1 //===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides Sema routines for C++ access control semantics.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/CXXInheritance.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclFriend.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DependentDiagnostic.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/Sema/DelayedDiagnostic.h"
23 #include "clang/Sema/Initialization.h"
24 #include "clang/Sema/Lookup.h"
25
26 using namespace clang;
27 using namespace sema;
28
29 /// A copy of Sema's enum without AR_delayed.
30 enum AccessResult {
31 AR_accessible,
32 AR_inaccessible,
33 AR_dependent
34 };
35
36 /// SetMemberAccessSpecifier - Set the access specifier of a member.
37 /// Returns true on error (when the previous member decl access specifier
38 /// is different from the new member decl access specifier).
SetMemberAccessSpecifier(NamedDecl * MemberDecl,NamedDecl * PrevMemberDecl,AccessSpecifier LexicalAS)39 bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40 NamedDecl *PrevMemberDecl,
41 AccessSpecifier LexicalAS) {
42 if (!PrevMemberDecl) {
43 // Use the lexical access specifier.
44 MemberDecl->setAccess(LexicalAS);
45 return false;
46 }
47
48 // C++ [class.access.spec]p3: When a member is redeclared its access
49 // specifier must be same as its initial declaration.
50 if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51 Diag(MemberDecl->getLocation(),
52 diag::err_class_redeclared_with_different_access)
53 << MemberDecl << LexicalAS;
54 Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55 << PrevMemberDecl << PrevMemberDecl->getAccess();
56
57 MemberDecl->setAccess(LexicalAS);
58 return true;
59 }
60
61 MemberDecl->setAccess(PrevMemberDecl->getAccess());
62 return false;
63 }
64
FindDeclaringClass(NamedDecl * D)65 static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66 DeclContext *DC = D->getDeclContext();
67
68 // This can only happen at top: enum decls only "publish" their
69 // immediate members.
70 if (isa<EnumDecl>(DC))
71 DC = cast<EnumDecl>(DC)->getDeclContext();
72
73 CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74 while (DeclaringClass->isAnonymousStructOrUnion())
75 DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76 return DeclaringClass;
77 }
78
79 namespace {
80 struct EffectiveContext {
EffectiveContext__anoncc54a5490111::EffectiveContext81 EffectiveContext() : Inner(nullptr), Dependent(false) {}
82
EffectiveContext__anoncc54a5490111::EffectiveContext83 explicit EffectiveContext(DeclContext *DC)
84 : Inner(DC),
85 Dependent(DC->isDependentContext()) {
86
87 // C++11 [class.access.nest]p1:
88 // A nested class is a member and as such has the same access
89 // rights as any other member.
90 // C++11 [class.access]p2:
91 // A member of a class can also access all the names to which
92 // the class has access. A local class of a member function
93 // may access the same names that the member function itself
94 // may access.
95 // This almost implies that the privileges of nesting are transitive.
96 // Technically it says nothing about the local classes of non-member
97 // functions (which can gain privileges through friendship), but we
98 // take that as an oversight.
99 while (true) {
100 // We want to add canonical declarations to the EC lists for
101 // simplicity of checking, but we need to walk up through the
102 // actual current DC chain. Otherwise, something like a local
103 // extern or friend which happens to be the canonical
104 // declaration will really mess us up.
105
106 if (isa<CXXRecordDecl>(DC)) {
107 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
108 Records.push_back(Record->getCanonicalDecl());
109 DC = Record->getDeclContext();
110 } else if (isa<FunctionDecl>(DC)) {
111 FunctionDecl *Function = cast<FunctionDecl>(DC);
112 Functions.push_back(Function->getCanonicalDecl());
113 if (Function->getFriendObjectKind())
114 DC = Function->getLexicalDeclContext();
115 else
116 DC = Function->getDeclContext();
117 } else if (DC->isFileContext()) {
118 break;
119 } else {
120 DC = DC->getParent();
121 }
122 }
123 }
124
isDependent__anoncc54a5490111::EffectiveContext125 bool isDependent() const { return Dependent; }
126
includesClass__anoncc54a5490111::EffectiveContext127 bool includesClass(const CXXRecordDecl *R) const {
128 R = R->getCanonicalDecl();
129 return std::find(Records.begin(), Records.end(), R)
130 != Records.end();
131 }
132
133 /// Retrieves the innermost "useful" context. Can be null if we're
134 /// doing access-control without privileges.
getInnerContext__anoncc54a5490111::EffectiveContext135 DeclContext *getInnerContext() const {
136 return Inner;
137 }
138
139 typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
140
141 DeclContext *Inner;
142 SmallVector<FunctionDecl*, 4> Functions;
143 SmallVector<CXXRecordDecl*, 4> Records;
144 bool Dependent;
145 };
146
147 /// Like sema::AccessedEntity, but kindly lets us scribble all over
148 /// it.
149 struct AccessTarget : public AccessedEntity {
AccessTarget__anoncc54a5490111::AccessTarget150 AccessTarget(const AccessedEntity &Entity)
151 : AccessedEntity(Entity) {
152 initialize();
153 }
154
AccessTarget__anoncc54a5490111::AccessTarget155 AccessTarget(ASTContext &Context,
156 MemberNonce _,
157 CXXRecordDecl *NamingClass,
158 DeclAccessPair FoundDecl,
159 QualType BaseObjectType)
160 : AccessedEntity(Context.getDiagAllocator(), Member, NamingClass,
161 FoundDecl, BaseObjectType) {
162 initialize();
163 }
164
AccessTarget__anoncc54a5490111::AccessTarget165 AccessTarget(ASTContext &Context,
166 BaseNonce _,
167 CXXRecordDecl *BaseClass,
168 CXXRecordDecl *DerivedClass,
169 AccessSpecifier Access)
170 : AccessedEntity(Context.getDiagAllocator(), Base, BaseClass, DerivedClass,
171 Access) {
172 initialize();
173 }
174
isInstanceMember__anoncc54a5490111::AccessTarget175 bool isInstanceMember() const {
176 return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
177 }
178
hasInstanceContext__anoncc54a5490111::AccessTarget179 bool hasInstanceContext() const {
180 return HasInstanceContext;
181 }
182
183 class SavedInstanceContext {
184 public:
SavedInstanceContext(SavedInstanceContext && S)185 SavedInstanceContext(SavedInstanceContext &&S)
186 : Target(S.Target), Has(S.Has) {
187 S.Target = nullptr;
188 }
~SavedInstanceContext()189 ~SavedInstanceContext() {
190 if (Target)
191 Target->HasInstanceContext = Has;
192 }
193
194 private:
195 friend struct AccessTarget;
SavedInstanceContext(AccessTarget & Target)196 explicit SavedInstanceContext(AccessTarget &Target)
197 : Target(&Target), Has(Target.HasInstanceContext) {}
198 AccessTarget *Target;
199 bool Has;
200 };
201
saveInstanceContext__anoncc54a5490111::AccessTarget202 SavedInstanceContext saveInstanceContext() {
203 return SavedInstanceContext(*this);
204 }
205
suppressInstanceContext__anoncc54a5490111::AccessTarget206 void suppressInstanceContext() {
207 HasInstanceContext = false;
208 }
209
resolveInstanceContext__anoncc54a5490111::AccessTarget210 const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
211 assert(HasInstanceContext);
212 if (CalculatedInstanceContext)
213 return InstanceContext;
214
215 CalculatedInstanceContext = true;
216 DeclContext *IC = S.computeDeclContext(getBaseObjectType());
217 InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl()
218 : nullptr);
219 return InstanceContext;
220 }
221
getDeclaringClass__anoncc54a5490111::AccessTarget222 const CXXRecordDecl *getDeclaringClass() const {
223 return DeclaringClass;
224 }
225
226 /// The "effective" naming class is the canonical non-anonymous
227 /// class containing the actual naming class.
getEffectiveNamingClass__anoncc54a5490111::AccessTarget228 const CXXRecordDecl *getEffectiveNamingClass() const {
229 const CXXRecordDecl *namingClass = getNamingClass();
230 while (namingClass->isAnonymousStructOrUnion())
231 namingClass = cast<CXXRecordDecl>(namingClass->getParent());
232 return namingClass->getCanonicalDecl();
233 }
234
235 private:
initialize__anoncc54a5490111::AccessTarget236 void initialize() {
237 HasInstanceContext = (isMemberAccess() &&
238 !getBaseObjectType().isNull() &&
239 getTargetDecl()->isCXXInstanceMember());
240 CalculatedInstanceContext = false;
241 InstanceContext = nullptr;
242
243 if (isMemberAccess())
244 DeclaringClass = FindDeclaringClass(getTargetDecl());
245 else
246 DeclaringClass = getBaseClass();
247 DeclaringClass = DeclaringClass->getCanonicalDecl();
248 }
249
250 bool HasInstanceContext : 1;
251 mutable bool CalculatedInstanceContext : 1;
252 mutable const CXXRecordDecl *InstanceContext;
253 const CXXRecordDecl *DeclaringClass;
254 };
255
256 }
257
258 /// Checks whether one class might instantiate to the other.
MightInstantiateTo(const CXXRecordDecl * From,const CXXRecordDecl * To)259 static bool MightInstantiateTo(const CXXRecordDecl *From,
260 const CXXRecordDecl *To) {
261 // Declaration names are always preserved by instantiation.
262 if (From->getDeclName() != To->getDeclName())
263 return false;
264
265 const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
266 const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
267 if (FromDC == ToDC) return true;
268 if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
269
270 // Be conservative.
271 return true;
272 }
273
274 /// Checks whether one class is derived from another, inclusively.
275 /// Properly indicates when it couldn't be determined due to
276 /// dependence.
277 ///
278 /// This should probably be donated to AST or at least Sema.
IsDerivedFromInclusive(const CXXRecordDecl * Derived,const CXXRecordDecl * Target)279 static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
280 const CXXRecordDecl *Target) {
281 assert(Derived->getCanonicalDecl() == Derived);
282 assert(Target->getCanonicalDecl() == Target);
283
284 if (Derived == Target) return AR_accessible;
285
286 bool CheckDependent = Derived->isDependentContext();
287 if (CheckDependent && MightInstantiateTo(Derived, Target))
288 return AR_dependent;
289
290 AccessResult OnFailure = AR_inaccessible;
291 SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
292
293 while (true) {
294 if (Derived->isDependentContext() && !Derived->hasDefinition())
295 return AR_dependent;
296
297 for (const auto &I : Derived->bases()) {
298 const CXXRecordDecl *RD;
299
300 QualType T = I.getType();
301 if (const RecordType *RT = T->getAs<RecordType>()) {
302 RD = cast<CXXRecordDecl>(RT->getDecl());
303 } else if (const InjectedClassNameType *IT
304 = T->getAs<InjectedClassNameType>()) {
305 RD = IT->getDecl();
306 } else {
307 assert(T->isDependentType() && "non-dependent base wasn't a record?");
308 OnFailure = AR_dependent;
309 continue;
310 }
311
312 RD = RD->getCanonicalDecl();
313 if (RD == Target) return AR_accessible;
314 if (CheckDependent && MightInstantiateTo(RD, Target))
315 OnFailure = AR_dependent;
316
317 Queue.push_back(RD);
318 }
319
320 if (Queue.empty()) break;
321
322 Derived = Queue.pop_back_val();
323 }
324
325 return OnFailure;
326 }
327
328
MightInstantiateTo(Sema & S,DeclContext * Context,DeclContext * Friend)329 static bool MightInstantiateTo(Sema &S, DeclContext *Context,
330 DeclContext *Friend) {
331 if (Friend == Context)
332 return true;
333
334 assert(!Friend->isDependentContext() &&
335 "can't handle friends with dependent contexts here");
336
337 if (!Context->isDependentContext())
338 return false;
339
340 if (Friend->isFileContext())
341 return false;
342
343 // TODO: this is very conservative
344 return true;
345 }
346
347 // Asks whether the type in 'context' can ever instantiate to the type
348 // in 'friend'.
MightInstantiateTo(Sema & S,CanQualType Context,CanQualType Friend)349 static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
350 if (Friend == Context)
351 return true;
352
353 if (!Friend->isDependentType() && !Context->isDependentType())
354 return false;
355
356 // TODO: this is very conservative.
357 return true;
358 }
359
MightInstantiateTo(Sema & S,FunctionDecl * Context,FunctionDecl * Friend)360 static bool MightInstantiateTo(Sema &S,
361 FunctionDecl *Context,
362 FunctionDecl *Friend) {
363 if (Context->getDeclName() != Friend->getDeclName())
364 return false;
365
366 if (!MightInstantiateTo(S,
367 Context->getDeclContext(),
368 Friend->getDeclContext()))
369 return false;
370
371 CanQual<FunctionProtoType> FriendTy
372 = S.Context.getCanonicalType(Friend->getType())
373 ->getAs<FunctionProtoType>();
374 CanQual<FunctionProtoType> ContextTy
375 = S.Context.getCanonicalType(Context->getType())
376 ->getAs<FunctionProtoType>();
377
378 // There isn't any way that I know of to add qualifiers
379 // during instantiation.
380 if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
381 return false;
382
383 if (FriendTy->getNumParams() != ContextTy->getNumParams())
384 return false;
385
386 if (!MightInstantiateTo(S, ContextTy->getReturnType(),
387 FriendTy->getReturnType()))
388 return false;
389
390 for (unsigned I = 0, E = FriendTy->getNumParams(); I != E; ++I)
391 if (!MightInstantiateTo(S, ContextTy->getParamType(I),
392 FriendTy->getParamType(I)))
393 return false;
394
395 return true;
396 }
397
MightInstantiateTo(Sema & S,FunctionTemplateDecl * Context,FunctionTemplateDecl * Friend)398 static bool MightInstantiateTo(Sema &S,
399 FunctionTemplateDecl *Context,
400 FunctionTemplateDecl *Friend) {
401 return MightInstantiateTo(S,
402 Context->getTemplatedDecl(),
403 Friend->getTemplatedDecl());
404 }
405
MatchesFriend(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Friend)406 static AccessResult MatchesFriend(Sema &S,
407 const EffectiveContext &EC,
408 const CXXRecordDecl *Friend) {
409 if (EC.includesClass(Friend))
410 return AR_accessible;
411
412 if (EC.isDependent()) {
413 CanQualType FriendTy
414 = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
415
416 for (EffectiveContext::record_iterator
417 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
418 CanQualType ContextTy
419 = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
420 if (MightInstantiateTo(S, ContextTy, FriendTy))
421 return AR_dependent;
422 }
423 }
424
425 return AR_inaccessible;
426 }
427
MatchesFriend(Sema & S,const EffectiveContext & EC,CanQualType Friend)428 static AccessResult MatchesFriend(Sema &S,
429 const EffectiveContext &EC,
430 CanQualType Friend) {
431 if (const RecordType *RT = Friend->getAs<RecordType>())
432 return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
433
434 // TODO: we can do better than this
435 if (Friend->isDependentType())
436 return AR_dependent;
437
438 return AR_inaccessible;
439 }
440
441 /// Determines whether the given friend class template matches
442 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,ClassTemplateDecl * Friend)443 static AccessResult MatchesFriend(Sema &S,
444 const EffectiveContext &EC,
445 ClassTemplateDecl *Friend) {
446 AccessResult OnFailure = AR_inaccessible;
447
448 // Check whether the friend is the template of a class in the
449 // context chain.
450 for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
451 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
452 CXXRecordDecl *Record = *I;
453
454 // Figure out whether the current class has a template:
455 ClassTemplateDecl *CTD;
456
457 // A specialization of the template...
458 if (isa<ClassTemplateSpecializationDecl>(Record)) {
459 CTD = cast<ClassTemplateSpecializationDecl>(Record)
460 ->getSpecializedTemplate();
461
462 // ... or the template pattern itself.
463 } else {
464 CTD = Record->getDescribedClassTemplate();
465 if (!CTD) continue;
466 }
467
468 // It's a match.
469 if (Friend == CTD->getCanonicalDecl())
470 return AR_accessible;
471
472 // If the context isn't dependent, it can't be a dependent match.
473 if (!EC.isDependent())
474 continue;
475
476 // If the template names don't match, it can't be a dependent
477 // match.
478 if (CTD->getDeclName() != Friend->getDeclName())
479 continue;
480
481 // If the class's context can't instantiate to the friend's
482 // context, it can't be a dependent match.
483 if (!MightInstantiateTo(S, CTD->getDeclContext(),
484 Friend->getDeclContext()))
485 continue;
486
487 // Otherwise, it's a dependent match.
488 OnFailure = AR_dependent;
489 }
490
491 return OnFailure;
492 }
493
494 /// Determines whether the given friend function matches anything in
495 /// the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionDecl * Friend)496 static AccessResult MatchesFriend(Sema &S,
497 const EffectiveContext &EC,
498 FunctionDecl *Friend) {
499 AccessResult OnFailure = AR_inaccessible;
500
501 for (SmallVectorImpl<FunctionDecl*>::const_iterator
502 I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
503 if (Friend == *I)
504 return AR_accessible;
505
506 if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
507 OnFailure = AR_dependent;
508 }
509
510 return OnFailure;
511 }
512
513 /// Determines whether the given friend function template matches
514 /// anything in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FunctionTemplateDecl * Friend)515 static AccessResult MatchesFriend(Sema &S,
516 const EffectiveContext &EC,
517 FunctionTemplateDecl *Friend) {
518 if (EC.Functions.empty()) return AR_inaccessible;
519
520 AccessResult OnFailure = AR_inaccessible;
521
522 for (SmallVectorImpl<FunctionDecl*>::const_iterator
523 I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
524
525 FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
526 if (!FTD)
527 FTD = (*I)->getDescribedFunctionTemplate();
528 if (!FTD)
529 continue;
530
531 FTD = FTD->getCanonicalDecl();
532
533 if (Friend == FTD)
534 return AR_accessible;
535
536 if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
537 OnFailure = AR_dependent;
538 }
539
540 return OnFailure;
541 }
542
543 /// Determines whether the given friend declaration matches anything
544 /// in the effective context.
MatchesFriend(Sema & S,const EffectiveContext & EC,FriendDecl * FriendD)545 static AccessResult MatchesFriend(Sema &S,
546 const EffectiveContext &EC,
547 FriendDecl *FriendD) {
548 // Whitelist accesses if there's an invalid or unsupported friend
549 // declaration.
550 if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
551 return AR_accessible;
552
553 if (TypeSourceInfo *T = FriendD->getFriendType())
554 return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
555
556 NamedDecl *Friend
557 = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
558
559 // FIXME: declarations with dependent or templated scope.
560
561 if (isa<ClassTemplateDecl>(Friend))
562 return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
563
564 if (isa<FunctionTemplateDecl>(Friend))
565 return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
566
567 if (isa<CXXRecordDecl>(Friend))
568 return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
569
570 assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
571 return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
572 }
573
GetFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * Class)574 static AccessResult GetFriendKind(Sema &S,
575 const EffectiveContext &EC,
576 const CXXRecordDecl *Class) {
577 AccessResult OnFailure = AR_inaccessible;
578
579 // Okay, check friends.
580 for (auto *Friend : Class->friends()) {
581 switch (MatchesFriend(S, EC, Friend)) {
582 case AR_accessible:
583 return AR_accessible;
584
585 case AR_inaccessible:
586 continue;
587
588 case AR_dependent:
589 OnFailure = AR_dependent;
590 break;
591 }
592 }
593
594 // That's it, give up.
595 return OnFailure;
596 }
597
598 namespace {
599
600 /// A helper class for checking for a friend which will grant access
601 /// to a protected instance member.
602 struct ProtectedFriendContext {
603 Sema &S;
604 const EffectiveContext &EC;
605 const CXXRecordDecl *NamingClass;
606 bool CheckDependent;
607 bool EverDependent;
608
609 /// The path down to the current base class.
610 SmallVector<const CXXRecordDecl*, 20> CurPath;
611
ProtectedFriendContext__anoncc54a5490211::ProtectedFriendContext612 ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
613 const CXXRecordDecl *InstanceContext,
614 const CXXRecordDecl *NamingClass)
615 : S(S), EC(EC), NamingClass(NamingClass),
616 CheckDependent(InstanceContext->isDependentContext() ||
617 NamingClass->isDependentContext()),
618 EverDependent(false) {}
619
620 /// Check classes in the current path for friendship, starting at
621 /// the given index.
checkFriendshipAlongPath__anoncc54a5490211::ProtectedFriendContext622 bool checkFriendshipAlongPath(unsigned I) {
623 assert(I < CurPath.size());
624 for (unsigned E = CurPath.size(); I != E; ++I) {
625 switch (GetFriendKind(S, EC, CurPath[I])) {
626 case AR_accessible: return true;
627 case AR_inaccessible: continue;
628 case AR_dependent: EverDependent = true; continue;
629 }
630 }
631 return false;
632 }
633
634 /// Perform a search starting at the given class.
635 ///
636 /// PrivateDepth is the index of the last (least derived) class
637 /// along the current path such that a notional public member of
638 /// the final class in the path would have access in that class.
findFriendship__anoncc54a5490211::ProtectedFriendContext639 bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
640 // If we ever reach the naming class, check the current path for
641 // friendship. We can also stop recursing because we obviously
642 // won't find the naming class there again.
643 if (Cur == NamingClass)
644 return checkFriendshipAlongPath(PrivateDepth);
645
646 if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
647 EverDependent = true;
648
649 // Recurse into the base classes.
650 for (const auto &I : Cur->bases()) {
651 // If this is private inheritance, then a public member of the
652 // base will not have any access in classes derived from Cur.
653 unsigned BasePrivateDepth = PrivateDepth;
654 if (I.getAccessSpecifier() == AS_private)
655 BasePrivateDepth = CurPath.size() - 1;
656
657 const CXXRecordDecl *RD;
658
659 QualType T = I.getType();
660 if (const RecordType *RT = T->getAs<RecordType>()) {
661 RD = cast<CXXRecordDecl>(RT->getDecl());
662 } else if (const InjectedClassNameType *IT
663 = T->getAs<InjectedClassNameType>()) {
664 RD = IT->getDecl();
665 } else {
666 assert(T->isDependentType() && "non-dependent base wasn't a record?");
667 EverDependent = true;
668 continue;
669 }
670
671 // Recurse. We don't need to clean up if this returns true.
672 CurPath.push_back(RD);
673 if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
674 return true;
675 CurPath.pop_back();
676 }
677
678 return false;
679 }
680
findFriendship__anoncc54a5490211::ProtectedFriendContext681 bool findFriendship(const CXXRecordDecl *Cur) {
682 assert(CurPath.empty());
683 CurPath.push_back(Cur);
684 return findFriendship(Cur, 0);
685 }
686 };
687 }
688
689 /// Search for a class P that EC is a friend of, under the constraint
690 /// InstanceContext <= P
691 /// if InstanceContext exists, or else
692 /// NamingClass <= P
693 /// and with the additional restriction that a protected member of
694 /// NamingClass would have some natural access in P, which implicitly
695 /// imposes the constraint that P <= NamingClass.
696 ///
697 /// This isn't quite the condition laid out in the standard.
698 /// Instead of saying that a notional protected member of NamingClass
699 /// would have to have some natural access in P, it says the actual
700 /// target has to have some natural access in P, which opens up the
701 /// possibility that the target (which is not necessarily a member
702 /// of NamingClass) might be more accessible along some path not
703 /// passing through it. That's really a bad idea, though, because it
704 /// introduces two problems:
705 /// - Most importantly, it breaks encapsulation because you can
706 /// access a forbidden base class's members by directly subclassing
707 /// it elsewhere.
708 /// - It also makes access substantially harder to compute because it
709 /// breaks the hill-climbing algorithm: knowing that the target is
710 /// accessible in some base class would no longer let you change
711 /// the question solely to whether the base class is accessible,
712 /// because the original target might have been more accessible
713 /// because of crazy subclassing.
714 /// So we don't implement that.
GetProtectedFriendKind(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * InstanceContext,const CXXRecordDecl * NamingClass)715 static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
716 const CXXRecordDecl *InstanceContext,
717 const CXXRecordDecl *NamingClass) {
718 assert(InstanceContext == nullptr ||
719 InstanceContext->getCanonicalDecl() == InstanceContext);
720 assert(NamingClass->getCanonicalDecl() == NamingClass);
721
722 // If we don't have an instance context, our constraints give us
723 // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
724 // This is just the usual friendship check.
725 if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
726
727 ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
728 if (PRC.findFriendship(InstanceContext)) return AR_accessible;
729 if (PRC.EverDependent) return AR_dependent;
730 return AR_inaccessible;
731 }
732
HasAccess(Sema & S,const EffectiveContext & EC,const CXXRecordDecl * NamingClass,AccessSpecifier Access,const AccessTarget & Target)733 static AccessResult HasAccess(Sema &S,
734 const EffectiveContext &EC,
735 const CXXRecordDecl *NamingClass,
736 AccessSpecifier Access,
737 const AccessTarget &Target) {
738 assert(NamingClass->getCanonicalDecl() == NamingClass &&
739 "declaration should be canonicalized before being passed here");
740
741 if (Access == AS_public) return AR_accessible;
742 assert(Access == AS_private || Access == AS_protected);
743
744 AccessResult OnFailure = AR_inaccessible;
745
746 for (EffectiveContext::record_iterator
747 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
748 // All the declarations in EC have been canonicalized, so pointer
749 // equality from this point on will work fine.
750 const CXXRecordDecl *ECRecord = *I;
751
752 // [B2] and [M2]
753 if (Access == AS_private) {
754 if (ECRecord == NamingClass)
755 return AR_accessible;
756
757 if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
758 OnFailure = AR_dependent;
759
760 // [B3] and [M3]
761 } else {
762 assert(Access == AS_protected);
763 switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
764 case AR_accessible: break;
765 case AR_inaccessible: continue;
766 case AR_dependent: OnFailure = AR_dependent; continue;
767 }
768
769 // C++ [class.protected]p1:
770 // An additional access check beyond those described earlier in
771 // [class.access] is applied when a non-static data member or
772 // non-static member function is a protected member of its naming
773 // class. As described earlier, access to a protected member is
774 // granted because the reference occurs in a friend or member of
775 // some class C. If the access is to form a pointer to member,
776 // the nested-name-specifier shall name C or a class derived from
777 // C. All other accesses involve a (possibly implicit) object
778 // expression. In this case, the class of the object expression
779 // shall be C or a class derived from C.
780 //
781 // We interpret this as a restriction on [M3].
782
783 // In this part of the code, 'C' is just our context class ECRecord.
784
785 // These rules are different if we don't have an instance context.
786 if (!Target.hasInstanceContext()) {
787 // If it's not an instance member, these restrictions don't apply.
788 if (!Target.isInstanceMember()) return AR_accessible;
789
790 // If it's an instance member, use the pointer-to-member rule
791 // that the naming class has to be derived from the effective
792 // context.
793
794 // Emulate a MSVC bug where the creation of pointer-to-member
795 // to protected member of base class is allowed but only from
796 // static member functions.
797 if (S.getLangOpts().MSVCCompat && !EC.Functions.empty())
798 if (CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(EC.Functions.front()))
799 if (MD->isStatic()) return AR_accessible;
800
801 // Despite the standard's confident wording, there is a case
802 // where you can have an instance member that's neither in a
803 // pointer-to-member expression nor in a member access: when
804 // it names a field in an unevaluated context that can't be an
805 // implicit member. Pending clarification, we just apply the
806 // same naming-class restriction here.
807 // FIXME: we're probably not correctly adding the
808 // protected-member restriction when we retroactively convert
809 // an expression to being evaluated.
810
811 // We know that ECRecord derives from NamingClass. The
812 // restriction says to check whether NamingClass derives from
813 // ECRecord, but that's not really necessary: two distinct
814 // classes can't be recursively derived from each other. So
815 // along this path, we just need to check whether the classes
816 // are equal.
817 if (NamingClass == ECRecord) return AR_accessible;
818
819 // Otherwise, this context class tells us nothing; on to the next.
820 continue;
821 }
822
823 assert(Target.isInstanceMember());
824
825 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
826 if (!InstanceContext) {
827 OnFailure = AR_dependent;
828 continue;
829 }
830
831 switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
832 case AR_accessible: return AR_accessible;
833 case AR_inaccessible: continue;
834 case AR_dependent: OnFailure = AR_dependent; continue;
835 }
836 }
837 }
838
839 // [M3] and [B3] say that, if the target is protected in N, we grant
840 // access if the access occurs in a friend or member of some class P
841 // that's a subclass of N and where the target has some natural
842 // access in P. The 'member' aspect is easy to handle because P
843 // would necessarily be one of the effective-context records, and we
844 // address that above. The 'friend' aspect is completely ridiculous
845 // to implement because there are no restrictions at all on P
846 // *unless* the [class.protected] restriction applies. If it does,
847 // however, we should ignore whether the naming class is a friend,
848 // and instead rely on whether any potential P is a friend.
849 if (Access == AS_protected && Target.isInstanceMember()) {
850 // Compute the instance context if possible.
851 const CXXRecordDecl *InstanceContext = nullptr;
852 if (Target.hasInstanceContext()) {
853 InstanceContext = Target.resolveInstanceContext(S);
854 if (!InstanceContext) return AR_dependent;
855 }
856
857 switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
858 case AR_accessible: return AR_accessible;
859 case AR_inaccessible: return OnFailure;
860 case AR_dependent: return AR_dependent;
861 }
862 llvm_unreachable("impossible friendship kind");
863 }
864
865 switch (GetFriendKind(S, EC, NamingClass)) {
866 case AR_accessible: return AR_accessible;
867 case AR_inaccessible: return OnFailure;
868 case AR_dependent: return AR_dependent;
869 }
870
871 // Silence bogus warnings
872 llvm_unreachable("impossible friendship kind");
873 }
874
875 /// Finds the best path from the naming class to the declaring class,
876 /// taking friend declarations into account.
877 ///
878 /// C++0x [class.access.base]p5:
879 /// A member m is accessible at the point R when named in class N if
880 /// [M1] m as a member of N is public, or
881 /// [M2] m as a member of N is private, and R occurs in a member or
882 /// friend of class N, or
883 /// [M3] m as a member of N is protected, and R occurs in a member or
884 /// friend of class N, or in a member or friend of a class P
885 /// derived from N, where m as a member of P is public, private,
886 /// or protected, or
887 /// [M4] there exists a base class B of N that is accessible at R, and
888 /// m is accessible at R when named in class B.
889 ///
890 /// C++0x [class.access.base]p4:
891 /// A base class B of N is accessible at R, if
892 /// [B1] an invented public member of B would be a public member of N, or
893 /// [B2] R occurs in a member or friend of class N, and an invented public
894 /// member of B would be a private or protected member of N, or
895 /// [B3] R occurs in a member or friend of a class P derived from N, and an
896 /// invented public member of B would be a private or protected member
897 /// of P, or
898 /// [B4] there exists a class S such that B is a base class of S accessible
899 /// at R and S is a base class of N accessible at R.
900 ///
901 /// Along a single inheritance path we can restate both of these
902 /// iteratively:
903 ///
904 /// First, we note that M1-4 are equivalent to B1-4 if the member is
905 /// treated as a notional base of its declaring class with inheritance
906 /// access equivalent to the member's access. Therefore we need only
907 /// ask whether a class B is accessible from a class N in context R.
908 ///
909 /// Let B_1 .. B_n be the inheritance path in question (i.e. where
910 /// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
911 /// B_i). For i in 1..n, we will calculate ACAB(i), the access to the
912 /// closest accessible base in the path:
913 /// Access(a, b) = (* access on the base specifier from a to b *)
914 /// Merge(a, forbidden) = forbidden
915 /// Merge(a, private) = forbidden
916 /// Merge(a, b) = min(a,b)
917 /// Accessible(c, forbidden) = false
918 /// Accessible(c, private) = (R is c) || IsFriend(c, R)
919 /// Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
920 /// Accessible(c, public) = true
921 /// ACAB(n) = public
922 /// ACAB(i) =
923 /// let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
924 /// if Accessible(B_i, AccessToBase) then public else AccessToBase
925 ///
926 /// B is an accessible base of N at R iff ACAB(1) = public.
927 ///
928 /// \param FinalAccess the access of the "final step", or AS_public if
929 /// there is no final step.
930 /// \return null if friendship is dependent
FindBestPath(Sema & S,const EffectiveContext & EC,AccessTarget & Target,AccessSpecifier FinalAccess,CXXBasePaths & Paths)931 static CXXBasePath *FindBestPath(Sema &S,
932 const EffectiveContext &EC,
933 AccessTarget &Target,
934 AccessSpecifier FinalAccess,
935 CXXBasePaths &Paths) {
936 // Derive the paths to the desired base.
937 const CXXRecordDecl *Derived = Target.getNamingClass();
938 const CXXRecordDecl *Base = Target.getDeclaringClass();
939
940 // FIXME: fail correctly when there are dependent paths.
941 bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
942 Paths);
943 assert(isDerived && "derived class not actually derived from base");
944 (void) isDerived;
945
946 CXXBasePath *BestPath = nullptr;
947
948 assert(FinalAccess != AS_none && "forbidden access after declaring class");
949
950 bool AnyDependent = false;
951
952 // Derive the friend-modified access along each path.
953 for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
954 PI != PE; ++PI) {
955 AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
956
957 // Walk through the path backwards.
958 AccessSpecifier PathAccess = FinalAccess;
959 CXXBasePath::iterator I = PI->end(), E = PI->begin();
960 while (I != E) {
961 --I;
962
963 assert(PathAccess != AS_none);
964
965 // If the declaration is a private member of a base class, there
966 // is no level of friendship in derived classes that can make it
967 // accessible.
968 if (PathAccess == AS_private) {
969 PathAccess = AS_none;
970 break;
971 }
972
973 const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
974
975 AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
976 PathAccess = std::max(PathAccess, BaseAccess);
977
978 switch (HasAccess(S, EC, NC, PathAccess, Target)) {
979 case AR_inaccessible: break;
980 case AR_accessible:
981 PathAccess = AS_public;
982
983 // Future tests are not against members and so do not have
984 // instance context.
985 Target.suppressInstanceContext();
986 break;
987 case AR_dependent:
988 AnyDependent = true;
989 goto Next;
990 }
991 }
992
993 // Note that we modify the path's Access field to the
994 // friend-modified access.
995 if (BestPath == nullptr || PathAccess < BestPath->Access) {
996 BestPath = &*PI;
997 BestPath->Access = PathAccess;
998
999 // Short-circuit if we found a public path.
1000 if (BestPath->Access == AS_public)
1001 return BestPath;
1002 }
1003
1004 Next: ;
1005 }
1006
1007 assert((!BestPath || BestPath->Access != AS_public) &&
1008 "fell out of loop with public path");
1009
1010 // We didn't find a public path, but at least one path was subject
1011 // to dependent friendship, so delay the check.
1012 if (AnyDependent)
1013 return nullptr;
1014
1015 return BestPath;
1016 }
1017
1018 /// Given that an entity has protected natural access, check whether
1019 /// access might be denied because of the protected member access
1020 /// restriction.
1021 ///
1022 /// \return true if a note was emitted
TryDiagnoseProtectedAccess(Sema & S,const EffectiveContext & EC,AccessTarget & Target)1023 static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1024 AccessTarget &Target) {
1025 // Only applies to instance accesses.
1026 if (!Target.isInstanceMember())
1027 return false;
1028
1029 assert(Target.isMemberAccess());
1030
1031 const CXXRecordDecl *NamingClass = Target.getEffectiveNamingClass();
1032
1033 for (EffectiveContext::record_iterator
1034 I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1035 const CXXRecordDecl *ECRecord = *I;
1036 switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1037 case AR_accessible: break;
1038 case AR_inaccessible: continue;
1039 case AR_dependent: continue;
1040 }
1041
1042 // The effective context is a subclass of the declaring class.
1043 // Check whether the [class.protected] restriction is limiting
1044 // access.
1045
1046 // To get this exactly right, this might need to be checked more
1047 // holistically; it's not necessarily the case that gaining
1048 // access here would grant us access overall.
1049
1050 NamedDecl *D = Target.getTargetDecl();
1051
1052 // If we don't have an instance context, [class.protected] says the
1053 // naming class has to equal the context class.
1054 if (!Target.hasInstanceContext()) {
1055 // If it does, the restriction doesn't apply.
1056 if (NamingClass == ECRecord) continue;
1057
1058 // TODO: it would be great to have a fixit here, since this is
1059 // such an obvious error.
1060 S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1061 << S.Context.getTypeDeclType(ECRecord);
1062 return true;
1063 }
1064
1065 const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1066 assert(InstanceContext && "diagnosing dependent access");
1067
1068 switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1069 case AR_accessible: continue;
1070 case AR_dependent: continue;
1071 case AR_inaccessible:
1072 break;
1073 }
1074
1075 // Okay, the restriction seems to be what's limiting us.
1076
1077 // Use a special diagnostic for constructors and destructors.
1078 if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1079 (isa<FunctionTemplateDecl>(D) &&
1080 isa<CXXConstructorDecl>(
1081 cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1082 return S.Diag(D->getLocation(),
1083 diag::note_access_protected_restricted_ctordtor)
1084 << isa<CXXDestructorDecl>(D->getAsFunction());
1085 }
1086
1087 // Otherwise, use the generic diagnostic.
1088 return S.Diag(D->getLocation(),
1089 diag::note_access_protected_restricted_object)
1090 << S.Context.getTypeDeclType(ECRecord);
1091 }
1092
1093 return false;
1094 }
1095
1096 /// We are unable to access a given declaration due to its direct
1097 /// access control; diagnose that.
diagnoseBadDirectAccess(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1098 static void diagnoseBadDirectAccess(Sema &S,
1099 const EffectiveContext &EC,
1100 AccessTarget &entity) {
1101 assert(entity.isMemberAccess());
1102 NamedDecl *D = entity.getTargetDecl();
1103
1104 if (D->getAccess() == AS_protected &&
1105 TryDiagnoseProtectedAccess(S, EC, entity))
1106 return;
1107
1108 // Find an original declaration.
1109 while (D->isOutOfLine()) {
1110 NamedDecl *PrevDecl = nullptr;
1111 if (VarDecl *VD = dyn_cast<VarDecl>(D))
1112 PrevDecl = VD->getPreviousDecl();
1113 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1114 PrevDecl = FD->getPreviousDecl();
1115 else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1116 PrevDecl = TND->getPreviousDecl();
1117 else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1118 if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1119 break;
1120 PrevDecl = TD->getPreviousDecl();
1121 }
1122 if (!PrevDecl) break;
1123 D = PrevDecl;
1124 }
1125
1126 CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1127 Decl *ImmediateChild;
1128 if (D->getDeclContext() == DeclaringClass)
1129 ImmediateChild = D;
1130 else {
1131 DeclContext *DC = D->getDeclContext();
1132 while (DC->getParent() != DeclaringClass)
1133 DC = DC->getParent();
1134 ImmediateChild = cast<Decl>(DC);
1135 }
1136
1137 // Check whether there's an AccessSpecDecl preceding this in the
1138 // chain of the DeclContext.
1139 bool isImplicit = true;
1140 for (const auto *I : DeclaringClass->decls()) {
1141 if (I == ImmediateChild) break;
1142 if (isa<AccessSpecDecl>(I)) {
1143 isImplicit = false;
1144 break;
1145 }
1146 }
1147
1148 S.Diag(D->getLocation(), diag::note_access_natural)
1149 << (unsigned) (D->getAccess() == AS_protected)
1150 << isImplicit;
1151 }
1152
1153 /// Diagnose the path which caused the given declaration or base class
1154 /// to become inaccessible.
DiagnoseAccessPath(Sema & S,const EffectiveContext & EC,AccessTarget & entity)1155 static void DiagnoseAccessPath(Sema &S,
1156 const EffectiveContext &EC,
1157 AccessTarget &entity) {
1158 // Save the instance context to preserve invariants.
1159 AccessTarget::SavedInstanceContext _ = entity.saveInstanceContext();
1160
1161 // This basically repeats the main algorithm but keeps some more
1162 // information.
1163
1164 // The natural access so far.
1165 AccessSpecifier accessSoFar = AS_public;
1166
1167 // Check whether we have special rights to the declaring class.
1168 if (entity.isMemberAccess()) {
1169 NamedDecl *D = entity.getTargetDecl();
1170 accessSoFar = D->getAccess();
1171 const CXXRecordDecl *declaringClass = entity.getDeclaringClass();
1172
1173 switch (HasAccess(S, EC, declaringClass, accessSoFar, entity)) {
1174 // If the declaration is accessible when named in its declaring
1175 // class, then we must be constrained by the path.
1176 case AR_accessible:
1177 accessSoFar = AS_public;
1178 entity.suppressInstanceContext();
1179 break;
1180
1181 case AR_inaccessible:
1182 if (accessSoFar == AS_private ||
1183 declaringClass == entity.getEffectiveNamingClass())
1184 return diagnoseBadDirectAccess(S, EC, entity);
1185 break;
1186
1187 case AR_dependent:
1188 llvm_unreachable("cannot diagnose dependent access");
1189 }
1190 }
1191
1192 CXXBasePaths paths;
1193 CXXBasePath &path = *FindBestPath(S, EC, entity, accessSoFar, paths);
1194 assert(path.Access != AS_public);
1195
1196 CXXBasePath::iterator i = path.end(), e = path.begin();
1197 CXXBasePath::iterator constrainingBase = i;
1198 while (i != e) {
1199 --i;
1200
1201 assert(accessSoFar != AS_none && accessSoFar != AS_private);
1202
1203 // Is the entity accessible when named in the deriving class, as
1204 // modified by the base specifier?
1205 const CXXRecordDecl *derivingClass = i->Class->getCanonicalDecl();
1206 const CXXBaseSpecifier *base = i->Base;
1207
1208 // If the access to this base is worse than the access we have to
1209 // the declaration, remember it.
1210 AccessSpecifier baseAccess = base->getAccessSpecifier();
1211 if (baseAccess > accessSoFar) {
1212 constrainingBase = i;
1213 accessSoFar = baseAccess;
1214 }
1215
1216 switch (HasAccess(S, EC, derivingClass, accessSoFar, entity)) {
1217 case AR_inaccessible: break;
1218 case AR_accessible:
1219 accessSoFar = AS_public;
1220 entity.suppressInstanceContext();
1221 constrainingBase = nullptr;
1222 break;
1223 case AR_dependent:
1224 llvm_unreachable("cannot diagnose dependent access");
1225 }
1226
1227 // If this was private inheritance, but we don't have access to
1228 // the deriving class, we're done.
1229 if (accessSoFar == AS_private) {
1230 assert(baseAccess == AS_private);
1231 assert(constrainingBase == i);
1232 break;
1233 }
1234 }
1235
1236 // If we don't have a constraining base, the access failure must be
1237 // due to the original declaration.
1238 if (constrainingBase == path.end())
1239 return diagnoseBadDirectAccess(S, EC, entity);
1240
1241 // We're constrained by inheritance, but we want to say
1242 // "declared private here" if we're diagnosing a hierarchy
1243 // conversion and this is the final step.
1244 unsigned diagnostic;
1245 if (entity.isMemberAccess() ||
1246 constrainingBase + 1 != path.end()) {
1247 diagnostic = diag::note_access_constrained_by_path;
1248 } else {
1249 diagnostic = diag::note_access_natural;
1250 }
1251
1252 const CXXBaseSpecifier *base = constrainingBase->Base;
1253
1254 S.Diag(base->getSourceRange().getBegin(), diagnostic)
1255 << base->getSourceRange()
1256 << (base->getAccessSpecifier() == AS_protected)
1257 << (base->getAccessSpecifierAsWritten() == AS_none);
1258
1259 if (entity.isMemberAccess())
1260 S.Diag(entity.getTargetDecl()->getLocation(),
1261 diag::note_member_declared_at);
1262 }
1263
DiagnoseBadAccess(Sema & S,SourceLocation Loc,const EffectiveContext & EC,AccessTarget & Entity)1264 static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1265 const EffectiveContext &EC,
1266 AccessTarget &Entity) {
1267 const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1268 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1269 NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : nullptr);
1270
1271 S.Diag(Loc, Entity.getDiag())
1272 << (Entity.getAccess() == AS_protected)
1273 << (D ? D->getDeclName() : DeclarationName())
1274 << S.Context.getTypeDeclType(NamingClass)
1275 << S.Context.getTypeDeclType(DeclaringClass);
1276 DiagnoseAccessPath(S, EC, Entity);
1277 }
1278
1279 /// MSVC has a bug where if during an using declaration name lookup,
1280 /// the declaration found is unaccessible (private) and that declaration
1281 /// was bring into scope via another using declaration whose target
1282 /// declaration is accessible (public) then no error is generated.
1283 /// Example:
1284 /// class A {
1285 /// public:
1286 /// int f();
1287 /// };
1288 /// class B : public A {
1289 /// private:
1290 /// using A::f;
1291 /// };
1292 /// class C : public B {
1293 /// private:
1294 /// using B::f;
1295 /// };
1296 ///
1297 /// Here, B::f is private so this should fail in Standard C++, but
1298 /// because B::f refers to A::f which is public MSVC accepts it.
IsMicrosoftUsingDeclarationAccessBug(Sema & S,SourceLocation AccessLoc,AccessTarget & Entity)1299 static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1300 SourceLocation AccessLoc,
1301 AccessTarget &Entity) {
1302 if (UsingShadowDecl *Shadow =
1303 dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1304 const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1305 if (Entity.getTargetDecl()->getAccess() == AS_private &&
1306 (OrigDecl->getAccess() == AS_public ||
1307 OrigDecl->getAccess() == AS_protected)) {
1308 S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1309 << Shadow->getUsingDecl()->getQualifiedNameAsString()
1310 << OrigDecl->getQualifiedNameAsString();
1311 return true;
1312 }
1313 }
1314 return false;
1315 }
1316
1317 /// Determines whether the accessed entity is accessible. Public members
1318 /// have been weeded out by this point.
IsAccessible(Sema & S,const EffectiveContext & EC,AccessTarget & Entity)1319 static AccessResult IsAccessible(Sema &S,
1320 const EffectiveContext &EC,
1321 AccessTarget &Entity) {
1322 // Determine the actual naming class.
1323 const CXXRecordDecl *NamingClass = Entity.getEffectiveNamingClass();
1324
1325 AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1326 assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1327
1328 // Before we try to recalculate access paths, try to white-list
1329 // accesses which just trade in on the final step, i.e. accesses
1330 // which don't require [M4] or [B4]. These are by far the most
1331 // common forms of privileged access.
1332 if (UnprivilegedAccess != AS_none) {
1333 switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1334 case AR_dependent:
1335 // This is actually an interesting policy decision. We don't
1336 // *have* to delay immediately here: we can do the full access
1337 // calculation in the hope that friendship on some intermediate
1338 // class will make the declaration accessible non-dependently.
1339 // But that's not cheap, and odds are very good (note: assertion
1340 // made without data) that the friend declaration will determine
1341 // access.
1342 return AR_dependent;
1343
1344 case AR_accessible: return AR_accessible;
1345 case AR_inaccessible: break;
1346 }
1347 }
1348
1349 AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1350
1351 // We lower member accesses to base accesses by pretending that the
1352 // member is a base class of its declaring class.
1353 AccessSpecifier FinalAccess;
1354
1355 if (Entity.isMemberAccess()) {
1356 // Determine if the declaration is accessible from EC when named
1357 // in its declaring class.
1358 NamedDecl *Target = Entity.getTargetDecl();
1359 const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1360
1361 FinalAccess = Target->getAccess();
1362 switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1363 case AR_accessible:
1364 // Target is accessible at EC when named in its declaring class.
1365 // We can now hill-climb and simply check whether the declaring
1366 // class is accessible as a base of the naming class. This is
1367 // equivalent to checking the access of a notional public
1368 // member with no instance context.
1369 FinalAccess = AS_public;
1370 Entity.suppressInstanceContext();
1371 break;
1372 case AR_inaccessible: break;
1373 case AR_dependent: return AR_dependent; // see above
1374 }
1375
1376 if (DeclaringClass == NamingClass)
1377 return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1378 } else {
1379 FinalAccess = AS_public;
1380 }
1381
1382 assert(Entity.getDeclaringClass() != NamingClass);
1383
1384 // Append the declaration's access if applicable.
1385 CXXBasePaths Paths;
1386 CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1387 if (!Path)
1388 return AR_dependent;
1389
1390 assert(Path->Access <= UnprivilegedAccess &&
1391 "access along best path worse than direct?");
1392 if (Path->Access == AS_public)
1393 return AR_accessible;
1394 return AR_inaccessible;
1395 }
1396
DelayDependentAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,const AccessTarget & Entity)1397 static void DelayDependentAccess(Sema &S,
1398 const EffectiveContext &EC,
1399 SourceLocation Loc,
1400 const AccessTarget &Entity) {
1401 assert(EC.isDependent() && "delaying non-dependent access");
1402 DeclContext *DC = EC.getInnerContext();
1403 assert(DC->isDependentContext() && "delaying non-dependent access");
1404 DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1405 Loc,
1406 Entity.isMemberAccess(),
1407 Entity.getAccess(),
1408 Entity.getTargetDecl(),
1409 Entity.getNamingClass(),
1410 Entity.getBaseObjectType(),
1411 Entity.getDiag());
1412 }
1413
1414 /// Checks access to an entity from the given effective context.
CheckEffectiveAccess(Sema & S,const EffectiveContext & EC,SourceLocation Loc,AccessTarget & Entity)1415 static AccessResult CheckEffectiveAccess(Sema &S,
1416 const EffectiveContext &EC,
1417 SourceLocation Loc,
1418 AccessTarget &Entity) {
1419 assert(Entity.getAccess() != AS_public && "called for public access!");
1420
1421 switch (IsAccessible(S, EC, Entity)) {
1422 case AR_dependent:
1423 DelayDependentAccess(S, EC, Loc, Entity);
1424 return AR_dependent;
1425
1426 case AR_inaccessible:
1427 if (S.getLangOpts().MSVCCompat &&
1428 IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1429 return AR_accessible;
1430 if (!Entity.isQuiet())
1431 DiagnoseBadAccess(S, Loc, EC, Entity);
1432 return AR_inaccessible;
1433
1434 case AR_accessible:
1435 return AR_accessible;
1436 }
1437
1438 // silence unnecessary warning
1439 llvm_unreachable("invalid access result");
1440 }
1441
CheckAccess(Sema & S,SourceLocation Loc,AccessTarget & Entity)1442 static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1443 AccessTarget &Entity) {
1444 // If the access path is public, it's accessible everywhere.
1445 if (Entity.getAccess() == AS_public)
1446 return Sema::AR_accessible;
1447
1448 // If we're currently parsing a declaration, we may need to delay
1449 // access control checking, because our effective context might be
1450 // different based on what the declaration comes out as.
1451 //
1452 // For example, we might be parsing a declaration with a scope
1453 // specifier, like this:
1454 // A::private_type A::foo() { ... }
1455 //
1456 // Or we might be parsing something that will turn out to be a friend:
1457 // void foo(A::private_type);
1458 // void B::foo(A::private_type);
1459 if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1460 S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1461 return Sema::AR_delayed;
1462 }
1463
1464 EffectiveContext EC(S.CurContext);
1465 switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1466 case AR_accessible: return Sema::AR_accessible;
1467 case AR_inaccessible: return Sema::AR_inaccessible;
1468 case AR_dependent: return Sema::AR_dependent;
1469 }
1470 llvm_unreachable("invalid access result");
1471 }
1472
HandleDelayedAccessCheck(DelayedDiagnostic & DD,Decl * D)1473 void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *D) {
1474 // Access control for names used in the declarations of functions
1475 // and function templates should normally be evaluated in the context
1476 // of the declaration, just in case it's a friend of something.
1477 // However, this does not apply to local extern declarations.
1478
1479 DeclContext *DC = D->getDeclContext();
1480 if (D->isLocalExternDecl()) {
1481 DC = D->getLexicalDeclContext();
1482 } else if (FunctionDecl *FN = dyn_cast<FunctionDecl>(D)) {
1483 DC = FN;
1484 } else if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) {
1485 DC = cast<DeclContext>(TD->getTemplatedDecl());
1486 }
1487
1488 EffectiveContext EC(DC);
1489
1490 AccessTarget Target(DD.getAccessData());
1491
1492 if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1493 DD.Triggered = true;
1494 }
1495
HandleDependentAccessCheck(const DependentDiagnostic & DD,const MultiLevelTemplateArgumentList & TemplateArgs)1496 void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1497 const MultiLevelTemplateArgumentList &TemplateArgs) {
1498 SourceLocation Loc = DD.getAccessLoc();
1499 AccessSpecifier Access = DD.getAccess();
1500
1501 Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1502 TemplateArgs);
1503 if (!NamingD) return;
1504 Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1505 TemplateArgs);
1506 if (!TargetD) return;
1507
1508 if (DD.isAccessToMember()) {
1509 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1510 NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1511 QualType BaseObjectType = DD.getAccessBaseObjectType();
1512 if (!BaseObjectType.isNull()) {
1513 BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1514 DeclarationName());
1515 if (BaseObjectType.isNull()) return;
1516 }
1517
1518 AccessTarget Entity(Context,
1519 AccessTarget::Member,
1520 NamingClass,
1521 DeclAccessPair::make(TargetDecl, Access),
1522 BaseObjectType);
1523 Entity.setDiag(DD.getDiagnostic());
1524 CheckAccess(*this, Loc, Entity);
1525 } else {
1526 AccessTarget Entity(Context,
1527 AccessTarget::Base,
1528 cast<CXXRecordDecl>(TargetD),
1529 cast<CXXRecordDecl>(NamingD),
1530 Access);
1531 Entity.setDiag(DD.getDiagnostic());
1532 CheckAccess(*this, Loc, Entity);
1533 }
1534 }
1535
CheckUnresolvedLookupAccess(UnresolvedLookupExpr * E,DeclAccessPair Found)1536 Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1537 DeclAccessPair Found) {
1538 if (!getLangOpts().AccessControl ||
1539 !E->getNamingClass() ||
1540 Found.getAccess() == AS_public)
1541 return AR_accessible;
1542
1543 AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1544 Found, QualType());
1545 Entity.setDiag(diag::err_access) << E->getSourceRange();
1546
1547 return CheckAccess(*this, E->getNameLoc(), Entity);
1548 }
1549
1550 /// Perform access-control checking on a previously-unresolved member
1551 /// access which has now been resolved to a member.
CheckUnresolvedMemberAccess(UnresolvedMemberExpr * E,DeclAccessPair Found)1552 Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1553 DeclAccessPair Found) {
1554 if (!getLangOpts().AccessControl ||
1555 Found.getAccess() == AS_public)
1556 return AR_accessible;
1557
1558 QualType BaseType = E->getBaseType();
1559 if (E->isArrow())
1560 BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1561
1562 AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1563 Found, BaseType);
1564 Entity.setDiag(diag::err_access) << E->getSourceRange();
1565
1566 return CheckAccess(*this, E->getMemberLoc(), Entity);
1567 }
1568
1569 /// Is the given special member function accessible for the purposes of
1570 /// deciding whether to define a special member function as deleted?
isSpecialMemberAccessibleForDeletion(CXXMethodDecl * decl,AccessSpecifier access,QualType objectType)1571 bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1572 AccessSpecifier access,
1573 QualType objectType) {
1574 // Fast path.
1575 if (access == AS_public || !getLangOpts().AccessControl) return true;
1576
1577 AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1578 DeclAccessPair::make(decl, access), objectType);
1579
1580 // Suppress diagnostics.
1581 entity.setDiag(PDiag());
1582
1583 switch (CheckAccess(*this, SourceLocation(), entity)) {
1584 case AR_accessible: return true;
1585 case AR_inaccessible: return false;
1586 case AR_dependent: llvm_unreachable("dependent for =delete computation");
1587 case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1588 }
1589 llvm_unreachable("bad access result");
1590 }
1591
CheckDestructorAccess(SourceLocation Loc,CXXDestructorDecl * Dtor,const PartialDiagnostic & PDiag,QualType ObjectTy)1592 Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1593 CXXDestructorDecl *Dtor,
1594 const PartialDiagnostic &PDiag,
1595 QualType ObjectTy) {
1596 if (!getLangOpts().AccessControl)
1597 return AR_accessible;
1598
1599 // There's never a path involved when checking implicit destructor access.
1600 AccessSpecifier Access = Dtor->getAccess();
1601 if (Access == AS_public)
1602 return AR_accessible;
1603
1604 CXXRecordDecl *NamingClass = Dtor->getParent();
1605 if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1606
1607 AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1608 DeclAccessPair::make(Dtor, Access),
1609 ObjectTy);
1610 Entity.setDiag(PDiag); // TODO: avoid copy
1611
1612 return CheckAccess(*this, Loc, Entity);
1613 }
1614
1615 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,bool IsCopyBindingRefToTemp)1616 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1617 CXXConstructorDecl *Constructor,
1618 const InitializedEntity &Entity,
1619 AccessSpecifier Access,
1620 bool IsCopyBindingRefToTemp) {
1621 if (!getLangOpts().AccessControl || Access == AS_public)
1622 return AR_accessible;
1623
1624 PartialDiagnostic PD(PDiag());
1625 switch (Entity.getKind()) {
1626 default:
1627 PD = PDiag(IsCopyBindingRefToTemp
1628 ? diag::ext_rvalue_to_reference_access_ctor
1629 : diag::err_access_ctor);
1630
1631 break;
1632
1633 case InitializedEntity::EK_Base:
1634 PD = PDiag(diag::err_access_base_ctor);
1635 PD << Entity.isInheritedVirtualBase()
1636 << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1637 break;
1638
1639 case InitializedEntity::EK_Member: {
1640 const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1641 PD = PDiag(diag::err_access_field_ctor);
1642 PD << Field->getType() << getSpecialMember(Constructor);
1643 break;
1644 }
1645
1646 case InitializedEntity::EK_LambdaCapture: {
1647 StringRef VarName = Entity.getCapturedVarName();
1648 PD = PDiag(diag::err_access_lambda_capture);
1649 PD << VarName << Entity.getType() << getSpecialMember(Constructor);
1650 break;
1651 }
1652
1653 }
1654
1655 return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1656 }
1657
1658 /// Checks access to a constructor.
CheckConstructorAccess(SourceLocation UseLoc,CXXConstructorDecl * Constructor,const InitializedEntity & Entity,AccessSpecifier Access,const PartialDiagnostic & PD)1659 Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1660 CXXConstructorDecl *Constructor,
1661 const InitializedEntity &Entity,
1662 AccessSpecifier Access,
1663 const PartialDiagnostic &PD) {
1664 if (!getLangOpts().AccessControl ||
1665 Access == AS_public)
1666 return AR_accessible;
1667
1668 CXXRecordDecl *NamingClass = Constructor->getParent();
1669
1670 // Initializing a base sub-object is an instance method call on an
1671 // object of the derived class. Otherwise, we have an instance method
1672 // call on an object of the constructed type.
1673 CXXRecordDecl *ObjectClass;
1674 if (Entity.getKind() == InitializedEntity::EK_Base) {
1675 ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1676 } else {
1677 ObjectClass = NamingClass;
1678 }
1679
1680 AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1681 DeclAccessPair::make(Constructor, Access),
1682 Context.getTypeDeclType(ObjectClass));
1683 AccessEntity.setDiag(PD);
1684
1685 return CheckAccess(*this, UseLoc, AccessEntity);
1686 }
1687
1688 /// Checks access to an overloaded operator new or delete.
CheckAllocationAccess(SourceLocation OpLoc,SourceRange PlacementRange,CXXRecordDecl * NamingClass,DeclAccessPair Found,bool Diagnose)1689 Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1690 SourceRange PlacementRange,
1691 CXXRecordDecl *NamingClass,
1692 DeclAccessPair Found,
1693 bool Diagnose) {
1694 if (!getLangOpts().AccessControl ||
1695 !NamingClass ||
1696 Found.getAccess() == AS_public)
1697 return AR_accessible;
1698
1699 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1700 QualType());
1701 if (Diagnose)
1702 Entity.setDiag(diag::err_access)
1703 << PlacementRange;
1704
1705 return CheckAccess(*this, OpLoc, Entity);
1706 }
1707
1708 /// \brief Checks access to a member.
CheckMemberAccess(SourceLocation UseLoc,CXXRecordDecl * NamingClass,DeclAccessPair Found)1709 Sema::AccessResult Sema::CheckMemberAccess(SourceLocation UseLoc,
1710 CXXRecordDecl *NamingClass,
1711 DeclAccessPair Found) {
1712 if (!getLangOpts().AccessControl ||
1713 !NamingClass ||
1714 Found.getAccess() == AS_public)
1715 return AR_accessible;
1716
1717 AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1718 Found, QualType());
1719
1720 return CheckAccess(*this, UseLoc, Entity);
1721 }
1722
1723 /// Checks access to an overloaded member operator, including
1724 /// conversion operators.
CheckMemberOperatorAccess(SourceLocation OpLoc,Expr * ObjectExpr,Expr * ArgExpr,DeclAccessPair Found)1725 Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1726 Expr *ObjectExpr,
1727 Expr *ArgExpr,
1728 DeclAccessPair Found) {
1729 if (!getLangOpts().AccessControl ||
1730 Found.getAccess() == AS_public)
1731 return AR_accessible;
1732
1733 const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1734 CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1735
1736 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1737 ObjectExpr->getType());
1738 Entity.setDiag(diag::err_access)
1739 << ObjectExpr->getSourceRange()
1740 << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1741
1742 return CheckAccess(*this, OpLoc, Entity);
1743 }
1744
1745 /// Checks access to the target of a friend declaration.
CheckFriendAccess(NamedDecl * target)1746 Sema::AccessResult Sema::CheckFriendAccess(NamedDecl *target) {
1747 assert(isa<CXXMethodDecl>(target->getAsFunction()));
1748
1749 // Friendship lookup is a redeclaration lookup, so there's never an
1750 // inheritance path modifying access.
1751 AccessSpecifier access = target->getAccess();
1752
1753 if (!getLangOpts().AccessControl || access == AS_public)
1754 return AR_accessible;
1755
1756 CXXMethodDecl *method = cast<CXXMethodDecl>(target->getAsFunction());
1757
1758 AccessTarget entity(Context, AccessTarget::Member,
1759 cast<CXXRecordDecl>(target->getDeclContext()),
1760 DeclAccessPair::make(target, access),
1761 /*no instance context*/ QualType());
1762 entity.setDiag(diag::err_access_friend_function)
1763 << (method->getQualifier() ? method->getQualifierLoc().getSourceRange()
1764 : method->getNameInfo().getSourceRange());
1765
1766 // We need to bypass delayed-diagnostics because we might be called
1767 // while the ParsingDeclarator is active.
1768 EffectiveContext EC(CurContext);
1769 switch (CheckEffectiveAccess(*this, EC, target->getLocation(), entity)) {
1770 case AR_accessible: return Sema::AR_accessible;
1771 case AR_inaccessible: return Sema::AR_inaccessible;
1772 case AR_dependent: return Sema::AR_dependent;
1773 }
1774 llvm_unreachable("invalid access result");
1775 }
1776
CheckAddressOfMemberAccess(Expr * OvlExpr,DeclAccessPair Found)1777 Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1778 DeclAccessPair Found) {
1779 if (!getLangOpts().AccessControl ||
1780 Found.getAccess() == AS_none ||
1781 Found.getAccess() == AS_public)
1782 return AR_accessible;
1783
1784 OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1785 CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1786
1787 AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1788 /*no instance context*/ QualType());
1789 Entity.setDiag(diag::err_access)
1790 << Ovl->getSourceRange();
1791
1792 return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1793 }
1794
1795 /// Checks access for a hierarchy conversion.
1796 ///
1797 /// \param ForceCheck true if this check should be performed even if access
1798 /// control is disabled; some things rely on this for semantics
1799 /// \param ForceUnprivileged true if this check should proceed as if the
1800 /// context had no special privileges
CheckBaseClassAccess(SourceLocation AccessLoc,QualType Base,QualType Derived,const CXXBasePath & Path,unsigned DiagID,bool ForceCheck,bool ForceUnprivileged)1801 Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1802 QualType Base,
1803 QualType Derived,
1804 const CXXBasePath &Path,
1805 unsigned DiagID,
1806 bool ForceCheck,
1807 bool ForceUnprivileged) {
1808 if (!ForceCheck && !getLangOpts().AccessControl)
1809 return AR_accessible;
1810
1811 if (Path.Access == AS_public)
1812 return AR_accessible;
1813
1814 CXXRecordDecl *BaseD, *DerivedD;
1815 BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1816 DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1817
1818 AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1819 Path.Access);
1820 if (DiagID)
1821 Entity.setDiag(DiagID) << Derived << Base;
1822
1823 if (ForceUnprivileged) {
1824 switch (CheckEffectiveAccess(*this, EffectiveContext(),
1825 AccessLoc, Entity)) {
1826 case ::AR_accessible: return Sema::AR_accessible;
1827 case ::AR_inaccessible: return Sema::AR_inaccessible;
1828 case ::AR_dependent: return Sema::AR_dependent;
1829 }
1830 llvm_unreachable("unexpected result from CheckEffectiveAccess");
1831 }
1832 return CheckAccess(*this, AccessLoc, Entity);
1833 }
1834
1835 /// Checks access to all the declarations in the given result set.
CheckLookupAccess(const LookupResult & R)1836 void Sema::CheckLookupAccess(const LookupResult &R) {
1837 assert(getLangOpts().AccessControl
1838 && "performing access check without access control");
1839 assert(R.getNamingClass() && "performing access check without naming class");
1840
1841 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1842 if (I.getAccess() != AS_public) {
1843 AccessTarget Entity(Context, AccessedEntity::Member,
1844 R.getNamingClass(), I.getPair(),
1845 R.getBaseObjectType());
1846 Entity.setDiag(diag::err_access);
1847 CheckAccess(*this, R.getNameLoc(), Entity);
1848 }
1849 }
1850 }
1851
1852 /// Checks access to Decl from the given class. The check will take access
1853 /// specifiers into account, but no member access expressions and such.
1854 ///
1855 /// \param Decl the declaration to check if it can be accessed
1856 /// \param Ctx the class/context from which to start the search
1857 /// \return true if the Decl is accessible from the Class, false otherwise.
IsSimplyAccessible(NamedDecl * Decl,DeclContext * Ctx)1858 bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1859 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1860 if (!Decl->isCXXClassMember())
1861 return true;
1862
1863 QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1864 AccessTarget Entity(Context, AccessedEntity::Member, Class,
1865 DeclAccessPair::make(Decl, Decl->getAccess()),
1866 qType);
1867 if (Entity.getAccess() == AS_public)
1868 return true;
1869
1870 EffectiveContext EC(CurContext);
1871 return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1872 }
1873
1874 if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1875 // @public and @package ivars are always accessible.
1876 if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1877 Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1878 return true;
1879
1880 // If we are inside a class or category implementation, determine the
1881 // interface we're in.
1882 ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1883 if (ObjCMethodDecl *MD = getCurMethodDecl())
1884 ClassOfMethodDecl = MD->getClassInterface();
1885 else if (FunctionDecl *FD = getCurFunctionDecl()) {
1886 if (ObjCImplDecl *Impl
1887 = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1888 if (ObjCImplementationDecl *IMPD
1889 = dyn_cast<ObjCImplementationDecl>(Impl))
1890 ClassOfMethodDecl = IMPD->getClassInterface();
1891 else if (ObjCCategoryImplDecl* CatImplClass
1892 = dyn_cast<ObjCCategoryImplDecl>(Impl))
1893 ClassOfMethodDecl = CatImplClass->getClassInterface();
1894 }
1895 }
1896
1897 // If we're not in an interface, this ivar is inaccessible.
1898 if (!ClassOfMethodDecl)
1899 return false;
1900
1901 // If we're inside the same interface that owns the ivar, we're fine.
1902 if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1903 return true;
1904
1905 // If the ivar is private, it's inaccessible.
1906 if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1907 return false;
1908
1909 return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1910 }
1911
1912 return true;
1913 }
1914