, Param);
4797 }
4798 // FIXME: exception specs
4799 }
VisitParenTypeLoc(ParenTypeLoc TL)4800 void VisitParenTypeLoc(ParenTypeLoc TL) {
4801 assert(Chunk.Kind == DeclaratorChunk::Paren);
4802 TL.setLParenLoc(Chunk.Loc);
4803 TL.setRParenLoc(Chunk.EndLoc);
4804 }
4805
VisitTypeLoc(TypeLoc TL)4806 void VisitTypeLoc(TypeLoc TL) {
4807 llvm_unreachable("unsupported TypeLoc kind in declarator!");
4808 }
4809 };
4810 }
4811
fillAtomicQualLoc(AtomicTypeLoc ATL,const DeclaratorChunk & Chunk)4812 static void fillAtomicQualLoc(AtomicTypeLoc ATL, const DeclaratorChunk &Chunk) {
4813 SourceLocation Loc;
4814 switch (Chunk.Kind) {
4815 case DeclaratorChunk::Function:
4816 case DeclaratorChunk::Array:
4817 case DeclaratorChunk::Paren:
4818 llvm_unreachable("cannot be _Atomic qualified");
4819
4820 case DeclaratorChunk::Pointer:
4821 Loc = SourceLocation::getFromRawEncoding(Chunk.Ptr.AtomicQualLoc);
4822 break;
4823
4824 case DeclaratorChunk::BlockPointer:
4825 case DeclaratorChunk::Reference:
4826 case DeclaratorChunk::MemberPointer:
4827 // FIXME: Provide a source location for the _Atomic keyword.
4828 break;
4829 }
4830
4831 ATL.setKWLoc(Loc);
4832 ATL.setParensRange(SourceRange());
4833 }
4834
4835 /// \brief Create and instantiate a TypeSourceInfo with type source information.
4836 ///
4837 /// \param T QualType referring to the type as written in source code.
4838 ///
4839 /// \param ReturnTypeInfo For declarators whose return type does not show
4840 /// up in the normal place in the declaration specifiers (such as a C++
4841 /// conversion function), this pointer will refer to a type source information
4842 /// for that return type.
4843 TypeSourceInfo *
GetTypeSourceInfoForDeclarator(Declarator & D,QualType T,TypeSourceInfo * ReturnTypeInfo)4844 Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
4845 TypeSourceInfo *ReturnTypeInfo) {
4846 TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
4847 UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();
4848 const AttributeList *DeclAttrs = D.getAttributes();
4849
4850 // Handle parameter packs whose type is a pack expansion.
4851 if (isa<PackExpansionType>(T)) {
4852 CurrTL.castAs<PackExpansionTypeLoc>().setEllipsisLoc(D.getEllipsisLoc());
4853 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
4854 }
4855
4856 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
4857 // An AtomicTypeLoc might be produced by an atomic qualifier in this
4858 // declarator chunk.
4859 if (AtomicTypeLoc ATL = CurrTL.getAs<AtomicTypeLoc>()) {
4860 fillAtomicQualLoc(ATL, D.getTypeObject(i));
4861 CurrTL = ATL.getValueLoc().getUnqualifiedLoc();
4862 }
4863
4864 while (AttributedTypeLoc TL = CurrTL.getAs<AttributedTypeLoc>()) {
4865 fillAttributedTypeLoc(TL, D.getTypeObject(i).getAttrs(), DeclAttrs);
4866 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
4867 }
4868
4869 // FIXME: Ordering here?
4870 while (AdjustedTypeLoc TL = CurrTL.getAs<AdjustedTypeLoc>())
4871 CurrTL = TL.getNextTypeLoc().getUnqualifiedLoc();
4872
4873 DeclaratorLocFiller(Context, D.getTypeObject(i)).Visit(CurrTL);
4874 CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
4875 }
4876
4877 // If we have different source information for the return type, use
4878 // that. This really only applies to C++ conversion functions.
4879 if (ReturnTypeInfo) {
4880 TypeLoc TL = ReturnTypeInfo->getTypeLoc();
4881 assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
4882 memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
4883 } else {
4884 TypeSpecLocFiller(Context, D.getDeclSpec()).Visit(CurrTL);
4885 }
4886
4887 return TInfo;
4888 }
4889
4890 /// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
CreateParsedType(QualType T,TypeSourceInfo * TInfo)4891 ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
4892 // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
4893 // and Sema during declaration parsing. Try deallocating/caching them when
4894 // it's appropriate, instead of allocating them and keeping them around.
4895 LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType),
4896 TypeAlignment);
4897 new (LocT) LocInfoType(T, TInfo);
4898 assert(LocT->getTypeClass() != T->getTypeClass() &&
4899 "LocInfoType's TypeClass conflicts with an existing Type class");
4900 return ParsedType::make(QualType(LocT, 0));
4901 }
4902
getAsStringInternal(std::string & Str,const PrintingPolicy & Policy) const4903 void LocInfoType::getAsStringInternal(std::string &Str,
4904 const PrintingPolicy &Policy) const {
4905 llvm_unreachable("LocInfoType leaked into the type system; an opaque TypeTy*"
4906 " was used directly instead of getting the QualType through"
4907 " GetTypeFromParser");
4908 }
4909
ActOnTypeName(Scope * S,Declarator & D)4910 TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
4911 // C99 6.7.6: Type names have no identifier. This is already validated by
4912 // the parser.
4913 assert(D.getIdentifier() == nullptr &&
4914 "Type name should have no identifier!");
4915
4916 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4917 QualType T = TInfo->getType();
4918 if (D.isInvalidType())
4919 return true;
4920
4921 // Make sure there are no unused decl attributes on the declarator.
4922 // We don't want to do this for ObjC parameters because we're going
4923 // to apply them to the actual parameter declaration.
4924 // Likewise, we don't want to do this for alias declarations, because
4925 // we are actually going to build a declaration from this eventually.
4926 if (D.getContext() != Declarator::ObjCParameterContext &&
4927 D.getContext() != Declarator::AliasDeclContext &&
4928 D.getContext() != Declarator::AliasTemplateContext)
4929 checkUnusedDeclAttributes(D);
4930
4931 if (getLangOpts().CPlusPlus) {
4932 // Check that there are no default arguments (C++ only).
4933 CheckExtraCXXDefaultArguments(D);
4934 }
4935
4936 return CreateParsedType(T, TInfo);
4937 }
4938
ActOnObjCInstanceType(SourceLocation Loc)4939 ParsedType Sema::ActOnObjCInstanceType(SourceLocation Loc) {
4940 QualType T = Context.getObjCInstanceType();
4941 TypeSourceInfo *TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
4942 return CreateParsedType(T, TInfo);
4943 }
4944
4945
4946 //===----------------------------------------------------------------------===//
4947 // Type Attribute Processing
4948 //===----------------------------------------------------------------------===//
4949
4950 /// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
4951 /// specified type. The attribute contains 1 argument, the id of the address
4952 /// space for the type.
HandleAddressSpaceTypeAttribute(QualType & Type,const AttributeList & Attr,Sema & S)4953 static void HandleAddressSpaceTypeAttribute(QualType &Type,
4954 const AttributeList &Attr, Sema &S){
4955
4956 // If this type is already address space qualified, reject it.
4957 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "No type shall be qualified by
4958 // qualifiers for two or more different address spaces."
4959 if (Type.getAddressSpace()) {
4960 S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
4961 Attr.setInvalid();
4962 return;
4963 }
4964
4965 // ISO/IEC TR 18037 S5.3 (amending C99 6.7.3): "A function type shall not be
4966 // qualified by an address-space qualifier."
4967 if (Type->isFunctionType()) {
4968 S.Diag(Attr.getLoc(), diag::err_attribute_address_function_type);
4969 Attr.setInvalid();
4970 return;
4971 }
4972
4973 unsigned ASIdx;
4974 if (Attr.getKind() == AttributeList::AT_AddressSpace) {
4975 // Check the attribute arguments.
4976 if (Attr.getNumArgs() != 1) {
4977 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4978 << Attr.getName() << 1;
4979 Attr.setInvalid();
4980 return;
4981 }
4982 Expr *ASArgExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
4983 llvm::APSInt addrSpace(32);
4984 if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
4985 !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
4986 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4987 << Attr.getName() << AANT_ArgumentIntegerConstant
4988 << ASArgExpr->getSourceRange();
4989 Attr.setInvalid();
4990 return;
4991 }
4992
4993 // Bounds checking.
4994 if (addrSpace.isSigned()) {
4995 if (addrSpace.isNegative()) {
4996 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
4997 << ASArgExpr->getSourceRange();
4998 Attr.setInvalid();
4999 return;
5000 }
5001 addrSpace.setIsSigned(false);
5002 }
5003 llvm::APSInt max(addrSpace.getBitWidth());
5004 max = Qualifiers::MaxAddressSpace;
5005 if (addrSpace > max) {
5006 S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
5007 << int(Qualifiers::MaxAddressSpace) << ASArgExpr->getSourceRange();
5008 Attr.setInvalid();
5009 return;
5010 }
5011 ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
5012 } else {
5013 // The keyword-based type attributes imply which address space to use.
5014 switch (Attr.getKind()) {
5015 case AttributeList::AT_OpenCLGlobalAddressSpace:
5016 ASIdx = LangAS::opencl_global; break;
5017 case AttributeList::AT_OpenCLLocalAddressSpace:
5018 ASIdx = LangAS::opencl_local; break;
5019 case AttributeList::AT_OpenCLConstantAddressSpace:
5020 ASIdx = LangAS::opencl_constant; break;
5021 case AttributeList::AT_OpenCLGenericAddressSpace:
5022 ASIdx = LangAS::opencl_generic; break;
5023 default:
5024 assert(Attr.getKind() == AttributeList::AT_OpenCLPrivateAddressSpace);
5025 ASIdx = 0; break;
5026 }
5027 }
5028
5029 Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
5030 }
5031
5032 /// Does this type have a "direct" ownership qualifier? That is,
5033 /// is it written like "__strong id", as opposed to something like
5034 /// "typeof(foo)", where that happens to be strong?
hasDirectOwnershipQualifier(QualType type)5035 static bool hasDirectOwnershipQualifier(QualType type) {
5036 // Fast path: no qualifier at all.
5037 assert(type.getQualifiers().hasObjCLifetime());
5038
5039 while (true) {
5040 // __strong id
5041 if (const AttributedType *attr = dyn_cast<AttributedType>(type)) {
5042 if (attr->getAttrKind() == AttributedType::attr_objc_ownership)
5043 return true;
5044
5045 type = attr->getModifiedType();
5046
5047 // X *__strong (...)
5048 } else if (const ParenType *paren = dyn_cast<ParenType>(type)) {
5049 type = paren->getInnerType();
5050
5051 // That's it for things we want to complain about. In particular,
5052 // we do not want to look through typedefs, typeof(expr),
5053 // typeof(type), or any other way that the type is somehow
5054 // abstracted.
5055 } else {
5056
5057 return false;
5058 }
5059 }
5060 }
5061
5062 /// handleObjCOwnershipTypeAttr - Process an objc_ownership
5063 /// attribute on the specified type.
5064 ///
5065 /// Returns 'true' if the attribute was handled.
handleObjCOwnershipTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)5066 static bool handleObjCOwnershipTypeAttr(TypeProcessingState &state,
5067 AttributeList &attr,
5068 QualType &type) {
5069 bool NonObjCPointer = false;
5070
5071 if (!type->isDependentType() && !type->isUndeducedType()) {
5072 if (const PointerType *ptr = type->getAs<PointerType>()) {
5073 QualType pointee = ptr->getPointeeType();
5074 if (pointee->isObjCRetainableType() || pointee->isPointerType())
5075 return false;
5076 // It is important not to lose the source info that there was an attribute
5077 // applied to non-objc pointer. We will create an attributed type but
5078 // its type will be the same as the original type.
5079 NonObjCPointer = true;
5080 } else if (!type->isObjCRetainableType()) {
5081 return false;
5082 }
5083
5084 // Don't accept an ownership attribute in the declspec if it would
5085 // just be the return type of a block pointer.
5086 if (state.isProcessingDeclSpec()) {
5087 Declarator &D = state.getDeclarator();
5088 if (maybeMovePastReturnType(D, D.getNumTypeObjects(),
5089 /*onlyBlockPointers=*/true))
5090 return false;
5091 }
5092 }
5093
5094 Sema &S = state.getSema();
5095 SourceLocation AttrLoc = attr.getLoc();
5096 if (AttrLoc.isMacroID())
5097 AttrLoc = S.getSourceManager().getImmediateExpansionRange(AttrLoc).first;
5098
5099 if (!attr.isArgIdent(0)) {
5100 S.Diag(AttrLoc, diag::err_attribute_argument_type)
5101 << attr.getName() << AANT_ArgumentString;
5102 attr.setInvalid();
5103 return true;
5104 }
5105
5106 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5107 Qualifiers::ObjCLifetime lifetime;
5108 if (II->isStr("none"))
5109 lifetime = Qualifiers::OCL_ExplicitNone;
5110 else if (II->isStr("strong"))
5111 lifetime = Qualifiers::OCL_Strong;
5112 else if (II->isStr("weak"))
5113 lifetime = Qualifiers::OCL_Weak;
5114 else if (II->isStr("autoreleasing"))
5115 lifetime = Qualifiers::OCL_Autoreleasing;
5116 else {
5117 S.Diag(AttrLoc, diag::warn_attribute_type_not_supported)
5118 << attr.getName() << II;
5119 attr.setInvalid();
5120 return true;
5121 }
5122
5123 // Just ignore lifetime attributes other than __weak and __unsafe_unretained
5124 // outside of ARC mode.
5125 if (!S.getLangOpts().ObjCAutoRefCount &&
5126 lifetime != Qualifiers::OCL_Weak &&
5127 lifetime != Qualifiers::OCL_ExplicitNone) {
5128 return true;
5129 }
5130
5131 SplitQualType underlyingType = type.split();
5132
5133 // Check for redundant/conflicting ownership qualifiers.
5134 if (Qualifiers::ObjCLifetime previousLifetime
5135 = type.getQualifiers().getObjCLifetime()) {
5136 // If it's written directly, that's an error.
5137 if (hasDirectOwnershipQualifier(type)) {
5138 S.Diag(AttrLoc, diag::err_attr_objc_ownership_redundant)
5139 << type;
5140 return true;
5141 }
5142
5143 // Otherwise, if the qualifiers actually conflict, pull sugar off
5144 // until we reach a type that is directly qualified.
5145 if (previousLifetime != lifetime) {
5146 // This should always terminate: the canonical type is
5147 // qualified, so some bit of sugar must be hiding it.
5148 while (!underlyingType.Quals.hasObjCLifetime()) {
5149 underlyingType = underlyingType.getSingleStepDesugaredType();
5150 }
5151 underlyingType.Quals.removeObjCLifetime();
5152 }
5153 }
5154
5155 underlyingType.Quals.addObjCLifetime(lifetime);
5156
5157 if (NonObjCPointer) {
5158 StringRef name = attr.getName()->getName();
5159 switch (lifetime) {
5160 case Qualifiers::OCL_None:
5161 case Qualifiers::OCL_ExplicitNone:
5162 break;
5163 case Qualifiers::OCL_Strong: name = "__strong"; break;
5164 case Qualifiers::OCL_Weak: name = "__weak"; break;
5165 case Qualifiers::OCL_Autoreleasing: name = "__autoreleasing"; break;
5166 }
5167 S.Diag(AttrLoc, diag::warn_type_attribute_wrong_type) << name
5168 << TDS_ObjCObjOrBlock << type;
5169 }
5170
5171 // Don't actually add the __unsafe_unretained qualifier in non-ARC files,
5172 // because having both 'T' and '__unsafe_unretained T' exist in the type
5173 // system causes unfortunate widespread consistency problems. (For example,
5174 // they're not considered compatible types, and we mangle them identicially
5175 // as template arguments.) These problems are all individually fixable,
5176 // but it's easier to just not add the qualifier and instead sniff it out
5177 // in specific places using isObjCInertUnsafeUnretainedType().
5178 //
5179 // Doing this does means we miss some trivial consistency checks that
5180 // would've triggered in ARC, but that's better than trying to solve all
5181 // the coexistence problems with __unsafe_unretained.
5182 if (!S.getLangOpts().ObjCAutoRefCount &&
5183 lifetime == Qualifiers::OCL_ExplicitNone) {
5184 type = S.Context.getAttributedType(
5185 AttributedType::attr_objc_inert_unsafe_unretained,
5186 type, type);
5187 return true;
5188 }
5189
5190 QualType origType = type;
5191 if (!NonObjCPointer)
5192 type = S.Context.getQualifiedType(underlyingType);
5193
5194 // If we have a valid source location for the attribute, use an
5195 // AttributedType instead.
5196 if (AttrLoc.isValid())
5197 type = S.Context.getAttributedType(AttributedType::attr_objc_ownership,
5198 origType, type);
5199
5200 auto diagnoseOrDelay = [](Sema &S, SourceLocation loc,
5201 unsigned diagnostic, QualType type) {
5202 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
5203 S.DelayedDiagnostics.add(
5204 sema::DelayedDiagnostic::makeForbiddenType(
5205 S.getSourceManager().getExpansionLoc(loc),
5206 diagnostic, type, /*ignored*/ 0));
5207 } else {
5208 S.Diag(loc, diagnostic);
5209 }
5210 };
5211
5212 // Sometimes, __weak isn't allowed.
5213 if (lifetime == Qualifiers::OCL_Weak &&
5214 !S.getLangOpts().ObjCWeak && !NonObjCPointer) {
5215
5216 // Use a specialized diagnostic if the runtime just doesn't support them.
5217 unsigned diagnostic =
5218 (S.getLangOpts().ObjCWeakRuntime ? diag::err_arc_weak_disabled
5219 : diag::err_arc_weak_no_runtime);
5220
5221 // In any case, delay the diagnostic until we know what we're parsing.
5222 diagnoseOrDelay(S, AttrLoc, diagnostic, type);
5223
5224 attr.setInvalid();
5225 return true;
5226 }
5227
5228 // Forbid __weak for class objects marked as
5229 // objc_arc_weak_reference_unavailable
5230 if (lifetime == Qualifiers::OCL_Weak) {
5231 if (const ObjCObjectPointerType *ObjT =
5232 type->getAs<ObjCObjectPointerType>()) {
5233 if (ObjCInterfaceDecl *Class = ObjT->getInterfaceDecl()) {
5234 if (Class->isArcWeakrefUnavailable()) {
5235 S.Diag(AttrLoc, diag::err_arc_unsupported_weak_class);
5236 S.Diag(ObjT->getInterfaceDecl()->getLocation(),
5237 diag::note_class_declared);
5238 }
5239 }
5240 }
5241 }
5242
5243 return true;
5244 }
5245
5246 /// handleObjCGCTypeAttr - Process the __attribute__((objc_gc)) type
5247 /// attribute on the specified type. Returns true to indicate that
5248 /// the attribute was handled, false to indicate that the type does
5249 /// not permit the attribute.
handleObjCGCTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)5250 static bool handleObjCGCTypeAttr(TypeProcessingState &state,
5251 AttributeList &attr,
5252 QualType &type) {
5253 Sema &S = state.getSema();
5254
5255 // Delay if this isn't some kind of pointer.
5256 if (!type->isPointerType() &&
5257 !type->isObjCObjectPointerType() &&
5258 !type->isBlockPointerType())
5259 return false;
5260
5261 if (type.getObjCGCAttr() != Qualifiers::GCNone) {
5262 S.Diag(attr.getLoc(), diag::err_attribute_multiple_objc_gc);
5263 attr.setInvalid();
5264 return true;
5265 }
5266
5267 // Check the attribute arguments.
5268 if (!attr.isArgIdent(0)) {
5269 S.Diag(attr.getLoc(), diag::err_attribute_argument_type)
5270 << attr.getName() << AANT_ArgumentString;
5271 attr.setInvalid();
5272 return true;
5273 }
5274 Qualifiers::GC GCAttr;
5275 if (attr.getNumArgs() > 1) {
5276 S.Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
5277 << attr.getName() << 1;
5278 attr.setInvalid();
5279 return true;
5280 }
5281
5282 IdentifierInfo *II = attr.getArgAsIdent(0)->Ident;
5283 if (II->isStr("weak"))
5284 GCAttr = Qualifiers::Weak;
5285 else if (II->isStr("strong"))
5286 GCAttr = Qualifiers::Strong;
5287 else {
5288 S.Diag(attr.getLoc(), diag::warn_attribute_type_not_supported)
5289 << attr.getName() << II;
5290 attr.setInvalid();
5291 return true;
5292 }
5293
5294 QualType origType = type;
5295 type = S.Context.getObjCGCQualType(origType, GCAttr);
5296
5297 // Make an attributed type to preserve the source information.
5298 if (attr.getLoc().isValid())
5299 type = S.Context.getAttributedType(AttributedType::attr_objc_gc,
5300 origType, type);
5301
5302 return true;
5303 }
5304
5305 namespace {
5306 /// A helper class to unwrap a type down to a function for the
5307 /// purposes of applying attributes there.
5308 ///
5309 /// Use:
5310 /// FunctionTypeUnwrapper unwrapped(SemaRef, T);
5311 /// if (unwrapped.isFunctionType()) {
5312 /// const FunctionType *fn = unwrapped.get();
5313 /// // change fn somehow
5314 /// T = unwrapped.wrap(fn);
5315 /// }
5316 struct FunctionTypeUnwrapper {
5317 enum WrapKind {
5318 Desugar,
5319 Parens,
5320 Pointer,
5321 BlockPointer,
5322 Reference,
5323 MemberPointer
5324 };
5325
5326 QualType Original;
5327 const FunctionType *Fn;
5328 SmallVector<unsigned char /*WrapKind*/, 8> Stack;
5329
FunctionTypeUnwrapper__anon9acaebf90a11::FunctionTypeUnwrapper5330 FunctionTypeUnwrapper(Sema &S, QualType T) : Original(T) {
5331 while (true) {
5332 const Type *Ty = T.getTypePtr();
5333 if (isa<FunctionType>(Ty)) {
5334 Fn = cast<FunctionType>(Ty);
5335 return;
5336 } else if (isa<ParenType>(Ty)) {
5337 T = cast<ParenType>(Ty)->getInnerType();
5338 Stack.push_back(Parens);
5339 } else if (isa<PointerType>(Ty)) {
5340 T = cast<PointerType>(Ty)->getPointeeType();
5341 Stack.push_back(Pointer);
5342 } else if (isa<BlockPointerType>(Ty)) {
5343 T = cast<BlockPointerType>(Ty)->getPointeeType();
5344 Stack.push_back(BlockPointer);
5345 } else if (isa<MemberPointerType>(Ty)) {
5346 T = cast<MemberPointerType>(Ty)->getPointeeType();
5347 Stack.push_back(MemberPointer);
5348 } else if (isa<ReferenceType>(Ty)) {
5349 T = cast<ReferenceType>(Ty)->getPointeeType();
5350 Stack.push_back(Reference);
5351 } else {
5352 const Type *DTy = Ty->getUnqualifiedDesugaredType();
5353 if (Ty == DTy) {
5354 Fn = nullptr;
5355 return;
5356 }
5357
5358 T = QualType(DTy, 0);
5359 Stack.push_back(Desugar);
5360 }
5361 }
5362 }
5363
isFunctionType__anon9acaebf90a11::FunctionTypeUnwrapper5364 bool isFunctionType() const { return (Fn != nullptr); }
get__anon9acaebf90a11::FunctionTypeUnwrapper5365 const FunctionType *get() const { return Fn; }
5366
wrap__anon9acaebf90a11::FunctionTypeUnwrapper5367 QualType wrap(Sema &S, const FunctionType *New) {
5368 // If T wasn't modified from the unwrapped type, do nothing.
5369 if (New == get()) return Original;
5370
5371 Fn = New;
5372 return wrap(S.Context, Original, 0);
5373 }
5374
5375 private:
wrap__anon9acaebf90a11::FunctionTypeUnwrapper5376 QualType wrap(ASTContext &C, QualType Old, unsigned I) {
5377 if (I == Stack.size())
5378 return C.getQualifiedType(Fn, Old.getQualifiers());
5379
5380 // Build up the inner type, applying the qualifiers from the old
5381 // type to the new type.
5382 SplitQualType SplitOld = Old.split();
5383
5384 // As a special case, tail-recurse if there are no qualifiers.
5385 if (SplitOld.Quals.empty())
5386 return wrap(C, SplitOld.Ty, I);
5387 return C.getQualifiedType(wrap(C, SplitOld.Ty, I), SplitOld.Quals);
5388 }
5389
wrap__anon9acaebf90a11::FunctionTypeUnwrapper5390 QualType wrap(ASTContext &C, const Type *Old, unsigned I) {
5391 if (I == Stack.size()) return QualType(Fn, 0);
5392
5393 switch (static_cast<WrapKind>(Stack[I++])) {
5394 case Desugar:
5395 // This is the point at which we potentially lose source
5396 // information.
5397 return wrap(C, Old->getUnqualifiedDesugaredType(), I);
5398
5399 case Parens: {
5400 QualType New = wrap(C, cast<ParenType>(Old)->getInnerType(), I);
5401 return C.getParenType(New);
5402 }
5403
5404 case Pointer: {
5405 QualType New = wrap(C, cast<PointerType>(Old)->getPointeeType(), I);
5406 return C.getPointerType(New);
5407 }
5408
5409 case BlockPointer: {
5410 QualType New = wrap(C, cast<BlockPointerType>(Old)->getPointeeType(),I);
5411 return C.getBlockPointerType(New);
5412 }
5413
5414 case MemberPointer: {
5415 const MemberPointerType *OldMPT = cast<MemberPointerType>(Old);
5416 QualType New = wrap(C, OldMPT->getPointeeType(), I);
5417 return C.getMemberPointerType(New, OldMPT->getClass());
5418 }
5419
5420 case Reference: {
5421 const ReferenceType *OldRef = cast<ReferenceType>(Old);
5422 QualType New = wrap(C, OldRef->getPointeeType(), I);
5423 if (isa<LValueReferenceType>(OldRef))
5424 return C.getLValueReferenceType(New, OldRef->isSpelledAsLValue());
5425 else
5426 return C.getRValueReferenceType(New);
5427 }
5428 }
5429
5430 llvm_unreachable("unknown wrapping kind");
5431 }
5432 };
5433 }
5434
handleMSPointerTypeQualifierAttr(TypeProcessingState & State,AttributeList & Attr,QualType & Type)5435 static bool handleMSPointerTypeQualifierAttr(TypeProcessingState &State,
5436 AttributeList &Attr,
5437 QualType &Type) {
5438 Sema &S = State.getSema();
5439
5440 AttributeList::Kind Kind = Attr.getKind();
5441 QualType Desugared = Type;
5442 const AttributedType *AT = dyn_cast<AttributedType>(Type);
5443 while (AT) {
5444 AttributedType::Kind CurAttrKind = AT->getAttrKind();
5445
5446 // You cannot specify duplicate type attributes, so if the attribute has
5447 // already been applied, flag it.
5448 if (getAttrListKind(CurAttrKind) == Kind) {
5449 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute_exact)
5450 << Attr.getName();
5451 return true;
5452 }
5453
5454 // You cannot have both __sptr and __uptr on the same type, nor can you
5455 // have __ptr32 and __ptr64.
5456 if ((CurAttrKind == AttributedType::attr_ptr32 &&
5457 Kind == AttributeList::AT_Ptr64) ||
5458 (CurAttrKind == AttributedType::attr_ptr64 &&
5459 Kind == AttributeList::AT_Ptr32)) {
5460 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
5461 << "'__ptr32'" << "'__ptr64'";
5462 return true;
5463 } else if ((CurAttrKind == AttributedType::attr_sptr &&
5464 Kind == AttributeList::AT_UPtr) ||
5465 (CurAttrKind == AttributedType::attr_uptr &&
5466 Kind == AttributeList::AT_SPtr)) {
5467 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
5468 << "'__sptr'" << "'__uptr'";
5469 return true;
5470 }
5471
5472 Desugared = AT->getEquivalentType();
5473 AT = dyn_cast<AttributedType>(Desugared);
5474 }
5475
5476 // Pointer type qualifiers can only operate on pointer types, but not
5477 // pointer-to-member types.
5478 if (!isa<PointerType>(Desugared)) {
5479 if (Type->isMemberPointerType())
5480 S.Diag(Attr.getLoc(), diag::err_attribute_no_member_pointers)
5481 << Attr.getName();
5482 else
5483 S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
5484 << Attr.getName() << 0;
5485 return true;
5486 }
5487
5488 AttributedType::Kind TAK;
5489 switch (Kind) {
5490 default: llvm_unreachable("Unknown attribute kind");
5491 case AttributeList::AT_Ptr32: TAK = AttributedType::attr_ptr32; break;
5492 case AttributeList::AT_Ptr64: TAK = AttributedType::attr_ptr64; break;
5493 case AttributeList::AT_SPtr: TAK = AttributedType::attr_sptr; break;
5494 case AttributeList::AT_UPtr: TAK = AttributedType::attr_uptr; break;
5495 }
5496
5497 Type = S.Context.getAttributedType(TAK, Type, Type);
5498 return false;
5499 }
5500
checkNullabilityTypeSpecifier(QualType & type,NullabilityKind nullability,SourceLocation nullabilityLoc,bool isContextSensitive)5501 bool Sema::checkNullabilityTypeSpecifier(QualType &type,
5502 NullabilityKind nullability,
5503 SourceLocation nullabilityLoc,
5504 bool isContextSensitive) {
5505 // We saw a nullability type specifier. If this is the first one for
5506 // this file, note that.
5507 FileID file = getNullabilityCompletenessCheckFileID(*this, nullabilityLoc);
5508 if (!file.isInvalid()) {
5509 FileNullability &fileNullability = NullabilityMap[file];
5510 if (!fileNullability.SawTypeNullability) {
5511 // If we have already seen a pointer declarator without a nullability
5512 // annotation, complain about it.
5513 if (fileNullability.PointerLoc.isValid()) {
5514 Diag(fileNullability.PointerLoc, diag::warn_nullability_missing)
5515 << static_cast<unsigned>(fileNullability.PointerKind);
5516 }
5517
5518 fileNullability.SawTypeNullability = true;
5519 }
5520 }
5521
5522 // Check for existing nullability attributes on the type.
5523 QualType desugared = type;
5524 while (auto attributed = dyn_cast<AttributedType>(desugared.getTypePtr())) {
5525 // Check whether there is already a null
5526 if (auto existingNullability = attributed->getImmediateNullability()) {
5527 // Duplicated nullability.
5528 if (nullability == *existingNullability) {
5529 Diag(nullabilityLoc, diag::warn_nullability_duplicate)
5530 << DiagNullabilityKind(nullability, isContextSensitive)
5531 << FixItHint::CreateRemoval(nullabilityLoc);
5532
5533 break;
5534 }
5535
5536 // Conflicting nullability.
5537 Diag(nullabilityLoc, diag::err_nullability_conflicting)
5538 << DiagNullabilityKind(nullability, isContextSensitive)
5539 << DiagNullabilityKind(*existingNullability, false);
5540 return true;
5541 }
5542
5543 desugared = attributed->getModifiedType();
5544 }
5545
5546 // If there is already a different nullability specifier, complain.
5547 // This (unlike the code above) looks through typedefs that might
5548 // have nullability specifiers on them, which means we cannot
5549 // provide a useful Fix-It.
5550 if (auto existingNullability = desugared->getNullability(Context)) {
5551 if (nullability != *existingNullability) {
5552 Diag(nullabilityLoc, diag::err_nullability_conflicting)
5553 << DiagNullabilityKind(nullability, isContextSensitive)
5554 << DiagNullabilityKind(*existingNullability, false);
5555
5556 // Try to find the typedef with the existing nullability specifier.
5557 if (auto typedefType = desugared->getAs<TypedefType>()) {
5558 TypedefNameDecl *typedefDecl = typedefType->getDecl();
5559 QualType underlyingType = typedefDecl->getUnderlyingType();
5560 if (auto typedefNullability
5561 = AttributedType::stripOuterNullability(underlyingType)) {
5562 if (*typedefNullability == *existingNullability) {
5563 Diag(typedefDecl->getLocation(), diag::note_nullability_here)
5564 << DiagNullabilityKind(*existingNullability, false);
5565 }
5566 }
5567 }
5568
5569 return true;
5570 }
5571 }
5572
5573 // If this definitely isn't a pointer type, reject the specifier.
5574 if (!desugared->canHaveNullability()) {
5575 Diag(nullabilityLoc, diag::err_nullability_nonpointer)
5576 << DiagNullabilityKind(nullability, isContextSensitive) << type;
5577 return true;
5578 }
5579
5580 // For the context-sensitive keywords/Objective-C property
5581 // attributes, require that the type be a single-level pointer.
5582 if (isContextSensitive) {
5583 // Make sure that the pointee isn't itself a pointer type.
5584 QualType pointeeType = desugared->getPointeeType();
5585 if (pointeeType->isAnyPointerType() ||
5586 pointeeType->isObjCObjectPointerType() ||
5587 pointeeType->isMemberPointerType()) {
5588 Diag(nullabilityLoc, diag::err_nullability_cs_multilevel)
5589 << DiagNullabilityKind(nullability, true)
5590 << type;
5591 Diag(nullabilityLoc, diag::note_nullability_type_specifier)
5592 << DiagNullabilityKind(nullability, false)
5593 << type
5594 << FixItHint::CreateReplacement(nullabilityLoc,
5595 getNullabilitySpelling(nullability));
5596 return true;
5597 }
5598 }
5599
5600 // Form the attributed type.
5601 type = Context.getAttributedType(
5602 AttributedType::getNullabilityAttrKind(nullability), type, type);
5603 return false;
5604 }
5605
checkObjCKindOfType(QualType & type,SourceLocation loc)5606 bool Sema::checkObjCKindOfType(QualType &type, SourceLocation loc) {
5607 // Find out if it's an Objective-C object or object pointer type;
5608 const ObjCObjectPointerType *ptrType = type->getAs<ObjCObjectPointerType>();
5609 const ObjCObjectType *objType = ptrType ? ptrType->getObjectType()
5610 : type->getAs<ObjCObjectType>();
5611
5612 // If not, we can't apply __kindof.
5613 if (!objType) {
5614 // FIXME: Handle dependent types that aren't yet object types.
5615 Diag(loc, diag::err_objc_kindof_nonobject)
5616 << type;
5617 return true;
5618 }
5619
5620 // Rebuild the "equivalent" type, which pushes __kindof down into
5621 // the object type.
5622 QualType equivType = Context.getObjCObjectType(objType->getBaseType(),
5623 objType->getTypeArgsAsWritten(),
5624 objType->getProtocols(),
5625 /*isKindOf=*/true);
5626
5627 // If we started with an object pointer type, rebuild it.
5628 if (ptrType) {
5629 equivType = Context.getObjCObjectPointerType(equivType);
5630 if (auto nullability = type->getNullability(Context)) {
5631 auto attrKind = AttributedType::getNullabilityAttrKind(*nullability);
5632 equivType = Context.getAttributedType(attrKind, equivType, equivType);
5633 }
5634 }
5635
5636 // Build the attributed type to record where __kindof occurred.
5637 type = Context.getAttributedType(AttributedType::attr_objc_kindof,
5638 type,
5639 equivType);
5640
5641 return false;
5642 }
5643
5644 /// Map a nullability attribute kind to a nullability kind.
mapNullabilityAttrKind(AttributeList::Kind kind)5645 static NullabilityKind mapNullabilityAttrKind(AttributeList::Kind kind) {
5646 switch (kind) {
5647 case AttributeList::AT_TypeNonNull:
5648 return NullabilityKind::NonNull;
5649
5650 case AttributeList::AT_TypeNullable:
5651 return NullabilityKind::Nullable;
5652
5653 case AttributeList::AT_TypeNullUnspecified:
5654 return NullabilityKind::Unspecified;
5655
5656 default:
5657 llvm_unreachable("not a nullability attribute kind");
5658 }
5659 }
5660
5661 /// Distribute a nullability type attribute that cannot be applied to
5662 /// the type specifier to a pointer, block pointer, or member pointer
5663 /// declarator, complaining if necessary.
5664 ///
5665 /// \returns true if the nullability annotation was distributed, false
5666 /// otherwise.
distributeNullabilityTypeAttr(TypeProcessingState & state,QualType type,AttributeList & attr)5667 static bool distributeNullabilityTypeAttr(TypeProcessingState &state,
5668 QualType type,
5669 AttributeList &attr) {
5670 Declarator &declarator = state.getDeclarator();
5671
5672 /// Attempt to move the attribute to the specified chunk.
5673 auto moveToChunk = [&](DeclaratorChunk &chunk, bool inFunction) -> bool {
5674 // If there is already a nullability attribute there, don't add
5675 // one.
5676 if (hasNullabilityAttr(chunk.getAttrListRef()))
5677 return false;
5678
5679 // Complain about the nullability qualifier being in the wrong
5680 // place.
5681 enum {
5682 PK_Pointer,
5683 PK_BlockPointer,
5684 PK_MemberPointer,
5685 PK_FunctionPointer,
5686 PK_MemberFunctionPointer,
5687 } pointerKind
5688 = chunk.Kind == DeclaratorChunk::Pointer ? (inFunction ? PK_FunctionPointer
5689 : PK_Pointer)
5690 : chunk.Kind == DeclaratorChunk::BlockPointer ? PK_BlockPointer
5691 : inFunction? PK_MemberFunctionPointer : PK_MemberPointer;
5692
5693 auto diag = state.getSema().Diag(attr.getLoc(),
5694 diag::warn_nullability_declspec)
5695 << DiagNullabilityKind(mapNullabilityAttrKind(attr.getKind()),
5696 attr.isContextSensitiveKeywordAttribute())
5697 << type
5698 << static_cast<unsigned>(pointerKind);
5699
5700 // FIXME: MemberPointer chunks don't carry the location of the *.
5701 if (chunk.Kind != DeclaratorChunk::MemberPointer) {
5702 diag << FixItHint::CreateRemoval(attr.getLoc())
5703 << FixItHint::CreateInsertion(
5704 state.getSema().getPreprocessor()
5705 .getLocForEndOfToken(chunk.Loc),
5706 " " + attr.getName()->getName().str() + " ");
5707 }
5708
5709 moveAttrFromListToList(attr, state.getCurrentAttrListRef(),
5710 chunk.getAttrListRef());
5711 return true;
5712 };
5713
5714 // Move it to the outermost pointer, member pointer, or block
5715 // pointer declarator.
5716 for (unsigned i = state.getCurrentChunkIndex(); i != 0; --i) {
5717 DeclaratorChunk &chunk = declarator.getTypeObject(i-1);
5718 switch (chunk.Kind) {
5719 case DeclaratorChunk::Pointer:
5720 case DeclaratorChunk::BlockPointer:
5721 case DeclaratorChunk::MemberPointer:
5722 return moveToChunk(chunk, false);
5723
5724 case DeclaratorChunk::Paren:
5725 case DeclaratorChunk::Array:
5726 continue;
5727
5728 case DeclaratorChunk::Function:
5729 // Try to move past the return type to a function/block/member
5730 // function pointer.
5731 if (DeclaratorChunk *dest = maybeMovePastReturnType(
5732 declarator, i,
5733 /*onlyBlockPointers=*/false)) {
5734 return moveToChunk(*dest, true);
5735 }
5736
5737 return false;
5738
5739 // Don't walk through these.
5740 case DeclaratorChunk::Reference:
5741 return false;
5742 }
5743 }
5744
5745 return false;
5746 }
5747
getCCTypeAttrKind(AttributeList & Attr)5748 static AttributedType::Kind getCCTypeAttrKind(AttributeList &Attr) {
5749 assert(!Attr.isInvalid());
5750 switch (Attr.getKind()) {
5751 default:
5752 llvm_unreachable("not a calling convention attribute");
5753 case AttributeList::AT_CDecl:
5754 return AttributedType::attr_cdecl;
5755 case AttributeList::AT_FastCall:
5756 return AttributedType::attr_fastcall;
5757 case AttributeList::AT_StdCall:
5758 return AttributedType::attr_stdcall;
5759 case AttributeList::AT_ThisCall:
5760 return AttributedType::attr_thiscall;
5761 case AttributeList::AT_Pascal:
5762 return AttributedType::attr_pascal;
5763 case AttributeList::AT_VectorCall:
5764 return AttributedType::attr_vectorcall;
5765 case AttributeList::AT_Pcs: {
5766 // The attribute may have had a fixit applied where we treated an
5767 // identifier as a string literal. The contents of the string are valid,
5768 // but the form may not be.
5769 StringRef Str;
5770 if (Attr.isArgExpr(0))
5771 Str = cast<StringLiteral>(Attr.getArgAsExpr(0))->getString();
5772 else
5773 Str = Attr.getArgAsIdent(0)->Ident->getName();
5774 return llvm::StringSwitch<AttributedType::Kind>(Str)
5775 .Case("aapcs", AttributedType::attr_pcs)
5776 .Case("aapcs-vfp", AttributedType::attr_pcs_vfp);
5777 }
5778 case AttributeList::AT_IntelOclBicc:
5779 return AttributedType::attr_inteloclbicc;
5780 case AttributeList::AT_MSABI:
5781 return AttributedType::attr_ms_abi;
5782 case AttributeList::AT_SysVABI:
5783 return AttributedType::attr_sysv_abi;
5784 }
5785 llvm_unreachable("unexpected attribute kind!");
5786 }
5787
5788 /// Process an individual function attribute. Returns true to
5789 /// indicate that the attribute was handled, false if it wasn't.
handleFunctionTypeAttr(TypeProcessingState & state,AttributeList & attr,QualType & type)5790 static bool handleFunctionTypeAttr(TypeProcessingState &state,
5791 AttributeList &attr,
5792 QualType &type) {
5793 Sema &S = state.getSema();
5794
5795 FunctionTypeUnwrapper unwrapped(S, type);
5796
5797 if (attr.getKind() == AttributeList::AT_NoReturn) {
5798 if (S.CheckNoReturnAttr(attr))
5799 return true;
5800
5801 // Delay if this is not a function type.
5802 if (!unwrapped.isFunctionType())
5803 return false;
5804
5805 // Otherwise we can process right away.
5806 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withNoReturn(true);
5807 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5808 return true;
5809 }
5810
5811 // ns_returns_retained is not always a type attribute, but if we got
5812 // here, we're treating it as one right now.
5813 if (attr.getKind() == AttributeList::AT_NSReturnsRetained) {
5814 assert(S.getLangOpts().ObjCAutoRefCount &&
5815 "ns_returns_retained treated as type attribute in non-ARC");
5816 if (attr.getNumArgs()) return true;
5817
5818 // Delay if this is not a function type.
5819 if (!unwrapped.isFunctionType())
5820 return false;
5821
5822 FunctionType::ExtInfo EI
5823 = unwrapped.get()->getExtInfo().withProducesResult(true);
5824 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5825 return true;
5826 }
5827
5828 if (attr.getKind() == AttributeList::AT_Regparm) {
5829 unsigned value;
5830 if (S.CheckRegparmAttr(attr, value))
5831 return true;
5832
5833 // Delay if this is not a function type.
5834 if (!unwrapped.isFunctionType())
5835 return false;
5836
5837 // Diagnose regparm with fastcall.
5838 const FunctionType *fn = unwrapped.get();
5839 CallingConv CC = fn->getCallConv();
5840 if (CC == CC_X86FastCall) {
5841 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
5842 << FunctionType::getNameForCallConv(CC)
5843 << "regparm";
5844 attr.setInvalid();
5845 return true;
5846 }
5847
5848 FunctionType::ExtInfo EI =
5849 unwrapped.get()->getExtInfo().withRegParm(value);
5850 type = unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5851 return true;
5852 }
5853
5854 // Delay if the type didn't work out to a function.
5855 if (!unwrapped.isFunctionType()) return false;
5856
5857 // Otherwise, a calling convention.
5858 CallingConv CC;
5859 if (S.CheckCallingConvAttr(attr, CC))
5860 return true;
5861
5862 const FunctionType *fn = unwrapped.get();
5863 CallingConv CCOld = fn->getCallConv();
5864 AttributedType::Kind CCAttrKind = getCCTypeAttrKind(attr);
5865
5866 if (CCOld != CC) {
5867 // Error out on when there's already an attribute on the type
5868 // and the CCs don't match.
5869 const AttributedType *AT = S.getCallingConvAttributedType(type);
5870 if (AT && AT->getAttrKind() != CCAttrKind) {
5871 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
5872 << FunctionType::getNameForCallConv(CC)
5873 << FunctionType::getNameForCallConv(CCOld);
5874 attr.setInvalid();
5875 return true;
5876 }
5877 }
5878
5879 // Diagnose use of callee-cleanup calling convention on variadic functions.
5880 if (!supportsVariadicCall(CC)) {
5881 const FunctionProtoType *FnP = dyn_cast<FunctionProtoType>(fn);
5882 if (FnP && FnP->isVariadic()) {
5883 unsigned DiagID = diag::err_cconv_varargs;
5884 // stdcall and fastcall are ignored with a warning for GCC and MS
5885 // compatibility.
5886 if (CC == CC_X86StdCall || CC == CC_X86FastCall)
5887 DiagID = diag::warn_cconv_varargs;
5888
5889 S.Diag(attr.getLoc(), DiagID) << FunctionType::getNameForCallConv(CC);
5890 attr.setInvalid();
5891 return true;
5892 }
5893 }
5894
5895 // Also diagnose fastcall with regparm.
5896 if (CC == CC_X86FastCall && fn->getHasRegParm()) {
5897 S.Diag(attr.getLoc(), diag::err_attributes_are_not_compatible)
5898 << "regparm" << FunctionType::getNameForCallConv(CC_X86FastCall);
5899 attr.setInvalid();
5900 return true;
5901 }
5902
5903 // Modify the CC from the wrapped function type, wrap it all back, and then
5904 // wrap the whole thing in an AttributedType as written. The modified type
5905 // might have a different CC if we ignored the attribute.
5906 FunctionType::ExtInfo EI = unwrapped.get()->getExtInfo().withCallingConv(CC);
5907 QualType Equivalent =
5908 unwrapped.wrap(S, S.Context.adjustFunctionType(unwrapped.get(), EI));
5909 type = S.Context.getAttributedType(CCAttrKind, type, Equivalent);
5910 return true;
5911 }
5912
hasExplicitCallingConv(QualType & T)5913 bool Sema::hasExplicitCallingConv(QualType &T) {
5914 QualType R = T.IgnoreParens();
5915 while (const AttributedType *AT = dyn_cast<AttributedType>(R)) {
5916 if (AT->isCallingConv())
5917 return true;
5918 R = AT->getModifiedType().IgnoreParens();
5919 }
5920 return false;
5921 }
5922
adjustMemberFunctionCC(QualType & T,bool IsStatic,bool IsCtorOrDtor,SourceLocation Loc)5923 void Sema::adjustMemberFunctionCC(QualType &T, bool IsStatic, bool IsCtorOrDtor,
5924 SourceLocation Loc) {
5925 FunctionTypeUnwrapper Unwrapped(*this, T);
5926 const FunctionType *FT = Unwrapped.get();
5927 bool IsVariadic = (isa<FunctionProtoType>(FT) &&
5928 cast<FunctionProtoType>(FT)->isVariadic());
5929 CallingConv CurCC = FT->getCallConv();
5930 CallingConv ToCC = Context.getDefaultCallingConvention(IsVariadic, !IsStatic);
5931
5932 if (CurCC == ToCC)
5933 return;
5934
5935 // MS compiler ignores explicit calling convention attributes on structors. We
5936 // should do the same.
5937 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && IsCtorOrDtor) {
5938 // Issue a warning on ignored calling convention -- except of __stdcall.
5939 // Again, this is what MS compiler does.
5940 if (CurCC != CC_X86StdCall)
5941 Diag(Loc, diag::warn_cconv_structors)
5942 << FunctionType::getNameForCallConv(CurCC);
5943 // Default adjustment.
5944 } else {
5945 // Only adjust types with the default convention. For example, on Windows
5946 // we should adjust a __cdecl type to __thiscall for instance methods, and a
5947 // __thiscall type to __cdecl for static methods.
5948 CallingConv DefaultCC =
5949 Context.getDefaultCallingConvention(IsVariadic, IsStatic);
5950
5951 if (CurCC != DefaultCC || DefaultCC == ToCC)
5952 return;
5953
5954 if (hasExplicitCallingConv(T))
5955 return;
5956 }
5957
5958 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(ToCC));
5959 QualType Wrapped = Unwrapped.wrap(*this, FT);
5960 T = Context.getAdjustedType(T, Wrapped);
5961 }
5962
5963 /// HandleVectorSizeAttribute - this attribute is only applicable to integral
5964 /// and float scalars, although arrays, pointers, and function return values are
5965 /// allowed in conjunction with this construct. Aggregates with this attribute
5966 /// are invalid, even if they are of the same size as a corresponding scalar.
5967 /// The raw attribute should contain precisely 1 argument, the vector size for
5968 /// the variable, measured in bytes. If curType and rawAttr are well formed,
5969 /// this routine will return a new vector type.
HandleVectorSizeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)5970 static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
5971 Sema &S) {
5972 // Check the attribute arguments.
5973 if (Attr.getNumArgs() != 1) {
5974 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
5975 << Attr.getName() << 1;
5976 Attr.setInvalid();
5977 return;
5978 }
5979 Expr *sizeExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
5980 llvm::APSInt vecSize(32);
5981 if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
5982 !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
5983 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
5984 << Attr.getName() << AANT_ArgumentIntegerConstant
5985 << sizeExpr->getSourceRange();
5986 Attr.setInvalid();
5987 return;
5988 }
5989 // The base type must be integer (not Boolean or enumeration) or float, and
5990 // can't already be a vector.
5991 if (!CurType->isBuiltinType() || CurType->isBooleanType() ||
5992 (!CurType->isIntegerType() && !CurType->isRealFloatingType())) {
5993 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
5994 Attr.setInvalid();
5995 return;
5996 }
5997 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
5998 // vecSize is specified in bytes - convert to bits.
5999 unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
6000
6001 // the vector size needs to be an integral multiple of the type size.
6002 if (vectorSize % typeSize) {
6003 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
6004 << sizeExpr->getSourceRange();
6005 Attr.setInvalid();
6006 return;
6007 }
6008 if (VectorType::isVectorSizeTooLarge(vectorSize / typeSize)) {
6009 S.Diag(Attr.getLoc(), diag::err_attribute_size_too_large)
6010 << sizeExpr->getSourceRange();
6011 Attr.setInvalid();
6012 return;
6013 }
6014 if (vectorSize == 0) {
6015 S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
6016 << sizeExpr->getSourceRange();
6017 Attr.setInvalid();
6018 return;
6019 }
6020
6021 // Success! Instantiate the vector type, the number of elements is > 0, and
6022 // not required to be a power of 2, unlike GCC.
6023 CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
6024 VectorType::GenericVector);
6025 }
6026
6027 /// \brief Process the OpenCL-like ext_vector_type attribute when it occurs on
6028 /// a type.
HandleExtVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S)6029 static void HandleExtVectorTypeAttr(QualType &CurType,
6030 const AttributeList &Attr,
6031 Sema &S) {
6032 // check the attribute arguments.
6033 if (Attr.getNumArgs() != 1) {
6034 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6035 << Attr.getName() << 1;
6036 return;
6037 }
6038
6039 Expr *sizeExpr;
6040
6041 // Special case where the argument is a template id.
6042 if (Attr.isArgIdent(0)) {
6043 CXXScopeSpec SS;
6044 SourceLocation TemplateKWLoc;
6045 UnqualifiedId id;
6046 id.setIdentifier(Attr.getArgAsIdent(0)->Ident, Attr.getLoc());
6047
6048 ExprResult Size = S.ActOnIdExpression(S.getCurScope(), SS, TemplateKWLoc,
6049 id, false, false);
6050 if (Size.isInvalid())
6051 return;
6052
6053 sizeExpr = Size.get();
6054 } else {
6055 sizeExpr = Attr.getArgAsExpr(0);
6056 }
6057
6058 // Create the vector type.
6059 QualType T = S.BuildExtVectorType(CurType, sizeExpr, Attr.getLoc());
6060 if (!T.isNull())
6061 CurType = T;
6062 }
6063
isPermittedNeonBaseType(QualType & Ty,VectorType::VectorKind VecKind,Sema & S)6064 static bool isPermittedNeonBaseType(QualType &Ty,
6065 VectorType::VectorKind VecKind, Sema &S) {
6066 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
6067 if (!BTy)
6068 return false;
6069
6070 llvm::Triple Triple = S.Context.getTargetInfo().getTriple();
6071
6072 // Signed poly is mathematically wrong, but has been baked into some ABIs by
6073 // now.
6074 bool IsPolyUnsigned = Triple.getArch() == llvm::Triple::aarch64 ||
6075 Triple.getArch() == llvm::Triple::aarch64_be;
6076 if (VecKind == VectorType::NeonPolyVector) {
6077 if (IsPolyUnsigned) {
6078 // AArch64 polynomial vectors are unsigned and support poly64.
6079 return BTy->getKind() == BuiltinType::UChar ||
6080 BTy->getKind() == BuiltinType::UShort ||
6081 BTy->getKind() == BuiltinType::ULong ||
6082 BTy->getKind() == BuiltinType::ULongLong;
6083 } else {
6084 // AArch32 polynomial vector are signed.
6085 return BTy->getKind() == BuiltinType::SChar ||
6086 BTy->getKind() == BuiltinType::Short;
6087 }
6088 }
6089
6090 // Non-polynomial vector types: the usual suspects are allowed, as well as
6091 // float64_t on AArch64.
6092 bool Is64Bit = Triple.getArch() == llvm::Triple::aarch64 ||
6093 Triple.getArch() == llvm::Triple::aarch64_be;
6094
6095 if (Is64Bit && BTy->getKind() == BuiltinType::Double)
6096 return true;
6097
6098 return BTy->getKind() == BuiltinType::SChar ||
6099 BTy->getKind() == BuiltinType::UChar ||
6100 BTy->getKind() == BuiltinType::Short ||
6101 BTy->getKind() == BuiltinType::UShort ||
6102 BTy->getKind() == BuiltinType::Int ||
6103 BTy->getKind() == BuiltinType::UInt ||
6104 BTy->getKind() == BuiltinType::Long ||
6105 BTy->getKind() == BuiltinType::ULong ||
6106 BTy->getKind() == BuiltinType::LongLong ||
6107 BTy->getKind() == BuiltinType::ULongLong ||
6108 BTy->getKind() == BuiltinType::Float ||
6109 BTy->getKind() == BuiltinType::Half;
6110 }
6111
6112 /// HandleNeonVectorTypeAttr - The "neon_vector_type" and
6113 /// "neon_polyvector_type" attributes are used to create vector types that
6114 /// are mangled according to ARM's ABI. Otherwise, these types are identical
6115 /// to those created with the "vector_size" attribute. Unlike "vector_size"
6116 /// the argument to these Neon attributes is the number of vector elements,
6117 /// not the vector size in bytes. The vector width and element type must
6118 /// match one of the standard Neon vector types.
HandleNeonVectorTypeAttr(QualType & CurType,const AttributeList & Attr,Sema & S,VectorType::VectorKind VecKind)6119 static void HandleNeonVectorTypeAttr(QualType& CurType,
6120 const AttributeList &Attr, Sema &S,
6121 VectorType::VectorKind VecKind) {
6122 // Target must have NEON
6123 if (!S.Context.getTargetInfo().hasFeature("neon")) {
6124 S.Diag(Attr.getLoc(), diag::err_attribute_unsupported) << Attr.getName();
6125 Attr.setInvalid();
6126 return;
6127 }
6128 // Check the attribute arguments.
6129 if (Attr.getNumArgs() != 1) {
6130 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
6131 << Attr.getName() << 1;
6132 Attr.setInvalid();
6133 return;
6134 }
6135 // The number of elements must be an ICE.
6136 Expr *numEltsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
6137 llvm::APSInt numEltsInt(32);
6138 if (numEltsExpr->isTypeDependent() || numEltsExpr->isValueDependent() ||
6139 !numEltsExpr->isIntegerConstantExpr(numEltsInt, S.Context)) {
6140 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
6141 << Attr.getName() << AANT_ArgumentIntegerConstant
6142 << numEltsExpr->getSourceRange();
6143 Attr.setInvalid();
6144 return;
6145 }
6146 // Only certain element types are supported for Neon vectors.
6147 if (!isPermittedNeonBaseType(CurType, VecKind, S)) {
6148 S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
6149 Attr.setInvalid();
6150 return;
6151 }
6152
6153 // The total size of the vector must be 64 or 128 bits.
6154 unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
6155 unsigned numElts = static_cast<unsigned>(numEltsInt.getZExtValue());
6156 unsigned vecSize = typeSize * numElts;
6157 if (vecSize != 64 && vecSize != 128) {
6158 S.Diag(Attr.getLoc(), diag::err_attribute_bad_neon_vector_size) << CurType;
6159 Attr.setInvalid();
6160 return;
6161 }
6162
6163 CurType = S.Context.getVectorType(CurType, numElts, VecKind);
6164 }
6165
processTypeAttrs(TypeProcessingState & state,QualType & type,TypeAttrLocation TAL,AttributeList * attrs)6166 static void processTypeAttrs(TypeProcessingState &state, QualType &type,
6167 TypeAttrLocation TAL, AttributeList *attrs) {
6168 // Scan through and apply attributes to this type where it makes sense. Some
6169 // attributes (such as __address_space__, __vector_size__, etc) apply to the
6170 // type, but others can be present in the type specifiers even though they
6171 // apply to the decl. Here we apply type attributes and ignore the rest.
6172
6173 bool hasOpenCLAddressSpace = false;
6174 while (attrs) {
6175 AttributeList &attr = *attrs;
6176 attrs = attr.getNext(); // reset to the next here due to early loop continue
6177 // stmts
6178
6179 // Skip attributes that were marked to be invalid.
6180 if (attr.isInvalid())
6181 continue;
6182
6183 if (attr.isCXX11Attribute()) {
6184 // [[gnu::...]] attributes are treated as declaration attributes, so may
6185 // not appertain to a DeclaratorChunk, even if we handle them as type
6186 // attributes.
6187 if (attr.getScopeName() && attr.getScopeName()->isStr("gnu")) {
6188 if (TAL == TAL_DeclChunk) {
6189 state.getSema().Diag(attr.getLoc(),
6190 diag::warn_cxx11_gnu_attribute_on_type)
6191 << attr.getName();
6192 continue;
6193 }
6194 } else if (TAL != TAL_DeclChunk) {
6195 // Otherwise, only consider type processing for a C++11 attribute if
6196 // it's actually been applied to a type.
6197 continue;
6198 }
6199 }
6200
6201 // If this is an attribute we can handle, do so now,
6202 // otherwise, add it to the FnAttrs list for rechaining.
6203 switch (attr.getKind()) {
6204 default:
6205 // A C++11 attribute on a declarator chunk must appertain to a type.
6206 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk) {
6207 state.getSema().Diag(attr.getLoc(), diag::err_attribute_not_type_attr)
6208 << attr.getName();
6209 attr.setUsedAsTypeAttr();
6210 }
6211 break;
6212
6213 case AttributeList::UnknownAttribute:
6214 if (attr.isCXX11Attribute() && TAL == TAL_DeclChunk)
6215 state.getSema().Diag(attr.getLoc(),
6216 diag::warn_unknown_attribute_ignored)
6217 << attr.getName();
6218 break;
6219
6220 case AttributeList::IgnoredAttribute:
6221 break;
6222
6223 case AttributeList::AT_MayAlias:
6224 // FIXME: This attribute needs to actually be handled, but if we ignore
6225 // it it breaks large amounts of Linux software.
6226 attr.setUsedAsTypeAttr();
6227 break;
6228 case AttributeList::AT_OpenCLPrivateAddressSpace:
6229 case AttributeList::AT_OpenCLGlobalAddressSpace:
6230 case AttributeList::AT_OpenCLLocalAddressSpace:
6231 case AttributeList::AT_OpenCLConstantAddressSpace:
6232 case AttributeList::AT_OpenCLGenericAddressSpace:
6233 case AttributeList::AT_AddressSpace:
6234 HandleAddressSpaceTypeAttribute(type, attr, state.getSema());
6235 attr.setUsedAsTypeAttr();
6236 hasOpenCLAddressSpace = true;
6237 break;
6238 OBJC_POINTER_TYPE_ATTRS_CASELIST:
6239 if (!handleObjCPointerTypeAttr(state, attr, type))
6240 distributeObjCPointerTypeAttr(state, attr, type);
6241 attr.setUsedAsTypeAttr();
6242 break;
6243 case AttributeList::AT_VectorSize:
6244 HandleVectorSizeAttr(type, attr, state.getSema());
6245 attr.setUsedAsTypeAttr();
6246 break;
6247 case AttributeList::AT_ExtVectorType:
6248 HandleExtVectorTypeAttr(type, attr, state.getSema());
6249 attr.setUsedAsTypeAttr();
6250 break;
6251 case AttributeList::AT_NeonVectorType:
6252 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
6253 VectorType::NeonVector);
6254 attr.setUsedAsTypeAttr();
6255 break;
6256 case AttributeList::AT_NeonPolyVectorType:
6257 HandleNeonVectorTypeAttr(type, attr, state.getSema(),
6258 VectorType::NeonPolyVector);
6259 attr.setUsedAsTypeAttr();
6260 break;
6261 case AttributeList::AT_OpenCLImageAccess:
6262 // FIXME: there should be some type checking happening here, I would
6263 // imagine, but the original handler's checking was entirely superfluous.
6264 attr.setUsedAsTypeAttr();
6265 break;
6266
6267 MS_TYPE_ATTRS_CASELIST:
6268 if (!handleMSPointerTypeQualifierAttr(state, attr, type))
6269 attr.setUsedAsTypeAttr();
6270 break;
6271
6272
6273 NULLABILITY_TYPE_ATTRS_CASELIST:
6274 // Either add nullability here or try to distribute it. We
6275 // don't want to distribute the nullability specifier past any
6276 // dependent type, because that complicates the user model.
6277 if (type->canHaveNullability() || type->isDependentType() ||
6278 !distributeNullabilityTypeAttr(state, type, attr)) {
6279 if (state.getSema().checkNullabilityTypeSpecifier(
6280 type,
6281 mapNullabilityAttrKind(attr.getKind()),
6282 attr.getLoc(),
6283 attr.isContextSensitiveKeywordAttribute())) {
6284 attr.setInvalid();
6285 }
6286
6287 attr.setUsedAsTypeAttr();
6288 }
6289 break;
6290
6291 case AttributeList::AT_ObjCKindOf:
6292 // '__kindof' must be part of the decl-specifiers.
6293 switch (TAL) {
6294 case TAL_DeclSpec:
6295 break;
6296
6297 case TAL_DeclChunk:
6298 case TAL_DeclName:
6299 state.getSema().Diag(attr.getLoc(),
6300 diag::err_objc_kindof_wrong_position)
6301 << FixItHint::CreateRemoval(attr.getLoc())
6302 << FixItHint::CreateInsertion(
6303 state.getDeclarator().getDeclSpec().getLocStart(), "__kindof ");
6304 break;
6305 }
6306
6307 // Apply it regardless.
6308 if (state.getSema().checkObjCKindOfType(type, attr.getLoc()))
6309 attr.setInvalid();
6310 attr.setUsedAsTypeAttr();
6311 break;
6312
6313 case AttributeList::AT_NSReturnsRetained:
6314 if (!state.getSema().getLangOpts().ObjCAutoRefCount)
6315 break;
6316 // fallthrough into the function attrs
6317
6318 FUNCTION_TYPE_ATTRS_CASELIST:
6319 attr.setUsedAsTypeAttr();
6320
6321 // Never process function type attributes as part of the
6322 // declaration-specifiers.
6323 if (TAL == TAL_DeclSpec)
6324 distributeFunctionTypeAttrFromDeclSpec(state, attr, type);
6325
6326 // Otherwise, handle the possible delays.
6327 else if (!handleFunctionTypeAttr(state, attr, type))
6328 distributeFunctionTypeAttr(state, attr, type);
6329 break;
6330 }
6331 }
6332
6333 // If address space is not set, OpenCL 2.0 defines non private default
6334 // address spaces for some cases:
6335 // OpenCL 2.0, section 6.5:
6336 // The address space for a variable at program scope or a static variable
6337 // inside a function can either be __global or __constant, but defaults to
6338 // __global if not specified.
6339 // (...)
6340 // Pointers that are declared without pointing to a named address space point
6341 // to the generic address space.
6342 if (state.getSema().getLangOpts().OpenCLVersion >= 200 &&
6343 !hasOpenCLAddressSpace && type.getAddressSpace() == 0 &&
6344 (TAL == TAL_DeclSpec || TAL == TAL_DeclChunk)) {
6345 Declarator &D = state.getDeclarator();
6346 if (state.getCurrentChunkIndex() > 0 &&
6347 D.getTypeObject(state.getCurrentChunkIndex() - 1).Kind ==
6348 DeclaratorChunk::Pointer) {
6349 type = state.getSema().Context.getAddrSpaceQualType(
6350 type, LangAS::opencl_generic);
6351 } else if (state.getCurrentChunkIndex() == 0 &&
6352 D.getContext() == Declarator::FileContext &&
6353 !D.isFunctionDeclarator() && !D.isFunctionDefinition() &&
6354 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6355 !type->isSamplerT())
6356 type = state.getSema().Context.getAddrSpaceQualType(
6357 type, LangAS::opencl_global);
6358 else if (state.getCurrentChunkIndex() == 0 &&
6359 D.getContext() == Declarator::BlockContext &&
6360 D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)
6361 type = state.getSema().Context.getAddrSpaceQualType(
6362 type, LangAS::opencl_global);
6363 }
6364 }
6365
completeExprArrayBound(Expr * E)6366 void Sema::completeExprArrayBound(Expr *E) {
6367 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
6368 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
6369 if (isTemplateInstantiation(Var->getTemplateSpecializationKind())) {
6370 SourceLocation PointOfInstantiation = E->getExprLoc();
6371
6372 if (MemberSpecializationInfo *MSInfo =
6373 Var->getMemberSpecializationInfo()) {
6374 // If we don't already have a point of instantiation, this is it.
6375 if (MSInfo->getPointOfInstantiation().isInvalid()) {
6376 MSInfo->setPointOfInstantiation(PointOfInstantiation);
6377
6378 // This is a modification of an existing AST node. Notify
6379 // listeners.
6380 if (ASTMutationListener *L = getASTMutationListener())
6381 L->StaticDataMemberInstantiated(Var);
6382 }
6383 } else {
6384 VarTemplateSpecializationDecl *VarSpec =
6385 cast<VarTemplateSpecializationDecl>(Var);
6386 if (VarSpec->getPointOfInstantiation().isInvalid())
6387 VarSpec->setPointOfInstantiation(PointOfInstantiation);
6388 }
6389
6390 InstantiateVariableDefinition(PointOfInstantiation, Var);
6391
6392 // Update the type to the newly instantiated definition's type both
6393 // here and within the expression.
6394 if (VarDecl *Def = Var->getDefinition()) {
6395 DRE->setDecl(Def);
6396 QualType T = Def->getType();
6397 DRE->setType(T);
6398 // FIXME: Update the type on all intervening expressions.
6399 E->setType(T);
6400 }
6401
6402 // We still go on to try to complete the type independently, as it
6403 // may also require instantiations or diagnostics if it remains
6404 // incomplete.
6405 }
6406 }
6407 }
6408 }
6409
6410 /// \brief Ensure that the type of the given expression is complete.
6411 ///
6412 /// This routine checks whether the expression \p E has a complete type. If the
6413 /// expression refers to an instantiable construct, that instantiation is
6414 /// performed as needed to complete its type. Furthermore
6415 /// Sema::RequireCompleteType is called for the expression's type (or in the
6416 /// case of a reference type, the referred-to type).
6417 ///
6418 /// \param E The expression whose type is required to be complete.
6419 /// \param Diagnoser The object that will emit a diagnostic if the type is
6420 /// incomplete.
6421 ///
6422 /// \returns \c true if the type of \p E is incomplete and diagnosed, \c false
6423 /// otherwise.
RequireCompleteExprType(Expr * E,TypeDiagnoser & Diagnoser)6424 bool Sema::RequireCompleteExprType(Expr *E, TypeDiagnoser &Diagnoser) {
6425 QualType T = E->getType();
6426
6427 // Incomplete array types may be completed by the initializer attached to
6428 // their definitions. For static data members of class templates and for
6429 // variable templates, we need to instantiate the definition to get this
6430 // initializer and complete the type.
6431 if (T->isIncompleteArrayType()) {
6432 completeExprArrayBound(E);
6433 T = E->getType();
6434 }
6435
6436 // FIXME: Are there other cases which require instantiating something other
6437 // than the type to complete the type of an expression?
6438
6439 return RequireCompleteType(E->getExprLoc(), T, Diagnoser);
6440 }
6441
RequireCompleteExprType(Expr * E,unsigned DiagID)6442 bool Sema::RequireCompleteExprType(Expr *E, unsigned DiagID) {
6443 BoundTypeDiagnoser<> Diagnoser(DiagID);
6444 return RequireCompleteExprType(E, Diagnoser);
6445 }
6446
6447 /// @brief Ensure that the type T is a complete type.
6448 ///
6449 /// This routine checks whether the type @p T is complete in any
6450 /// context where a complete type is required. If @p T is a complete
6451 /// type, returns false. If @p T is a class template specialization,
6452 /// this routine then attempts to perform class template
6453 /// instantiation. If instantiation fails, or if @p T is incomplete
6454 /// and cannot be completed, issues the diagnostic @p diag (giving it
6455 /// the type @p T) and returns true.
6456 ///
6457 /// @param Loc The location in the source that the incomplete type
6458 /// diagnostic should refer to.
6459 ///
6460 /// @param T The type that this routine is examining for completeness.
6461 ///
6462 /// @returns @c true if @p T is incomplete and a diagnostic was emitted,
6463 /// @c false otherwise.
RequireCompleteType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)6464 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
6465 TypeDiagnoser &Diagnoser) {
6466 if (RequireCompleteTypeImpl(Loc, T, &Diagnoser))
6467 return true;
6468 if (const TagType *Tag = T->getAs<TagType>()) {
6469 if (!Tag->getDecl()->isCompleteDefinitionRequired()) {
6470 Tag->getDecl()->setCompleteDefinitionRequired();
6471 Consumer.HandleTagDeclRequiredDefinition(Tag->getDecl());
6472 }
6473 }
6474 return false;
6475 }
6476
6477 /// \brief Determine whether there is any declaration of \p D that was ever a
6478 /// definition (perhaps before module merging) and is currently visible.
6479 /// \param D The definition of the entity.
6480 /// \param Suggested Filled in with the declaration that should be made visible
6481 /// in order to provide a definition of this entity.
6482 /// \param OnlyNeedComplete If \c true, we only need the type to be complete,
6483 /// not defined. This only matters for enums with a fixed underlying
6484 /// type, since in all other cases, a type is complete if and only if it
6485 /// is defined.
hasVisibleDefinition(NamedDecl * D,NamedDecl ** Suggested,bool OnlyNeedComplete)6486 bool Sema::hasVisibleDefinition(NamedDecl *D, NamedDecl **Suggested,
6487 bool OnlyNeedComplete) {
6488 // Easy case: if we don't have modules, all declarations are visible.
6489 if (!getLangOpts().Modules && !getLangOpts().ModulesLocalVisibility)
6490 return true;
6491
6492 // If this definition was instantiated from a template, map back to the
6493 // pattern from which it was instantiated.
6494 if (isa<TagDecl>(D) && cast<TagDecl>(D)->isBeingDefined()) {
6495 // We're in the middle of defining it; this definition should be treated
6496 // as visible.
6497 return true;
6498 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6499 if (auto *Pattern = RD->getTemplateInstantiationPattern())
6500 RD = Pattern;
6501 D = RD->getDefinition();
6502 } else if (auto *ED = dyn_cast<EnumDecl>(D)) {
6503 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
6504 ED = NewED;
6505 if (OnlyNeedComplete && ED->isFixed()) {
6506 // If the enum has a fixed underlying type, and we're only looking for a
6507 // complete type (not a definition), any visible declaration of it will
6508 // do.
6509 *Suggested = nullptr;
6510 for (auto *Redecl : ED->redecls()) {
6511 if (isVisible(Redecl))
6512 return true;
6513 if (Redecl->isThisDeclarationADefinition() ||
6514 (Redecl->isCanonicalDecl() && !*Suggested))
6515 *Suggested = Redecl;
6516 }
6517 return false;
6518 }
6519 D = ED->getDefinition();
6520 }
6521 assert(D && "missing definition for pattern of instantiated definition");
6522
6523 *Suggested = D;
6524 if (isVisible(D))
6525 return true;
6526
6527 // The external source may have additional definitions of this type that are
6528 // visible, so complete the redeclaration chain now and ask again.
6529 if (auto *Source = Context.getExternalSource()) {
6530 Source->CompleteRedeclChain(D);
6531 return isVisible(D);
6532 }
6533
6534 return false;
6535 }
6536
6537 /// Locks in the inheritance model for the given class and all of its bases.
assignInheritanceModel(Sema & S,CXXRecordDecl * RD)6538 static void assignInheritanceModel(Sema &S, CXXRecordDecl *RD) {
6539 RD = RD->getMostRecentDecl();
6540 if (!RD->hasAttr<MSInheritanceAttr>()) {
6541 MSInheritanceAttr::Spelling IM;
6542
6543 switch (S.MSPointerToMemberRepresentationMethod) {
6544 case LangOptions::PPTMK_BestCase:
6545 IM = RD->calculateInheritanceModel();
6546 break;
6547 case LangOptions::PPTMK_FullGeneralitySingleInheritance:
6548 IM = MSInheritanceAttr::Keyword_single_inheritance;
6549 break;
6550 case LangOptions::PPTMK_FullGeneralityMultipleInheritance:
6551 IM = MSInheritanceAttr::Keyword_multiple_inheritance;
6552 break;
6553 case LangOptions::PPTMK_FullGeneralityVirtualInheritance:
6554 IM = MSInheritanceAttr::Keyword_unspecified_inheritance;
6555 break;
6556 }
6557
6558 RD->addAttr(MSInheritanceAttr::CreateImplicit(
6559 S.getASTContext(), IM,
6560 /*BestCase=*/S.MSPointerToMemberRepresentationMethod ==
6561 LangOptions::PPTMK_BestCase,
6562 S.ImplicitMSInheritanceAttrLoc.isValid()
6563 ? S.ImplicitMSInheritanceAttrLoc
6564 : RD->getSourceRange()));
6565 }
6566 }
6567
6568 /// \brief The implementation of RequireCompleteType
RequireCompleteTypeImpl(SourceLocation Loc,QualType T,TypeDiagnoser * Diagnoser)6569 bool Sema::RequireCompleteTypeImpl(SourceLocation Loc, QualType T,
6570 TypeDiagnoser *Diagnoser) {
6571 // FIXME: Add this assertion to make sure we always get instantiation points.
6572 // assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
6573 // FIXME: Add this assertion to help us flush out problems with
6574 // checking for dependent types and type-dependent expressions.
6575 //
6576 // assert(!T->isDependentType() &&
6577 // "Can't ask whether a dependent type is complete");
6578
6579 // We lock in the inheritance model once somebody has asked us to ensure
6580 // that a pointer-to-member type is complete.
6581 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6582 if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>()) {
6583 if (!MPTy->getClass()->isDependentType()) {
6584 (void)isCompleteType(Loc, QualType(MPTy->getClass(), 0));
6585 assignInheritanceModel(*this, MPTy->getMostRecentCXXRecordDecl());
6586 }
6587 }
6588 }
6589
6590 // If we have a complete type, we're done.
6591 NamedDecl *Def = nullptr;
6592 if (!T->isIncompleteType(&Def)) {
6593 // If we know about the definition but it is not visible, complain.
6594 NamedDecl *SuggestedDef = nullptr;
6595 if (Def &&
6596 !hasVisibleDefinition(Def, &SuggestedDef, /*OnlyNeedComplete*/true)) {
6597 // If the user is going to see an error here, recover by making the
6598 // definition visible.
6599 bool TreatAsComplete = Diagnoser && !isSFINAEContext();
6600 if (Diagnoser)
6601 diagnoseMissingImport(Loc, SuggestedDef, /*NeedDefinition*/true,
6602 /*Recover*/TreatAsComplete);
6603 return !TreatAsComplete;
6604 }
6605
6606 return false;
6607 }
6608
6609 const TagType *Tag = T->getAs<TagType>();
6610 const ObjCInterfaceType *IFace = T->getAs<ObjCInterfaceType>();
6611
6612 // If there's an unimported definition of this type in a module (for
6613 // instance, because we forward declared it, then imported the definition),
6614 // import that definition now.
6615 //
6616 // FIXME: What about other cases where an import extends a redeclaration
6617 // chain for a declaration that can be accessed through a mechanism other
6618 // than name lookup (eg, referenced in a template, or a variable whose type
6619 // could be completed by the module)?
6620 //
6621 // FIXME: Should we map through to the base array element type before
6622 // checking for a tag type?
6623 if (Tag || IFace) {
6624 NamedDecl *D =
6625 Tag ? static_cast<NamedDecl *>(Tag->getDecl()) : IFace->getDecl();
6626
6627 // Avoid diagnosing invalid decls as incomplete.
6628 if (D->isInvalidDecl())
6629 return true;
6630
6631 // Give the external AST source a chance to complete the type.
6632 if (auto *Source = Context.getExternalSource()) {
6633 if (Tag)
6634 Source->CompleteType(Tag->getDecl());
6635 else
6636 Source->CompleteType(IFace->getDecl());
6637
6638 // If the external source completed the type, go through the motions
6639 // again to ensure we're allowed to use the completed type.
6640 if (!T->isIncompleteType())
6641 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
6642 }
6643 }
6644
6645 // If we have a class template specialization or a class member of a
6646 // class template specialization, or an array with known size of such,
6647 // try to instantiate it.
6648 QualType MaybeTemplate = T;
6649 while (const ConstantArrayType *Array
6650 = Context.getAsConstantArrayType(MaybeTemplate))
6651 MaybeTemplate = Array->getElementType();
6652 if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
6653 bool Instantiated = false;
6654 bool Diagnosed = false;
6655 if (ClassTemplateSpecializationDecl *ClassTemplateSpec
6656 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
6657 if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
6658 Diagnosed = InstantiateClassTemplateSpecialization(
6659 Loc, ClassTemplateSpec, TSK_ImplicitInstantiation,
6660 /*Complain=*/Diagnoser);
6661 Instantiated = true;
6662 }
6663 } else if (CXXRecordDecl *Rec
6664 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
6665 CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass();
6666 if (!Rec->isBeingDefined() && Pattern) {
6667 MemberSpecializationInfo *MSI = Rec->getMemberSpecializationInfo();
6668 assert(MSI && "Missing member specialization information?");
6669 // This record was instantiated from a class within a template.
6670 if (MSI->getTemplateSpecializationKind() !=
6671 TSK_ExplicitSpecialization) {
6672 Diagnosed = InstantiateClass(Loc, Rec, Pattern,
6673 getTemplateInstantiationArgs(Rec),
6674 TSK_ImplicitInstantiation,
6675 /*Complain=*/Diagnoser);
6676 Instantiated = true;
6677 }
6678 }
6679 }
6680
6681 if (Instantiated) {
6682 // Instantiate* might have already complained that the template is not
6683 // defined, if we asked it to.
6684 if (Diagnoser && Diagnosed)
6685 return true;
6686 // If we instantiated a definition, check that it's usable, even if
6687 // instantiation produced an error, so that repeated calls to this
6688 // function give consistent answers.
6689 if (!T->isIncompleteType())
6690 return RequireCompleteTypeImpl(Loc, T, Diagnoser);
6691 }
6692 }
6693
6694 if (!Diagnoser)
6695 return true;
6696
6697 // We have an incomplete type. Produce a diagnostic.
6698 if (Ident___float128 &&
6699 T == Context.getTypeDeclType(Context.getFloat128StubType())) {
6700 Diag(Loc, diag::err_typecheck_decl_incomplete_type___float128);
6701 return true;
6702 }
6703
6704 Diagnoser->diagnose(*this, Loc, T);
6705
6706 // If the type was a forward declaration of a class/struct/union
6707 // type, produce a note.
6708 if (Tag && !Tag->getDecl()->isInvalidDecl())
6709 Diag(Tag->getDecl()->getLocation(),
6710 Tag->isBeingDefined() ? diag::note_type_being_defined
6711 : diag::note_forward_declaration)
6712 << QualType(Tag, 0);
6713
6714 // If the Objective-C class was a forward declaration, produce a note.
6715 if (IFace && !IFace->getDecl()->isInvalidDecl())
6716 Diag(IFace->getDecl()->getLocation(), diag::note_forward_class);
6717
6718 // If we have external information that we can use to suggest a fix,
6719 // produce a note.
6720 if (ExternalSource)
6721 ExternalSource->MaybeDiagnoseMissingCompleteType(Loc, T);
6722
6723 return true;
6724 }
6725
RequireCompleteType(SourceLocation Loc,QualType T,unsigned DiagID)6726 bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
6727 unsigned DiagID) {
6728 BoundTypeDiagnoser<> Diagnoser(DiagID);
6729 return RequireCompleteType(Loc, T, Diagnoser);
6730 }
6731
6732 /// \brief Get diagnostic %select index for tag kind for
6733 /// literal type diagnostic message.
6734 /// WARNING: Indexes apply to particular diagnostics only!
6735 ///
6736 /// \returns diagnostic %select index.
getLiteralDiagFromTagKind(TagTypeKind Tag)6737 static unsigned getLiteralDiagFromTagKind(TagTypeKind Tag) {
6738 switch (Tag) {
6739 case TTK_Struct: return 0;
6740 case TTK_Interface: return 1;
6741 case TTK_Class: return 2;
6742 default: llvm_unreachable("Invalid tag kind for literal type diagnostic!");
6743 }
6744 }
6745
6746 /// @brief Ensure that the type T is a literal type.
6747 ///
6748 /// This routine checks whether the type @p T is a literal type. If @p T is an
6749 /// incomplete type, an attempt is made to complete it. If @p T is a literal
6750 /// type, or @p AllowIncompleteType is true and @p T is an incomplete type,
6751 /// returns false. Otherwise, this routine issues the diagnostic @p PD (giving
6752 /// it the type @p T), along with notes explaining why the type is not a
6753 /// literal type, and returns true.
6754 ///
6755 /// @param Loc The location in the source that the non-literal type
6756 /// diagnostic should refer to.
6757 ///
6758 /// @param T The type that this routine is examining for literalness.
6759 ///
6760 /// @param Diagnoser Emits a diagnostic if T is not a literal type.
6761 ///
6762 /// @returns @c true if @p T is not a literal type and a diagnostic was emitted,
6763 /// @c false otherwise.
RequireLiteralType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)6764 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T,
6765 TypeDiagnoser &Diagnoser) {
6766 assert(!T->isDependentType() && "type should not be dependent");
6767
6768 QualType ElemType = Context.getBaseElementType(T);
6769 if ((isCompleteType(Loc, ElemType) || ElemType->isVoidType()) &&
6770 T->isLiteralType(Context))
6771 return false;
6772
6773 Diagnoser.diagnose(*this, Loc, T);
6774
6775 if (T->isVariableArrayType())
6776 return true;
6777
6778 const RecordType *RT = ElemType->getAs<RecordType>();
6779 if (!RT)
6780 return true;
6781
6782 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6783
6784 // A partially-defined class type can't be a literal type, because a literal
6785 // class type must have a trivial destructor (which can't be checked until
6786 // the class definition is complete).
6787 if (RequireCompleteType(Loc, ElemType, diag::note_non_literal_incomplete, T))
6788 return true;
6789
6790 // If the class has virtual base classes, then it's not an aggregate, and
6791 // cannot have any constexpr constructors or a trivial default constructor,
6792 // so is non-literal. This is better to diagnose than the resulting absence
6793 // of constexpr constructors.
6794 if (RD->getNumVBases()) {
6795 Diag(RD->getLocation(), diag::note_non_literal_virtual_base)
6796 << getLiteralDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
6797 for (const auto &I : RD->vbases())
6798 Diag(I.getLocStart(), diag::note_constexpr_virtual_base_here)
6799 << I.getSourceRange();
6800 } else if (!RD->isAggregate() && !RD->hasConstexprNonCopyMoveConstructor() &&
6801 !RD->hasTrivialDefaultConstructor()) {
6802 Diag(RD->getLocation(), diag::note_non_literal_no_constexpr_ctors) << RD;
6803 } else if (RD->hasNonLiteralTypeFieldsOrBases()) {
6804 for (const auto &I : RD->bases()) {
6805 if (!I.getType()->isLiteralType(Context)) {
6806 Diag(I.getLocStart(),
6807 diag::note_non_literal_base_class)
6808 << RD << I.getType() << I.getSourceRange();
6809 return true;
6810 }
6811 }
6812 for (const auto *I : RD->fields()) {
6813 if (!I->getType()->isLiteralType(Context) ||
6814 I->getType().isVolatileQualified()) {
6815 Diag(I->getLocation(), diag::note_non_literal_field)
6816 << RD << I << I->getType()
6817 << I->getType().isVolatileQualified();
6818 return true;
6819 }
6820 }
6821 } else if (!RD->hasTrivialDestructor()) {
6822 // All fields and bases are of literal types, so have trivial destructors.
6823 // If this class's destructor is non-trivial it must be user-declared.
6824 CXXDestructorDecl *Dtor = RD->getDestructor();
6825 assert(Dtor && "class has literal fields and bases but no dtor?");
6826 if (!Dtor)
6827 return true;
6828
6829 Diag(Dtor->getLocation(), Dtor->isUserProvided() ?
6830 diag::note_non_literal_user_provided_dtor :
6831 diag::note_non_literal_nontrivial_dtor) << RD;
6832 if (!Dtor->isUserProvided())
6833 SpecialMemberIsTrivial(Dtor, CXXDestructor, /*Diagnose*/true);
6834 }
6835
6836 return true;
6837 }
6838
RequireLiteralType(SourceLocation Loc,QualType T,unsigned DiagID)6839 bool Sema::RequireLiteralType(SourceLocation Loc, QualType T, unsigned DiagID) {
6840 BoundTypeDiagnoser<> Diagnoser(DiagID);
6841 return RequireLiteralType(Loc, T, Diagnoser);
6842 }
6843
6844 /// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
6845 /// and qualified by the nested-name-specifier contained in SS.
getElaboratedType(ElaboratedTypeKeyword Keyword,const CXXScopeSpec & SS,QualType T)6846 QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
6847 const CXXScopeSpec &SS, QualType T) {
6848 if (T.isNull())
6849 return T;
6850 NestedNameSpecifier *NNS;
6851 if (SS.isValid())
6852 NNS = SS.getScopeRep();
6853 else {
6854 if (Keyword == ETK_None)
6855 return T;
6856 NNS = nullptr;
6857 }
6858 return Context.getElaboratedType(Keyword, NNS, T);
6859 }
6860
BuildTypeofExprType(Expr * E,SourceLocation Loc)6861 QualType Sema::BuildTypeofExprType(Expr *E, SourceLocation Loc) {
6862 ExprResult ER = CheckPlaceholderExpr(E);
6863 if (ER.isInvalid()) return QualType();
6864 E = ER.get();
6865
6866 if (!getLangOpts().CPlusPlus && E->refersToBitField())
6867 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 2;
6868
6869 if (!E->isTypeDependent()) {
6870 QualType T = E->getType();
6871 if (const TagType *TT = T->getAs<TagType>())
6872 DiagnoseUseOfDecl(TT->getDecl(), E->getExprLoc());
6873 }
6874 return Context.getTypeOfExprType(E);
6875 }
6876
6877 /// getDecltypeForExpr - Given an expr, will return the decltype for
6878 /// that expression, according to the rules in C++11
6879 /// [dcl.type.simple]p4 and C++11 [expr.lambda.prim]p18.
getDecltypeForExpr(Sema & S,Expr * E)6880 static QualType getDecltypeForExpr(Sema &S, Expr *E) {
6881 if (E->isTypeDependent())
6882 return S.Context.DependentTy;
6883
6884 // C++11 [dcl.type.simple]p4:
6885 // The type denoted by decltype(e) is defined as follows:
6886 //
6887 // - if e is an unparenthesized id-expression or an unparenthesized class
6888 // member access (5.2.5), decltype(e) is the type of the entity named
6889 // by e. If there is no such entity, or if e names a set of overloaded
6890 // functions, the program is ill-formed;
6891 //
6892 // We apply the same rules for Objective-C ivar and property references.
6893 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
6894 if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
6895 return VD->getType();
6896 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
6897 if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
6898 return FD->getType();
6899 } else if (const ObjCIvarRefExpr *IR = dyn_cast<ObjCIvarRefExpr>(E)) {
6900 return IR->getDecl()->getType();
6901 } else if (const ObjCPropertyRefExpr *PR = dyn_cast<ObjCPropertyRefExpr>(E)) {
6902 if (PR->isExplicitProperty())
6903 return PR->getExplicitProperty()->getType();
6904 } else if (auto *PE = dyn_cast<PredefinedExpr>(E)) {
6905 return PE->getType();
6906 }
6907
6908 // C++11 [expr.lambda.prim]p18:
6909 // Every occurrence of decltype((x)) where x is a possibly
6910 // parenthesized id-expression that names an entity of automatic
6911 // storage duration is treated as if x were transformed into an
6912 // access to a corresponding data member of the closure type that
6913 // would have been declared if x were an odr-use of the denoted
6914 // entity.
6915 using namespace sema;
6916 if (S.getCurLambda()) {
6917 if (isa<ParenExpr>(E)) {
6918 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
6919 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
6920 QualType T = S.getCapturedDeclRefType(Var, DRE->getLocation());
6921 if (!T.isNull())
6922 return S.Context.getLValueReferenceType(T);
6923 }
6924 }
6925 }
6926 }
6927
6928
6929 // C++11 [dcl.type.simple]p4:
6930 // [...]
6931 QualType T = E->getType();
6932 switch (E->getValueKind()) {
6933 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
6934 // type of e;
6935 case VK_XValue: T = S.Context.getRValueReferenceType(T); break;
6936 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
6937 // type of e;
6938 case VK_LValue: T = S.Context.getLValueReferenceType(T); break;
6939 // - otherwise, decltype(e) is the type of e.
6940 case VK_RValue: break;
6941 }
6942
6943 return T;
6944 }
6945
BuildDecltypeType(Expr * E,SourceLocation Loc,bool AsUnevaluated)6946 QualType Sema::BuildDecltypeType(Expr *E, SourceLocation Loc,
6947 bool AsUnevaluated) {
6948 ExprResult ER = CheckPlaceholderExpr(E);
6949 if (ER.isInvalid()) return QualType();
6950 E = ER.get();
6951
6952 if (AsUnevaluated && ActiveTemplateInstantiations.empty() &&
6953 E->HasSideEffects(Context, false)) {
6954 // The expression operand for decltype is in an unevaluated expression
6955 // context, so side effects could result in unintended consequences.
6956 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6957 }
6958
6959 return Context.getDecltypeType(E, getDecltypeForExpr(*this, E));
6960 }
6961
BuildUnaryTransformType(QualType BaseType,UnaryTransformType::UTTKind UKind,SourceLocation Loc)6962 QualType Sema::BuildUnaryTransformType(QualType BaseType,
6963 UnaryTransformType::UTTKind UKind,
6964 SourceLocation Loc) {
6965 switch (UKind) {
6966 case UnaryTransformType::EnumUnderlyingType:
6967 if (!BaseType->isDependentType() && !BaseType->isEnumeralType()) {
6968 Diag(Loc, diag::err_only_enums_have_underlying_types);
6969 return QualType();
6970 } else {
6971 QualType Underlying = BaseType;
6972 if (!BaseType->isDependentType()) {
6973 // The enum could be incomplete if we're parsing its definition or
6974 // recovering from an error.
6975 NamedDecl *FwdDecl = nullptr;
6976 if (BaseType->isIncompleteType(&FwdDecl)) {
6977 Diag(Loc, diag::err_underlying_type_of_incomplete_enum) << BaseType;
6978 Diag(FwdDecl->getLocation(), diag::note_forward_declaration) << FwdDecl;
6979 return QualType();
6980 }
6981
6982 EnumDecl *ED = BaseType->getAs<EnumType>()->getDecl();
6983 assert(ED && "EnumType has no EnumDecl");
6984
6985 DiagnoseUseOfDecl(ED, Loc);
6986
6987 Underlying = ED->getIntegerType();
6988 assert(!Underlying.isNull());
6989 }
6990 return Context.getUnaryTransformType(BaseType, Underlying,
6991 UnaryTransformType::EnumUnderlyingType);
6992 }
6993 }
6994 llvm_unreachable("unknown unary transform type");
6995 }
6996
BuildAtomicType(QualType T,SourceLocation Loc)6997 QualType Sema::BuildAtomicType(QualType T, SourceLocation Loc) {
6998 if (!T->isDependentType()) {
6999 // FIXME: It isn't entirely clear whether incomplete atomic types
7000 // are allowed or not; for simplicity, ban them for the moment.
7001 if (RequireCompleteType(Loc, T, diag::err_atomic_specifier_bad_type, 0))
7002 return QualType();
7003
7004 int DisallowedKind = -1;
7005 if (T->isArrayType())
7006 DisallowedKind = 1;
7007 else if (T->isFunctionType())
7008 DisallowedKind = 2;
7009 else if (T->isReferenceType())
7010 DisallowedKind = 3;
7011 else if (T->isAtomicType())
7012 DisallowedKind = 4;
7013 else if (T.hasQualifiers())
7014 DisallowedKind = 5;
7015 else if (!T.isTriviallyCopyableType(Context))
7016 // Some other non-trivially-copyable type (probably a C++ class)
7017 DisallowedKind = 6;
7018
7019 if (DisallowedKind != -1) {
7020 Diag(Loc, diag::err_atomic_specifier_bad_type) << DisallowedKind << T;
7021 return QualType();
7022 }
7023
7024 // FIXME: Do we need any handling for ARC here?
7025 }
7026
7027 // Build the pointer type.
7028 return Context.getAtomicType(T);
7029 }
7030