1 //= CStringChecker.cpp - Checks calls to C string functions --------*- C++ -*-//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This defines CStringChecker, which is an assortment of checks on calls
11 // to functions in <string.h>.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "ClangSACheckers.h"
16 #include "InterCheckerAPI.h"
17 #include "clang/Basic/CharInfo.h"
18 #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
19 #include "clang/StaticAnalyzer/Core/Checker.h"
20 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
21 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/StringSwitch.h"
26 #include "llvm/Support/raw_ostream.h"
27
28 using namespace clang;
29 using namespace ento;
30
31 namespace {
32 class CStringChecker : public Checker< eval::Call,
33 check::PreStmt<DeclStmt>,
34 check::LiveSymbols,
35 check::DeadSymbols,
36 check::RegionChanges
37 > {
38 mutable std::unique_ptr<BugType> BT_Null, BT_Bounds, BT_Overlap,
39 BT_NotCString, BT_AdditionOverflow;
40
41 mutable const char *CurrentFunctionDescription;
42
43 public:
44 /// The filter is used to filter out the diagnostics which are not enabled by
45 /// the user.
46 struct CStringChecksFilter {
47 DefaultBool CheckCStringNullArg;
48 DefaultBool CheckCStringOutOfBounds;
49 DefaultBool CheckCStringBufferOverlap;
50 DefaultBool CheckCStringNotNullTerm;
51
52 CheckName CheckNameCStringNullArg;
53 CheckName CheckNameCStringOutOfBounds;
54 CheckName CheckNameCStringBufferOverlap;
55 CheckName CheckNameCStringNotNullTerm;
56 };
57
58 CStringChecksFilter Filter;
59
getTag()60 static void *getTag() { static int tag; return &tag; }
61
62 bool evalCall(const CallExpr *CE, CheckerContext &C) const;
63 void checkPreStmt(const DeclStmt *DS, CheckerContext &C) const;
64 void checkLiveSymbols(ProgramStateRef state, SymbolReaper &SR) const;
65 void checkDeadSymbols(SymbolReaper &SR, CheckerContext &C) const;
66 bool wantsRegionChangeUpdate(ProgramStateRef state) const;
67
68 ProgramStateRef
69 checkRegionChanges(ProgramStateRef state,
70 const InvalidatedSymbols *,
71 ArrayRef<const MemRegion *> ExplicitRegions,
72 ArrayRef<const MemRegion *> Regions,
73 const CallEvent *Call) const;
74
75 typedef void (CStringChecker::*FnCheck)(CheckerContext &,
76 const CallExpr *) const;
77
78 void evalMemcpy(CheckerContext &C, const CallExpr *CE) const;
79 void evalMempcpy(CheckerContext &C, const CallExpr *CE) const;
80 void evalMemmove(CheckerContext &C, const CallExpr *CE) const;
81 void evalBcopy(CheckerContext &C, const CallExpr *CE) const;
82 void evalCopyCommon(CheckerContext &C, const CallExpr *CE,
83 ProgramStateRef state,
84 const Expr *Size,
85 const Expr *Source,
86 const Expr *Dest,
87 bool Restricted = false,
88 bool IsMempcpy = false) const;
89
90 void evalMemcmp(CheckerContext &C, const CallExpr *CE) const;
91
92 void evalstrLength(CheckerContext &C, const CallExpr *CE) const;
93 void evalstrnLength(CheckerContext &C, const CallExpr *CE) const;
94 void evalstrLengthCommon(CheckerContext &C,
95 const CallExpr *CE,
96 bool IsStrnlen = false) const;
97
98 void evalStrcpy(CheckerContext &C, const CallExpr *CE) const;
99 void evalStrncpy(CheckerContext &C, const CallExpr *CE) const;
100 void evalStpcpy(CheckerContext &C, const CallExpr *CE) const;
101 void evalStrcpyCommon(CheckerContext &C,
102 const CallExpr *CE,
103 bool returnEnd,
104 bool isBounded,
105 bool isAppending) const;
106
107 void evalStrcat(CheckerContext &C, const CallExpr *CE) const;
108 void evalStrncat(CheckerContext &C, const CallExpr *CE) const;
109
110 void evalStrcmp(CheckerContext &C, const CallExpr *CE) const;
111 void evalStrncmp(CheckerContext &C, const CallExpr *CE) const;
112 void evalStrcasecmp(CheckerContext &C, const CallExpr *CE) const;
113 void evalStrncasecmp(CheckerContext &C, const CallExpr *CE) const;
114 void evalStrcmpCommon(CheckerContext &C,
115 const CallExpr *CE,
116 bool isBounded = false,
117 bool ignoreCase = false) const;
118
119 void evalStrsep(CheckerContext &C, const CallExpr *CE) const;
120
121 // Utility methods
122 std::pair<ProgramStateRef , ProgramStateRef >
123 static assumeZero(CheckerContext &C,
124 ProgramStateRef state, SVal V, QualType Ty);
125
126 static ProgramStateRef setCStringLength(ProgramStateRef state,
127 const MemRegion *MR,
128 SVal strLength);
129 static SVal getCStringLengthForRegion(CheckerContext &C,
130 ProgramStateRef &state,
131 const Expr *Ex,
132 const MemRegion *MR,
133 bool hypothetical);
134 SVal getCStringLength(CheckerContext &C,
135 ProgramStateRef &state,
136 const Expr *Ex,
137 SVal Buf,
138 bool hypothetical = false) const;
139
140 const StringLiteral *getCStringLiteral(CheckerContext &C,
141 ProgramStateRef &state,
142 const Expr *expr,
143 SVal val) const;
144
145 static ProgramStateRef InvalidateBuffer(CheckerContext &C,
146 ProgramStateRef state,
147 const Expr *Ex, SVal V,
148 bool IsSourceBuffer,
149 const Expr *Size);
150
151 static bool SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
152 const MemRegion *MR);
153
154 // Re-usable checks
155 ProgramStateRef checkNonNull(CheckerContext &C,
156 ProgramStateRef state,
157 const Expr *S,
158 SVal l) const;
159 ProgramStateRef CheckLocation(CheckerContext &C,
160 ProgramStateRef state,
161 const Expr *S,
162 SVal l,
163 const char *message = nullptr) const;
164 ProgramStateRef CheckBufferAccess(CheckerContext &C,
165 ProgramStateRef state,
166 const Expr *Size,
167 const Expr *FirstBuf,
168 const Expr *SecondBuf,
169 const char *firstMessage = nullptr,
170 const char *secondMessage = nullptr,
171 bool WarnAboutSize = false) const;
172
CheckBufferAccess(CheckerContext & C,ProgramStateRef state,const Expr * Size,const Expr * Buf,const char * message=nullptr,bool WarnAboutSize=false) const173 ProgramStateRef CheckBufferAccess(CheckerContext &C,
174 ProgramStateRef state,
175 const Expr *Size,
176 const Expr *Buf,
177 const char *message = nullptr,
178 bool WarnAboutSize = false) const {
179 // This is a convenience override.
180 return CheckBufferAccess(C, state, Size, Buf, nullptr, message, nullptr,
181 WarnAboutSize);
182 }
183 ProgramStateRef CheckOverlap(CheckerContext &C,
184 ProgramStateRef state,
185 const Expr *Size,
186 const Expr *First,
187 const Expr *Second) const;
188 void emitOverlapBug(CheckerContext &C,
189 ProgramStateRef state,
190 const Stmt *First,
191 const Stmt *Second) const;
192
193 ProgramStateRef checkAdditionOverflow(CheckerContext &C,
194 ProgramStateRef state,
195 NonLoc left,
196 NonLoc right) const;
197
198 // Return true if the destination buffer of the copy function may be in bound.
199 // Expects SVal of Size to be positive and unsigned.
200 // Expects SVal of FirstBuf to be a FieldRegion.
201 static bool IsFirstBufInBound(CheckerContext &C,
202 ProgramStateRef state,
203 const Expr *FirstBuf,
204 const Expr *Size);
205 };
206
207 } //end anonymous namespace
208
REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength,const MemRegion *,SVal)209 REGISTER_MAP_WITH_PROGRAMSTATE(CStringLength, const MemRegion *, SVal)
210
211 //===----------------------------------------------------------------------===//
212 // Individual checks and utility methods.
213 //===----------------------------------------------------------------------===//
214
215 std::pair<ProgramStateRef , ProgramStateRef >
216 CStringChecker::assumeZero(CheckerContext &C, ProgramStateRef state, SVal V,
217 QualType Ty) {
218 Optional<DefinedSVal> val = V.getAs<DefinedSVal>();
219 if (!val)
220 return std::pair<ProgramStateRef , ProgramStateRef >(state, state);
221
222 SValBuilder &svalBuilder = C.getSValBuilder();
223 DefinedOrUnknownSVal zero = svalBuilder.makeZeroVal(Ty);
224 return state->assume(svalBuilder.evalEQ(state, *val, zero));
225 }
226
checkNonNull(CheckerContext & C,ProgramStateRef state,const Expr * S,SVal l) const227 ProgramStateRef CStringChecker::checkNonNull(CheckerContext &C,
228 ProgramStateRef state,
229 const Expr *S, SVal l) const {
230 // If a previous check has failed, propagate the failure.
231 if (!state)
232 return nullptr;
233
234 ProgramStateRef stateNull, stateNonNull;
235 std::tie(stateNull, stateNonNull) = assumeZero(C, state, l, S->getType());
236
237 if (stateNull && !stateNonNull) {
238 if (!Filter.CheckCStringNullArg)
239 return nullptr;
240
241 ExplodedNode *N = C.generateErrorNode(stateNull);
242 if (!N)
243 return nullptr;
244
245 if (!BT_Null)
246 BT_Null.reset(new BuiltinBug(
247 Filter.CheckNameCStringNullArg, categories::UnixAPI,
248 "Null pointer argument in call to byte string function"));
249
250 SmallString<80> buf;
251 llvm::raw_svector_ostream os(buf);
252 assert(CurrentFunctionDescription);
253 os << "Null pointer argument in call to " << CurrentFunctionDescription;
254
255 // Generate a report for this bug.
256 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Null.get());
257 auto report = llvm::make_unique<BugReport>(*BT, os.str(), N);
258
259 report->addRange(S->getSourceRange());
260 bugreporter::trackNullOrUndefValue(N, S, *report);
261 C.emitReport(std::move(report));
262 return nullptr;
263 }
264
265 // From here on, assume that the value is non-null.
266 assert(stateNonNull);
267 return stateNonNull;
268 }
269
270 // FIXME: This was originally copied from ArrayBoundChecker.cpp. Refactor?
CheckLocation(CheckerContext & C,ProgramStateRef state,const Expr * S,SVal l,const char * warningMsg) const271 ProgramStateRef CStringChecker::CheckLocation(CheckerContext &C,
272 ProgramStateRef state,
273 const Expr *S, SVal l,
274 const char *warningMsg) const {
275 // If a previous check has failed, propagate the failure.
276 if (!state)
277 return nullptr;
278
279 // Check for out of bound array element access.
280 const MemRegion *R = l.getAsRegion();
281 if (!R)
282 return state;
283
284 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
285 if (!ER)
286 return state;
287
288 assert(ER->getValueType() == C.getASTContext().CharTy &&
289 "CheckLocation should only be called with char* ElementRegions");
290
291 // Get the size of the array.
292 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
293 SValBuilder &svalBuilder = C.getSValBuilder();
294 SVal Extent =
295 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
296 DefinedOrUnknownSVal Size = Extent.castAs<DefinedOrUnknownSVal>();
297
298 // Get the index of the accessed element.
299 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
300
301 ProgramStateRef StInBound = state->assumeInBound(Idx, Size, true);
302 ProgramStateRef StOutBound = state->assumeInBound(Idx, Size, false);
303 if (StOutBound && !StInBound) {
304 ExplodedNode *N = C.generateErrorNode(StOutBound);
305 if (!N)
306 return nullptr;
307
308 if (!BT_Bounds) {
309 BT_Bounds.reset(new BuiltinBug(
310 Filter.CheckNameCStringOutOfBounds, "Out-of-bound array access",
311 "Byte string function accesses out-of-bound array element"));
312 }
313 BuiltinBug *BT = static_cast<BuiltinBug*>(BT_Bounds.get());
314
315 // Generate a report for this bug.
316 std::unique_ptr<BugReport> report;
317 if (warningMsg) {
318 report = llvm::make_unique<BugReport>(*BT, warningMsg, N);
319 } else {
320 assert(CurrentFunctionDescription);
321 assert(CurrentFunctionDescription[0] != '\0');
322
323 SmallString<80> buf;
324 llvm::raw_svector_ostream os(buf);
325 os << toUppercase(CurrentFunctionDescription[0])
326 << &CurrentFunctionDescription[1]
327 << " accesses out-of-bound array element";
328 report = llvm::make_unique<BugReport>(*BT, os.str(), N);
329 }
330
331 // FIXME: It would be nice to eventually make this diagnostic more clear,
332 // e.g., by referencing the original declaration or by saying *why* this
333 // reference is outside the range.
334
335 report->addRange(S->getSourceRange());
336 C.emitReport(std::move(report));
337 return nullptr;
338 }
339
340 // Array bound check succeeded. From this point forward the array bound
341 // should always succeed.
342 return StInBound;
343 }
344
CheckBufferAccess(CheckerContext & C,ProgramStateRef state,const Expr * Size,const Expr * FirstBuf,const Expr * SecondBuf,const char * firstMessage,const char * secondMessage,bool WarnAboutSize) const345 ProgramStateRef CStringChecker::CheckBufferAccess(CheckerContext &C,
346 ProgramStateRef state,
347 const Expr *Size,
348 const Expr *FirstBuf,
349 const Expr *SecondBuf,
350 const char *firstMessage,
351 const char *secondMessage,
352 bool WarnAboutSize) const {
353 // If a previous check has failed, propagate the failure.
354 if (!state)
355 return nullptr;
356
357 SValBuilder &svalBuilder = C.getSValBuilder();
358 ASTContext &Ctx = svalBuilder.getContext();
359 const LocationContext *LCtx = C.getLocationContext();
360
361 QualType sizeTy = Size->getType();
362 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
363
364 // Check that the first buffer is non-null.
365 SVal BufVal = state->getSVal(FirstBuf, LCtx);
366 state = checkNonNull(C, state, FirstBuf, BufVal);
367 if (!state)
368 return nullptr;
369
370 // If out-of-bounds checking is turned off, skip the rest.
371 if (!Filter.CheckCStringOutOfBounds)
372 return state;
373
374 // Get the access length and make sure it is known.
375 // FIXME: This assumes the caller has already checked that the access length
376 // is positive. And that it's unsigned.
377 SVal LengthVal = state->getSVal(Size, LCtx);
378 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
379 if (!Length)
380 return state;
381
382 // Compute the offset of the last element to be accessed: size-1.
383 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
384 NonLoc LastOffset = svalBuilder
385 .evalBinOpNN(state, BO_Sub, *Length, One, sizeTy).castAs<NonLoc>();
386
387 // Check that the first buffer is sufficiently long.
388 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
389 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
390 const Expr *warningExpr = (WarnAboutSize ? Size : FirstBuf);
391
392 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
393 LastOffset, PtrTy);
394 state = CheckLocation(C, state, warningExpr, BufEnd, firstMessage);
395
396 // If the buffer isn't large enough, abort.
397 if (!state)
398 return nullptr;
399 }
400
401 // If there's a second buffer, check it as well.
402 if (SecondBuf) {
403 BufVal = state->getSVal(SecondBuf, LCtx);
404 state = checkNonNull(C, state, SecondBuf, BufVal);
405 if (!state)
406 return nullptr;
407
408 BufStart = svalBuilder.evalCast(BufVal, PtrTy, SecondBuf->getType());
409 if (Optional<Loc> BufLoc = BufStart.getAs<Loc>()) {
410 const Expr *warningExpr = (WarnAboutSize ? Size : SecondBuf);
411
412 SVal BufEnd = svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc,
413 LastOffset, PtrTy);
414 state = CheckLocation(C, state, warningExpr, BufEnd, secondMessage);
415 }
416 }
417
418 // Large enough or not, return this state!
419 return state;
420 }
421
CheckOverlap(CheckerContext & C,ProgramStateRef state,const Expr * Size,const Expr * First,const Expr * Second) const422 ProgramStateRef CStringChecker::CheckOverlap(CheckerContext &C,
423 ProgramStateRef state,
424 const Expr *Size,
425 const Expr *First,
426 const Expr *Second) const {
427 if (!Filter.CheckCStringBufferOverlap)
428 return state;
429
430 // Do a simple check for overlap: if the two arguments are from the same
431 // buffer, see if the end of the first is greater than the start of the second
432 // or vice versa.
433
434 // If a previous check has failed, propagate the failure.
435 if (!state)
436 return nullptr;
437
438 ProgramStateRef stateTrue, stateFalse;
439
440 // Get the buffer values and make sure they're known locations.
441 const LocationContext *LCtx = C.getLocationContext();
442 SVal firstVal = state->getSVal(First, LCtx);
443 SVal secondVal = state->getSVal(Second, LCtx);
444
445 Optional<Loc> firstLoc = firstVal.getAs<Loc>();
446 if (!firstLoc)
447 return state;
448
449 Optional<Loc> secondLoc = secondVal.getAs<Loc>();
450 if (!secondLoc)
451 return state;
452
453 // Are the two values the same?
454 SValBuilder &svalBuilder = C.getSValBuilder();
455 std::tie(stateTrue, stateFalse) =
456 state->assume(svalBuilder.evalEQ(state, *firstLoc, *secondLoc));
457
458 if (stateTrue && !stateFalse) {
459 // If the values are known to be equal, that's automatically an overlap.
460 emitOverlapBug(C, stateTrue, First, Second);
461 return nullptr;
462 }
463
464 // assume the two expressions are not equal.
465 assert(stateFalse);
466 state = stateFalse;
467
468 // Which value comes first?
469 QualType cmpTy = svalBuilder.getConditionType();
470 SVal reverse = svalBuilder.evalBinOpLL(state, BO_GT,
471 *firstLoc, *secondLoc, cmpTy);
472 Optional<DefinedOrUnknownSVal> reverseTest =
473 reverse.getAs<DefinedOrUnknownSVal>();
474 if (!reverseTest)
475 return state;
476
477 std::tie(stateTrue, stateFalse) = state->assume(*reverseTest);
478 if (stateTrue) {
479 if (stateFalse) {
480 // If we don't know which one comes first, we can't perform this test.
481 return state;
482 } else {
483 // Switch the values so that firstVal is before secondVal.
484 std::swap(firstLoc, secondLoc);
485
486 // Switch the Exprs as well, so that they still correspond.
487 std::swap(First, Second);
488 }
489 }
490
491 // Get the length, and make sure it too is known.
492 SVal LengthVal = state->getSVal(Size, LCtx);
493 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
494 if (!Length)
495 return state;
496
497 // Convert the first buffer's start address to char*.
498 // Bail out if the cast fails.
499 ASTContext &Ctx = svalBuilder.getContext();
500 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
501 SVal FirstStart = svalBuilder.evalCast(*firstLoc, CharPtrTy,
502 First->getType());
503 Optional<Loc> FirstStartLoc = FirstStart.getAs<Loc>();
504 if (!FirstStartLoc)
505 return state;
506
507 // Compute the end of the first buffer. Bail out if THAT fails.
508 SVal FirstEnd = svalBuilder.evalBinOpLN(state, BO_Add,
509 *FirstStartLoc, *Length, CharPtrTy);
510 Optional<Loc> FirstEndLoc = FirstEnd.getAs<Loc>();
511 if (!FirstEndLoc)
512 return state;
513
514 // Is the end of the first buffer past the start of the second buffer?
515 SVal Overlap = svalBuilder.evalBinOpLL(state, BO_GT,
516 *FirstEndLoc, *secondLoc, cmpTy);
517 Optional<DefinedOrUnknownSVal> OverlapTest =
518 Overlap.getAs<DefinedOrUnknownSVal>();
519 if (!OverlapTest)
520 return state;
521
522 std::tie(stateTrue, stateFalse) = state->assume(*OverlapTest);
523
524 if (stateTrue && !stateFalse) {
525 // Overlap!
526 emitOverlapBug(C, stateTrue, First, Second);
527 return nullptr;
528 }
529
530 // assume the two expressions don't overlap.
531 assert(stateFalse);
532 return stateFalse;
533 }
534
emitOverlapBug(CheckerContext & C,ProgramStateRef state,const Stmt * First,const Stmt * Second) const535 void CStringChecker::emitOverlapBug(CheckerContext &C, ProgramStateRef state,
536 const Stmt *First, const Stmt *Second) const {
537 ExplodedNode *N = C.generateErrorNode(state);
538 if (!N)
539 return;
540
541 if (!BT_Overlap)
542 BT_Overlap.reset(new BugType(Filter.CheckNameCStringBufferOverlap,
543 categories::UnixAPI, "Improper arguments"));
544
545 // Generate a report for this bug.
546 auto report = llvm::make_unique<BugReport>(
547 *BT_Overlap, "Arguments must not be overlapping buffers", N);
548 report->addRange(First->getSourceRange());
549 report->addRange(Second->getSourceRange());
550
551 C.emitReport(std::move(report));
552 }
553
checkAdditionOverflow(CheckerContext & C,ProgramStateRef state,NonLoc left,NonLoc right) const554 ProgramStateRef CStringChecker::checkAdditionOverflow(CheckerContext &C,
555 ProgramStateRef state,
556 NonLoc left,
557 NonLoc right) const {
558 // If out-of-bounds checking is turned off, skip the rest.
559 if (!Filter.CheckCStringOutOfBounds)
560 return state;
561
562 // If a previous check has failed, propagate the failure.
563 if (!state)
564 return nullptr;
565
566 SValBuilder &svalBuilder = C.getSValBuilder();
567 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
568
569 QualType sizeTy = svalBuilder.getContext().getSizeType();
570 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
571 NonLoc maxVal = svalBuilder.makeIntVal(maxValInt);
572
573 SVal maxMinusRight;
574 if (right.getAs<nonloc::ConcreteInt>()) {
575 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, right,
576 sizeTy);
577 } else {
578 // Try switching the operands. (The order of these two assignments is
579 // important!)
580 maxMinusRight = svalBuilder.evalBinOpNN(state, BO_Sub, maxVal, left,
581 sizeTy);
582 left = right;
583 }
584
585 if (Optional<NonLoc> maxMinusRightNL = maxMinusRight.getAs<NonLoc>()) {
586 QualType cmpTy = svalBuilder.getConditionType();
587 // If left > max - right, we have an overflow.
588 SVal willOverflow = svalBuilder.evalBinOpNN(state, BO_GT, left,
589 *maxMinusRightNL, cmpTy);
590
591 ProgramStateRef stateOverflow, stateOkay;
592 std::tie(stateOverflow, stateOkay) =
593 state->assume(willOverflow.castAs<DefinedOrUnknownSVal>());
594
595 if (stateOverflow && !stateOkay) {
596 // We have an overflow. Emit a bug report.
597 ExplodedNode *N = C.generateErrorNode(stateOverflow);
598 if (!N)
599 return nullptr;
600
601 if (!BT_AdditionOverflow)
602 BT_AdditionOverflow.reset(
603 new BuiltinBug(Filter.CheckNameCStringOutOfBounds, "API",
604 "Sum of expressions causes overflow"));
605
606 // This isn't a great error message, but this should never occur in real
607 // code anyway -- you'd have to create a buffer longer than a size_t can
608 // represent, which is sort of a contradiction.
609 const char *warning =
610 "This expression will create a string whose length is too big to "
611 "be represented as a size_t";
612
613 // Generate a report for this bug.
614 C.emitReport(
615 llvm::make_unique<BugReport>(*BT_AdditionOverflow, warning, N));
616
617 return nullptr;
618 }
619
620 // From now on, assume an overflow didn't occur.
621 assert(stateOkay);
622 state = stateOkay;
623 }
624
625 return state;
626 }
627
setCStringLength(ProgramStateRef state,const MemRegion * MR,SVal strLength)628 ProgramStateRef CStringChecker::setCStringLength(ProgramStateRef state,
629 const MemRegion *MR,
630 SVal strLength) {
631 assert(!strLength.isUndef() && "Attempt to set an undefined string length");
632
633 MR = MR->StripCasts();
634
635 switch (MR->getKind()) {
636 case MemRegion::StringRegionKind:
637 // FIXME: This can happen if we strcpy() into a string region. This is
638 // undefined [C99 6.4.5p6], but we should still warn about it.
639 return state;
640
641 case MemRegion::SymbolicRegionKind:
642 case MemRegion::AllocaRegionKind:
643 case MemRegion::VarRegionKind:
644 case MemRegion::FieldRegionKind:
645 case MemRegion::ObjCIvarRegionKind:
646 // These are the types we can currently track string lengths for.
647 break;
648
649 case MemRegion::ElementRegionKind:
650 // FIXME: Handle element regions by upper-bounding the parent region's
651 // string length.
652 return state;
653
654 default:
655 // Other regions (mostly non-data) can't have a reliable C string length.
656 // For now, just ignore the change.
657 // FIXME: These are rare but not impossible. We should output some kind of
658 // warning for things like strcpy((char[]){'a', 0}, "b");
659 return state;
660 }
661
662 if (strLength.isUnknown())
663 return state->remove<CStringLength>(MR);
664
665 return state->set<CStringLength>(MR, strLength);
666 }
667
getCStringLengthForRegion(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,const MemRegion * MR,bool hypothetical)668 SVal CStringChecker::getCStringLengthForRegion(CheckerContext &C,
669 ProgramStateRef &state,
670 const Expr *Ex,
671 const MemRegion *MR,
672 bool hypothetical) {
673 if (!hypothetical) {
674 // If there's a recorded length, go ahead and return it.
675 const SVal *Recorded = state->get<CStringLength>(MR);
676 if (Recorded)
677 return *Recorded;
678 }
679
680 // Otherwise, get a new symbol and update the state.
681 SValBuilder &svalBuilder = C.getSValBuilder();
682 QualType sizeTy = svalBuilder.getContext().getSizeType();
683 SVal strLength = svalBuilder.getMetadataSymbolVal(CStringChecker::getTag(),
684 MR, Ex, sizeTy,
685 C.blockCount());
686
687 if (!hypothetical) {
688 if (Optional<NonLoc> strLn = strLength.getAs<NonLoc>()) {
689 // In case of unbounded calls strlen etc bound the range to SIZE_MAX/4
690 BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
691 const llvm::APSInt &maxValInt = BVF.getMaxValue(sizeTy);
692 llvm::APSInt fourInt = APSIntType(maxValInt).getValue(4);
693 const llvm::APSInt *maxLengthInt = BVF.evalAPSInt(BO_Div, maxValInt,
694 fourInt);
695 NonLoc maxLength = svalBuilder.makeIntVal(*maxLengthInt);
696 SVal evalLength = svalBuilder.evalBinOpNN(state, BO_LE, *strLn,
697 maxLength, sizeTy);
698 state = state->assume(evalLength.castAs<DefinedOrUnknownSVal>(), true);
699 }
700 state = state->set<CStringLength>(MR, strLength);
701 }
702
703 return strLength;
704 }
705
getCStringLength(CheckerContext & C,ProgramStateRef & state,const Expr * Ex,SVal Buf,bool hypothetical) const706 SVal CStringChecker::getCStringLength(CheckerContext &C, ProgramStateRef &state,
707 const Expr *Ex, SVal Buf,
708 bool hypothetical) const {
709 const MemRegion *MR = Buf.getAsRegion();
710 if (!MR) {
711 // If we can't get a region, see if it's something we /know/ isn't a
712 // C string. In the context of locations, the only time we can issue such
713 // a warning is for labels.
714 if (Optional<loc::GotoLabel> Label = Buf.getAs<loc::GotoLabel>()) {
715 if (!Filter.CheckCStringNotNullTerm)
716 return UndefinedVal();
717
718 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) {
719 if (!BT_NotCString)
720 BT_NotCString.reset(new BuiltinBug(
721 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
722 "Argument is not a null-terminated string."));
723
724 SmallString<120> buf;
725 llvm::raw_svector_ostream os(buf);
726 assert(CurrentFunctionDescription);
727 os << "Argument to " << CurrentFunctionDescription
728 << " is the address of the label '" << Label->getLabel()->getName()
729 << "', which is not a null-terminated string";
730
731 // Generate a report for this bug.
732 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N);
733
734 report->addRange(Ex->getSourceRange());
735 C.emitReport(std::move(report));
736 }
737 return UndefinedVal();
738
739 }
740
741 // If it's not a region and not a label, give up.
742 return UnknownVal();
743 }
744
745 // If we have a region, strip casts from it and see if we can figure out
746 // its length. For anything we can't figure out, just return UnknownVal.
747 MR = MR->StripCasts();
748
749 switch (MR->getKind()) {
750 case MemRegion::StringRegionKind: {
751 // Modifying the contents of string regions is undefined [C99 6.4.5p6],
752 // so we can assume that the byte length is the correct C string length.
753 SValBuilder &svalBuilder = C.getSValBuilder();
754 QualType sizeTy = svalBuilder.getContext().getSizeType();
755 const StringLiteral *strLit = cast<StringRegion>(MR)->getStringLiteral();
756 return svalBuilder.makeIntVal(strLit->getByteLength(), sizeTy);
757 }
758 case MemRegion::SymbolicRegionKind:
759 case MemRegion::AllocaRegionKind:
760 case MemRegion::VarRegionKind:
761 case MemRegion::FieldRegionKind:
762 case MemRegion::ObjCIvarRegionKind:
763 return getCStringLengthForRegion(C, state, Ex, MR, hypothetical);
764 case MemRegion::CompoundLiteralRegionKind:
765 // FIXME: Can we track this? Is it necessary?
766 return UnknownVal();
767 case MemRegion::ElementRegionKind:
768 // FIXME: How can we handle this? It's not good enough to subtract the
769 // offset from the base string length; consider "123\x00567" and &a[5].
770 return UnknownVal();
771 default:
772 // Other regions (mostly non-data) can't have a reliable C string length.
773 // In this case, an error is emitted and UndefinedVal is returned.
774 // The caller should always be prepared to handle this case.
775 if (!Filter.CheckCStringNotNullTerm)
776 return UndefinedVal();
777
778 if (ExplodedNode *N = C.generateNonFatalErrorNode(state)) {
779 if (!BT_NotCString)
780 BT_NotCString.reset(new BuiltinBug(
781 Filter.CheckNameCStringNotNullTerm, categories::UnixAPI,
782 "Argument is not a null-terminated string."));
783
784 SmallString<120> buf;
785 llvm::raw_svector_ostream os(buf);
786
787 assert(CurrentFunctionDescription);
788 os << "Argument to " << CurrentFunctionDescription << " is ";
789
790 if (SummarizeRegion(os, C.getASTContext(), MR))
791 os << ", which is not a null-terminated string";
792 else
793 os << "not a null-terminated string";
794
795 // Generate a report for this bug.
796 auto report = llvm::make_unique<BugReport>(*BT_NotCString, os.str(), N);
797
798 report->addRange(Ex->getSourceRange());
799 C.emitReport(std::move(report));
800 }
801
802 return UndefinedVal();
803 }
804 }
805
getCStringLiteral(CheckerContext & C,ProgramStateRef & state,const Expr * expr,SVal val) const806 const StringLiteral *CStringChecker::getCStringLiteral(CheckerContext &C,
807 ProgramStateRef &state, const Expr *expr, SVal val) const {
808
809 // Get the memory region pointed to by the val.
810 const MemRegion *bufRegion = val.getAsRegion();
811 if (!bufRegion)
812 return nullptr;
813
814 // Strip casts off the memory region.
815 bufRegion = bufRegion->StripCasts();
816
817 // Cast the memory region to a string region.
818 const StringRegion *strRegion= dyn_cast<StringRegion>(bufRegion);
819 if (!strRegion)
820 return nullptr;
821
822 // Return the actual string in the string region.
823 return strRegion->getStringLiteral();
824 }
825
IsFirstBufInBound(CheckerContext & C,ProgramStateRef state,const Expr * FirstBuf,const Expr * Size)826 bool CStringChecker::IsFirstBufInBound(CheckerContext &C,
827 ProgramStateRef state,
828 const Expr *FirstBuf,
829 const Expr *Size) {
830 // If we do not know that the buffer is long enough we return 'true'.
831 // Otherwise the parent region of this field region would also get
832 // invalidated, which would lead to warnings based on an unknown state.
833
834 // Originally copied from CheckBufferAccess and CheckLocation.
835 SValBuilder &svalBuilder = C.getSValBuilder();
836 ASTContext &Ctx = svalBuilder.getContext();
837 const LocationContext *LCtx = C.getLocationContext();
838
839 QualType sizeTy = Size->getType();
840 QualType PtrTy = Ctx.getPointerType(Ctx.CharTy);
841 SVal BufVal = state->getSVal(FirstBuf, LCtx);
842
843 SVal LengthVal = state->getSVal(Size, LCtx);
844 Optional<NonLoc> Length = LengthVal.getAs<NonLoc>();
845 if (!Length)
846 return true; // cf top comment.
847
848 // Compute the offset of the last element to be accessed: size-1.
849 NonLoc One = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
850 NonLoc LastOffset =
851 svalBuilder.evalBinOpNN(state, BO_Sub, *Length, One, sizeTy)
852 .castAs<NonLoc>();
853
854 // Check that the first buffer is sufficiently long.
855 SVal BufStart = svalBuilder.evalCast(BufVal, PtrTy, FirstBuf->getType());
856 Optional<Loc> BufLoc = BufStart.getAs<Loc>();
857 if (!BufLoc)
858 return true; // cf top comment.
859
860 SVal BufEnd =
861 svalBuilder.evalBinOpLN(state, BO_Add, *BufLoc, LastOffset, PtrTy);
862
863 // Check for out of bound array element access.
864 const MemRegion *R = BufEnd.getAsRegion();
865 if (!R)
866 return true; // cf top comment.
867
868 const ElementRegion *ER = dyn_cast<ElementRegion>(R);
869 if (!ER)
870 return true; // cf top comment.
871
872 assert(ER->getValueType() == C.getASTContext().CharTy &&
873 "IsFirstBufInBound should only be called with char* ElementRegions");
874
875 // Get the size of the array.
876 const SubRegion *superReg = cast<SubRegion>(ER->getSuperRegion());
877 SVal Extent =
878 svalBuilder.convertToArrayIndex(superReg->getExtent(svalBuilder));
879 DefinedOrUnknownSVal ExtentSize = Extent.castAs<DefinedOrUnknownSVal>();
880
881 // Get the index of the accessed element.
882 DefinedOrUnknownSVal Idx = ER->getIndex().castAs<DefinedOrUnknownSVal>();
883
884 ProgramStateRef StInBound = state->assumeInBound(Idx, ExtentSize, true);
885
886 return static_cast<bool>(StInBound);
887 }
888
InvalidateBuffer(CheckerContext & C,ProgramStateRef state,const Expr * E,SVal V,bool IsSourceBuffer,const Expr * Size)889 ProgramStateRef CStringChecker::InvalidateBuffer(CheckerContext &C,
890 ProgramStateRef state,
891 const Expr *E, SVal V,
892 bool IsSourceBuffer,
893 const Expr *Size) {
894 Optional<Loc> L = V.getAs<Loc>();
895 if (!L)
896 return state;
897
898 // FIXME: This is a simplified version of what's in CFRefCount.cpp -- it makes
899 // some assumptions about the value that CFRefCount can't. Even so, it should
900 // probably be refactored.
901 if (Optional<loc::MemRegionVal> MR = L->getAs<loc::MemRegionVal>()) {
902 const MemRegion *R = MR->getRegion()->StripCasts();
903
904 // Are we dealing with an ElementRegion? If so, we should be invalidating
905 // the super-region.
906 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
907 R = ER->getSuperRegion();
908 // FIXME: What about layers of ElementRegions?
909 }
910
911 // Invalidate this region.
912 const LocationContext *LCtx = C.getPredecessor()->getLocationContext();
913
914 bool CausesPointerEscape = false;
915 RegionAndSymbolInvalidationTraits ITraits;
916 // Invalidate and escape only indirect regions accessible through the source
917 // buffer.
918 if (IsSourceBuffer) {
919 ITraits.setTrait(R,
920 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
921 ITraits.setTrait(R, RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
922 CausesPointerEscape = true;
923 } else {
924 const MemRegion::Kind& K = R->getKind();
925 if (K == MemRegion::FieldRegionKind)
926 if (Size && IsFirstBufInBound(C, state, E, Size)) {
927 // If destination buffer is a field region and access is in bound,
928 // do not invalidate its super region.
929 ITraits.setTrait(
930 R,
931 RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
932 }
933 }
934
935 return state->invalidateRegions(R, E, C.blockCount(), LCtx,
936 CausesPointerEscape, nullptr, nullptr,
937 &ITraits);
938 }
939
940 // If we have a non-region value by chance, just remove the binding.
941 // FIXME: is this necessary or correct? This handles the non-Region
942 // cases. Is it ever valid to store to these?
943 return state->killBinding(*L);
944 }
945
SummarizeRegion(raw_ostream & os,ASTContext & Ctx,const MemRegion * MR)946 bool CStringChecker::SummarizeRegion(raw_ostream &os, ASTContext &Ctx,
947 const MemRegion *MR) {
948 const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(MR);
949
950 switch (MR->getKind()) {
951 case MemRegion::FunctionTextRegionKind: {
952 const NamedDecl *FD = cast<FunctionTextRegion>(MR)->getDecl();
953 if (FD)
954 os << "the address of the function '" << *FD << '\'';
955 else
956 os << "the address of a function";
957 return true;
958 }
959 case MemRegion::BlockTextRegionKind:
960 os << "block text";
961 return true;
962 case MemRegion::BlockDataRegionKind:
963 os << "a block";
964 return true;
965 case MemRegion::CXXThisRegionKind:
966 case MemRegion::CXXTempObjectRegionKind:
967 os << "a C++ temp object of type " << TVR->getValueType().getAsString();
968 return true;
969 case MemRegion::VarRegionKind:
970 os << "a variable of type" << TVR->getValueType().getAsString();
971 return true;
972 case MemRegion::FieldRegionKind:
973 os << "a field of type " << TVR->getValueType().getAsString();
974 return true;
975 case MemRegion::ObjCIvarRegionKind:
976 os << "an instance variable of type " << TVR->getValueType().getAsString();
977 return true;
978 default:
979 return false;
980 }
981 }
982
983 //===----------------------------------------------------------------------===//
984 // evaluation of individual function calls.
985 //===----------------------------------------------------------------------===//
986
evalCopyCommon(CheckerContext & C,const CallExpr * CE,ProgramStateRef state,const Expr * Size,const Expr * Dest,const Expr * Source,bool Restricted,bool IsMempcpy) const987 void CStringChecker::evalCopyCommon(CheckerContext &C,
988 const CallExpr *CE,
989 ProgramStateRef state,
990 const Expr *Size, const Expr *Dest,
991 const Expr *Source, bool Restricted,
992 bool IsMempcpy) const {
993 CurrentFunctionDescription = "memory copy function";
994
995 // See if the size argument is zero.
996 const LocationContext *LCtx = C.getLocationContext();
997 SVal sizeVal = state->getSVal(Size, LCtx);
998 QualType sizeTy = Size->getType();
999
1000 ProgramStateRef stateZeroSize, stateNonZeroSize;
1001 std::tie(stateZeroSize, stateNonZeroSize) =
1002 assumeZero(C, state, sizeVal, sizeTy);
1003
1004 // Get the value of the Dest.
1005 SVal destVal = state->getSVal(Dest, LCtx);
1006
1007 // If the size is zero, there won't be any actual memory access, so
1008 // just bind the return value to the destination buffer and return.
1009 if (stateZeroSize && !stateNonZeroSize) {
1010 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, destVal);
1011 C.addTransition(stateZeroSize);
1012 return;
1013 }
1014
1015 // If the size can be nonzero, we have to check the other arguments.
1016 if (stateNonZeroSize) {
1017 state = stateNonZeroSize;
1018
1019 // Ensure the destination is not null. If it is NULL there will be a
1020 // NULL pointer dereference.
1021 state = checkNonNull(C, state, Dest, destVal);
1022 if (!state)
1023 return;
1024
1025 // Get the value of the Src.
1026 SVal srcVal = state->getSVal(Source, LCtx);
1027
1028 // Ensure the source is not null. If it is NULL there will be a
1029 // NULL pointer dereference.
1030 state = checkNonNull(C, state, Source, srcVal);
1031 if (!state)
1032 return;
1033
1034 // Ensure the accesses are valid and that the buffers do not overlap.
1035 const char * const writeWarning =
1036 "Memory copy function overflows destination buffer";
1037 state = CheckBufferAccess(C, state, Size, Dest, Source,
1038 writeWarning, /* sourceWarning = */ nullptr);
1039 if (Restricted)
1040 state = CheckOverlap(C, state, Size, Dest, Source);
1041
1042 if (!state)
1043 return;
1044
1045 // If this is mempcpy, get the byte after the last byte copied and
1046 // bind the expr.
1047 if (IsMempcpy) {
1048 loc::MemRegionVal destRegVal = destVal.castAs<loc::MemRegionVal>();
1049
1050 // Get the length to copy.
1051 if (Optional<NonLoc> lenValNonLoc = sizeVal.getAs<NonLoc>()) {
1052 // Get the byte after the last byte copied.
1053 SValBuilder &SvalBuilder = C.getSValBuilder();
1054 ASTContext &Ctx = SvalBuilder.getContext();
1055 QualType CharPtrTy = Ctx.getPointerType(Ctx.CharTy);
1056 loc::MemRegionVal DestRegCharVal = SvalBuilder.evalCast(destRegVal,
1057 CharPtrTy, Dest->getType()).castAs<loc::MemRegionVal>();
1058 SVal lastElement = C.getSValBuilder().evalBinOpLN(state, BO_Add,
1059 DestRegCharVal,
1060 *lenValNonLoc,
1061 Dest->getType());
1062
1063 // The byte after the last byte copied is the return value.
1064 state = state->BindExpr(CE, LCtx, lastElement);
1065 } else {
1066 // If we don't know how much we copied, we can at least
1067 // conjure a return value for later.
1068 SVal result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1069 C.blockCount());
1070 state = state->BindExpr(CE, LCtx, result);
1071 }
1072
1073 } else {
1074 // All other copies return the destination buffer.
1075 // (Well, bcopy() has a void return type, but this won't hurt.)
1076 state = state->BindExpr(CE, LCtx, destVal);
1077 }
1078
1079 // Invalidate the destination (regular invalidation without pointer-escaping
1080 // the address of the top-level region).
1081 // FIXME: Even if we can't perfectly model the copy, we should see if we
1082 // can use LazyCompoundVals to copy the source values into the destination.
1083 // This would probably remove any existing bindings past the end of the
1084 // copied region, but that's still an improvement over blank invalidation.
1085 state = InvalidateBuffer(C, state, Dest, C.getSVal(Dest),
1086 /*IsSourceBuffer*/false, Size);
1087
1088 // Invalidate the source (const-invalidation without const-pointer-escaping
1089 // the address of the top-level region).
1090 state = InvalidateBuffer(C, state, Source, C.getSVal(Source),
1091 /*IsSourceBuffer*/true, nullptr);
1092
1093 C.addTransition(state);
1094 }
1095 }
1096
1097
evalMemcpy(CheckerContext & C,const CallExpr * CE) const1098 void CStringChecker::evalMemcpy(CheckerContext &C, const CallExpr *CE) const {
1099 if (CE->getNumArgs() < 3)
1100 return;
1101
1102 // void *memcpy(void *restrict dst, const void *restrict src, size_t n);
1103 // The return value is the address of the destination buffer.
1104 const Expr *Dest = CE->getArg(0);
1105 ProgramStateRef state = C.getState();
1106
1107 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true);
1108 }
1109
evalMempcpy(CheckerContext & C,const CallExpr * CE) const1110 void CStringChecker::evalMempcpy(CheckerContext &C, const CallExpr *CE) const {
1111 if (CE->getNumArgs() < 3)
1112 return;
1113
1114 // void *mempcpy(void *restrict dst, const void *restrict src, size_t n);
1115 // The return value is a pointer to the byte following the last written byte.
1116 const Expr *Dest = CE->getArg(0);
1117 ProgramStateRef state = C.getState();
1118
1119 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1), true, true);
1120 }
1121
evalMemmove(CheckerContext & C,const CallExpr * CE) const1122 void CStringChecker::evalMemmove(CheckerContext &C, const CallExpr *CE) const {
1123 if (CE->getNumArgs() < 3)
1124 return;
1125
1126 // void *memmove(void *dst, const void *src, size_t n);
1127 // The return value is the address of the destination buffer.
1128 const Expr *Dest = CE->getArg(0);
1129 ProgramStateRef state = C.getState();
1130
1131 evalCopyCommon(C, CE, state, CE->getArg(2), Dest, CE->getArg(1));
1132 }
1133
evalBcopy(CheckerContext & C,const CallExpr * CE) const1134 void CStringChecker::evalBcopy(CheckerContext &C, const CallExpr *CE) const {
1135 if (CE->getNumArgs() < 3)
1136 return;
1137
1138 // void bcopy(const void *src, void *dst, size_t n);
1139 evalCopyCommon(C, CE, C.getState(),
1140 CE->getArg(2), CE->getArg(1), CE->getArg(0));
1141 }
1142
evalMemcmp(CheckerContext & C,const CallExpr * CE) const1143 void CStringChecker::evalMemcmp(CheckerContext &C, const CallExpr *CE) const {
1144 if (CE->getNumArgs() < 3)
1145 return;
1146
1147 // int memcmp(const void *s1, const void *s2, size_t n);
1148 CurrentFunctionDescription = "memory comparison function";
1149
1150 const Expr *Left = CE->getArg(0);
1151 const Expr *Right = CE->getArg(1);
1152 const Expr *Size = CE->getArg(2);
1153
1154 ProgramStateRef state = C.getState();
1155 SValBuilder &svalBuilder = C.getSValBuilder();
1156
1157 // See if the size argument is zero.
1158 const LocationContext *LCtx = C.getLocationContext();
1159 SVal sizeVal = state->getSVal(Size, LCtx);
1160 QualType sizeTy = Size->getType();
1161
1162 ProgramStateRef stateZeroSize, stateNonZeroSize;
1163 std::tie(stateZeroSize, stateNonZeroSize) =
1164 assumeZero(C, state, sizeVal, sizeTy);
1165
1166 // If the size can be zero, the result will be 0 in that case, and we don't
1167 // have to check either of the buffers.
1168 if (stateZeroSize) {
1169 state = stateZeroSize;
1170 state = state->BindExpr(CE, LCtx,
1171 svalBuilder.makeZeroVal(CE->getType()));
1172 C.addTransition(state);
1173 }
1174
1175 // If the size can be nonzero, we have to check the other arguments.
1176 if (stateNonZeroSize) {
1177 state = stateNonZeroSize;
1178 // If we know the two buffers are the same, we know the result is 0.
1179 // First, get the two buffers' addresses. Another checker will have already
1180 // made sure they're not undefined.
1181 DefinedOrUnknownSVal LV =
1182 state->getSVal(Left, LCtx).castAs<DefinedOrUnknownSVal>();
1183 DefinedOrUnknownSVal RV =
1184 state->getSVal(Right, LCtx).castAs<DefinedOrUnknownSVal>();
1185
1186 // See if they are the same.
1187 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1188 ProgramStateRef StSameBuf, StNotSameBuf;
1189 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1190
1191 // If the two arguments might be the same buffer, we know the result is 0,
1192 // and we only need to check one size.
1193 if (StSameBuf) {
1194 state = StSameBuf;
1195 state = CheckBufferAccess(C, state, Size, Left);
1196 if (state) {
1197 state = StSameBuf->BindExpr(CE, LCtx,
1198 svalBuilder.makeZeroVal(CE->getType()));
1199 C.addTransition(state);
1200 }
1201 }
1202
1203 // If the two arguments might be different buffers, we have to check the
1204 // size of both of them.
1205 if (StNotSameBuf) {
1206 state = StNotSameBuf;
1207 state = CheckBufferAccess(C, state, Size, Left, Right);
1208 if (state) {
1209 // The return value is the comparison result, which we don't know.
1210 SVal CmpV = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1211 C.blockCount());
1212 state = state->BindExpr(CE, LCtx, CmpV);
1213 C.addTransition(state);
1214 }
1215 }
1216 }
1217 }
1218
evalstrLength(CheckerContext & C,const CallExpr * CE) const1219 void CStringChecker::evalstrLength(CheckerContext &C,
1220 const CallExpr *CE) const {
1221 if (CE->getNumArgs() < 1)
1222 return;
1223
1224 // size_t strlen(const char *s);
1225 evalstrLengthCommon(C, CE, /* IsStrnlen = */ false);
1226 }
1227
evalstrnLength(CheckerContext & C,const CallExpr * CE) const1228 void CStringChecker::evalstrnLength(CheckerContext &C,
1229 const CallExpr *CE) const {
1230 if (CE->getNumArgs() < 2)
1231 return;
1232
1233 // size_t strnlen(const char *s, size_t maxlen);
1234 evalstrLengthCommon(C, CE, /* IsStrnlen = */ true);
1235 }
1236
evalstrLengthCommon(CheckerContext & C,const CallExpr * CE,bool IsStrnlen) const1237 void CStringChecker::evalstrLengthCommon(CheckerContext &C, const CallExpr *CE,
1238 bool IsStrnlen) const {
1239 CurrentFunctionDescription = "string length function";
1240 ProgramStateRef state = C.getState();
1241 const LocationContext *LCtx = C.getLocationContext();
1242
1243 if (IsStrnlen) {
1244 const Expr *maxlenExpr = CE->getArg(1);
1245 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1246
1247 ProgramStateRef stateZeroSize, stateNonZeroSize;
1248 std::tie(stateZeroSize, stateNonZeroSize) =
1249 assumeZero(C, state, maxlenVal, maxlenExpr->getType());
1250
1251 // If the size can be zero, the result will be 0 in that case, and we don't
1252 // have to check the string itself.
1253 if (stateZeroSize) {
1254 SVal zero = C.getSValBuilder().makeZeroVal(CE->getType());
1255 stateZeroSize = stateZeroSize->BindExpr(CE, LCtx, zero);
1256 C.addTransition(stateZeroSize);
1257 }
1258
1259 // If the size is GUARANTEED to be zero, we're done!
1260 if (!stateNonZeroSize)
1261 return;
1262
1263 // Otherwise, record the assumption that the size is nonzero.
1264 state = stateNonZeroSize;
1265 }
1266
1267 // Check that the string argument is non-null.
1268 const Expr *Arg = CE->getArg(0);
1269 SVal ArgVal = state->getSVal(Arg, LCtx);
1270
1271 state = checkNonNull(C, state, Arg, ArgVal);
1272
1273 if (!state)
1274 return;
1275
1276 SVal strLength = getCStringLength(C, state, Arg, ArgVal);
1277
1278 // If the argument isn't a valid C string, there's no valid state to
1279 // transition to.
1280 if (strLength.isUndef())
1281 return;
1282
1283 DefinedOrUnknownSVal result = UnknownVal();
1284
1285 // If the check is for strnlen() then bind the return value to no more than
1286 // the maxlen value.
1287 if (IsStrnlen) {
1288 QualType cmpTy = C.getSValBuilder().getConditionType();
1289
1290 // It's a little unfortunate to be getting this again,
1291 // but it's not that expensive...
1292 const Expr *maxlenExpr = CE->getArg(1);
1293 SVal maxlenVal = state->getSVal(maxlenExpr, LCtx);
1294
1295 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1296 Optional<NonLoc> maxlenValNL = maxlenVal.getAs<NonLoc>();
1297
1298 if (strLengthNL && maxlenValNL) {
1299 ProgramStateRef stateStringTooLong, stateStringNotTooLong;
1300
1301 // Check if the strLength is greater than the maxlen.
1302 std::tie(stateStringTooLong, stateStringNotTooLong) = state->assume(
1303 C.getSValBuilder()
1304 .evalBinOpNN(state, BO_GT, *strLengthNL, *maxlenValNL, cmpTy)
1305 .castAs<DefinedOrUnknownSVal>());
1306
1307 if (stateStringTooLong && !stateStringNotTooLong) {
1308 // If the string is longer than maxlen, return maxlen.
1309 result = *maxlenValNL;
1310 } else if (stateStringNotTooLong && !stateStringTooLong) {
1311 // If the string is shorter than maxlen, return its length.
1312 result = *strLengthNL;
1313 }
1314 }
1315
1316 if (result.isUnknown()) {
1317 // If we don't have enough information for a comparison, there's
1318 // no guarantee the full string length will actually be returned.
1319 // All we know is the return value is the min of the string length
1320 // and the limit. This is better than nothing.
1321 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1322 C.blockCount());
1323 NonLoc resultNL = result.castAs<NonLoc>();
1324
1325 if (strLengthNL) {
1326 state = state->assume(C.getSValBuilder().evalBinOpNN(
1327 state, BO_LE, resultNL, *strLengthNL, cmpTy)
1328 .castAs<DefinedOrUnknownSVal>(), true);
1329 }
1330
1331 if (maxlenValNL) {
1332 state = state->assume(C.getSValBuilder().evalBinOpNN(
1333 state, BO_LE, resultNL, *maxlenValNL, cmpTy)
1334 .castAs<DefinedOrUnknownSVal>(), true);
1335 }
1336 }
1337
1338 } else {
1339 // This is a plain strlen(), not strnlen().
1340 result = strLength.castAs<DefinedOrUnknownSVal>();
1341
1342 // If we don't know the length of the string, conjure a return
1343 // value, so it can be used in constraints, at least.
1344 if (result.isUnknown()) {
1345 result = C.getSValBuilder().conjureSymbolVal(nullptr, CE, LCtx,
1346 C.blockCount());
1347 }
1348 }
1349
1350 // Bind the return value.
1351 assert(!result.isUnknown() && "Should have conjured a value by now");
1352 state = state->BindExpr(CE, LCtx, result);
1353 C.addTransition(state);
1354 }
1355
evalStrcpy(CheckerContext & C,const CallExpr * CE) const1356 void CStringChecker::evalStrcpy(CheckerContext &C, const CallExpr *CE) const {
1357 if (CE->getNumArgs() < 2)
1358 return;
1359
1360 // char *strcpy(char *restrict dst, const char *restrict src);
1361 evalStrcpyCommon(C, CE,
1362 /* returnEnd = */ false,
1363 /* isBounded = */ false,
1364 /* isAppending = */ false);
1365 }
1366
evalStrncpy(CheckerContext & C,const CallExpr * CE) const1367 void CStringChecker::evalStrncpy(CheckerContext &C, const CallExpr *CE) const {
1368 if (CE->getNumArgs() < 3)
1369 return;
1370
1371 // char *strncpy(char *restrict dst, const char *restrict src, size_t n);
1372 evalStrcpyCommon(C, CE,
1373 /* returnEnd = */ false,
1374 /* isBounded = */ true,
1375 /* isAppending = */ false);
1376 }
1377
evalStpcpy(CheckerContext & C,const CallExpr * CE) const1378 void CStringChecker::evalStpcpy(CheckerContext &C, const CallExpr *CE) const {
1379 if (CE->getNumArgs() < 2)
1380 return;
1381
1382 // char *stpcpy(char *restrict dst, const char *restrict src);
1383 evalStrcpyCommon(C, CE,
1384 /* returnEnd = */ true,
1385 /* isBounded = */ false,
1386 /* isAppending = */ false);
1387 }
1388
evalStrcat(CheckerContext & C,const CallExpr * CE) const1389 void CStringChecker::evalStrcat(CheckerContext &C, const CallExpr *CE) const {
1390 if (CE->getNumArgs() < 2)
1391 return;
1392
1393 //char *strcat(char *restrict s1, const char *restrict s2);
1394 evalStrcpyCommon(C, CE,
1395 /* returnEnd = */ false,
1396 /* isBounded = */ false,
1397 /* isAppending = */ true);
1398 }
1399
evalStrncat(CheckerContext & C,const CallExpr * CE) const1400 void CStringChecker::evalStrncat(CheckerContext &C, const CallExpr *CE) const {
1401 if (CE->getNumArgs() < 3)
1402 return;
1403
1404 //char *strncat(char *restrict s1, const char *restrict s2, size_t n);
1405 evalStrcpyCommon(C, CE,
1406 /* returnEnd = */ false,
1407 /* isBounded = */ true,
1408 /* isAppending = */ true);
1409 }
1410
evalStrcpyCommon(CheckerContext & C,const CallExpr * CE,bool returnEnd,bool isBounded,bool isAppending) const1411 void CStringChecker::evalStrcpyCommon(CheckerContext &C, const CallExpr *CE,
1412 bool returnEnd, bool isBounded,
1413 bool isAppending) const {
1414 CurrentFunctionDescription = "string copy function";
1415 ProgramStateRef state = C.getState();
1416 const LocationContext *LCtx = C.getLocationContext();
1417
1418 // Check that the destination is non-null.
1419 const Expr *Dst = CE->getArg(0);
1420 SVal DstVal = state->getSVal(Dst, LCtx);
1421
1422 state = checkNonNull(C, state, Dst, DstVal);
1423 if (!state)
1424 return;
1425
1426 // Check that the source is non-null.
1427 const Expr *srcExpr = CE->getArg(1);
1428 SVal srcVal = state->getSVal(srcExpr, LCtx);
1429 state = checkNonNull(C, state, srcExpr, srcVal);
1430 if (!state)
1431 return;
1432
1433 // Get the string length of the source.
1434 SVal strLength = getCStringLength(C, state, srcExpr, srcVal);
1435
1436 // If the source isn't a valid C string, give up.
1437 if (strLength.isUndef())
1438 return;
1439
1440 SValBuilder &svalBuilder = C.getSValBuilder();
1441 QualType cmpTy = svalBuilder.getConditionType();
1442 QualType sizeTy = svalBuilder.getContext().getSizeType();
1443
1444 // These two values allow checking two kinds of errors:
1445 // - actual overflows caused by a source that doesn't fit in the destination
1446 // - potential overflows caused by a bound that could exceed the destination
1447 SVal amountCopied = UnknownVal();
1448 SVal maxLastElementIndex = UnknownVal();
1449 const char *boundWarning = nullptr;
1450
1451 // If the function is strncpy, strncat, etc... it is bounded.
1452 if (isBounded) {
1453 // Get the max number of characters to copy.
1454 const Expr *lenExpr = CE->getArg(2);
1455 SVal lenVal = state->getSVal(lenExpr, LCtx);
1456
1457 // Protect against misdeclared strncpy().
1458 lenVal = svalBuilder.evalCast(lenVal, sizeTy, lenExpr->getType());
1459
1460 Optional<NonLoc> strLengthNL = strLength.getAs<NonLoc>();
1461 Optional<NonLoc> lenValNL = lenVal.getAs<NonLoc>();
1462
1463 // If we know both values, we might be able to figure out how much
1464 // we're copying.
1465 if (strLengthNL && lenValNL) {
1466 ProgramStateRef stateSourceTooLong, stateSourceNotTooLong;
1467
1468 // Check if the max number to copy is less than the length of the src.
1469 // If the bound is equal to the source length, strncpy won't null-
1470 // terminate the result!
1471 std::tie(stateSourceTooLong, stateSourceNotTooLong) = state->assume(
1472 svalBuilder.evalBinOpNN(state, BO_GE, *strLengthNL, *lenValNL, cmpTy)
1473 .castAs<DefinedOrUnknownSVal>());
1474
1475 if (stateSourceTooLong && !stateSourceNotTooLong) {
1476 // Max number to copy is less than the length of the src, so the actual
1477 // strLength copied is the max number arg.
1478 state = stateSourceTooLong;
1479 amountCopied = lenVal;
1480
1481 } else if (!stateSourceTooLong && stateSourceNotTooLong) {
1482 // The source buffer entirely fits in the bound.
1483 state = stateSourceNotTooLong;
1484 amountCopied = strLength;
1485 }
1486 }
1487
1488 // We still want to know if the bound is known to be too large.
1489 if (lenValNL) {
1490 if (isAppending) {
1491 // For strncat, the check is strlen(dst) + lenVal < sizeof(dst)
1492
1493 // Get the string length of the destination. If the destination is
1494 // memory that can't have a string length, we shouldn't be copying
1495 // into it anyway.
1496 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1497 if (dstStrLength.isUndef())
1498 return;
1499
1500 if (Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>()) {
1501 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Add,
1502 *lenValNL,
1503 *dstStrLengthNL,
1504 sizeTy);
1505 boundWarning = "Size argument is greater than the free space in the "
1506 "destination buffer";
1507 }
1508
1509 } else {
1510 // For strncpy, this is just checking that lenVal <= sizeof(dst)
1511 // (Yes, strncpy and strncat differ in how they treat termination.
1512 // strncat ALWAYS terminates, but strncpy doesn't.)
1513
1514 // We need a special case for when the copy size is zero, in which
1515 // case strncpy will do no work at all. Our bounds check uses n-1
1516 // as the last element accessed, so n == 0 is problematic.
1517 ProgramStateRef StateZeroSize, StateNonZeroSize;
1518 std::tie(StateZeroSize, StateNonZeroSize) =
1519 assumeZero(C, state, *lenValNL, sizeTy);
1520
1521 // If the size is known to be zero, we're done.
1522 if (StateZeroSize && !StateNonZeroSize) {
1523 StateZeroSize = StateZeroSize->BindExpr(CE, LCtx, DstVal);
1524 C.addTransition(StateZeroSize);
1525 return;
1526 }
1527
1528 // Otherwise, go ahead and figure out the last element we'll touch.
1529 // We don't record the non-zero assumption here because we can't
1530 // be sure. We won't warn on a possible zero.
1531 NonLoc one = svalBuilder.makeIntVal(1, sizeTy).castAs<NonLoc>();
1532 maxLastElementIndex = svalBuilder.evalBinOpNN(state, BO_Sub, *lenValNL,
1533 one, sizeTy);
1534 boundWarning = "Size argument is greater than the length of the "
1535 "destination buffer";
1536 }
1537 }
1538
1539 // If we couldn't pin down the copy length, at least bound it.
1540 // FIXME: We should actually run this code path for append as well, but
1541 // right now it creates problems with constraints (since we can end up
1542 // trying to pass constraints from symbol to symbol).
1543 if (amountCopied.isUnknown() && !isAppending) {
1544 // Try to get a "hypothetical" string length symbol, which we can later
1545 // set as a real value if that turns out to be the case.
1546 amountCopied = getCStringLength(C, state, lenExpr, srcVal, true);
1547 assert(!amountCopied.isUndef());
1548
1549 if (Optional<NonLoc> amountCopiedNL = amountCopied.getAs<NonLoc>()) {
1550 if (lenValNL) {
1551 // amountCopied <= lenVal
1552 SVal copiedLessThanBound = svalBuilder.evalBinOpNN(state, BO_LE,
1553 *amountCopiedNL,
1554 *lenValNL,
1555 cmpTy);
1556 state = state->assume(
1557 copiedLessThanBound.castAs<DefinedOrUnknownSVal>(), true);
1558 if (!state)
1559 return;
1560 }
1561
1562 if (strLengthNL) {
1563 // amountCopied <= strlen(source)
1564 SVal copiedLessThanSrc = svalBuilder.evalBinOpNN(state, BO_LE,
1565 *amountCopiedNL,
1566 *strLengthNL,
1567 cmpTy);
1568 state = state->assume(
1569 copiedLessThanSrc.castAs<DefinedOrUnknownSVal>(), true);
1570 if (!state)
1571 return;
1572 }
1573 }
1574 }
1575
1576 } else {
1577 // The function isn't bounded. The amount copied should match the length
1578 // of the source buffer.
1579 amountCopied = strLength;
1580 }
1581
1582 assert(state);
1583
1584 // This represents the number of characters copied into the destination
1585 // buffer. (It may not actually be the strlen if the destination buffer
1586 // is not terminated.)
1587 SVal finalStrLength = UnknownVal();
1588
1589 // If this is an appending function (strcat, strncat...) then set the
1590 // string length to strlen(src) + strlen(dst) since the buffer will
1591 // ultimately contain both.
1592 if (isAppending) {
1593 // Get the string length of the destination. If the destination is memory
1594 // that can't have a string length, we shouldn't be copying into it anyway.
1595 SVal dstStrLength = getCStringLength(C, state, Dst, DstVal);
1596 if (dstStrLength.isUndef())
1597 return;
1598
1599 Optional<NonLoc> srcStrLengthNL = amountCopied.getAs<NonLoc>();
1600 Optional<NonLoc> dstStrLengthNL = dstStrLength.getAs<NonLoc>();
1601
1602 // If we know both string lengths, we might know the final string length.
1603 if (srcStrLengthNL && dstStrLengthNL) {
1604 // Make sure the two lengths together don't overflow a size_t.
1605 state = checkAdditionOverflow(C, state, *srcStrLengthNL, *dstStrLengthNL);
1606 if (!state)
1607 return;
1608
1609 finalStrLength = svalBuilder.evalBinOpNN(state, BO_Add, *srcStrLengthNL,
1610 *dstStrLengthNL, sizeTy);
1611 }
1612
1613 // If we couldn't get a single value for the final string length,
1614 // we can at least bound it by the individual lengths.
1615 if (finalStrLength.isUnknown()) {
1616 // Try to get a "hypothetical" string length symbol, which we can later
1617 // set as a real value if that turns out to be the case.
1618 finalStrLength = getCStringLength(C, state, CE, DstVal, true);
1619 assert(!finalStrLength.isUndef());
1620
1621 if (Optional<NonLoc> finalStrLengthNL = finalStrLength.getAs<NonLoc>()) {
1622 if (srcStrLengthNL) {
1623 // finalStrLength >= srcStrLength
1624 SVal sourceInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1625 *finalStrLengthNL,
1626 *srcStrLengthNL,
1627 cmpTy);
1628 state = state->assume(sourceInResult.castAs<DefinedOrUnknownSVal>(),
1629 true);
1630 if (!state)
1631 return;
1632 }
1633
1634 if (dstStrLengthNL) {
1635 // finalStrLength >= dstStrLength
1636 SVal destInResult = svalBuilder.evalBinOpNN(state, BO_GE,
1637 *finalStrLengthNL,
1638 *dstStrLengthNL,
1639 cmpTy);
1640 state =
1641 state->assume(destInResult.castAs<DefinedOrUnknownSVal>(), true);
1642 if (!state)
1643 return;
1644 }
1645 }
1646 }
1647
1648 } else {
1649 // Otherwise, this is a copy-over function (strcpy, strncpy, ...), and
1650 // the final string length will match the input string length.
1651 finalStrLength = amountCopied;
1652 }
1653
1654 // The final result of the function will either be a pointer past the last
1655 // copied element, or a pointer to the start of the destination buffer.
1656 SVal Result = (returnEnd ? UnknownVal() : DstVal);
1657
1658 assert(state);
1659
1660 // If the destination is a MemRegion, try to check for a buffer overflow and
1661 // record the new string length.
1662 if (Optional<loc::MemRegionVal> dstRegVal =
1663 DstVal.getAs<loc::MemRegionVal>()) {
1664 QualType ptrTy = Dst->getType();
1665
1666 // If we have an exact value on a bounded copy, use that to check for
1667 // overflows, rather than our estimate about how much is actually copied.
1668 if (boundWarning) {
1669 if (Optional<NonLoc> maxLastNL = maxLastElementIndex.getAs<NonLoc>()) {
1670 SVal maxLastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1671 *maxLastNL, ptrTy);
1672 state = CheckLocation(C, state, CE->getArg(2), maxLastElement,
1673 boundWarning);
1674 if (!state)
1675 return;
1676 }
1677 }
1678
1679 // Then, if the final length is known...
1680 if (Optional<NonLoc> knownStrLength = finalStrLength.getAs<NonLoc>()) {
1681 SVal lastElement = svalBuilder.evalBinOpLN(state, BO_Add, *dstRegVal,
1682 *knownStrLength, ptrTy);
1683
1684 // ...and we haven't checked the bound, we'll check the actual copy.
1685 if (!boundWarning) {
1686 const char * const warningMsg =
1687 "String copy function overflows destination buffer";
1688 state = CheckLocation(C, state, Dst, lastElement, warningMsg);
1689 if (!state)
1690 return;
1691 }
1692
1693 // If this is a stpcpy-style copy, the last element is the return value.
1694 if (returnEnd)
1695 Result = lastElement;
1696 }
1697
1698 // Invalidate the destination (regular invalidation without pointer-escaping
1699 // the address of the top-level region). This must happen before we set the
1700 // C string length because invalidation will clear the length.
1701 // FIXME: Even if we can't perfectly model the copy, we should see if we
1702 // can use LazyCompoundVals to copy the source values into the destination.
1703 // This would probably remove any existing bindings past the end of the
1704 // string, but that's still an improvement over blank invalidation.
1705 state = InvalidateBuffer(C, state, Dst, *dstRegVal,
1706 /*IsSourceBuffer*/false, nullptr);
1707
1708 // Invalidate the source (const-invalidation without const-pointer-escaping
1709 // the address of the top-level region).
1710 state = InvalidateBuffer(C, state, srcExpr, srcVal, /*IsSourceBuffer*/true,
1711 nullptr);
1712
1713 // Set the C string length of the destination, if we know it.
1714 if (isBounded && !isAppending) {
1715 // strncpy is annoying in that it doesn't guarantee to null-terminate
1716 // the result string. If the original string didn't fit entirely inside
1717 // the bound (including the null-terminator), we don't know how long the
1718 // result is.
1719 if (amountCopied != strLength)
1720 finalStrLength = UnknownVal();
1721 }
1722 state = setCStringLength(state, dstRegVal->getRegion(), finalStrLength);
1723 }
1724
1725 assert(state);
1726
1727 // If this is a stpcpy-style copy, but we were unable to check for a buffer
1728 // overflow, we still need a result. Conjure a return value.
1729 if (returnEnd && Result.isUnknown()) {
1730 Result = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1731 }
1732
1733 // Set the return value.
1734 state = state->BindExpr(CE, LCtx, Result);
1735 C.addTransition(state);
1736 }
1737
evalStrcmp(CheckerContext & C,const CallExpr * CE) const1738 void CStringChecker::evalStrcmp(CheckerContext &C, const CallExpr *CE) const {
1739 if (CE->getNumArgs() < 2)
1740 return;
1741
1742 //int strcmp(const char *s1, const char *s2);
1743 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ false);
1744 }
1745
evalStrncmp(CheckerContext & C,const CallExpr * CE) const1746 void CStringChecker::evalStrncmp(CheckerContext &C, const CallExpr *CE) const {
1747 if (CE->getNumArgs() < 3)
1748 return;
1749
1750 //int strncmp(const char *s1, const char *s2, size_t n);
1751 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ false);
1752 }
1753
evalStrcasecmp(CheckerContext & C,const CallExpr * CE) const1754 void CStringChecker::evalStrcasecmp(CheckerContext &C,
1755 const CallExpr *CE) const {
1756 if (CE->getNumArgs() < 2)
1757 return;
1758
1759 //int strcasecmp(const char *s1, const char *s2);
1760 evalStrcmpCommon(C, CE, /* isBounded = */ false, /* ignoreCase = */ true);
1761 }
1762
evalStrncasecmp(CheckerContext & C,const CallExpr * CE) const1763 void CStringChecker::evalStrncasecmp(CheckerContext &C,
1764 const CallExpr *CE) const {
1765 if (CE->getNumArgs() < 3)
1766 return;
1767
1768 //int strncasecmp(const char *s1, const char *s2, size_t n);
1769 evalStrcmpCommon(C, CE, /* isBounded = */ true, /* ignoreCase = */ true);
1770 }
1771
evalStrcmpCommon(CheckerContext & C,const CallExpr * CE,bool isBounded,bool ignoreCase) const1772 void CStringChecker::evalStrcmpCommon(CheckerContext &C, const CallExpr *CE,
1773 bool isBounded, bool ignoreCase) const {
1774 CurrentFunctionDescription = "string comparison function";
1775 ProgramStateRef state = C.getState();
1776 const LocationContext *LCtx = C.getLocationContext();
1777
1778 // Check that the first string is non-null
1779 const Expr *s1 = CE->getArg(0);
1780 SVal s1Val = state->getSVal(s1, LCtx);
1781 state = checkNonNull(C, state, s1, s1Val);
1782 if (!state)
1783 return;
1784
1785 // Check that the second string is non-null.
1786 const Expr *s2 = CE->getArg(1);
1787 SVal s2Val = state->getSVal(s2, LCtx);
1788 state = checkNonNull(C, state, s2, s2Val);
1789 if (!state)
1790 return;
1791
1792 // Get the string length of the first string or give up.
1793 SVal s1Length = getCStringLength(C, state, s1, s1Val);
1794 if (s1Length.isUndef())
1795 return;
1796
1797 // Get the string length of the second string or give up.
1798 SVal s2Length = getCStringLength(C, state, s2, s2Val);
1799 if (s2Length.isUndef())
1800 return;
1801
1802 // If we know the two buffers are the same, we know the result is 0.
1803 // First, get the two buffers' addresses. Another checker will have already
1804 // made sure they're not undefined.
1805 DefinedOrUnknownSVal LV = s1Val.castAs<DefinedOrUnknownSVal>();
1806 DefinedOrUnknownSVal RV = s2Val.castAs<DefinedOrUnknownSVal>();
1807
1808 // See if they are the same.
1809 SValBuilder &svalBuilder = C.getSValBuilder();
1810 DefinedOrUnknownSVal SameBuf = svalBuilder.evalEQ(state, LV, RV);
1811 ProgramStateRef StSameBuf, StNotSameBuf;
1812 std::tie(StSameBuf, StNotSameBuf) = state->assume(SameBuf);
1813
1814 // If the two arguments might be the same buffer, we know the result is 0,
1815 // and we only need to check one size.
1816 if (StSameBuf) {
1817 StSameBuf = StSameBuf->BindExpr(CE, LCtx,
1818 svalBuilder.makeZeroVal(CE->getType()));
1819 C.addTransition(StSameBuf);
1820
1821 // If the two arguments are GUARANTEED to be the same, we're done!
1822 if (!StNotSameBuf)
1823 return;
1824 }
1825
1826 assert(StNotSameBuf);
1827 state = StNotSameBuf;
1828
1829 // At this point we can go about comparing the two buffers.
1830 // For now, we only do this if they're both known string literals.
1831
1832 // Attempt to extract string literals from both expressions.
1833 const StringLiteral *s1StrLiteral = getCStringLiteral(C, state, s1, s1Val);
1834 const StringLiteral *s2StrLiteral = getCStringLiteral(C, state, s2, s2Val);
1835 bool canComputeResult = false;
1836
1837 if (s1StrLiteral && s2StrLiteral) {
1838 StringRef s1StrRef = s1StrLiteral->getString();
1839 StringRef s2StrRef = s2StrLiteral->getString();
1840
1841 if (isBounded) {
1842 // Get the max number of characters to compare.
1843 const Expr *lenExpr = CE->getArg(2);
1844 SVal lenVal = state->getSVal(lenExpr, LCtx);
1845
1846 // If the length is known, we can get the right substrings.
1847 if (const llvm::APSInt *len = svalBuilder.getKnownValue(state, lenVal)) {
1848 // Create substrings of each to compare the prefix.
1849 s1StrRef = s1StrRef.substr(0, (size_t)len->getZExtValue());
1850 s2StrRef = s2StrRef.substr(0, (size_t)len->getZExtValue());
1851 canComputeResult = true;
1852 }
1853 } else {
1854 // This is a normal, unbounded strcmp.
1855 canComputeResult = true;
1856 }
1857
1858 if (canComputeResult) {
1859 // Real strcmp stops at null characters.
1860 size_t s1Term = s1StrRef.find('\0');
1861 if (s1Term != StringRef::npos)
1862 s1StrRef = s1StrRef.substr(0, s1Term);
1863
1864 size_t s2Term = s2StrRef.find('\0');
1865 if (s2Term != StringRef::npos)
1866 s2StrRef = s2StrRef.substr(0, s2Term);
1867
1868 // Use StringRef's comparison methods to compute the actual result.
1869 int result;
1870
1871 if (ignoreCase) {
1872 // Compare string 1 to string 2 the same way strcasecmp() does.
1873 result = s1StrRef.compare_lower(s2StrRef);
1874 } else {
1875 // Compare string 1 to string 2 the same way strcmp() does.
1876 result = s1StrRef.compare(s2StrRef);
1877 }
1878
1879 // Build the SVal of the comparison and bind the return value.
1880 SVal resultVal = svalBuilder.makeIntVal(result, CE->getType());
1881 state = state->BindExpr(CE, LCtx, resultVal);
1882 }
1883 }
1884
1885 if (!canComputeResult) {
1886 // Conjure a symbolic value. It's the best we can do.
1887 SVal resultVal = svalBuilder.conjureSymbolVal(nullptr, CE, LCtx,
1888 C.blockCount());
1889 state = state->BindExpr(CE, LCtx, resultVal);
1890 }
1891
1892 // Record this as a possible path.
1893 C.addTransition(state);
1894 }
1895
evalStrsep(CheckerContext & C,const CallExpr * CE) const1896 void CStringChecker::evalStrsep(CheckerContext &C, const CallExpr *CE) const {
1897 //char *strsep(char **stringp, const char *delim);
1898 if (CE->getNumArgs() < 2)
1899 return;
1900
1901 // Sanity: does the search string parameter match the return type?
1902 const Expr *SearchStrPtr = CE->getArg(0);
1903 QualType CharPtrTy = SearchStrPtr->getType()->getPointeeType();
1904 if (CharPtrTy.isNull() ||
1905 CE->getType().getUnqualifiedType() != CharPtrTy.getUnqualifiedType())
1906 return;
1907
1908 CurrentFunctionDescription = "strsep()";
1909 ProgramStateRef State = C.getState();
1910 const LocationContext *LCtx = C.getLocationContext();
1911
1912 // Check that the search string pointer is non-null (though it may point to
1913 // a null string).
1914 SVal SearchStrVal = State->getSVal(SearchStrPtr, LCtx);
1915 State = checkNonNull(C, State, SearchStrPtr, SearchStrVal);
1916 if (!State)
1917 return;
1918
1919 // Check that the delimiter string is non-null.
1920 const Expr *DelimStr = CE->getArg(1);
1921 SVal DelimStrVal = State->getSVal(DelimStr, LCtx);
1922 State = checkNonNull(C, State, DelimStr, DelimStrVal);
1923 if (!State)
1924 return;
1925
1926 SValBuilder &SVB = C.getSValBuilder();
1927 SVal Result;
1928 if (Optional<Loc> SearchStrLoc = SearchStrVal.getAs<Loc>()) {
1929 // Get the current value of the search string pointer, as a char*.
1930 Result = State->getSVal(*SearchStrLoc, CharPtrTy);
1931
1932 // Invalidate the search string, representing the change of one delimiter
1933 // character to NUL.
1934 State = InvalidateBuffer(C, State, SearchStrPtr, Result,
1935 /*IsSourceBuffer*/false, nullptr);
1936
1937 // Overwrite the search string pointer. The new value is either an address
1938 // further along in the same string, or NULL if there are no more tokens.
1939 State = State->bindLoc(*SearchStrLoc,
1940 SVB.conjureSymbolVal(getTag(), CE, LCtx, CharPtrTy,
1941 C.blockCount()));
1942 } else {
1943 assert(SearchStrVal.isUnknown());
1944 // Conjure a symbolic value. It's the best we can do.
1945 Result = SVB.conjureSymbolVal(nullptr, CE, LCtx, C.blockCount());
1946 }
1947
1948 // Set the return value, and finish.
1949 State = State->BindExpr(CE, LCtx, Result);
1950 C.addTransition(State);
1951 }
1952
1953
1954 //===----------------------------------------------------------------------===//
1955 // The driver method, and other Checker callbacks.
1956 //===----------------------------------------------------------------------===//
1957
evalCall(const CallExpr * CE,CheckerContext & C) const1958 bool CStringChecker::evalCall(const CallExpr *CE, CheckerContext &C) const {
1959 const FunctionDecl *FDecl = C.getCalleeDecl(CE);
1960
1961 if (!FDecl)
1962 return false;
1963
1964 // FIXME: Poorly-factored string switches are slow.
1965 FnCheck evalFunction = nullptr;
1966 if (C.isCLibraryFunction(FDecl, "memcpy"))
1967 evalFunction = &CStringChecker::evalMemcpy;
1968 else if (C.isCLibraryFunction(FDecl, "mempcpy"))
1969 evalFunction = &CStringChecker::evalMempcpy;
1970 else if (C.isCLibraryFunction(FDecl, "memcmp"))
1971 evalFunction = &CStringChecker::evalMemcmp;
1972 else if (C.isCLibraryFunction(FDecl, "memmove"))
1973 evalFunction = &CStringChecker::evalMemmove;
1974 else if (C.isCLibraryFunction(FDecl, "strcpy"))
1975 evalFunction = &CStringChecker::evalStrcpy;
1976 else if (C.isCLibraryFunction(FDecl, "strncpy"))
1977 evalFunction = &CStringChecker::evalStrncpy;
1978 else if (C.isCLibraryFunction(FDecl, "stpcpy"))
1979 evalFunction = &CStringChecker::evalStpcpy;
1980 else if (C.isCLibraryFunction(FDecl, "strcat"))
1981 evalFunction = &CStringChecker::evalStrcat;
1982 else if (C.isCLibraryFunction(FDecl, "strncat"))
1983 evalFunction = &CStringChecker::evalStrncat;
1984 else if (C.isCLibraryFunction(FDecl, "strlen"))
1985 evalFunction = &CStringChecker::evalstrLength;
1986 else if (C.isCLibraryFunction(FDecl, "strnlen"))
1987 evalFunction = &CStringChecker::evalstrnLength;
1988 else if (C.isCLibraryFunction(FDecl, "strcmp"))
1989 evalFunction = &CStringChecker::evalStrcmp;
1990 else if (C.isCLibraryFunction(FDecl, "strncmp"))
1991 evalFunction = &CStringChecker::evalStrncmp;
1992 else if (C.isCLibraryFunction(FDecl, "strcasecmp"))
1993 evalFunction = &CStringChecker::evalStrcasecmp;
1994 else if (C.isCLibraryFunction(FDecl, "strncasecmp"))
1995 evalFunction = &CStringChecker::evalStrncasecmp;
1996 else if (C.isCLibraryFunction(FDecl, "strsep"))
1997 evalFunction = &CStringChecker::evalStrsep;
1998 else if (C.isCLibraryFunction(FDecl, "bcopy"))
1999 evalFunction = &CStringChecker::evalBcopy;
2000 else if (C.isCLibraryFunction(FDecl, "bcmp"))
2001 evalFunction = &CStringChecker::evalMemcmp;
2002
2003 // If the callee isn't a string function, let another checker handle it.
2004 if (!evalFunction)
2005 return false;
2006
2007 // Check and evaluate the call.
2008 (this->*evalFunction)(C, CE);
2009
2010 // If the evaluate call resulted in no change, chain to the next eval call
2011 // handler.
2012 // Note, the custom CString evaluation calls assume that basic safety
2013 // properties are held. However, if the user chooses to turn off some of these
2014 // checks, we ignore the issues and leave the call evaluation to a generic
2015 // handler.
2016 if (!C.isDifferent())
2017 return false;
2018
2019 return true;
2020 }
2021
checkPreStmt(const DeclStmt * DS,CheckerContext & C) const2022 void CStringChecker::checkPreStmt(const DeclStmt *DS, CheckerContext &C) const {
2023 // Record string length for char a[] = "abc";
2024 ProgramStateRef state = C.getState();
2025
2026 for (const auto *I : DS->decls()) {
2027 const VarDecl *D = dyn_cast<VarDecl>(I);
2028 if (!D)
2029 continue;
2030
2031 // FIXME: Handle array fields of structs.
2032 if (!D->getType()->isArrayType())
2033 continue;
2034
2035 const Expr *Init = D->getInit();
2036 if (!Init)
2037 continue;
2038 if (!isa<StringLiteral>(Init))
2039 continue;
2040
2041 Loc VarLoc = state->getLValue(D, C.getLocationContext());
2042 const MemRegion *MR = VarLoc.getAsRegion();
2043 if (!MR)
2044 continue;
2045
2046 SVal StrVal = state->getSVal(Init, C.getLocationContext());
2047 assert(StrVal.isValid() && "Initializer string is unknown or undefined");
2048 DefinedOrUnknownSVal strLength =
2049 getCStringLength(C, state, Init, StrVal).castAs<DefinedOrUnknownSVal>();
2050
2051 state = state->set<CStringLength>(MR, strLength);
2052 }
2053
2054 C.addTransition(state);
2055 }
2056
wantsRegionChangeUpdate(ProgramStateRef state) const2057 bool CStringChecker::wantsRegionChangeUpdate(ProgramStateRef state) const {
2058 CStringLengthTy Entries = state->get<CStringLength>();
2059 return !Entries.isEmpty();
2060 }
2061
2062 ProgramStateRef
checkRegionChanges(ProgramStateRef state,const InvalidatedSymbols *,ArrayRef<const MemRegion * > ExplicitRegions,ArrayRef<const MemRegion * > Regions,const CallEvent * Call) const2063 CStringChecker::checkRegionChanges(ProgramStateRef state,
2064 const InvalidatedSymbols *,
2065 ArrayRef<const MemRegion *> ExplicitRegions,
2066 ArrayRef<const MemRegion *> Regions,
2067 const CallEvent *Call) const {
2068 CStringLengthTy Entries = state->get<CStringLength>();
2069 if (Entries.isEmpty())
2070 return state;
2071
2072 llvm::SmallPtrSet<const MemRegion *, 8> Invalidated;
2073 llvm::SmallPtrSet<const MemRegion *, 32> SuperRegions;
2074
2075 // First build sets for the changed regions and their super-regions.
2076 for (ArrayRef<const MemRegion *>::iterator
2077 I = Regions.begin(), E = Regions.end(); I != E; ++I) {
2078 const MemRegion *MR = *I;
2079 Invalidated.insert(MR);
2080
2081 SuperRegions.insert(MR);
2082 while (const SubRegion *SR = dyn_cast<SubRegion>(MR)) {
2083 MR = SR->getSuperRegion();
2084 SuperRegions.insert(MR);
2085 }
2086 }
2087
2088 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2089
2090 // Then loop over the entries in the current state.
2091 for (CStringLengthTy::iterator I = Entries.begin(),
2092 E = Entries.end(); I != E; ++I) {
2093 const MemRegion *MR = I.getKey();
2094
2095 // Is this entry for a super-region of a changed region?
2096 if (SuperRegions.count(MR)) {
2097 Entries = F.remove(Entries, MR);
2098 continue;
2099 }
2100
2101 // Is this entry for a sub-region of a changed region?
2102 const MemRegion *Super = MR;
2103 while (const SubRegion *SR = dyn_cast<SubRegion>(Super)) {
2104 Super = SR->getSuperRegion();
2105 if (Invalidated.count(Super)) {
2106 Entries = F.remove(Entries, MR);
2107 break;
2108 }
2109 }
2110 }
2111
2112 return state->set<CStringLength>(Entries);
2113 }
2114
checkLiveSymbols(ProgramStateRef state,SymbolReaper & SR) const2115 void CStringChecker::checkLiveSymbols(ProgramStateRef state,
2116 SymbolReaper &SR) const {
2117 // Mark all symbols in our string length map as valid.
2118 CStringLengthTy Entries = state->get<CStringLength>();
2119
2120 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2121 I != E; ++I) {
2122 SVal Len = I.getData();
2123
2124 for (SymExpr::symbol_iterator si = Len.symbol_begin(),
2125 se = Len.symbol_end(); si != se; ++si)
2126 SR.markInUse(*si);
2127 }
2128 }
2129
checkDeadSymbols(SymbolReaper & SR,CheckerContext & C) const2130 void CStringChecker::checkDeadSymbols(SymbolReaper &SR,
2131 CheckerContext &C) const {
2132 if (!SR.hasDeadSymbols())
2133 return;
2134
2135 ProgramStateRef state = C.getState();
2136 CStringLengthTy Entries = state->get<CStringLength>();
2137 if (Entries.isEmpty())
2138 return;
2139
2140 CStringLengthTy::Factory &F = state->get_context<CStringLength>();
2141 for (CStringLengthTy::iterator I = Entries.begin(), E = Entries.end();
2142 I != E; ++I) {
2143 SVal Len = I.getData();
2144 if (SymbolRef Sym = Len.getAsSymbol()) {
2145 if (SR.isDead(Sym))
2146 Entries = F.remove(Entries, I.getKey());
2147 }
2148 }
2149
2150 state = state->set<CStringLength>(Entries);
2151 C.addTransition(state);
2152 }
2153
2154 #define REGISTER_CHECKER(name) \
2155 void ento::register##name(CheckerManager &mgr) { \
2156 CStringChecker *checker = mgr.registerChecker<CStringChecker>(); \
2157 checker->Filter.Check##name = true; \
2158 checker->Filter.CheckName##name = mgr.getCurrentCheckName(); \
2159 }
2160
2161 REGISTER_CHECKER(CStringNullArg)
REGISTER_CHECKER(CStringOutOfBounds)2162 REGISTER_CHECKER(CStringOutOfBounds)
2163 REGISTER_CHECKER(CStringBufferOverlap)
2164 REGISTER_CHECKER(CStringNotNullTerm)
2165
2166 void ento::registerCStringCheckerBasic(CheckerManager &Mgr) {
2167 registerCStringNullArg(Mgr);
2168 }
2169