1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Implements semantic analysis for C++ expressions.
12 ///
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Sema/SemaInternal.h"
16 #include "TreeTransform.h"
17 #include "TypeLocBuilder.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/ASTLambda.h"
20 #include "clang/AST/CXXInheritance.h"
21 #include "clang/AST/CharUnits.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/RecursiveASTVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/PartialDiagnostic.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/DeclSpec.h"
31 #include "clang/Sema/Initialization.h"
32 #include "clang/Sema/Lookup.h"
33 #include "clang/Sema/ParsedTemplate.h"
34 #include "clang/Sema/Scope.h"
35 #include "clang/Sema/ScopeInfo.h"
36 #include "clang/Sema/SemaLambda.h"
37 #include "clang/Sema/TemplateDeduction.h"
38 #include "llvm/ADT/APInt.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/Support/ErrorHandling.h"
41 using namespace clang;
42 using namespace sema;
43
44 /// \brief Handle the result of the special case name lookup for inheriting
45 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46 /// constructor names in member using declarations, even if 'X' is not the
47 /// name of the corresponding type.
getInheritingConstructorName(CXXScopeSpec & SS,SourceLocation NameLoc,IdentifierInfo & Name)48 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49 SourceLocation NameLoc,
50 IdentifierInfo &Name) {
51 NestedNameSpecifier *NNS = SS.getScopeRep();
52
53 // Convert the nested-name-specifier into a type.
54 QualType Type;
55 switch (NNS->getKind()) {
56 case NestedNameSpecifier::TypeSpec:
57 case NestedNameSpecifier::TypeSpecWithTemplate:
58 Type = QualType(NNS->getAsType(), 0);
59 break;
60
61 case NestedNameSpecifier::Identifier:
62 // Strip off the last layer of the nested-name-specifier and build a
63 // typename type for it.
64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66 NNS->getAsIdentifier());
67 break;
68
69 case NestedNameSpecifier::Global:
70 case NestedNameSpecifier::Super:
71 case NestedNameSpecifier::Namespace:
72 case NestedNameSpecifier::NamespaceAlias:
73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
74 }
75
76 // This reference to the type is located entirely at the location of the
77 // final identifier in the qualified-id.
78 return CreateParsedType(Type,
79 Context.getTrivialTypeSourceInfo(Type, NameLoc));
80 }
81
getDestructorName(SourceLocation TildeLoc,IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec & SS,ParsedType ObjectTypePtr,bool EnteringContext)82 ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
83 IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 ParsedType ObjectTypePtr,
87 bool EnteringContext) {
88 // Determine where to perform name lookup.
89
90 // FIXME: This area of the standard is very messy, and the current
91 // wording is rather unclear about which scopes we search for the
92 // destructor name; see core issues 399 and 555. Issue 399 in
93 // particular shows where the current description of destructor name
94 // lookup is completely out of line with existing practice, e.g.,
95 // this appears to be ill-formed:
96 //
97 // namespace N {
98 // template <typename T> struct S {
99 // ~S();
100 // };
101 // }
102 //
103 // void f(N::S<int>* s) {
104 // s->N::S<int>::~S();
105 // }
106 //
107 // See also PR6358 and PR6359.
108 // For this reason, we're currently only doing the C++03 version of this
109 // code; the C++0x version has to wait until we get a proper spec.
110 QualType SearchType;
111 DeclContext *LookupCtx = nullptr;
112 bool isDependent = false;
113 bool LookInScope = false;
114
115 if (SS.isInvalid())
116 return ParsedType();
117
118 // If we have an object type, it's because we are in a
119 // pseudo-destructor-expression or a member access expression, and
120 // we know what type we're looking for.
121 if (ObjectTypePtr)
122 SearchType = GetTypeFromParser(ObjectTypePtr);
123
124 if (SS.isSet()) {
125 NestedNameSpecifier *NNS = SS.getScopeRep();
126
127 bool AlreadySearched = false;
128 bool LookAtPrefix = true;
129 // C++11 [basic.lookup.qual]p6:
130 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
131 // the type-names are looked up as types in the scope designated by the
132 // nested-name-specifier. Similarly, in a qualified-id of the form:
133 //
134 // nested-name-specifier[opt] class-name :: ~ class-name
135 //
136 // the second class-name is looked up in the same scope as the first.
137 //
138 // Here, we determine whether the code below is permitted to look at the
139 // prefix of the nested-name-specifier.
140 DeclContext *DC = computeDeclContext(SS, EnteringContext);
141 if (DC && DC->isFileContext()) {
142 AlreadySearched = true;
143 LookupCtx = DC;
144 isDependent = false;
145 } else if (DC && isa<CXXRecordDecl>(DC)) {
146 LookAtPrefix = false;
147 LookInScope = true;
148 }
149
150 // The second case from the C++03 rules quoted further above.
151 NestedNameSpecifier *Prefix = nullptr;
152 if (AlreadySearched) {
153 // Nothing left to do.
154 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
155 CXXScopeSpec PrefixSS;
156 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
157 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
158 isDependent = isDependentScopeSpecifier(PrefixSS);
159 } else if (ObjectTypePtr) {
160 LookupCtx = computeDeclContext(SearchType);
161 isDependent = SearchType->isDependentType();
162 } else {
163 LookupCtx = computeDeclContext(SS, EnteringContext);
164 isDependent = LookupCtx && LookupCtx->isDependentContext();
165 }
166 } else if (ObjectTypePtr) {
167 // C++ [basic.lookup.classref]p3:
168 // If the unqualified-id is ~type-name, the type-name is looked up
169 // in the context of the entire postfix-expression. If the type T
170 // of the object expression is of a class type C, the type-name is
171 // also looked up in the scope of class C. At least one of the
172 // lookups shall find a name that refers to (possibly
173 // cv-qualified) T.
174 LookupCtx = computeDeclContext(SearchType);
175 isDependent = SearchType->isDependentType();
176 assert((isDependent || !SearchType->isIncompleteType()) &&
177 "Caller should have completed object type");
178
179 LookInScope = true;
180 } else {
181 // Perform lookup into the current scope (only).
182 LookInScope = true;
183 }
184
185 TypeDecl *NonMatchingTypeDecl = nullptr;
186 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187 for (unsigned Step = 0; Step != 2; ++Step) {
188 // Look for the name first in the computed lookup context (if we
189 // have one) and, if that fails to find a match, in the scope (if
190 // we're allowed to look there).
191 Found.clear();
192 if (Step == 0 && LookupCtx)
193 LookupQualifiedName(Found, LookupCtx);
194 else if (Step == 1 && LookInScope && S)
195 LookupName(Found, S);
196 else
197 continue;
198
199 // FIXME: Should we be suppressing ambiguities here?
200 if (Found.isAmbiguous())
201 return ParsedType();
202
203 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204 QualType T = Context.getTypeDeclType(Type);
205 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
206
207 if (SearchType.isNull() || SearchType->isDependentType() ||
208 Context.hasSameUnqualifiedType(T, SearchType)) {
209 // We found our type!
210
211 return CreateParsedType(T,
212 Context.getTrivialTypeSourceInfo(T, NameLoc));
213 }
214
215 if (!SearchType.isNull())
216 NonMatchingTypeDecl = Type;
217 }
218
219 // If the name that we found is a class template name, and it is
220 // the same name as the template name in the last part of the
221 // nested-name-specifier (if present) or the object type, then
222 // this is the destructor for that class.
223 // FIXME: This is a workaround until we get real drafting for core
224 // issue 399, for which there isn't even an obvious direction.
225 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
226 QualType MemberOfType;
227 if (SS.isSet()) {
228 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
229 // Figure out the type of the context, if it has one.
230 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
231 MemberOfType = Context.getTypeDeclType(Record);
232 }
233 }
234 if (MemberOfType.isNull())
235 MemberOfType = SearchType;
236
237 if (MemberOfType.isNull())
238 continue;
239
240 // We're referring into a class template specialization. If the
241 // class template we found is the same as the template being
242 // specialized, we found what we are looking for.
243 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
244 if (ClassTemplateSpecializationDecl *Spec
245 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
246 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
247 Template->getCanonicalDecl())
248 return CreateParsedType(
249 MemberOfType,
250 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
251 }
252
253 continue;
254 }
255
256 // We're referring to an unresolved class template
257 // specialization. Determine whether we class template we found
258 // is the same as the template being specialized or, if we don't
259 // know which template is being specialized, that it at least
260 // has the same name.
261 if (const TemplateSpecializationType *SpecType
262 = MemberOfType->getAs<TemplateSpecializationType>()) {
263 TemplateName SpecName = SpecType->getTemplateName();
264
265 // The class template we found is the same template being
266 // specialized.
267 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
268 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
269 return CreateParsedType(
270 MemberOfType,
271 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
272
273 continue;
274 }
275
276 // The class template we found has the same name as the
277 // (dependent) template name being specialized.
278 if (DependentTemplateName *DepTemplate
279 = SpecName.getAsDependentTemplateName()) {
280 if (DepTemplate->isIdentifier() &&
281 DepTemplate->getIdentifier() == Template->getIdentifier())
282 return CreateParsedType(
283 MemberOfType,
284 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
285
286 continue;
287 }
288 }
289 }
290 }
291
292 if (isDependent) {
293 // We didn't find our type, but that's okay: it's dependent
294 // anyway.
295
296 // FIXME: What if we have no nested-name-specifier?
297 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
298 SS.getWithLocInContext(Context),
299 II, NameLoc);
300 return ParsedType::make(T);
301 }
302
303 if (NonMatchingTypeDecl) {
304 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
305 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
306 << T << SearchType;
307 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
308 << T;
309 } else if (ObjectTypePtr)
310 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
311 << &II;
312 else {
313 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
314 diag::err_destructor_class_name);
315 if (S) {
316 const DeclContext *Ctx = S->getEntity();
317 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
318 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
319 Class->getNameAsString());
320 }
321 }
322
323 return ParsedType();
324 }
325
getDestructorType(const DeclSpec & DS,ParsedType ObjectType)326 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
327 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
328 return ParsedType();
329 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
330 && "only get destructor types from declspecs");
331 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
332 QualType SearchType = GetTypeFromParser(ObjectType);
333 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
334 return ParsedType::make(T);
335 }
336
337 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
338 << T << SearchType;
339 return ParsedType();
340 }
341
checkLiteralOperatorId(const CXXScopeSpec & SS,const UnqualifiedId & Name)342 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
343 const UnqualifiedId &Name) {
344 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
345
346 if (!SS.isValid())
347 return false;
348
349 switch (SS.getScopeRep()->getKind()) {
350 case NestedNameSpecifier::Identifier:
351 case NestedNameSpecifier::TypeSpec:
352 case NestedNameSpecifier::TypeSpecWithTemplate:
353 // Per C++11 [over.literal]p2, literal operators can only be declared at
354 // namespace scope. Therefore, this unqualified-id cannot name anything.
355 // Reject it early, because we have no AST representation for this in the
356 // case where the scope is dependent.
357 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
358 << SS.getScopeRep();
359 return true;
360
361 case NestedNameSpecifier::Global:
362 case NestedNameSpecifier::Super:
363 case NestedNameSpecifier::Namespace:
364 case NestedNameSpecifier::NamespaceAlias:
365 return false;
366 }
367
368 llvm_unreachable("unknown nested name specifier kind");
369 }
370
371 /// \brief Build a C++ typeid expression with a type operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)372 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
373 SourceLocation TypeidLoc,
374 TypeSourceInfo *Operand,
375 SourceLocation RParenLoc) {
376 // C++ [expr.typeid]p4:
377 // The top-level cv-qualifiers of the lvalue expression or the type-id
378 // that is the operand of typeid are always ignored.
379 // If the type of the type-id is a class type or a reference to a class
380 // type, the class shall be completely-defined.
381 Qualifiers Quals;
382 QualType T
383 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
384 Quals);
385 if (T->getAs<RecordType>() &&
386 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
387 return ExprError();
388
389 if (T->isVariablyModifiedType())
390 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
391
392 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
393 SourceRange(TypeidLoc, RParenLoc));
394 }
395
396 /// \brief Build a C++ typeid expression with an expression operand.
BuildCXXTypeId(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)397 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
398 SourceLocation TypeidLoc,
399 Expr *E,
400 SourceLocation RParenLoc) {
401 bool WasEvaluated = false;
402 if (E && !E->isTypeDependent()) {
403 if (E->getType()->isPlaceholderType()) {
404 ExprResult result = CheckPlaceholderExpr(E);
405 if (result.isInvalid()) return ExprError();
406 E = result.get();
407 }
408
409 QualType T = E->getType();
410 if (const RecordType *RecordT = T->getAs<RecordType>()) {
411 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
412 // C++ [expr.typeid]p3:
413 // [...] If the type of the expression is a class type, the class
414 // shall be completely-defined.
415 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
416 return ExprError();
417
418 // C++ [expr.typeid]p3:
419 // When typeid is applied to an expression other than an glvalue of a
420 // polymorphic class type [...] [the] expression is an unevaluated
421 // operand. [...]
422 if (RecordD->isPolymorphic() && E->isGLValue()) {
423 // The subexpression is potentially evaluated; switch the context
424 // and recheck the subexpression.
425 ExprResult Result = TransformToPotentiallyEvaluated(E);
426 if (Result.isInvalid()) return ExprError();
427 E = Result.get();
428
429 // We require a vtable to query the type at run time.
430 MarkVTableUsed(TypeidLoc, RecordD);
431 WasEvaluated = true;
432 }
433 }
434
435 // C++ [expr.typeid]p4:
436 // [...] If the type of the type-id is a reference to a possibly
437 // cv-qualified type, the result of the typeid expression refers to a
438 // std::type_info object representing the cv-unqualified referenced
439 // type.
440 Qualifiers Quals;
441 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
442 if (!Context.hasSameType(T, UnqualT)) {
443 T = UnqualT;
444 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
445 }
446 }
447
448 if (E->getType()->isVariablyModifiedType())
449 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
450 << E->getType());
451 else if (ActiveTemplateInstantiations.empty() &&
452 E->HasSideEffects(Context, WasEvaluated)) {
453 // The expression operand for typeid is in an unevaluated expression
454 // context, so side effects could result in unintended consequences.
455 Diag(E->getExprLoc(), WasEvaluated
456 ? diag::warn_side_effects_typeid
457 : diag::warn_side_effects_unevaluated_context);
458 }
459
460 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
461 SourceRange(TypeidLoc, RParenLoc));
462 }
463
464 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
465 ExprResult
ActOnCXXTypeid(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)466 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
467 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
468 // Find the std::type_info type.
469 if (!getStdNamespace())
470 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
471
472 if (!CXXTypeInfoDecl) {
473 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
474 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
475 LookupQualifiedName(R, getStdNamespace());
476 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
477 // Microsoft's typeinfo doesn't have type_info in std but in the global
478 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
479 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
480 LookupQualifiedName(R, Context.getTranslationUnitDecl());
481 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
482 }
483 if (!CXXTypeInfoDecl)
484 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
485 }
486
487 if (!getLangOpts().RTTI) {
488 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
489 }
490
491 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
492
493 if (isType) {
494 // The operand is a type; handle it as such.
495 TypeSourceInfo *TInfo = nullptr;
496 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
497 &TInfo);
498 if (T.isNull())
499 return ExprError();
500
501 if (!TInfo)
502 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
503
504 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
505 }
506
507 // The operand is an expression.
508 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
509 }
510
511 /// \brief Build a Microsoft __uuidof expression with a type operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,TypeSourceInfo * Operand,SourceLocation RParenLoc)512 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
513 SourceLocation TypeidLoc,
514 TypeSourceInfo *Operand,
515 SourceLocation RParenLoc) {
516 if (!Operand->getType()->isDependentType()) {
517 bool HasMultipleGUIDs = false;
518 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
519 &HasMultipleGUIDs)) {
520 if (HasMultipleGUIDs)
521 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
522 else
523 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
524 }
525 }
526
527 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
528 SourceRange(TypeidLoc, RParenLoc));
529 }
530
531 /// \brief Build a Microsoft __uuidof expression with an expression operand.
BuildCXXUuidof(QualType TypeInfoType,SourceLocation TypeidLoc,Expr * E,SourceLocation RParenLoc)532 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
533 SourceLocation TypeidLoc,
534 Expr *E,
535 SourceLocation RParenLoc) {
536 if (!E->getType()->isDependentType()) {
537 bool HasMultipleGUIDs = false;
538 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
539 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
540 if (HasMultipleGUIDs)
541 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
542 else
543 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
544 }
545 }
546
547 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
548 SourceRange(TypeidLoc, RParenLoc));
549 }
550
551 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
552 ExprResult
ActOnCXXUuidof(SourceLocation OpLoc,SourceLocation LParenLoc,bool isType,void * TyOrExpr,SourceLocation RParenLoc)553 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
554 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
555 // If MSVCGuidDecl has not been cached, do the lookup.
556 if (!MSVCGuidDecl) {
557 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
558 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
559 LookupQualifiedName(R, Context.getTranslationUnitDecl());
560 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
561 if (!MSVCGuidDecl)
562 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
563 }
564
565 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
566
567 if (isType) {
568 // The operand is a type; handle it as such.
569 TypeSourceInfo *TInfo = nullptr;
570 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
571 &TInfo);
572 if (T.isNull())
573 return ExprError();
574
575 if (!TInfo)
576 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
577
578 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
579 }
580
581 // The operand is an expression.
582 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
583 }
584
585 /// ActOnCXXBoolLiteral - Parse {true,false} literals.
586 ExprResult
ActOnCXXBoolLiteral(SourceLocation OpLoc,tok::TokenKind Kind)587 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
588 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
589 "Unknown C++ Boolean value!");
590 return new (Context)
591 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
592 }
593
594 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
595 ExprResult
ActOnCXXNullPtrLiteral(SourceLocation Loc)596 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
597 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
598 }
599
600 /// ActOnCXXThrow - Parse throw expressions.
601 ExprResult
ActOnCXXThrow(Scope * S,SourceLocation OpLoc,Expr * Ex)602 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
603 bool IsThrownVarInScope = false;
604 if (Ex) {
605 // C++0x [class.copymove]p31:
606 // When certain criteria are met, an implementation is allowed to omit the
607 // copy/move construction of a class object [...]
608 //
609 // - in a throw-expression, when the operand is the name of a
610 // non-volatile automatic object (other than a function or catch-
611 // clause parameter) whose scope does not extend beyond the end of the
612 // innermost enclosing try-block (if there is one), the copy/move
613 // operation from the operand to the exception object (15.1) can be
614 // omitted by constructing the automatic object directly into the
615 // exception object
616 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
617 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
618 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
619 for( ; S; S = S->getParent()) {
620 if (S->isDeclScope(Var)) {
621 IsThrownVarInScope = true;
622 break;
623 }
624
625 if (S->getFlags() &
626 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
627 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
628 Scope::TryScope))
629 break;
630 }
631 }
632 }
633 }
634
635 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
636 }
637
BuildCXXThrow(SourceLocation OpLoc,Expr * Ex,bool IsThrownVarInScope)638 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
639 bool IsThrownVarInScope) {
640 // Don't report an error if 'throw' is used in system headers.
641 if (!getLangOpts().CXXExceptions &&
642 !getSourceManager().isInSystemHeader(OpLoc))
643 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
644
645 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
646 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
647
648 if (Ex && !Ex->isTypeDependent()) {
649 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
650 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
651 return ExprError();
652
653 // Initialize the exception result. This implicitly weeds out
654 // abstract types or types with inaccessible copy constructors.
655
656 // C++0x [class.copymove]p31:
657 // When certain criteria are met, an implementation is allowed to omit the
658 // copy/move construction of a class object [...]
659 //
660 // - in a throw-expression, when the operand is the name of a
661 // non-volatile automatic object (other than a function or
662 // catch-clause
663 // parameter) whose scope does not extend beyond the end of the
664 // innermost enclosing try-block (if there is one), the copy/move
665 // operation from the operand to the exception object (15.1) can be
666 // omitted by constructing the automatic object directly into the
667 // exception object
668 const VarDecl *NRVOVariable = nullptr;
669 if (IsThrownVarInScope)
670 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
671
672 InitializedEntity Entity = InitializedEntity::InitializeException(
673 OpLoc, ExceptionObjectTy,
674 /*NRVO=*/NRVOVariable != nullptr);
675 ExprResult Res = PerformMoveOrCopyInitialization(
676 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
677 if (Res.isInvalid())
678 return ExprError();
679 Ex = Res.get();
680 }
681
682 return new (Context)
683 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
684 }
685
686 static void
collectPublicBases(CXXRecordDecl * RD,llvm::DenseMap<CXXRecordDecl *,unsigned> & SubobjectsSeen,llvm::SmallPtrSetImpl<CXXRecordDecl * > & VBases,llvm::SetVector<CXXRecordDecl * > & PublicSubobjectsSeen,bool ParentIsPublic)687 collectPublicBases(CXXRecordDecl *RD,
688 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
689 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
690 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
691 bool ParentIsPublic) {
692 for (const CXXBaseSpecifier &BS : RD->bases()) {
693 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
694 bool NewSubobject;
695 // Virtual bases constitute the same subobject. Non-virtual bases are
696 // always distinct subobjects.
697 if (BS.isVirtual())
698 NewSubobject = VBases.insert(BaseDecl).second;
699 else
700 NewSubobject = true;
701
702 if (NewSubobject)
703 ++SubobjectsSeen[BaseDecl];
704
705 // Only add subobjects which have public access throughout the entire chain.
706 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
707 if (PublicPath)
708 PublicSubobjectsSeen.insert(BaseDecl);
709
710 // Recurse on to each base subobject.
711 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
712 PublicPath);
713 }
714 }
715
getUnambiguousPublicSubobjects(CXXRecordDecl * RD,llvm::SmallVectorImpl<CXXRecordDecl * > & Objects)716 static void getUnambiguousPublicSubobjects(
717 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
718 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
719 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
720 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
721 SubobjectsSeen[RD] = 1;
722 PublicSubobjectsSeen.insert(RD);
723 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
724 /*ParentIsPublic=*/true);
725
726 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
727 // Skip ambiguous objects.
728 if (SubobjectsSeen[PublicSubobject] > 1)
729 continue;
730
731 Objects.push_back(PublicSubobject);
732 }
733 }
734
735 /// CheckCXXThrowOperand - Validate the operand of a throw.
CheckCXXThrowOperand(SourceLocation ThrowLoc,QualType ExceptionObjectTy,Expr * E)736 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
737 QualType ExceptionObjectTy, Expr *E) {
738 // If the type of the exception would be an incomplete type or a pointer
739 // to an incomplete type other than (cv) void the program is ill-formed.
740 QualType Ty = ExceptionObjectTy;
741 bool isPointer = false;
742 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
743 Ty = Ptr->getPointeeType();
744 isPointer = true;
745 }
746 if (!isPointer || !Ty->isVoidType()) {
747 if (RequireCompleteType(ThrowLoc, Ty,
748 isPointer ? diag::err_throw_incomplete_ptr
749 : diag::err_throw_incomplete,
750 E->getSourceRange()))
751 return true;
752
753 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
754 diag::err_throw_abstract_type, E))
755 return true;
756 }
757
758 // If the exception has class type, we need additional handling.
759 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
760 if (!RD)
761 return false;
762
763 // If we are throwing a polymorphic class type or pointer thereof,
764 // exception handling will make use of the vtable.
765 MarkVTableUsed(ThrowLoc, RD);
766
767 // If a pointer is thrown, the referenced object will not be destroyed.
768 if (isPointer)
769 return false;
770
771 // If the class has a destructor, we must be able to call it.
772 if (!RD->hasIrrelevantDestructor()) {
773 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
774 MarkFunctionReferenced(E->getExprLoc(), Destructor);
775 CheckDestructorAccess(E->getExprLoc(), Destructor,
776 PDiag(diag::err_access_dtor_exception) << Ty);
777 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
778 return true;
779 }
780 }
781
782 // The MSVC ABI creates a list of all types which can catch the exception
783 // object. This list also references the appropriate copy constructor to call
784 // if the object is caught by value and has a non-trivial copy constructor.
785 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
786 // We are only interested in the public, unambiguous bases contained within
787 // the exception object. Bases which are ambiguous or otherwise
788 // inaccessible are not catchable types.
789 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
790 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
791
792 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
793 // Attempt to lookup the copy constructor. Various pieces of machinery
794 // will spring into action, like template instantiation, which means this
795 // cannot be a simple walk of the class's decls. Instead, we must perform
796 // lookup and overload resolution.
797 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
798 if (!CD)
799 continue;
800
801 // Mark the constructor referenced as it is used by this throw expression.
802 MarkFunctionReferenced(E->getExprLoc(), CD);
803
804 // Skip this copy constructor if it is trivial, we don't need to record it
805 // in the catchable type data.
806 if (CD->isTrivial())
807 continue;
808
809 // The copy constructor is non-trivial, create a mapping from this class
810 // type to this constructor.
811 // N.B. The selection of copy constructor is not sensitive to this
812 // particular throw-site. Lookup will be performed at the catch-site to
813 // ensure that the copy constructor is, in fact, accessible (via
814 // friendship or any other means).
815 Context.addCopyConstructorForExceptionObject(Subobject, CD);
816
817 // We don't keep the instantiated default argument expressions around so
818 // we must rebuild them here.
819 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
820 // Skip any default arguments that we've already instantiated.
821 if (Context.getDefaultArgExprForConstructor(CD, I))
822 continue;
823
824 Expr *DefaultArg =
825 BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get();
826 Context.addDefaultArgExprForConstructor(CD, I, DefaultArg);
827 }
828 }
829 }
830
831 return false;
832 }
833
getCurrentThisType()834 QualType Sema::getCurrentThisType() {
835 DeclContext *DC = getFunctionLevelDeclContext();
836 QualType ThisTy = CXXThisTypeOverride;
837 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
838 if (method && method->isInstance())
839 ThisTy = method->getThisType(Context);
840 }
841 if (ThisTy.isNull()) {
842 if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
843 CurContext->getParent()->getParent()->isRecord()) {
844 // This is a generic lambda call operator that is being instantiated
845 // within a default initializer - so use the enclosing class as 'this'.
846 // There is no enclosing member function to retrieve the 'this' pointer
847 // from.
848 QualType ClassTy = Context.getTypeDeclType(
849 cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
850 // There are no cv-qualifiers for 'this' within default initializers,
851 // per [expr.prim.general]p4.
852 return Context.getPointerType(ClassTy);
853 }
854 }
855 return ThisTy;
856 }
857
CXXThisScopeRAII(Sema & S,Decl * ContextDecl,unsigned CXXThisTypeQuals,bool Enabled)858 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
859 Decl *ContextDecl,
860 unsigned CXXThisTypeQuals,
861 bool Enabled)
862 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
863 {
864 if (!Enabled || !ContextDecl)
865 return;
866
867 CXXRecordDecl *Record = nullptr;
868 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
869 Record = Template->getTemplatedDecl();
870 else
871 Record = cast<CXXRecordDecl>(ContextDecl);
872
873 S.CXXThisTypeOverride
874 = S.Context.getPointerType(
875 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
876
877 this->Enabled = true;
878 }
879
880
~CXXThisScopeRAII()881 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
882 if (Enabled) {
883 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
884 }
885 }
886
captureThis(ASTContext & Context,RecordDecl * RD,QualType ThisTy,SourceLocation Loc)887 static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
888 QualType ThisTy, SourceLocation Loc) {
889 FieldDecl *Field
890 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
891 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
892 nullptr, false, ICIS_NoInit);
893 Field->setImplicit(true);
894 Field->setAccess(AS_private);
895 RD->addDecl(Field);
896 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
897 }
898
CheckCXXThisCapture(SourceLocation Loc,bool Explicit,bool BuildAndDiagnose,const unsigned * const FunctionScopeIndexToStopAt)899 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
900 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
901 // We don't need to capture this in an unevaluated context.
902 if (isUnevaluatedContext() && !Explicit)
903 return true;
904
905 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
906 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
907 // Otherwise, check that we can capture 'this'.
908 unsigned NumClosures = 0;
909 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
910 if (CapturingScopeInfo *CSI =
911 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
912 if (CSI->CXXThisCaptureIndex != 0) {
913 // 'this' is already being captured; there isn't anything more to do.
914 break;
915 }
916 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
917 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
918 // This context can't implicitly capture 'this'; fail out.
919 if (BuildAndDiagnose)
920 Diag(Loc, diag::err_this_capture) << Explicit;
921 return true;
922 }
923 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
924 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
925 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
926 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
927 Explicit) {
928 // This closure can capture 'this'; continue looking upwards.
929 NumClosures++;
930 Explicit = false;
931 continue;
932 }
933 // This context can't implicitly capture 'this'; fail out.
934 if (BuildAndDiagnose)
935 Diag(Loc, diag::err_this_capture) << Explicit;
936 return true;
937 }
938 break;
939 }
940 if (!BuildAndDiagnose) return false;
941 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
942 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
943 // contexts.
944 for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
945 --idx, --NumClosures) {
946 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
947 Expr *ThisExpr = nullptr;
948 QualType ThisTy = getCurrentThisType();
949 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
950 // For lambda expressions, build a field and an initializing expression.
951 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
952 else if (CapturedRegionScopeInfo *RSI
953 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
954 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
955
956 bool isNested = NumClosures > 1;
957 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
958 }
959 return false;
960 }
961
ActOnCXXThis(SourceLocation Loc)962 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
963 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
964 /// is a non-lvalue expression whose value is the address of the object for
965 /// which the function is called.
966
967 QualType ThisTy = getCurrentThisType();
968 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
969
970 CheckCXXThisCapture(Loc);
971 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
972 }
973
isThisOutsideMemberFunctionBody(QualType BaseType)974 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
975 // If we're outside the body of a member function, then we'll have a specified
976 // type for 'this'.
977 if (CXXThisTypeOverride.isNull())
978 return false;
979
980 // Determine whether we're looking into a class that's currently being
981 // defined.
982 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
983 return Class && Class->isBeingDefined();
984 }
985
986 ExprResult
ActOnCXXTypeConstructExpr(ParsedType TypeRep,SourceLocation LParenLoc,MultiExprArg exprs,SourceLocation RParenLoc)987 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
988 SourceLocation LParenLoc,
989 MultiExprArg exprs,
990 SourceLocation RParenLoc) {
991 if (!TypeRep)
992 return ExprError();
993
994 TypeSourceInfo *TInfo;
995 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
996 if (!TInfo)
997 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
998
999 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
1000 }
1001
1002 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
1003 /// Can be interpreted either as function-style casting ("int(x)")
1004 /// or class type construction ("ClassType(x,y,z)")
1005 /// or creation of a value-initialized type ("int()").
1006 ExprResult
BuildCXXTypeConstructExpr(TypeSourceInfo * TInfo,SourceLocation LParenLoc,MultiExprArg Exprs,SourceLocation RParenLoc)1007 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1008 SourceLocation LParenLoc,
1009 MultiExprArg Exprs,
1010 SourceLocation RParenLoc) {
1011 QualType Ty = TInfo->getType();
1012 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1013
1014 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1015 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
1016 RParenLoc);
1017 }
1018
1019 bool ListInitialization = LParenLoc.isInvalid();
1020 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
1021 && "List initialization must have initializer list as expression.");
1022 SourceRange FullRange = SourceRange(TyBeginLoc,
1023 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
1024
1025 // C++ [expr.type.conv]p1:
1026 // If the expression list is a single expression, the type conversion
1027 // expression is equivalent (in definedness, and if defined in meaning) to the
1028 // corresponding cast expression.
1029 if (Exprs.size() == 1 && !ListInitialization) {
1030 Expr *Arg = Exprs[0];
1031 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
1032 }
1033
1034 // C++14 [expr.type.conv]p2: The expression T(), where T is a
1035 // simple-type-specifier or typename-specifier for a non-array complete
1036 // object type or the (possibly cv-qualified) void type, creates a prvalue
1037 // of the specified type, whose value is that produced by value-initializing
1038 // an object of type T.
1039 QualType ElemTy = Ty;
1040 if (Ty->isArrayType()) {
1041 if (!ListInitialization)
1042 return ExprError(Diag(TyBeginLoc,
1043 diag::err_value_init_for_array_type) << FullRange);
1044 ElemTy = Context.getBaseElementType(Ty);
1045 }
1046
1047 if (!ListInitialization && Ty->isFunctionType())
1048 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
1049 << FullRange);
1050
1051 if (!Ty->isVoidType() &&
1052 RequireCompleteType(TyBeginLoc, ElemTy,
1053 diag::err_invalid_incomplete_type_use, FullRange))
1054 return ExprError();
1055
1056 if (RequireNonAbstractType(TyBeginLoc, Ty,
1057 diag::err_allocation_of_abstract_type))
1058 return ExprError();
1059
1060 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1061 InitializationKind Kind =
1062 Exprs.size() ? ListInitialization
1063 ? InitializationKind::CreateDirectList(TyBeginLoc)
1064 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
1065 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
1066 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1067 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1068
1069 if (Result.isInvalid() || !ListInitialization)
1070 return Result;
1071
1072 Expr *Inner = Result.get();
1073 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1074 Inner = BTE->getSubExpr();
1075 if (!isa<CXXTemporaryObjectExpr>(Inner)) {
1076 // If we created a CXXTemporaryObjectExpr, that node also represents the
1077 // functional cast. Otherwise, create an explicit cast to represent
1078 // the syntactic form of a functional-style cast that was used here.
1079 //
1080 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1081 // would give a more consistent AST representation than using a
1082 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1083 // is sometimes handled by initialization and sometimes not.
1084 QualType ResultType = Result.get()->getType();
1085 Result = CXXFunctionalCastExpr::Create(
1086 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
1087 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
1088 }
1089
1090 return Result;
1091 }
1092
1093 /// doesUsualArrayDeleteWantSize - Answers whether the usual
1094 /// operator delete[] for the given type has a size_t parameter.
doesUsualArrayDeleteWantSize(Sema & S,SourceLocation loc,QualType allocType)1095 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1096 QualType allocType) {
1097 const RecordType *record =
1098 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1099 if (!record) return false;
1100
1101 // Try to find an operator delete[] in class scope.
1102
1103 DeclarationName deleteName =
1104 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1105 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1106 S.LookupQualifiedName(ops, record->getDecl());
1107
1108 // We're just doing this for information.
1109 ops.suppressDiagnostics();
1110
1111 // Very likely: there's no operator delete[].
1112 if (ops.empty()) return false;
1113
1114 // If it's ambiguous, it should be illegal to call operator delete[]
1115 // on this thing, so it doesn't matter if we allocate extra space or not.
1116 if (ops.isAmbiguous()) return false;
1117
1118 LookupResult::Filter filter = ops.makeFilter();
1119 while (filter.hasNext()) {
1120 NamedDecl *del = filter.next()->getUnderlyingDecl();
1121
1122 // C++0x [basic.stc.dynamic.deallocation]p2:
1123 // A template instance is never a usual deallocation function,
1124 // regardless of its signature.
1125 if (isa<FunctionTemplateDecl>(del)) {
1126 filter.erase();
1127 continue;
1128 }
1129
1130 // C++0x [basic.stc.dynamic.deallocation]p2:
1131 // If class T does not declare [an operator delete[] with one
1132 // parameter] but does declare a member deallocation function
1133 // named operator delete[] with exactly two parameters, the
1134 // second of which has type std::size_t, then this function
1135 // is a usual deallocation function.
1136 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1137 filter.erase();
1138 continue;
1139 }
1140 }
1141 filter.done();
1142
1143 if (!ops.isSingleResult()) return false;
1144
1145 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1146 return (del->getNumParams() == 2);
1147 }
1148
1149 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1150 ///
1151 /// E.g.:
1152 /// @code new (memory) int[size][4] @endcode
1153 /// or
1154 /// @code ::new Foo(23, "hello") @endcode
1155 ///
1156 /// \param StartLoc The first location of the expression.
1157 /// \param UseGlobal True if 'new' was prefixed with '::'.
1158 /// \param PlacementLParen Opening paren of the placement arguments.
1159 /// \param PlacementArgs Placement new arguments.
1160 /// \param PlacementRParen Closing paren of the placement arguments.
1161 /// \param TypeIdParens If the type is in parens, the source range.
1162 /// \param D The type to be allocated, as well as array dimensions.
1163 /// \param Initializer The initializing expression or initializer-list, or null
1164 /// if there is none.
1165 ExprResult
ActOnCXXNew(SourceLocation StartLoc,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,Declarator & D,Expr * Initializer)1166 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1167 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1168 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1169 Declarator &D, Expr *Initializer) {
1170 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1171
1172 Expr *ArraySize = nullptr;
1173 // If the specified type is an array, unwrap it and save the expression.
1174 if (D.getNumTypeObjects() > 0 &&
1175 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1176 DeclaratorChunk &Chunk = D.getTypeObject(0);
1177 if (TypeContainsAuto)
1178 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1179 << D.getSourceRange());
1180 if (Chunk.Arr.hasStatic)
1181 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1182 << D.getSourceRange());
1183 if (!Chunk.Arr.NumElts)
1184 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1185 << D.getSourceRange());
1186
1187 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1188 D.DropFirstTypeObject();
1189 }
1190
1191 // Every dimension shall be of constant size.
1192 if (ArraySize) {
1193 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1194 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1195 break;
1196
1197 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1198 if (Expr *NumElts = (Expr *)Array.NumElts) {
1199 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1200 if (getLangOpts().CPlusPlus14) {
1201 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1202 // shall be a converted constant expression (5.19) of type std::size_t
1203 // and shall evaluate to a strictly positive value.
1204 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1205 assert(IntWidth && "Builtin type of size 0?");
1206 llvm::APSInt Value(IntWidth);
1207 Array.NumElts
1208 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1209 CCEK_NewExpr)
1210 .get();
1211 } else {
1212 Array.NumElts
1213 = VerifyIntegerConstantExpression(NumElts, nullptr,
1214 diag::err_new_array_nonconst)
1215 .get();
1216 }
1217 if (!Array.NumElts)
1218 return ExprError();
1219 }
1220 }
1221 }
1222 }
1223
1224 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1225 QualType AllocType = TInfo->getType();
1226 if (D.isInvalidType())
1227 return ExprError();
1228
1229 SourceRange DirectInitRange;
1230 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1231 DirectInitRange = List->getSourceRange();
1232
1233 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1234 PlacementLParen,
1235 PlacementArgs,
1236 PlacementRParen,
1237 TypeIdParens,
1238 AllocType,
1239 TInfo,
1240 ArraySize,
1241 DirectInitRange,
1242 Initializer,
1243 TypeContainsAuto);
1244 }
1245
isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,Expr * Init)1246 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1247 Expr *Init) {
1248 if (!Init)
1249 return true;
1250 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1251 return PLE->getNumExprs() == 0;
1252 if (isa<ImplicitValueInitExpr>(Init))
1253 return true;
1254 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1255 return !CCE->isListInitialization() &&
1256 CCE->getConstructor()->isDefaultConstructor();
1257 else if (Style == CXXNewExpr::ListInit) {
1258 assert(isa<InitListExpr>(Init) &&
1259 "Shouldn't create list CXXConstructExprs for arrays.");
1260 return true;
1261 }
1262 return false;
1263 }
1264
1265 ExprResult
BuildCXXNew(SourceRange Range,bool UseGlobal,SourceLocation PlacementLParen,MultiExprArg PlacementArgs,SourceLocation PlacementRParen,SourceRange TypeIdParens,QualType AllocType,TypeSourceInfo * AllocTypeInfo,Expr * ArraySize,SourceRange DirectInitRange,Expr * Initializer,bool TypeMayContainAuto)1266 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1267 SourceLocation PlacementLParen,
1268 MultiExprArg PlacementArgs,
1269 SourceLocation PlacementRParen,
1270 SourceRange TypeIdParens,
1271 QualType AllocType,
1272 TypeSourceInfo *AllocTypeInfo,
1273 Expr *ArraySize,
1274 SourceRange DirectInitRange,
1275 Expr *Initializer,
1276 bool TypeMayContainAuto) {
1277 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1278 SourceLocation StartLoc = Range.getBegin();
1279
1280 CXXNewExpr::InitializationStyle initStyle;
1281 if (DirectInitRange.isValid()) {
1282 assert(Initializer && "Have parens but no initializer.");
1283 initStyle = CXXNewExpr::CallInit;
1284 } else if (Initializer && isa<InitListExpr>(Initializer))
1285 initStyle = CXXNewExpr::ListInit;
1286 else {
1287 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1288 isa<CXXConstructExpr>(Initializer)) &&
1289 "Initializer expression that cannot have been implicitly created.");
1290 initStyle = CXXNewExpr::NoInit;
1291 }
1292
1293 Expr **Inits = &Initializer;
1294 unsigned NumInits = Initializer ? 1 : 0;
1295 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1296 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1297 Inits = List->getExprs();
1298 NumInits = List->getNumExprs();
1299 }
1300
1301 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1302 if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1303 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1304 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1305 << AllocType << TypeRange);
1306 if (initStyle == CXXNewExpr::ListInit ||
1307 (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1308 return ExprError(Diag(Inits[0]->getLocStart(),
1309 diag::err_auto_new_list_init)
1310 << AllocType << TypeRange);
1311 if (NumInits > 1) {
1312 Expr *FirstBad = Inits[1];
1313 return ExprError(Diag(FirstBad->getLocStart(),
1314 diag::err_auto_new_ctor_multiple_expressions)
1315 << AllocType << TypeRange);
1316 }
1317 Expr *Deduce = Inits[0];
1318 QualType DeducedType;
1319 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1320 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1321 << AllocType << Deduce->getType()
1322 << TypeRange << Deduce->getSourceRange());
1323 if (DeducedType.isNull())
1324 return ExprError();
1325 AllocType = DeducedType;
1326 }
1327
1328 // Per C++0x [expr.new]p5, the type being constructed may be a
1329 // typedef of an array type.
1330 if (!ArraySize) {
1331 if (const ConstantArrayType *Array
1332 = Context.getAsConstantArrayType(AllocType)) {
1333 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1334 Context.getSizeType(),
1335 TypeRange.getEnd());
1336 AllocType = Array->getElementType();
1337 }
1338 }
1339
1340 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1341 return ExprError();
1342
1343 if (initStyle == CXXNewExpr::ListInit &&
1344 isStdInitializerList(AllocType, nullptr)) {
1345 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1346 diag::warn_dangling_std_initializer_list)
1347 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1348 }
1349
1350 // In ARC, infer 'retaining' for the allocated
1351 if (getLangOpts().ObjCAutoRefCount &&
1352 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1353 AllocType->isObjCLifetimeType()) {
1354 AllocType = Context.getLifetimeQualifiedType(AllocType,
1355 AllocType->getObjCARCImplicitLifetime());
1356 }
1357
1358 QualType ResultType = Context.getPointerType(AllocType);
1359
1360 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1361 ExprResult result = CheckPlaceholderExpr(ArraySize);
1362 if (result.isInvalid()) return ExprError();
1363 ArraySize = result.get();
1364 }
1365 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1366 // integral or enumeration type with a non-negative value."
1367 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1368 // enumeration type, or a class type for which a single non-explicit
1369 // conversion function to integral or unscoped enumeration type exists.
1370 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1371 // std::size_t.
1372 if (ArraySize && !ArraySize->isTypeDependent()) {
1373 ExprResult ConvertedSize;
1374 if (getLangOpts().CPlusPlus14) {
1375 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1376
1377 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1378 AA_Converting);
1379
1380 if (!ConvertedSize.isInvalid() &&
1381 ArraySize->getType()->getAs<RecordType>())
1382 // Diagnose the compatibility of this conversion.
1383 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1384 << ArraySize->getType() << 0 << "'size_t'";
1385 } else {
1386 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1387 protected:
1388 Expr *ArraySize;
1389
1390 public:
1391 SizeConvertDiagnoser(Expr *ArraySize)
1392 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1393 ArraySize(ArraySize) {}
1394
1395 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1396 QualType T) override {
1397 return S.Diag(Loc, diag::err_array_size_not_integral)
1398 << S.getLangOpts().CPlusPlus11 << T;
1399 }
1400
1401 SemaDiagnosticBuilder diagnoseIncomplete(
1402 Sema &S, SourceLocation Loc, QualType T) override {
1403 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1404 << T << ArraySize->getSourceRange();
1405 }
1406
1407 SemaDiagnosticBuilder diagnoseExplicitConv(
1408 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1409 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1410 }
1411
1412 SemaDiagnosticBuilder noteExplicitConv(
1413 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1414 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1415 << ConvTy->isEnumeralType() << ConvTy;
1416 }
1417
1418 SemaDiagnosticBuilder diagnoseAmbiguous(
1419 Sema &S, SourceLocation Loc, QualType T) override {
1420 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1421 }
1422
1423 SemaDiagnosticBuilder noteAmbiguous(
1424 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1425 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1426 << ConvTy->isEnumeralType() << ConvTy;
1427 }
1428
1429 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1430 QualType T,
1431 QualType ConvTy) override {
1432 return S.Diag(Loc,
1433 S.getLangOpts().CPlusPlus11
1434 ? diag::warn_cxx98_compat_array_size_conversion
1435 : diag::ext_array_size_conversion)
1436 << T << ConvTy->isEnumeralType() << ConvTy;
1437 }
1438 } SizeDiagnoser(ArraySize);
1439
1440 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1441 SizeDiagnoser);
1442 }
1443 if (ConvertedSize.isInvalid())
1444 return ExprError();
1445
1446 ArraySize = ConvertedSize.get();
1447 QualType SizeType = ArraySize->getType();
1448
1449 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1450 return ExprError();
1451
1452 // C++98 [expr.new]p7:
1453 // The expression in a direct-new-declarator shall have integral type
1454 // with a non-negative value.
1455 //
1456 // Let's see if this is a constant < 0. If so, we reject it out of
1457 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1458 // array type.
1459 //
1460 // Note: such a construct has well-defined semantics in C++11: it throws
1461 // std::bad_array_new_length.
1462 if (!ArraySize->isValueDependent()) {
1463 llvm::APSInt Value;
1464 // We've already performed any required implicit conversion to integer or
1465 // unscoped enumeration type.
1466 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1467 if (Value < llvm::APSInt(
1468 llvm::APInt::getNullValue(Value.getBitWidth()),
1469 Value.isUnsigned())) {
1470 if (getLangOpts().CPlusPlus11)
1471 Diag(ArraySize->getLocStart(),
1472 diag::warn_typecheck_negative_array_new_size)
1473 << ArraySize->getSourceRange();
1474 else
1475 return ExprError(Diag(ArraySize->getLocStart(),
1476 diag::err_typecheck_negative_array_size)
1477 << ArraySize->getSourceRange());
1478 } else if (!AllocType->isDependentType()) {
1479 unsigned ActiveSizeBits =
1480 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1481 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1482 if (getLangOpts().CPlusPlus11)
1483 Diag(ArraySize->getLocStart(),
1484 diag::warn_array_new_too_large)
1485 << Value.toString(10)
1486 << ArraySize->getSourceRange();
1487 else
1488 return ExprError(Diag(ArraySize->getLocStart(),
1489 diag::err_array_too_large)
1490 << Value.toString(10)
1491 << ArraySize->getSourceRange());
1492 }
1493 }
1494 } else if (TypeIdParens.isValid()) {
1495 // Can't have dynamic array size when the type-id is in parentheses.
1496 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1497 << ArraySize->getSourceRange()
1498 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1499 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1500
1501 TypeIdParens = SourceRange();
1502 }
1503 }
1504
1505 // Note that we do *not* convert the argument in any way. It can
1506 // be signed, larger than size_t, whatever.
1507 }
1508
1509 FunctionDecl *OperatorNew = nullptr;
1510 FunctionDecl *OperatorDelete = nullptr;
1511
1512 if (!AllocType->isDependentType() &&
1513 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1514 FindAllocationFunctions(StartLoc,
1515 SourceRange(PlacementLParen, PlacementRParen),
1516 UseGlobal, AllocType, ArraySize, PlacementArgs,
1517 OperatorNew, OperatorDelete))
1518 return ExprError();
1519
1520 // If this is an array allocation, compute whether the usual array
1521 // deallocation function for the type has a size_t parameter.
1522 bool UsualArrayDeleteWantsSize = false;
1523 if (ArraySize && !AllocType->isDependentType())
1524 UsualArrayDeleteWantsSize
1525 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1526
1527 SmallVector<Expr *, 8> AllPlaceArgs;
1528 if (OperatorNew) {
1529 const FunctionProtoType *Proto =
1530 OperatorNew->getType()->getAs<FunctionProtoType>();
1531 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1532 : VariadicDoesNotApply;
1533
1534 // We've already converted the placement args, just fill in any default
1535 // arguments. Skip the first parameter because we don't have a corresponding
1536 // argument.
1537 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1538 PlacementArgs, AllPlaceArgs, CallType))
1539 return ExprError();
1540
1541 if (!AllPlaceArgs.empty())
1542 PlacementArgs = AllPlaceArgs;
1543
1544 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1545 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1546
1547 // FIXME: Missing call to CheckFunctionCall or equivalent
1548 }
1549
1550 // Warn if the type is over-aligned and is being allocated by global operator
1551 // new.
1552 if (PlacementArgs.empty() && OperatorNew &&
1553 (OperatorNew->isImplicit() ||
1554 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1555 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1556 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1557 if (Align > SuitableAlign)
1558 Diag(StartLoc, diag::warn_overaligned_type)
1559 << AllocType
1560 << unsigned(Align / Context.getCharWidth())
1561 << unsigned(SuitableAlign / Context.getCharWidth());
1562 }
1563 }
1564
1565 QualType InitType = AllocType;
1566 // Array 'new' can't have any initializers except empty parentheses.
1567 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1568 // dialect distinction.
1569 if (ResultType->isArrayType() || ArraySize) {
1570 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1571 SourceRange InitRange(Inits[0]->getLocStart(),
1572 Inits[NumInits - 1]->getLocEnd());
1573 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1574 return ExprError();
1575 }
1576 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1577 // We do the initialization typechecking against the array type
1578 // corresponding to the number of initializers + 1 (to also check
1579 // default-initialization).
1580 unsigned NumElements = ILE->getNumInits() + 1;
1581 InitType = Context.getConstantArrayType(AllocType,
1582 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1583 ArrayType::Normal, 0);
1584 }
1585 }
1586
1587 // If we can perform the initialization, and we've not already done so,
1588 // do it now.
1589 if (!AllocType->isDependentType() &&
1590 !Expr::hasAnyTypeDependentArguments(
1591 llvm::makeArrayRef(Inits, NumInits))) {
1592 // C++11 [expr.new]p15:
1593 // A new-expression that creates an object of type T initializes that
1594 // object as follows:
1595 InitializationKind Kind
1596 // - If the new-initializer is omitted, the object is default-
1597 // initialized (8.5); if no initialization is performed,
1598 // the object has indeterminate value
1599 = initStyle == CXXNewExpr::NoInit
1600 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1601 // - Otherwise, the new-initializer is interpreted according to the
1602 // initialization rules of 8.5 for direct-initialization.
1603 : initStyle == CXXNewExpr::ListInit
1604 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1605 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1606 DirectInitRange.getBegin(),
1607 DirectInitRange.getEnd());
1608
1609 InitializedEntity Entity
1610 = InitializedEntity::InitializeNew(StartLoc, InitType);
1611 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1612 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1613 MultiExprArg(Inits, NumInits));
1614 if (FullInit.isInvalid())
1615 return ExprError();
1616
1617 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1618 // we don't want the initialized object to be destructed.
1619 if (CXXBindTemporaryExpr *Binder =
1620 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1621 FullInit = Binder->getSubExpr();
1622
1623 Initializer = FullInit.get();
1624 }
1625
1626 // Mark the new and delete operators as referenced.
1627 if (OperatorNew) {
1628 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1629 return ExprError();
1630 MarkFunctionReferenced(StartLoc, OperatorNew);
1631 }
1632 if (OperatorDelete) {
1633 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1634 return ExprError();
1635 MarkFunctionReferenced(StartLoc, OperatorDelete);
1636 }
1637
1638 // C++0x [expr.new]p17:
1639 // If the new expression creates an array of objects of class type,
1640 // access and ambiguity control are done for the destructor.
1641 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1642 if (ArraySize && !BaseAllocType->isDependentType()) {
1643 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1644 if (CXXDestructorDecl *dtor = LookupDestructor(
1645 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1646 MarkFunctionReferenced(StartLoc, dtor);
1647 CheckDestructorAccess(StartLoc, dtor,
1648 PDiag(diag::err_access_dtor)
1649 << BaseAllocType);
1650 if (DiagnoseUseOfDecl(dtor, StartLoc))
1651 return ExprError();
1652 }
1653 }
1654 }
1655
1656 return new (Context)
1657 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1658 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1659 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1660 Range, DirectInitRange);
1661 }
1662
1663 /// \brief Checks that a type is suitable as the allocated type
1664 /// in a new-expression.
CheckAllocatedType(QualType AllocType,SourceLocation Loc,SourceRange R)1665 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1666 SourceRange R) {
1667 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1668 // abstract class type or array thereof.
1669 if (AllocType->isFunctionType())
1670 return Diag(Loc, diag::err_bad_new_type)
1671 << AllocType << 0 << R;
1672 else if (AllocType->isReferenceType())
1673 return Diag(Loc, diag::err_bad_new_type)
1674 << AllocType << 1 << R;
1675 else if (!AllocType->isDependentType() &&
1676 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1677 return true;
1678 else if (RequireNonAbstractType(Loc, AllocType,
1679 diag::err_allocation_of_abstract_type))
1680 return true;
1681 else if (AllocType->isVariablyModifiedType())
1682 return Diag(Loc, diag::err_variably_modified_new_type)
1683 << AllocType;
1684 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1685 return Diag(Loc, diag::err_address_space_qualified_new)
1686 << AllocType.getUnqualifiedType() << AddressSpace;
1687 else if (getLangOpts().ObjCAutoRefCount) {
1688 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1689 QualType BaseAllocType = Context.getBaseElementType(AT);
1690 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1691 BaseAllocType->isObjCLifetimeType())
1692 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1693 << BaseAllocType;
1694 }
1695 }
1696
1697 return false;
1698 }
1699
1700 /// \brief Determine whether the given function is a non-placement
1701 /// deallocation function.
isNonPlacementDeallocationFunction(Sema & S,FunctionDecl * FD)1702 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1703 if (FD->isInvalidDecl())
1704 return false;
1705
1706 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1707 return Method->isUsualDeallocationFunction();
1708
1709 if (FD->getOverloadedOperator() != OO_Delete &&
1710 FD->getOverloadedOperator() != OO_Array_Delete)
1711 return false;
1712
1713 if (FD->getNumParams() == 1)
1714 return true;
1715
1716 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1717 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1718 S.Context.getSizeType());
1719 }
1720
1721 /// FindAllocationFunctions - Finds the overloads of operator new and delete
1722 /// that are appropriate for the allocation.
FindAllocationFunctions(SourceLocation StartLoc,SourceRange Range,bool UseGlobal,QualType AllocType,bool IsArray,MultiExprArg PlaceArgs,FunctionDecl * & OperatorNew,FunctionDecl * & OperatorDelete)1723 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1724 bool UseGlobal, QualType AllocType,
1725 bool IsArray, MultiExprArg PlaceArgs,
1726 FunctionDecl *&OperatorNew,
1727 FunctionDecl *&OperatorDelete) {
1728 // --- Choosing an allocation function ---
1729 // C++ 5.3.4p8 - 14 & 18
1730 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1731 // in the scope of the allocated class.
1732 // 2) If an array size is given, look for operator new[], else look for
1733 // operator new.
1734 // 3) The first argument is always size_t. Append the arguments from the
1735 // placement form.
1736
1737 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1738 // We don't care about the actual value of this argument.
1739 // FIXME: Should the Sema create the expression and embed it in the syntax
1740 // tree? Or should the consumer just recalculate the value?
1741 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1742 Context.getTargetInfo().getPointerWidth(0)),
1743 Context.getSizeType(),
1744 SourceLocation());
1745 AllocArgs[0] = &Size;
1746 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1747
1748 // C++ [expr.new]p8:
1749 // If the allocated type is a non-array type, the allocation
1750 // function's name is operator new and the deallocation function's
1751 // name is operator delete. If the allocated type is an array
1752 // type, the allocation function's name is operator new[] and the
1753 // deallocation function's name is operator delete[].
1754 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1755 IsArray ? OO_Array_New : OO_New);
1756 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1757 IsArray ? OO_Array_Delete : OO_Delete);
1758
1759 QualType AllocElemType = Context.getBaseElementType(AllocType);
1760
1761 if (AllocElemType->isRecordType() && !UseGlobal) {
1762 CXXRecordDecl *Record
1763 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1764 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1765 /*AllowMissing=*/true, OperatorNew))
1766 return true;
1767 }
1768
1769 if (!OperatorNew) {
1770 // Didn't find a member overload. Look for a global one.
1771 DeclareGlobalNewDelete();
1772 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1773 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1774 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1775 /*AllowMissing=*/FallbackEnabled, OperatorNew,
1776 /*Diagnose=*/!FallbackEnabled)) {
1777 if (!FallbackEnabled)
1778 return true;
1779
1780 // MSVC will fall back on trying to find a matching global operator new
1781 // if operator new[] cannot be found. Also, MSVC will leak by not
1782 // generating a call to operator delete or operator delete[], but we
1783 // will not replicate that bug.
1784 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1785 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1786 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1787 /*AllowMissing=*/false, OperatorNew))
1788 return true;
1789 }
1790 }
1791
1792 // We don't need an operator delete if we're running under
1793 // -fno-exceptions.
1794 if (!getLangOpts().Exceptions) {
1795 OperatorDelete = nullptr;
1796 return false;
1797 }
1798
1799 // C++ [expr.new]p19:
1800 //
1801 // If the new-expression begins with a unary :: operator, the
1802 // deallocation function's name is looked up in the global
1803 // scope. Otherwise, if the allocated type is a class type T or an
1804 // array thereof, the deallocation function's name is looked up in
1805 // the scope of T. If this lookup fails to find the name, or if
1806 // the allocated type is not a class type or array thereof, the
1807 // deallocation function's name is looked up in the global scope.
1808 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1809 if (AllocElemType->isRecordType() && !UseGlobal) {
1810 CXXRecordDecl *RD
1811 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1812 LookupQualifiedName(FoundDelete, RD);
1813 }
1814 if (FoundDelete.isAmbiguous())
1815 return true; // FIXME: clean up expressions?
1816
1817 if (FoundDelete.empty()) {
1818 DeclareGlobalNewDelete();
1819 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1820 }
1821
1822 FoundDelete.suppressDiagnostics();
1823
1824 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1825
1826 // Whether we're looking for a placement operator delete is dictated
1827 // by whether we selected a placement operator new, not by whether
1828 // we had explicit placement arguments. This matters for things like
1829 // struct A { void *operator new(size_t, int = 0); ... };
1830 // A *a = new A()
1831 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1832
1833 if (isPlacementNew) {
1834 // C++ [expr.new]p20:
1835 // A declaration of a placement deallocation function matches the
1836 // declaration of a placement allocation function if it has the
1837 // same number of parameters and, after parameter transformations
1838 // (8.3.5), all parameter types except the first are
1839 // identical. [...]
1840 //
1841 // To perform this comparison, we compute the function type that
1842 // the deallocation function should have, and use that type both
1843 // for template argument deduction and for comparison purposes.
1844 //
1845 // FIXME: this comparison should ignore CC and the like.
1846 QualType ExpectedFunctionType;
1847 {
1848 const FunctionProtoType *Proto
1849 = OperatorNew->getType()->getAs<FunctionProtoType>();
1850
1851 SmallVector<QualType, 4> ArgTypes;
1852 ArgTypes.push_back(Context.VoidPtrTy);
1853 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1854 ArgTypes.push_back(Proto->getParamType(I));
1855
1856 FunctionProtoType::ExtProtoInfo EPI;
1857 EPI.Variadic = Proto->isVariadic();
1858
1859 ExpectedFunctionType
1860 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1861 }
1862
1863 for (LookupResult::iterator D = FoundDelete.begin(),
1864 DEnd = FoundDelete.end();
1865 D != DEnd; ++D) {
1866 FunctionDecl *Fn = nullptr;
1867 if (FunctionTemplateDecl *FnTmpl
1868 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1869 // Perform template argument deduction to try to match the
1870 // expected function type.
1871 TemplateDeductionInfo Info(StartLoc);
1872 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1873 Info))
1874 continue;
1875 } else
1876 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1877
1878 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1879 Matches.push_back(std::make_pair(D.getPair(), Fn));
1880 }
1881 } else {
1882 // C++ [expr.new]p20:
1883 // [...] Any non-placement deallocation function matches a
1884 // non-placement allocation function. [...]
1885 for (LookupResult::iterator D = FoundDelete.begin(),
1886 DEnd = FoundDelete.end();
1887 D != DEnd; ++D) {
1888 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1889 if (isNonPlacementDeallocationFunction(*this, Fn))
1890 Matches.push_back(std::make_pair(D.getPair(), Fn));
1891 }
1892
1893 // C++1y [expr.new]p22:
1894 // For a non-placement allocation function, the normal deallocation
1895 // function lookup is used
1896 // C++1y [expr.delete]p?:
1897 // If [...] deallocation function lookup finds both a usual deallocation
1898 // function with only a pointer parameter and a usual deallocation
1899 // function with both a pointer parameter and a size parameter, then the
1900 // selected deallocation function shall be the one with two parameters.
1901 // Otherwise, the selected deallocation function shall be the function
1902 // with one parameter.
1903 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1904 if (Matches[0].second->getNumParams() == 1)
1905 Matches.erase(Matches.begin());
1906 else
1907 Matches.erase(Matches.begin() + 1);
1908 assert(Matches[0].second->getNumParams() == 2 &&
1909 "found an unexpected usual deallocation function");
1910 }
1911 }
1912
1913 // C++ [expr.new]p20:
1914 // [...] If the lookup finds a single matching deallocation
1915 // function, that function will be called; otherwise, no
1916 // deallocation function will be called.
1917 if (Matches.size() == 1) {
1918 OperatorDelete = Matches[0].second;
1919
1920 // C++0x [expr.new]p20:
1921 // If the lookup finds the two-parameter form of a usual
1922 // deallocation function (3.7.4.2) and that function, considered
1923 // as a placement deallocation function, would have been
1924 // selected as a match for the allocation function, the program
1925 // is ill-formed.
1926 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1927 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1928 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1929 << SourceRange(PlaceArgs.front()->getLocStart(),
1930 PlaceArgs.back()->getLocEnd());
1931 if (!OperatorDelete->isImplicit())
1932 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1933 << DeleteName;
1934 } else {
1935 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1936 Matches[0].first);
1937 }
1938 }
1939
1940 return false;
1941 }
1942
1943 /// \brief Find an fitting overload for the allocation function
1944 /// in the specified scope.
1945 ///
1946 /// \param StartLoc The location of the 'new' token.
1947 /// \param Range The range of the placement arguments.
1948 /// \param Name The name of the function ('operator new' or 'operator new[]').
1949 /// \param Args The placement arguments specified.
1950 /// \param Ctx The scope in which we should search; either a class scope or the
1951 /// translation unit.
1952 /// \param AllowMissing If \c true, report an error if we can't find any
1953 /// allocation functions. Otherwise, succeed but don't fill in \p
1954 /// Operator.
1955 /// \param Operator Filled in with the found allocation function. Unchanged if
1956 /// no allocation function was found.
1957 /// \param Diagnose If \c true, issue errors if the allocation function is not
1958 /// usable.
FindAllocationOverload(SourceLocation StartLoc,SourceRange Range,DeclarationName Name,MultiExprArg Args,DeclContext * Ctx,bool AllowMissing,FunctionDecl * & Operator,bool Diagnose)1959 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1960 DeclarationName Name, MultiExprArg Args,
1961 DeclContext *Ctx,
1962 bool AllowMissing, FunctionDecl *&Operator,
1963 bool Diagnose) {
1964 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1965 LookupQualifiedName(R, Ctx);
1966 if (R.empty()) {
1967 if (AllowMissing || !Diagnose)
1968 return false;
1969 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1970 << Name << Range;
1971 }
1972
1973 if (R.isAmbiguous())
1974 return true;
1975
1976 R.suppressDiagnostics();
1977
1978 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1979 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1980 Alloc != AllocEnd; ++Alloc) {
1981 // Even member operator new/delete are implicitly treated as
1982 // static, so don't use AddMemberCandidate.
1983 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1984
1985 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1986 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1987 /*ExplicitTemplateArgs=*/nullptr,
1988 Args, Candidates,
1989 /*SuppressUserConversions=*/false);
1990 continue;
1991 }
1992
1993 FunctionDecl *Fn = cast<FunctionDecl>(D);
1994 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1995 /*SuppressUserConversions=*/false);
1996 }
1997
1998 // Do the resolution.
1999 OverloadCandidateSet::iterator Best;
2000 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
2001 case OR_Success: {
2002 // Got one!
2003 FunctionDecl *FnDecl = Best->Function;
2004 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
2005 Best->FoundDecl, Diagnose) == AR_inaccessible)
2006 return true;
2007
2008 Operator = FnDecl;
2009 return false;
2010 }
2011
2012 case OR_No_Viable_Function:
2013 if (Diagnose) {
2014 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
2015 << Name << Range;
2016 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2017 }
2018 return true;
2019
2020 case OR_Ambiguous:
2021 if (Diagnose) {
2022 Diag(StartLoc, diag::err_ovl_ambiguous_call)
2023 << Name << Range;
2024 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
2025 }
2026 return true;
2027
2028 case OR_Deleted: {
2029 if (Diagnose) {
2030 Diag(StartLoc, diag::err_ovl_deleted_call)
2031 << Best->Function->isDeleted()
2032 << Name
2033 << getDeletedOrUnavailableSuffix(Best->Function)
2034 << Range;
2035 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
2036 }
2037 return true;
2038 }
2039 }
2040 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2041 }
2042
2043
2044 /// DeclareGlobalNewDelete - Declare the global forms of operator new and
2045 /// delete. These are:
2046 /// @code
2047 /// // C++03:
2048 /// void* operator new(std::size_t) throw(std::bad_alloc);
2049 /// void* operator new[](std::size_t) throw(std::bad_alloc);
2050 /// void operator delete(void *) throw();
2051 /// void operator delete[](void *) throw();
2052 /// // C++11:
2053 /// void* operator new(std::size_t);
2054 /// void* operator new[](std::size_t);
2055 /// void operator delete(void *) noexcept;
2056 /// void operator delete[](void *) noexcept;
2057 /// // C++1y:
2058 /// void* operator new(std::size_t);
2059 /// void* operator new[](std::size_t);
2060 /// void operator delete(void *) noexcept;
2061 /// void operator delete[](void *) noexcept;
2062 /// void operator delete(void *, std::size_t) noexcept;
2063 /// void operator delete[](void *, std::size_t) noexcept;
2064 /// @endcode
2065 /// Note that the placement and nothrow forms of new are *not* implicitly
2066 /// declared. Their use requires including \<new\>.
DeclareGlobalNewDelete()2067 void Sema::DeclareGlobalNewDelete() {
2068 if (GlobalNewDeleteDeclared)
2069 return;
2070
2071 // C++ [basic.std.dynamic]p2:
2072 // [...] The following allocation and deallocation functions (18.4) are
2073 // implicitly declared in global scope in each translation unit of a
2074 // program
2075 //
2076 // C++03:
2077 // void* operator new(std::size_t) throw(std::bad_alloc);
2078 // void* operator new[](std::size_t) throw(std::bad_alloc);
2079 // void operator delete(void*) throw();
2080 // void operator delete[](void*) throw();
2081 // C++11:
2082 // void* operator new(std::size_t);
2083 // void* operator new[](std::size_t);
2084 // void operator delete(void*) noexcept;
2085 // void operator delete[](void*) noexcept;
2086 // C++1y:
2087 // void* operator new(std::size_t);
2088 // void* operator new[](std::size_t);
2089 // void operator delete(void*) noexcept;
2090 // void operator delete[](void*) noexcept;
2091 // void operator delete(void*, std::size_t) noexcept;
2092 // void operator delete[](void*, std::size_t) noexcept;
2093 //
2094 // These implicit declarations introduce only the function names operator
2095 // new, operator new[], operator delete, operator delete[].
2096 //
2097 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2098 // "std" or "bad_alloc" as necessary to form the exception specification.
2099 // However, we do not make these implicit declarations visible to name
2100 // lookup.
2101 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2102 // The "std::bad_alloc" class has not yet been declared, so build it
2103 // implicitly.
2104 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2105 getOrCreateStdNamespace(),
2106 SourceLocation(), SourceLocation(),
2107 &PP.getIdentifierTable().get("bad_alloc"),
2108 nullptr);
2109 getStdBadAlloc()->setImplicit(true);
2110 }
2111
2112 GlobalNewDeleteDeclared = true;
2113
2114 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2115 QualType SizeT = Context.getSizeType();
2116 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2117
2118 DeclareGlobalAllocationFunction(
2119 Context.DeclarationNames.getCXXOperatorName(OO_New),
2120 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2121 DeclareGlobalAllocationFunction(
2122 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2123 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2124 DeclareGlobalAllocationFunction(
2125 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2126 Context.VoidTy, VoidPtr);
2127 DeclareGlobalAllocationFunction(
2128 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2129 Context.VoidTy, VoidPtr);
2130 if (getLangOpts().SizedDeallocation) {
2131 DeclareGlobalAllocationFunction(
2132 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2133 Context.VoidTy, VoidPtr, Context.getSizeType());
2134 DeclareGlobalAllocationFunction(
2135 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2136 Context.VoidTy, VoidPtr, Context.getSizeType());
2137 }
2138 }
2139
2140 /// DeclareGlobalAllocationFunction - Declares a single implicit global
2141 /// allocation function if it doesn't already exist.
DeclareGlobalAllocationFunction(DeclarationName Name,QualType Return,QualType Param1,QualType Param2,bool AddRestrictAttr)2142 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2143 QualType Return,
2144 QualType Param1, QualType Param2,
2145 bool AddRestrictAttr) {
2146 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2147 unsigned NumParams = Param2.isNull() ? 1 : 2;
2148
2149 // Check if this function is already declared.
2150 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2151 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2152 Alloc != AllocEnd; ++Alloc) {
2153 // Only look at non-template functions, as it is the predefined,
2154 // non-templated allocation function we are trying to declare here.
2155 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2156 if (Func->getNumParams() == NumParams) {
2157 QualType InitialParam1Type =
2158 Context.getCanonicalType(Func->getParamDecl(0)
2159 ->getType().getUnqualifiedType());
2160 QualType InitialParam2Type =
2161 NumParams == 2
2162 ? Context.getCanonicalType(Func->getParamDecl(1)
2163 ->getType().getUnqualifiedType())
2164 : QualType();
2165 // FIXME: Do we need to check for default arguments here?
2166 if (InitialParam1Type == Param1 &&
2167 (NumParams == 1 || InitialParam2Type == Param2)) {
2168 if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>())
2169 Func->addAttr(RestrictAttr::CreateImplicit(
2170 Context, RestrictAttr::GNU_malloc));
2171 // Make the function visible to name lookup, even if we found it in
2172 // an unimported module. It either is an implicitly-declared global
2173 // allocation function, or is suppressing that function.
2174 Func->setHidden(false);
2175 return;
2176 }
2177 }
2178 }
2179 }
2180
2181 FunctionProtoType::ExtProtoInfo EPI;
2182
2183 QualType BadAllocType;
2184 bool HasBadAllocExceptionSpec
2185 = (Name.getCXXOverloadedOperator() == OO_New ||
2186 Name.getCXXOverloadedOperator() == OO_Array_New);
2187 if (HasBadAllocExceptionSpec) {
2188 if (!getLangOpts().CPlusPlus11) {
2189 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2190 assert(StdBadAlloc && "Must have std::bad_alloc declared");
2191 EPI.ExceptionSpec.Type = EST_Dynamic;
2192 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2193 }
2194 } else {
2195 EPI.ExceptionSpec =
2196 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2197 }
2198
2199 QualType Params[] = { Param1, Param2 };
2200
2201 QualType FnType = Context.getFunctionType(
2202 Return, llvm::makeArrayRef(Params, NumParams), EPI);
2203 FunctionDecl *Alloc =
2204 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2205 SourceLocation(), Name,
2206 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2207 Alloc->setImplicit();
2208
2209 // Implicit sized deallocation functions always have default visibility.
2210 Alloc->addAttr(VisibilityAttr::CreateImplicit(Context,
2211 VisibilityAttr::Default));
2212
2213 if (AddRestrictAttr)
2214 Alloc->addAttr(
2215 RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc));
2216
2217 ParmVarDecl *ParamDecls[2];
2218 for (unsigned I = 0; I != NumParams; ++I) {
2219 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2220 SourceLocation(), nullptr,
2221 Params[I], /*TInfo=*/nullptr,
2222 SC_None, nullptr);
2223 ParamDecls[I]->setImplicit();
2224 }
2225 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
2226
2227 Context.getTranslationUnitDecl()->addDecl(Alloc);
2228 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2229 }
2230
FindUsualDeallocationFunction(SourceLocation StartLoc,bool CanProvideSize,DeclarationName Name)2231 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2232 bool CanProvideSize,
2233 DeclarationName Name) {
2234 DeclareGlobalNewDelete();
2235
2236 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2237 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2238
2239 // C++ [expr.new]p20:
2240 // [...] Any non-placement deallocation function matches a
2241 // non-placement allocation function. [...]
2242 llvm::SmallVector<FunctionDecl*, 2> Matches;
2243 for (LookupResult::iterator D = FoundDelete.begin(),
2244 DEnd = FoundDelete.end();
2245 D != DEnd; ++D) {
2246 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2247 if (isNonPlacementDeallocationFunction(*this, Fn))
2248 Matches.push_back(Fn);
2249 }
2250
2251 // C++1y [expr.delete]p?:
2252 // If the type is complete and deallocation function lookup finds both a
2253 // usual deallocation function with only a pointer parameter and a usual
2254 // deallocation function with both a pointer parameter and a size
2255 // parameter, then the selected deallocation function shall be the one
2256 // with two parameters. Otherwise, the selected deallocation function
2257 // shall be the function with one parameter.
2258 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2259 unsigned NumArgs = CanProvideSize ? 2 : 1;
2260 if (Matches[0]->getNumParams() != NumArgs)
2261 Matches.erase(Matches.begin());
2262 else
2263 Matches.erase(Matches.begin() + 1);
2264 assert(Matches[0]->getNumParams() == NumArgs &&
2265 "found an unexpected usual deallocation function");
2266 }
2267
2268 if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
2269 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2270
2271 assert(Matches.size() == 1 &&
2272 "unexpectedly have multiple usual deallocation functions");
2273 return Matches.front();
2274 }
2275
FindDeallocationFunction(SourceLocation StartLoc,CXXRecordDecl * RD,DeclarationName Name,FunctionDecl * & Operator,bool Diagnose)2276 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2277 DeclarationName Name,
2278 FunctionDecl* &Operator, bool Diagnose) {
2279 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2280 // Try to find operator delete/operator delete[] in class scope.
2281 LookupQualifiedName(Found, RD);
2282
2283 if (Found.isAmbiguous())
2284 return true;
2285
2286 Found.suppressDiagnostics();
2287
2288 SmallVector<DeclAccessPair,4> Matches;
2289 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2290 F != FEnd; ++F) {
2291 NamedDecl *ND = (*F)->getUnderlyingDecl();
2292
2293 // Ignore template operator delete members from the check for a usual
2294 // deallocation function.
2295 if (isa<FunctionTemplateDecl>(ND))
2296 continue;
2297
2298 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2299 Matches.push_back(F.getPair());
2300 }
2301
2302 if (getLangOpts().CUDA && getLangOpts().CUDATargetOverloads)
2303 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2304
2305 // There's exactly one suitable operator; pick it.
2306 if (Matches.size() == 1) {
2307 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2308
2309 if (Operator->isDeleted()) {
2310 if (Diagnose) {
2311 Diag(StartLoc, diag::err_deleted_function_use);
2312 NoteDeletedFunction(Operator);
2313 }
2314 return true;
2315 }
2316
2317 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2318 Matches[0], Diagnose) == AR_inaccessible)
2319 return true;
2320
2321 return false;
2322
2323 // We found multiple suitable operators; complain about the ambiguity.
2324 } else if (!Matches.empty()) {
2325 if (Diagnose) {
2326 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2327 << Name << RD;
2328
2329 for (SmallVectorImpl<DeclAccessPair>::iterator
2330 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2331 Diag((*F)->getUnderlyingDecl()->getLocation(),
2332 diag::note_member_declared_here) << Name;
2333 }
2334 return true;
2335 }
2336
2337 // We did find operator delete/operator delete[] declarations, but
2338 // none of them were suitable.
2339 if (!Found.empty()) {
2340 if (Diagnose) {
2341 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2342 << Name << RD;
2343
2344 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2345 F != FEnd; ++F)
2346 Diag((*F)->getUnderlyingDecl()->getLocation(),
2347 diag::note_member_declared_here) << Name;
2348 }
2349 return true;
2350 }
2351
2352 Operator = nullptr;
2353 return false;
2354 }
2355
2356 namespace {
2357 /// \brief Checks whether delete-expression, and new-expression used for
2358 /// initializing deletee have the same array form.
2359 class MismatchingNewDeleteDetector {
2360 public:
2361 enum MismatchResult {
2362 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2363 NoMismatch,
2364 /// Indicates that variable is initialized with mismatching form of \a new.
2365 VarInitMismatches,
2366 /// Indicates that member is initialized with mismatching form of \a new.
2367 MemberInitMismatches,
2368 /// Indicates that 1 or more constructors' definitions could not been
2369 /// analyzed, and they will be checked again at the end of translation unit.
2370 AnalyzeLater
2371 };
2372
2373 /// \param EndOfTU True, if this is the final analysis at the end of
2374 /// translation unit. False, if this is the initial analysis at the point
2375 /// delete-expression was encountered.
MismatchingNewDeleteDetector(bool EndOfTU)2376 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2377 : IsArrayForm(false), Field(nullptr), EndOfTU(EndOfTU),
2378 HasUndefinedConstructors(false) {}
2379
2380 /// \brief Checks whether pointee of a delete-expression is initialized with
2381 /// matching form of new-expression.
2382 ///
2383 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2384 /// point where delete-expression is encountered, then a warning will be
2385 /// issued immediately. If return value is \c AnalyzeLater at the point where
2386 /// delete-expression is seen, then member will be analyzed at the end of
2387 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2388 /// couldn't be analyzed. If at least one constructor initializes the member
2389 /// with matching type of new, the return value is \c NoMismatch.
2390 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2391 /// \brief Analyzes a class member.
2392 /// \param Field Class member to analyze.
2393 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2394 /// for deleting the \p Field.
2395 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2396 /// List of mismatching new-expressions used for initialization of the pointee
2397 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2398 /// Indicates whether delete-expression was in array form.
2399 bool IsArrayForm;
2400 FieldDecl *Field;
2401
2402 private:
2403 const bool EndOfTU;
2404 /// \brief Indicates that there is at least one constructor without body.
2405 bool HasUndefinedConstructors;
2406 /// \brief Returns \c CXXNewExpr from given initialization expression.
2407 /// \param E Expression used for initializing pointee in delete-expression.
2408 /// E can be a single-element \c InitListExpr consisting of new-expression.
2409 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2410 /// \brief Returns whether member is initialized with mismatching form of
2411 /// \c new either by the member initializer or in-class initialization.
2412 ///
2413 /// If bodies of all constructors are not visible at the end of translation
2414 /// unit or at least one constructor initializes member with the matching
2415 /// form of \c new, mismatch cannot be proven, and this function will return
2416 /// \c NoMismatch.
2417 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2418 /// \brief Returns whether variable is initialized with mismatching form of
2419 /// \c new.
2420 ///
2421 /// If variable is initialized with matching form of \c new or variable is not
2422 /// initialized with a \c new expression, this function will return true.
2423 /// If variable is initialized with mismatching form of \c new, returns false.
2424 /// \param D Variable to analyze.
2425 bool hasMatchingVarInit(const DeclRefExpr *D);
2426 /// \brief Checks whether the constructor initializes pointee with mismatching
2427 /// form of \c new.
2428 ///
2429 /// Returns true, if member is initialized with matching form of \c new in
2430 /// member initializer list. Returns false, if member is initialized with the
2431 /// matching form of \c new in this constructor's initializer or given
2432 /// constructor isn't defined at the point where delete-expression is seen, or
2433 /// member isn't initialized by the constructor.
2434 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2435 /// \brief Checks whether member is initialized with matching form of
2436 /// \c new in member initializer list.
2437 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2438 /// Checks whether member is initialized with mismatching form of \c new by
2439 /// in-class initializer.
2440 MismatchResult analyzeInClassInitializer();
2441 };
2442 }
2443
2444 MismatchingNewDeleteDetector::MismatchResult
analyzeDeleteExpr(const CXXDeleteExpr * DE)2445 MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2446 NewExprs.clear();
2447 assert(DE && "Expected delete-expression");
2448 IsArrayForm = DE->isArrayForm();
2449 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2450 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2451 return analyzeMemberExpr(ME);
2452 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2453 if (!hasMatchingVarInit(D))
2454 return VarInitMismatches;
2455 }
2456 return NoMismatch;
2457 }
2458
2459 const CXXNewExpr *
getNewExprFromInitListOrExpr(const Expr * E)2460 MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2461 assert(E != nullptr && "Expected a valid initializer expression");
2462 E = E->IgnoreParenImpCasts();
2463 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2464 if (ILE->getNumInits() == 1)
2465 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2466 }
2467
2468 return dyn_cast_or_null<const CXXNewExpr>(E);
2469 }
2470
hasMatchingNewInCtorInit(const CXXCtorInitializer * CI)2471 bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2472 const CXXCtorInitializer *CI) {
2473 const CXXNewExpr *NE = nullptr;
2474 if (Field == CI->getMember() &&
2475 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2476 if (NE->isArray() == IsArrayForm)
2477 return true;
2478 else
2479 NewExprs.push_back(NE);
2480 }
2481 return false;
2482 }
2483
hasMatchingNewInCtor(const CXXConstructorDecl * CD)2484 bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
2485 const CXXConstructorDecl *CD) {
2486 if (CD->isImplicit())
2487 return false;
2488 const FunctionDecl *Definition = CD;
2489 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
2490 HasUndefinedConstructors = true;
2491 return EndOfTU;
2492 }
2493 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
2494 if (hasMatchingNewInCtorInit(CI))
2495 return true;
2496 }
2497 return false;
2498 }
2499
2500 MismatchingNewDeleteDetector::MismatchResult
analyzeInClassInitializer()2501 MismatchingNewDeleteDetector::analyzeInClassInitializer() {
2502 assert(Field != nullptr && "This should be called only for members");
2503 const Expr *InitExpr = Field->getInClassInitializer();
2504 if (!InitExpr)
2505 return EndOfTU ? NoMismatch : AnalyzeLater;
2506 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
2507 if (NE->isArray() != IsArrayForm) {
2508 NewExprs.push_back(NE);
2509 return MemberInitMismatches;
2510 }
2511 }
2512 return NoMismatch;
2513 }
2514
2515 MismatchingNewDeleteDetector::MismatchResult
analyzeField(FieldDecl * Field,bool DeleteWasArrayForm)2516 MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
2517 bool DeleteWasArrayForm) {
2518 assert(Field != nullptr && "Analysis requires a valid class member.");
2519 this->Field = Field;
2520 IsArrayForm = DeleteWasArrayForm;
2521 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
2522 for (const auto *CD : RD->ctors()) {
2523 if (hasMatchingNewInCtor(CD))
2524 return NoMismatch;
2525 }
2526 if (HasUndefinedConstructors)
2527 return EndOfTU ? NoMismatch : AnalyzeLater;
2528 if (!NewExprs.empty())
2529 return MemberInitMismatches;
2530 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
2531 : NoMismatch;
2532 }
2533
2534 MismatchingNewDeleteDetector::MismatchResult
analyzeMemberExpr(const MemberExpr * ME)2535 MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
2536 assert(ME != nullptr && "Expected a member expression");
2537 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2538 return analyzeField(F, IsArrayForm);
2539 return NoMismatch;
2540 }
2541
hasMatchingVarInit(const DeclRefExpr * D)2542 bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
2543 const CXXNewExpr *NE = nullptr;
2544 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
2545 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
2546 NE->isArray() != IsArrayForm) {
2547 NewExprs.push_back(NE);
2548 }
2549 }
2550 return NewExprs.empty();
2551 }
2552
2553 static void
DiagnoseMismatchedNewDelete(Sema & SemaRef,SourceLocation DeleteLoc,const MismatchingNewDeleteDetector & Detector)2554 DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
2555 const MismatchingNewDeleteDetector &Detector) {
2556 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
2557 FixItHint H;
2558 if (!Detector.IsArrayForm)
2559 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
2560 else {
2561 SourceLocation RSquare = Lexer::findLocationAfterToken(
2562 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
2563 SemaRef.getLangOpts(), true);
2564 if (RSquare.isValid())
2565 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
2566 }
2567 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
2568 << Detector.IsArrayForm << H;
2569
2570 for (const auto *NE : Detector.NewExprs)
2571 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
2572 << Detector.IsArrayForm;
2573 }
2574
AnalyzeDeleteExprMismatch(const CXXDeleteExpr * DE)2575 void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
2576 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
2577 return;
2578 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
2579 switch (Detector.analyzeDeleteExpr(DE)) {
2580 case MismatchingNewDeleteDetector::VarInitMismatches:
2581 case MismatchingNewDeleteDetector::MemberInitMismatches: {
2582 DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
2583 break;
2584 }
2585 case MismatchingNewDeleteDetector::AnalyzeLater: {
2586 DeleteExprs[Detector.Field].push_back(
2587 std::make_pair(DE->getLocStart(), DE->isArrayForm()));
2588 break;
2589 }
2590 case MismatchingNewDeleteDetector::NoMismatch:
2591 break;
2592 }
2593 }
2594
AnalyzeDeleteExprMismatch(FieldDecl * Field,SourceLocation DeleteLoc,bool DeleteWasArrayForm)2595 void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
2596 bool DeleteWasArrayForm) {
2597 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
2598 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
2599 case MismatchingNewDeleteDetector::VarInitMismatches:
2600 llvm_unreachable("This analysis should have been done for class members.");
2601 case MismatchingNewDeleteDetector::AnalyzeLater:
2602 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
2603 "translation unit.");
2604 case MismatchingNewDeleteDetector::MemberInitMismatches:
2605 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
2606 break;
2607 case MismatchingNewDeleteDetector::NoMismatch:
2608 break;
2609 }
2610 }
2611
2612 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2613 /// @code ::delete ptr; @endcode
2614 /// or
2615 /// @code delete [] ptr; @endcode
2616 ExprResult
ActOnCXXDelete(SourceLocation StartLoc,bool UseGlobal,bool ArrayForm,Expr * ExE)2617 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2618 bool ArrayForm, Expr *ExE) {
2619 // C++ [expr.delete]p1:
2620 // The operand shall have a pointer type, or a class type having a single
2621 // non-explicit conversion function to a pointer type. The result has type
2622 // void.
2623 //
2624 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2625
2626 ExprResult Ex = ExE;
2627 FunctionDecl *OperatorDelete = nullptr;
2628 bool ArrayFormAsWritten = ArrayForm;
2629 bool UsualArrayDeleteWantsSize = false;
2630
2631 if (!Ex.get()->isTypeDependent()) {
2632 // Perform lvalue-to-rvalue cast, if needed.
2633 Ex = DefaultLvalueConversion(Ex.get());
2634 if (Ex.isInvalid())
2635 return ExprError();
2636
2637 QualType Type = Ex.get()->getType();
2638
2639 class DeleteConverter : public ContextualImplicitConverter {
2640 public:
2641 DeleteConverter() : ContextualImplicitConverter(false, true) {}
2642
2643 bool match(QualType ConvType) override {
2644 // FIXME: If we have an operator T* and an operator void*, we must pick
2645 // the operator T*.
2646 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2647 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2648 return true;
2649 return false;
2650 }
2651
2652 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2653 QualType T) override {
2654 return S.Diag(Loc, diag::err_delete_operand) << T;
2655 }
2656
2657 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2658 QualType T) override {
2659 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2660 }
2661
2662 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2663 QualType T,
2664 QualType ConvTy) override {
2665 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2666 }
2667
2668 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2669 QualType ConvTy) override {
2670 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2671 << ConvTy;
2672 }
2673
2674 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2675 QualType T) override {
2676 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2677 }
2678
2679 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2680 QualType ConvTy) override {
2681 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2682 << ConvTy;
2683 }
2684
2685 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2686 QualType T,
2687 QualType ConvTy) override {
2688 llvm_unreachable("conversion functions are permitted");
2689 }
2690 } Converter;
2691
2692 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2693 if (Ex.isInvalid())
2694 return ExprError();
2695 Type = Ex.get()->getType();
2696 if (!Converter.match(Type))
2697 // FIXME: PerformContextualImplicitConversion should return ExprError
2698 // itself in this case.
2699 return ExprError();
2700
2701 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2702 QualType PointeeElem = Context.getBaseElementType(Pointee);
2703
2704 if (unsigned AddressSpace = Pointee.getAddressSpace())
2705 return Diag(Ex.get()->getLocStart(),
2706 diag::err_address_space_qualified_delete)
2707 << Pointee.getUnqualifiedType() << AddressSpace;
2708
2709 CXXRecordDecl *PointeeRD = nullptr;
2710 if (Pointee->isVoidType() && !isSFINAEContext()) {
2711 // The C++ standard bans deleting a pointer to a non-object type, which
2712 // effectively bans deletion of "void*". However, most compilers support
2713 // this, so we treat it as a warning unless we're in a SFINAE context.
2714 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2715 << Type << Ex.get()->getSourceRange();
2716 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2717 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2718 << Type << Ex.get()->getSourceRange());
2719 } else if (!Pointee->isDependentType()) {
2720 // FIXME: This can result in errors if the definition was imported from a
2721 // module but is hidden.
2722 if (!RequireCompleteType(StartLoc, Pointee,
2723 diag::warn_delete_incomplete, Ex.get())) {
2724 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2725 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2726 }
2727 }
2728
2729 if (Pointee->isArrayType() && !ArrayForm) {
2730 Diag(StartLoc, diag::warn_delete_array_type)
2731 << Type << Ex.get()->getSourceRange()
2732 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
2733 ArrayForm = true;
2734 }
2735
2736 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2737 ArrayForm ? OO_Array_Delete : OO_Delete);
2738
2739 if (PointeeRD) {
2740 if (!UseGlobal &&
2741 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2742 OperatorDelete))
2743 return ExprError();
2744
2745 // If we're allocating an array of records, check whether the
2746 // usual operator delete[] has a size_t parameter.
2747 if (ArrayForm) {
2748 // If the user specifically asked to use the global allocator,
2749 // we'll need to do the lookup into the class.
2750 if (UseGlobal)
2751 UsualArrayDeleteWantsSize =
2752 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2753
2754 // Otherwise, the usual operator delete[] should be the
2755 // function we just found.
2756 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2757 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2758 }
2759
2760 if (!PointeeRD->hasIrrelevantDestructor())
2761 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2762 MarkFunctionReferenced(StartLoc,
2763 const_cast<CXXDestructorDecl*>(Dtor));
2764 if (DiagnoseUseOfDecl(Dtor, StartLoc))
2765 return ExprError();
2766 }
2767
2768 // C++ [expr.delete]p3:
2769 // In the first alternative (delete object), if the static type of the
2770 // object to be deleted is different from its dynamic type, the static
2771 // type shall be a base class of the dynamic type of the object to be
2772 // deleted and the static type shall have a virtual destructor or the
2773 // behavior is undefined.
2774 //
2775 // Note: a final class cannot be derived from, no issue there
2776 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2777 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2778 if (dtor && !dtor->isVirtual()) {
2779 if (PointeeRD->isAbstract()) {
2780 // If the class is abstract, we warn by default, because we're
2781 // sure the code has undefined behavior.
2782 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2783 << PointeeElem;
2784 } else if (!ArrayForm) {
2785 // Otherwise, if this is not an array delete, it's a bit suspect,
2786 // but not necessarily wrong.
2787 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2788 }
2789 }
2790 }
2791
2792 }
2793
2794 if (!OperatorDelete)
2795 // Look for a global declaration.
2796 OperatorDelete = FindUsualDeallocationFunction(
2797 StartLoc, isCompleteType(StartLoc, Pointee) &&
2798 (!ArrayForm || UsualArrayDeleteWantsSize ||
2799 Pointee.isDestructedType()),
2800 DeleteName);
2801
2802 MarkFunctionReferenced(StartLoc, OperatorDelete);
2803
2804 // Check access and ambiguity of operator delete and destructor.
2805 if (PointeeRD) {
2806 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2807 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2808 PDiag(diag::err_access_dtor) << PointeeElem);
2809 }
2810 }
2811 }
2812
2813 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
2814 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2815 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2816 AnalyzeDeleteExprMismatch(Result);
2817 return Result;
2818 }
2819
2820 /// \brief Check the use of the given variable as a C++ condition in an if,
2821 /// while, do-while, or switch statement.
CheckConditionVariable(VarDecl * ConditionVar,SourceLocation StmtLoc,bool ConvertToBoolean)2822 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2823 SourceLocation StmtLoc,
2824 bool ConvertToBoolean) {
2825 if (ConditionVar->isInvalidDecl())
2826 return ExprError();
2827
2828 QualType T = ConditionVar->getType();
2829
2830 // C++ [stmt.select]p2:
2831 // The declarator shall not specify a function or an array.
2832 if (T->isFunctionType())
2833 return ExprError(Diag(ConditionVar->getLocation(),
2834 diag::err_invalid_use_of_function_type)
2835 << ConditionVar->getSourceRange());
2836 else if (T->isArrayType())
2837 return ExprError(Diag(ConditionVar->getLocation(),
2838 diag::err_invalid_use_of_array_type)
2839 << ConditionVar->getSourceRange());
2840
2841 ExprResult Condition = DeclRefExpr::Create(
2842 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2843 /*enclosing*/ false, ConditionVar->getLocation(),
2844 ConditionVar->getType().getNonReferenceType(), VK_LValue);
2845
2846 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2847
2848 if (ConvertToBoolean) {
2849 Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2850 if (Condition.isInvalid())
2851 return ExprError();
2852 }
2853
2854 return Condition;
2855 }
2856
2857 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
CheckCXXBooleanCondition(Expr * CondExpr)2858 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2859 // C++ 6.4p4:
2860 // The value of a condition that is an initialized declaration in a statement
2861 // other than a switch statement is the value of the declared variable
2862 // implicitly converted to type bool. If that conversion is ill-formed, the
2863 // program is ill-formed.
2864 // The value of a condition that is an expression is the value of the
2865 // expression, implicitly converted to bool.
2866 //
2867 return PerformContextuallyConvertToBool(CondExpr);
2868 }
2869
2870 /// Helper function to determine whether this is the (deprecated) C++
2871 /// conversion from a string literal to a pointer to non-const char or
2872 /// non-const wchar_t (for narrow and wide string literals,
2873 /// respectively).
2874 bool
IsStringLiteralToNonConstPointerConversion(Expr * From,QualType ToType)2875 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2876 // Look inside the implicit cast, if it exists.
2877 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2878 From = Cast->getSubExpr();
2879
2880 // A string literal (2.13.4) that is not a wide string literal can
2881 // be converted to an rvalue of type "pointer to char"; a wide
2882 // string literal can be converted to an rvalue of type "pointer
2883 // to wchar_t" (C++ 4.2p2).
2884 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2885 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2886 if (const BuiltinType *ToPointeeType
2887 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2888 // This conversion is considered only when there is an
2889 // explicit appropriate pointer target type (C++ 4.2p2).
2890 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2891 switch (StrLit->getKind()) {
2892 case StringLiteral::UTF8:
2893 case StringLiteral::UTF16:
2894 case StringLiteral::UTF32:
2895 // We don't allow UTF literals to be implicitly converted
2896 break;
2897 case StringLiteral::Ascii:
2898 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2899 ToPointeeType->getKind() == BuiltinType::Char_S);
2900 case StringLiteral::Wide:
2901 return ToPointeeType->isWideCharType();
2902 }
2903 }
2904 }
2905
2906 return false;
2907 }
2908
BuildCXXCastArgument(Sema & S,SourceLocation CastLoc,QualType Ty,CastKind Kind,CXXMethodDecl * Method,DeclAccessPair FoundDecl,bool HadMultipleCandidates,Expr * From)2909 static ExprResult BuildCXXCastArgument(Sema &S,
2910 SourceLocation CastLoc,
2911 QualType Ty,
2912 CastKind Kind,
2913 CXXMethodDecl *Method,
2914 DeclAccessPair FoundDecl,
2915 bool HadMultipleCandidates,
2916 Expr *From) {
2917 switch (Kind) {
2918 default: llvm_unreachable("Unhandled cast kind!");
2919 case CK_ConstructorConversion: {
2920 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2921 SmallVector<Expr*, 8> ConstructorArgs;
2922
2923 if (S.RequireNonAbstractType(CastLoc, Ty,
2924 diag::err_allocation_of_abstract_type))
2925 return ExprError();
2926
2927 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2928 return ExprError();
2929
2930 S.CheckConstructorAccess(CastLoc, Constructor,
2931 InitializedEntity::InitializeTemporary(Ty),
2932 Constructor->getAccess());
2933 if (S.DiagnoseUseOfDecl(Method, CastLoc))
2934 return ExprError();
2935
2936 ExprResult Result = S.BuildCXXConstructExpr(
2937 CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2938 ConstructorArgs, HadMultipleCandidates,
2939 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2940 CXXConstructExpr::CK_Complete, SourceRange());
2941 if (Result.isInvalid())
2942 return ExprError();
2943
2944 return S.MaybeBindToTemporary(Result.getAs<Expr>());
2945 }
2946
2947 case CK_UserDefinedConversion: {
2948 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2949
2950 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2951 if (S.DiagnoseUseOfDecl(Method, CastLoc))
2952 return ExprError();
2953
2954 // Create an implicit call expr that calls it.
2955 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2956 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2957 HadMultipleCandidates);
2958 if (Result.isInvalid())
2959 return ExprError();
2960 // Record usage of conversion in an implicit cast.
2961 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2962 CK_UserDefinedConversion, Result.get(),
2963 nullptr, Result.get()->getValueKind());
2964
2965 return S.MaybeBindToTemporary(Result.get());
2966 }
2967 }
2968 }
2969
2970 /// PerformImplicitConversion - Perform an implicit conversion of the
2971 /// expression From to the type ToType using the pre-computed implicit
2972 /// conversion sequence ICS. Returns the converted
2973 /// expression. Action is the kind of conversion we're performing,
2974 /// used in the error message.
2975 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const ImplicitConversionSequence & ICS,AssignmentAction Action,CheckedConversionKind CCK)2976 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2977 const ImplicitConversionSequence &ICS,
2978 AssignmentAction Action,
2979 CheckedConversionKind CCK) {
2980 switch (ICS.getKind()) {
2981 case ImplicitConversionSequence::StandardConversion: {
2982 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2983 Action, CCK);
2984 if (Res.isInvalid())
2985 return ExprError();
2986 From = Res.get();
2987 break;
2988 }
2989
2990 case ImplicitConversionSequence::UserDefinedConversion: {
2991
2992 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2993 CastKind CastKind;
2994 QualType BeforeToType;
2995 assert(FD && "no conversion function for user-defined conversion seq");
2996 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2997 CastKind = CK_UserDefinedConversion;
2998
2999 // If the user-defined conversion is specified by a conversion function,
3000 // the initial standard conversion sequence converts the source type to
3001 // the implicit object parameter of the conversion function.
3002 BeforeToType = Context.getTagDeclType(Conv->getParent());
3003 } else {
3004 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3005 CastKind = CK_ConstructorConversion;
3006 // Do no conversion if dealing with ... for the first conversion.
3007 if (!ICS.UserDefined.EllipsisConversion) {
3008 // If the user-defined conversion is specified by a constructor, the
3009 // initial standard conversion sequence converts the source type to
3010 // the type required by the argument of the constructor
3011 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3012 }
3013 }
3014 // Watch out for ellipsis conversion.
3015 if (!ICS.UserDefined.EllipsisConversion) {
3016 ExprResult Res =
3017 PerformImplicitConversion(From, BeforeToType,
3018 ICS.UserDefined.Before, AA_Converting,
3019 CCK);
3020 if (Res.isInvalid())
3021 return ExprError();
3022 From = Res.get();
3023 }
3024
3025 ExprResult CastArg
3026 = BuildCXXCastArgument(*this,
3027 From->getLocStart(),
3028 ToType.getNonReferenceType(),
3029 CastKind, cast<CXXMethodDecl>(FD),
3030 ICS.UserDefined.FoundConversionFunction,
3031 ICS.UserDefined.HadMultipleCandidates,
3032 From);
3033
3034 if (CastArg.isInvalid())
3035 return ExprError();
3036
3037 From = CastArg.get();
3038
3039 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3040 AA_Converting, CCK);
3041 }
3042
3043 case ImplicitConversionSequence::AmbiguousConversion:
3044 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3045 PDiag(diag::err_typecheck_ambiguous_condition)
3046 << From->getSourceRange());
3047 return ExprError();
3048
3049 case ImplicitConversionSequence::EllipsisConversion:
3050 llvm_unreachable("Cannot perform an ellipsis conversion");
3051
3052 case ImplicitConversionSequence::BadConversion:
3053 return ExprError();
3054 }
3055
3056 // Everything went well.
3057 return From;
3058 }
3059
3060 /// PerformImplicitConversion - Perform an implicit conversion of the
3061 /// expression From to the type ToType by following the standard
3062 /// conversion sequence SCS. Returns the converted
3063 /// expression. Flavor is the context in which we're performing this
3064 /// conversion, for use in error messages.
3065 ExprResult
PerformImplicitConversion(Expr * From,QualType ToType,const StandardConversionSequence & SCS,AssignmentAction Action,CheckedConversionKind CCK)3066 Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3067 const StandardConversionSequence& SCS,
3068 AssignmentAction Action,
3069 CheckedConversionKind CCK) {
3070 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3071
3072 // Overall FIXME: we are recomputing too many types here and doing far too
3073 // much extra work. What this means is that we need to keep track of more
3074 // information that is computed when we try the implicit conversion initially,
3075 // so that we don't need to recompute anything here.
3076 QualType FromType = From->getType();
3077
3078 if (SCS.CopyConstructor) {
3079 // FIXME: When can ToType be a reference type?
3080 assert(!ToType->isReferenceType());
3081 if (SCS.Second == ICK_Derived_To_Base) {
3082 SmallVector<Expr*, 8> ConstructorArgs;
3083 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3084 From, /*FIXME:ConstructLoc*/SourceLocation(),
3085 ConstructorArgs))
3086 return ExprError();
3087 return BuildCXXConstructExpr(
3088 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
3089 ConstructorArgs, /*HadMultipleCandidates*/ false,
3090 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3091 CXXConstructExpr::CK_Complete, SourceRange());
3092 }
3093 return BuildCXXConstructExpr(
3094 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
3095 From, /*HadMultipleCandidates*/ false,
3096 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3097 CXXConstructExpr::CK_Complete, SourceRange());
3098 }
3099
3100 // Resolve overloaded function references.
3101 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3102 DeclAccessPair Found;
3103 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3104 true, Found);
3105 if (!Fn)
3106 return ExprError();
3107
3108 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3109 return ExprError();
3110
3111 From = FixOverloadedFunctionReference(From, Found, Fn);
3112 FromType = From->getType();
3113 }
3114
3115 // If we're converting to an atomic type, first convert to the corresponding
3116 // non-atomic type.
3117 QualType ToAtomicType;
3118 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3119 ToAtomicType = ToType;
3120 ToType = ToAtomic->getValueType();
3121 }
3122
3123 QualType InitialFromType = FromType;
3124 // Perform the first implicit conversion.
3125 switch (SCS.First) {
3126 case ICK_Identity:
3127 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3128 FromType = FromAtomic->getValueType().getUnqualifiedType();
3129 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3130 From, /*BasePath=*/nullptr, VK_RValue);
3131 }
3132 break;
3133
3134 case ICK_Lvalue_To_Rvalue: {
3135 assert(From->getObjectKind() != OK_ObjCProperty);
3136 ExprResult FromRes = DefaultLvalueConversion(From);
3137 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
3138 From = FromRes.get();
3139 FromType = From->getType();
3140 break;
3141 }
3142
3143 case ICK_Array_To_Pointer:
3144 FromType = Context.getArrayDecayedType(FromType);
3145 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3146 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3147 break;
3148
3149 case ICK_Function_To_Pointer:
3150 FromType = Context.getPointerType(FromType);
3151 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3152 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3153 break;
3154
3155 default:
3156 llvm_unreachable("Improper first standard conversion");
3157 }
3158
3159 // Perform the second implicit conversion
3160 switch (SCS.Second) {
3161 case ICK_Identity:
3162 // C++ [except.spec]p5:
3163 // [For] assignment to and initialization of pointers to functions,
3164 // pointers to member functions, and references to functions: the
3165 // target entity shall allow at least the exceptions allowed by the
3166 // source value in the assignment or initialization.
3167 switch (Action) {
3168 case AA_Assigning:
3169 case AA_Initializing:
3170 // Note, function argument passing and returning are initialization.
3171 case AA_Passing:
3172 case AA_Returning:
3173 case AA_Sending:
3174 case AA_Passing_CFAudited:
3175 if (CheckExceptionSpecCompatibility(From, ToType))
3176 return ExprError();
3177 break;
3178
3179 case AA_Casting:
3180 case AA_Converting:
3181 // Casts and implicit conversions are not initialization, so are not
3182 // checked for exception specification mismatches.
3183 break;
3184 }
3185 // Nothing else to do.
3186 break;
3187
3188 case ICK_NoReturn_Adjustment:
3189 // If both sides are functions (or pointers/references to them), there could
3190 // be incompatible exception declarations.
3191 if (CheckExceptionSpecCompatibility(From, ToType))
3192 return ExprError();
3193
3194 From = ImpCastExprToType(From, ToType, CK_NoOp,
3195 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3196 break;
3197
3198 case ICK_Integral_Promotion:
3199 case ICK_Integral_Conversion:
3200 if (ToType->isBooleanType()) {
3201 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
3202 SCS.Second == ICK_Integral_Promotion &&
3203 "only enums with fixed underlying type can promote to bool");
3204 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3205 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3206 } else {
3207 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3208 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3209 }
3210 break;
3211
3212 case ICK_Floating_Promotion:
3213 case ICK_Floating_Conversion:
3214 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
3215 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3216 break;
3217
3218 case ICK_Complex_Promotion:
3219 case ICK_Complex_Conversion: {
3220 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3221 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3222 CastKind CK;
3223 if (FromEl->isRealFloatingType()) {
3224 if (ToEl->isRealFloatingType())
3225 CK = CK_FloatingComplexCast;
3226 else
3227 CK = CK_FloatingComplexToIntegralComplex;
3228 } else if (ToEl->isRealFloatingType()) {
3229 CK = CK_IntegralComplexToFloatingComplex;
3230 } else {
3231 CK = CK_IntegralComplexCast;
3232 }
3233 From = ImpCastExprToType(From, ToType, CK,
3234 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3235 break;
3236 }
3237
3238 case ICK_Floating_Integral:
3239 if (ToType->isRealFloatingType())
3240 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
3241 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3242 else
3243 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
3244 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3245 break;
3246
3247 case ICK_Compatible_Conversion:
3248 From = ImpCastExprToType(From, ToType, CK_NoOp,
3249 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3250 break;
3251
3252 case ICK_Writeback_Conversion:
3253 case ICK_Pointer_Conversion: {
3254 if (SCS.IncompatibleObjC && Action != AA_Casting) {
3255 // Diagnose incompatible Objective-C conversions
3256 if (Action == AA_Initializing || Action == AA_Assigning)
3257 Diag(From->getLocStart(),
3258 diag::ext_typecheck_convert_incompatible_pointer)
3259 << ToType << From->getType() << Action
3260 << From->getSourceRange() << 0;
3261 else
3262 Diag(From->getLocStart(),
3263 diag::ext_typecheck_convert_incompatible_pointer)
3264 << From->getType() << ToType << Action
3265 << From->getSourceRange() << 0;
3266
3267 if (From->getType()->isObjCObjectPointerType() &&
3268 ToType->isObjCObjectPointerType())
3269 EmitRelatedResultTypeNote(From);
3270 }
3271 else if (getLangOpts().ObjCAutoRefCount &&
3272 !CheckObjCARCUnavailableWeakConversion(ToType,
3273 From->getType())) {
3274 if (Action == AA_Initializing)
3275 Diag(From->getLocStart(),
3276 diag::err_arc_weak_unavailable_assign);
3277 else
3278 Diag(From->getLocStart(),
3279 diag::err_arc_convesion_of_weak_unavailable)
3280 << (Action == AA_Casting) << From->getType() << ToType
3281 << From->getSourceRange();
3282 }
3283
3284 CastKind Kind = CK_Invalid;
3285 CXXCastPath BasePath;
3286 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3287 return ExprError();
3288
3289 // Make sure we extend blocks if necessary.
3290 // FIXME: doing this here is really ugly.
3291 if (Kind == CK_BlockPointerToObjCPointerCast) {
3292 ExprResult E = From;
3293 (void) PrepareCastToObjCObjectPointer(E);
3294 From = E.get();
3295 }
3296 if (getLangOpts().ObjCAutoRefCount)
3297 CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
3298 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3299 .get();
3300 break;
3301 }
3302
3303 case ICK_Pointer_Member: {
3304 CastKind Kind = CK_Invalid;
3305 CXXCastPath BasePath;
3306 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3307 return ExprError();
3308 if (CheckExceptionSpecCompatibility(From, ToType))
3309 return ExprError();
3310
3311 // We may not have been able to figure out what this member pointer resolved
3312 // to up until this exact point. Attempt to lock-in it's inheritance model.
3313 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3314 (void)isCompleteType(From->getExprLoc(), From->getType());
3315 (void)isCompleteType(From->getExprLoc(), ToType);
3316 }
3317
3318 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3319 .get();
3320 break;
3321 }
3322
3323 case ICK_Boolean_Conversion:
3324 // Perform half-to-boolean conversion via float.
3325 if (From->getType()->isHalfType()) {
3326 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3327 FromType = Context.FloatTy;
3328 }
3329
3330 From = ImpCastExprToType(From, Context.BoolTy,
3331 ScalarTypeToBooleanCastKind(FromType),
3332 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3333 break;
3334
3335 case ICK_Derived_To_Base: {
3336 CXXCastPath BasePath;
3337 if (CheckDerivedToBaseConversion(From->getType(),
3338 ToType.getNonReferenceType(),
3339 From->getLocStart(),
3340 From->getSourceRange(),
3341 &BasePath,
3342 CStyle))
3343 return ExprError();
3344
3345 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3346 CK_DerivedToBase, From->getValueKind(),
3347 &BasePath, CCK).get();
3348 break;
3349 }
3350
3351 case ICK_Vector_Conversion:
3352 From = ImpCastExprToType(From, ToType, CK_BitCast,
3353 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3354 break;
3355
3356 case ICK_Vector_Splat:
3357 // Vector splat from any arithmetic type to a vector.
3358 // Cast to the element type.
3359 {
3360 QualType elType = ToType->getAs<ExtVectorType>()->getElementType();
3361 if (elType != From->getType()) {
3362 ExprResult E = From;
3363 From = ImpCastExprToType(From, elType,
3364 PrepareScalarCast(E, elType)).get();
3365 }
3366 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
3367 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3368 }
3369 break;
3370
3371 case ICK_Complex_Real:
3372 // Case 1. x -> _Complex y
3373 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3374 QualType ElType = ToComplex->getElementType();
3375 bool isFloatingComplex = ElType->isRealFloatingType();
3376
3377 // x -> y
3378 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3379 // do nothing
3380 } else if (From->getType()->isRealFloatingType()) {
3381 From = ImpCastExprToType(From, ElType,
3382 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3383 } else {
3384 assert(From->getType()->isIntegerType());
3385 From = ImpCastExprToType(From, ElType,
3386 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3387 }
3388 // y -> _Complex y
3389 From = ImpCastExprToType(From, ToType,
3390 isFloatingComplex ? CK_FloatingRealToComplex
3391 : CK_IntegralRealToComplex).get();
3392
3393 // Case 2. _Complex x -> y
3394 } else {
3395 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3396 assert(FromComplex);
3397
3398 QualType ElType = FromComplex->getElementType();
3399 bool isFloatingComplex = ElType->isRealFloatingType();
3400
3401 // _Complex x -> x
3402 From = ImpCastExprToType(From, ElType,
3403 isFloatingComplex ? CK_FloatingComplexToReal
3404 : CK_IntegralComplexToReal,
3405 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3406
3407 // x -> y
3408 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3409 // do nothing
3410 } else if (ToType->isRealFloatingType()) {
3411 From = ImpCastExprToType(From, ToType,
3412 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3413 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3414 } else {
3415 assert(ToType->isIntegerType());
3416 From = ImpCastExprToType(From, ToType,
3417 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3418 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3419 }
3420 }
3421 break;
3422
3423 case ICK_Block_Pointer_Conversion: {
3424 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3425 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3426 break;
3427 }
3428
3429 case ICK_TransparentUnionConversion: {
3430 ExprResult FromRes = From;
3431 Sema::AssignConvertType ConvTy =
3432 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3433 if (FromRes.isInvalid())
3434 return ExprError();
3435 From = FromRes.get();
3436 assert ((ConvTy == Sema::Compatible) &&
3437 "Improper transparent union conversion");
3438 (void)ConvTy;
3439 break;
3440 }
3441
3442 case ICK_Zero_Event_Conversion:
3443 From = ImpCastExprToType(From, ToType,
3444 CK_ZeroToOCLEvent,
3445 From->getValueKind()).get();
3446 break;
3447
3448 case ICK_Lvalue_To_Rvalue:
3449 case ICK_Array_To_Pointer:
3450 case ICK_Function_To_Pointer:
3451 case ICK_Qualification:
3452 case ICK_Num_Conversion_Kinds:
3453 case ICK_C_Only_Conversion:
3454 llvm_unreachable("Improper second standard conversion");
3455 }
3456
3457 switch (SCS.Third) {
3458 case ICK_Identity:
3459 // Nothing to do.
3460 break;
3461
3462 case ICK_Qualification: {
3463 // The qualification keeps the category of the inner expression, unless the
3464 // target type isn't a reference.
3465 ExprValueKind VK = ToType->isReferenceType() ?
3466 From->getValueKind() : VK_RValue;
3467 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3468 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3469
3470 if (SCS.DeprecatedStringLiteralToCharPtr &&
3471 !getLangOpts().WritableStrings) {
3472 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3473 ? diag::ext_deprecated_string_literal_conversion
3474 : diag::warn_deprecated_string_literal_conversion)
3475 << ToType.getNonReferenceType();
3476 }
3477
3478 break;
3479 }
3480
3481 default:
3482 llvm_unreachable("Improper third standard conversion");
3483 }
3484
3485 // If this conversion sequence involved a scalar -> atomic conversion, perform
3486 // that conversion now.
3487 if (!ToAtomicType.isNull()) {
3488 assert(Context.hasSameType(
3489 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3490 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3491 VK_RValue, nullptr, CCK).get();
3492 }
3493
3494 // If this conversion sequence succeeded and involved implicitly converting a
3495 // _Nullable type to a _Nonnull one, complain.
3496 if (CCK == CCK_ImplicitConversion)
3497 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
3498 From->getLocStart());
3499
3500 return From;
3501 }
3502
3503 /// \brief Check the completeness of a type in a unary type trait.
3504 ///
3505 /// If the particular type trait requires a complete type, tries to complete
3506 /// it. If completing the type fails, a diagnostic is emitted and false
3507 /// returned. If completing the type succeeds or no completion was required,
3508 /// returns true.
CheckUnaryTypeTraitTypeCompleteness(Sema & S,TypeTrait UTT,SourceLocation Loc,QualType ArgTy)3509 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3510 SourceLocation Loc,
3511 QualType ArgTy) {
3512 // C++0x [meta.unary.prop]p3:
3513 // For all of the class templates X declared in this Clause, instantiating
3514 // that template with a template argument that is a class template
3515 // specialization may result in the implicit instantiation of the template
3516 // argument if and only if the semantics of X require that the argument
3517 // must be a complete type.
3518 // We apply this rule to all the type trait expressions used to implement
3519 // these class templates. We also try to follow any GCC documented behavior
3520 // in these expressions to ensure portability of standard libraries.
3521 switch (UTT) {
3522 default: llvm_unreachable("not a UTT");
3523 // is_complete_type somewhat obviously cannot require a complete type.
3524 case UTT_IsCompleteType:
3525 // Fall-through
3526
3527 // These traits are modeled on the type predicates in C++0x
3528 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3529 // requiring a complete type, as whether or not they return true cannot be
3530 // impacted by the completeness of the type.
3531 case UTT_IsVoid:
3532 case UTT_IsIntegral:
3533 case UTT_IsFloatingPoint:
3534 case UTT_IsArray:
3535 case UTT_IsPointer:
3536 case UTT_IsLvalueReference:
3537 case UTT_IsRvalueReference:
3538 case UTT_IsMemberFunctionPointer:
3539 case UTT_IsMemberObjectPointer:
3540 case UTT_IsEnum:
3541 case UTT_IsUnion:
3542 case UTT_IsClass:
3543 case UTT_IsFunction:
3544 case UTT_IsReference:
3545 case UTT_IsArithmetic:
3546 case UTT_IsFundamental:
3547 case UTT_IsObject:
3548 case UTT_IsScalar:
3549 case UTT_IsCompound:
3550 case UTT_IsMemberPointer:
3551 // Fall-through
3552
3553 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3554 // which requires some of its traits to have the complete type. However,
3555 // the completeness of the type cannot impact these traits' semantics, and
3556 // so they don't require it. This matches the comments on these traits in
3557 // Table 49.
3558 case UTT_IsConst:
3559 case UTT_IsVolatile:
3560 case UTT_IsSigned:
3561 case UTT_IsUnsigned:
3562
3563 // This type trait always returns false, checking the type is moot.
3564 case UTT_IsInterfaceClass:
3565 return true;
3566
3567 // C++14 [meta.unary.prop]:
3568 // If T is a non-union class type, T shall be a complete type.
3569 case UTT_IsEmpty:
3570 case UTT_IsPolymorphic:
3571 case UTT_IsAbstract:
3572 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
3573 if (!RD->isUnion())
3574 return !S.RequireCompleteType(
3575 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3576 return true;
3577
3578 // C++14 [meta.unary.prop]:
3579 // If T is a class type, T shall be a complete type.
3580 case UTT_IsFinal:
3581 case UTT_IsSealed:
3582 if (ArgTy->getAsCXXRecordDecl())
3583 return !S.RequireCompleteType(
3584 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
3585 return true;
3586
3587 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3588 // applied to a complete type.
3589 case UTT_IsTrivial:
3590 case UTT_IsTriviallyCopyable:
3591 case UTT_IsStandardLayout:
3592 case UTT_IsPOD:
3593 case UTT_IsLiteral:
3594
3595 case UTT_IsDestructible:
3596 case UTT_IsNothrowDestructible:
3597 // Fall-through
3598
3599 // These trait expressions are designed to help implement predicates in
3600 // [meta.unary.prop] despite not being named the same. They are specified
3601 // by both GCC and the Embarcadero C++ compiler, and require the complete
3602 // type due to the overarching C++0x type predicates being implemented
3603 // requiring the complete type.
3604 case UTT_HasNothrowAssign:
3605 case UTT_HasNothrowMoveAssign:
3606 case UTT_HasNothrowConstructor:
3607 case UTT_HasNothrowCopy:
3608 case UTT_HasTrivialAssign:
3609 case UTT_HasTrivialMoveAssign:
3610 case UTT_HasTrivialDefaultConstructor:
3611 case UTT_HasTrivialMoveConstructor:
3612 case UTT_HasTrivialCopy:
3613 case UTT_HasTrivialDestructor:
3614 case UTT_HasVirtualDestructor:
3615 // Arrays of unknown bound are expressly allowed.
3616 QualType ElTy = ArgTy;
3617 if (ArgTy->isIncompleteArrayType())
3618 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3619
3620 // The void type is expressly allowed.
3621 if (ElTy->isVoidType())
3622 return true;
3623
3624 return !S.RequireCompleteType(
3625 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3626 }
3627 }
3628
HasNoThrowOperator(const RecordType * RT,OverloadedOperatorKind Op,Sema & Self,SourceLocation KeyLoc,ASTContext & C,bool (CXXRecordDecl::* HasTrivial)()const,bool (CXXRecordDecl::* HasNonTrivial)()const,bool (CXXMethodDecl::* IsDesiredOp)()const)3629 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3630 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3631 bool (CXXRecordDecl::*HasTrivial)() const,
3632 bool (CXXRecordDecl::*HasNonTrivial)() const,
3633 bool (CXXMethodDecl::*IsDesiredOp)() const)
3634 {
3635 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3636 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3637 return true;
3638
3639 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3640 DeclarationNameInfo NameInfo(Name, KeyLoc);
3641 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3642 if (Self.LookupQualifiedName(Res, RD)) {
3643 bool FoundOperator = false;
3644 Res.suppressDiagnostics();
3645 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3646 Op != OpEnd; ++Op) {
3647 if (isa<FunctionTemplateDecl>(*Op))
3648 continue;
3649
3650 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3651 if((Operator->*IsDesiredOp)()) {
3652 FoundOperator = true;
3653 const FunctionProtoType *CPT =
3654 Operator->getType()->getAs<FunctionProtoType>();
3655 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3656 if (!CPT || !CPT->isNothrow(C))
3657 return false;
3658 }
3659 }
3660 return FoundOperator;
3661 }
3662 return false;
3663 }
3664
EvaluateUnaryTypeTrait(Sema & Self,TypeTrait UTT,SourceLocation KeyLoc,QualType T)3665 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3666 SourceLocation KeyLoc, QualType T) {
3667 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3668
3669 ASTContext &C = Self.Context;
3670 switch(UTT) {
3671 default: llvm_unreachable("not a UTT");
3672 // Type trait expressions corresponding to the primary type category
3673 // predicates in C++0x [meta.unary.cat].
3674 case UTT_IsVoid:
3675 return T->isVoidType();
3676 case UTT_IsIntegral:
3677 return T->isIntegralType(C);
3678 case UTT_IsFloatingPoint:
3679 return T->isFloatingType();
3680 case UTT_IsArray:
3681 return T->isArrayType();
3682 case UTT_IsPointer:
3683 return T->isPointerType();
3684 case UTT_IsLvalueReference:
3685 return T->isLValueReferenceType();
3686 case UTT_IsRvalueReference:
3687 return T->isRValueReferenceType();
3688 case UTT_IsMemberFunctionPointer:
3689 return T->isMemberFunctionPointerType();
3690 case UTT_IsMemberObjectPointer:
3691 return T->isMemberDataPointerType();
3692 case UTT_IsEnum:
3693 return T->isEnumeralType();
3694 case UTT_IsUnion:
3695 return T->isUnionType();
3696 case UTT_IsClass:
3697 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3698 case UTT_IsFunction:
3699 return T->isFunctionType();
3700
3701 // Type trait expressions which correspond to the convenient composition
3702 // predicates in C++0x [meta.unary.comp].
3703 case UTT_IsReference:
3704 return T->isReferenceType();
3705 case UTT_IsArithmetic:
3706 return T->isArithmeticType() && !T->isEnumeralType();
3707 case UTT_IsFundamental:
3708 return T->isFundamentalType();
3709 case UTT_IsObject:
3710 return T->isObjectType();
3711 case UTT_IsScalar:
3712 // Note: semantic analysis depends on Objective-C lifetime types to be
3713 // considered scalar types. However, such types do not actually behave
3714 // like scalar types at run time (since they may require retain/release
3715 // operations), so we report them as non-scalar.
3716 if (T->isObjCLifetimeType()) {
3717 switch (T.getObjCLifetime()) {
3718 case Qualifiers::OCL_None:
3719 case Qualifiers::OCL_ExplicitNone:
3720 return true;
3721
3722 case Qualifiers::OCL_Strong:
3723 case Qualifiers::OCL_Weak:
3724 case Qualifiers::OCL_Autoreleasing:
3725 return false;
3726 }
3727 }
3728
3729 return T->isScalarType();
3730 case UTT_IsCompound:
3731 return T->isCompoundType();
3732 case UTT_IsMemberPointer:
3733 return T->isMemberPointerType();
3734
3735 // Type trait expressions which correspond to the type property predicates
3736 // in C++0x [meta.unary.prop].
3737 case UTT_IsConst:
3738 return T.isConstQualified();
3739 case UTT_IsVolatile:
3740 return T.isVolatileQualified();
3741 case UTT_IsTrivial:
3742 return T.isTrivialType(C);
3743 case UTT_IsTriviallyCopyable:
3744 return T.isTriviallyCopyableType(C);
3745 case UTT_IsStandardLayout:
3746 return T->isStandardLayoutType();
3747 case UTT_IsPOD:
3748 return T.isPODType(C);
3749 case UTT_IsLiteral:
3750 return T->isLiteralType(C);
3751 case UTT_IsEmpty:
3752 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3753 return !RD->isUnion() && RD->isEmpty();
3754 return false;
3755 case UTT_IsPolymorphic:
3756 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3757 return !RD->isUnion() && RD->isPolymorphic();
3758 return false;
3759 case UTT_IsAbstract:
3760 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3761 return !RD->isUnion() && RD->isAbstract();
3762 return false;
3763 // __is_interface_class only returns true when CL is invoked in /CLR mode and
3764 // even then only when it is used with the 'interface struct ...' syntax
3765 // Clang doesn't support /CLR which makes this type trait moot.
3766 case UTT_IsInterfaceClass:
3767 return false;
3768 case UTT_IsFinal:
3769 case UTT_IsSealed:
3770 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3771 return RD->hasAttr<FinalAttr>();
3772 return false;
3773 case UTT_IsSigned:
3774 return T->isSignedIntegerType();
3775 case UTT_IsUnsigned:
3776 return T->isUnsignedIntegerType();
3777
3778 // Type trait expressions which query classes regarding their construction,
3779 // destruction, and copying. Rather than being based directly on the
3780 // related type predicates in the standard, they are specified by both
3781 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3782 // specifications.
3783 //
3784 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3785 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3786 //
3787 // Note that these builtins do not behave as documented in g++: if a class
3788 // has both a trivial and a non-trivial special member of a particular kind,
3789 // they return false! For now, we emulate this behavior.
3790 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3791 // does not correctly compute triviality in the presence of multiple special
3792 // members of the same kind. Revisit this once the g++ bug is fixed.
3793 case UTT_HasTrivialDefaultConstructor:
3794 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3795 // If __is_pod (type) is true then the trait is true, else if type is
3796 // a cv class or union type (or array thereof) with a trivial default
3797 // constructor ([class.ctor]) then the trait is true, else it is false.
3798 if (T.isPODType(C))
3799 return true;
3800 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3801 return RD->hasTrivialDefaultConstructor() &&
3802 !RD->hasNonTrivialDefaultConstructor();
3803 return false;
3804 case UTT_HasTrivialMoveConstructor:
3805 // This trait is implemented by MSVC 2012 and needed to parse the
3806 // standard library headers. Specifically this is used as the logic
3807 // behind std::is_trivially_move_constructible (20.9.4.3).
3808 if (T.isPODType(C))
3809 return true;
3810 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3811 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3812 return false;
3813 case UTT_HasTrivialCopy:
3814 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3815 // If __is_pod (type) is true or type is a reference type then
3816 // the trait is true, else if type is a cv class or union type
3817 // with a trivial copy constructor ([class.copy]) then the trait
3818 // is true, else it is false.
3819 if (T.isPODType(C) || T->isReferenceType())
3820 return true;
3821 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3822 return RD->hasTrivialCopyConstructor() &&
3823 !RD->hasNonTrivialCopyConstructor();
3824 return false;
3825 case UTT_HasTrivialMoveAssign:
3826 // This trait is implemented by MSVC 2012 and needed to parse the
3827 // standard library headers. Specifically it is used as the logic
3828 // behind std::is_trivially_move_assignable (20.9.4.3)
3829 if (T.isPODType(C))
3830 return true;
3831 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3832 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3833 return false;
3834 case UTT_HasTrivialAssign:
3835 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3836 // If type is const qualified or is a reference type then the
3837 // trait is false. Otherwise if __is_pod (type) is true then the
3838 // trait is true, else if type is a cv class or union type with
3839 // a trivial copy assignment ([class.copy]) then the trait is
3840 // true, else it is false.
3841 // Note: the const and reference restrictions are interesting,
3842 // given that const and reference members don't prevent a class
3843 // from having a trivial copy assignment operator (but do cause
3844 // errors if the copy assignment operator is actually used, q.v.
3845 // [class.copy]p12).
3846
3847 if (T.isConstQualified())
3848 return false;
3849 if (T.isPODType(C))
3850 return true;
3851 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3852 return RD->hasTrivialCopyAssignment() &&
3853 !RD->hasNonTrivialCopyAssignment();
3854 return false;
3855 case UTT_IsDestructible:
3856 case UTT_IsNothrowDestructible:
3857 // C++14 [meta.unary.prop]:
3858 // For reference types, is_destructible<T>::value is true.
3859 if (T->isReferenceType())
3860 return true;
3861
3862 // Objective-C++ ARC: autorelease types don't require destruction.
3863 if (T->isObjCLifetimeType() &&
3864 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3865 return true;
3866
3867 // C++14 [meta.unary.prop]:
3868 // For incomplete types and function types, is_destructible<T>::value is
3869 // false.
3870 if (T->isIncompleteType() || T->isFunctionType())
3871 return false;
3872
3873 // C++14 [meta.unary.prop]:
3874 // For object types and given U equal to remove_all_extents_t<T>, if the
3875 // expression std::declval<U&>().~U() is well-formed when treated as an
3876 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
3877 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3878 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
3879 if (!Destructor)
3880 return false;
3881 // C++14 [dcl.fct.def.delete]p2:
3882 // A program that refers to a deleted function implicitly or
3883 // explicitly, other than to declare it, is ill-formed.
3884 if (Destructor->isDeleted())
3885 return false;
3886 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
3887 return false;
3888 if (UTT == UTT_IsNothrowDestructible) {
3889 const FunctionProtoType *CPT =
3890 Destructor->getType()->getAs<FunctionProtoType>();
3891 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3892 if (!CPT || !CPT->isNothrow(C))
3893 return false;
3894 }
3895 }
3896 return true;
3897
3898 case UTT_HasTrivialDestructor:
3899 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3900 // If __is_pod (type) is true or type is a reference type
3901 // then the trait is true, else if type is a cv class or union
3902 // type (or array thereof) with a trivial destructor
3903 // ([class.dtor]) then the trait is true, else it is
3904 // false.
3905 if (T.isPODType(C) || T->isReferenceType())
3906 return true;
3907
3908 // Objective-C++ ARC: autorelease types don't require destruction.
3909 if (T->isObjCLifetimeType() &&
3910 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3911 return true;
3912
3913 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3914 return RD->hasTrivialDestructor();
3915 return false;
3916 // TODO: Propagate nothrowness for implicitly declared special members.
3917 case UTT_HasNothrowAssign:
3918 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3919 // If type is const qualified or is a reference type then the
3920 // trait is false. Otherwise if __has_trivial_assign (type)
3921 // is true then the trait is true, else if type is a cv class
3922 // or union type with copy assignment operators that are known
3923 // not to throw an exception then the trait is true, else it is
3924 // false.
3925 if (C.getBaseElementType(T).isConstQualified())
3926 return false;
3927 if (T->isReferenceType())
3928 return false;
3929 if (T.isPODType(C) || T->isObjCLifetimeType())
3930 return true;
3931
3932 if (const RecordType *RT = T->getAs<RecordType>())
3933 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3934 &CXXRecordDecl::hasTrivialCopyAssignment,
3935 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3936 &CXXMethodDecl::isCopyAssignmentOperator);
3937 return false;
3938 case UTT_HasNothrowMoveAssign:
3939 // This trait is implemented by MSVC 2012 and needed to parse the
3940 // standard library headers. Specifically this is used as the logic
3941 // behind std::is_nothrow_move_assignable (20.9.4.3).
3942 if (T.isPODType(C))
3943 return true;
3944
3945 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3946 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3947 &CXXRecordDecl::hasTrivialMoveAssignment,
3948 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3949 &CXXMethodDecl::isMoveAssignmentOperator);
3950 return false;
3951 case UTT_HasNothrowCopy:
3952 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3953 // If __has_trivial_copy (type) is true then the trait is true, else
3954 // if type is a cv class or union type with copy constructors that are
3955 // known not to throw an exception then the trait is true, else it is
3956 // false.
3957 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3958 return true;
3959 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3960 if (RD->hasTrivialCopyConstructor() &&
3961 !RD->hasNonTrivialCopyConstructor())
3962 return true;
3963
3964 bool FoundConstructor = false;
3965 unsigned FoundTQs;
3966 for (const auto *ND : Self.LookupConstructors(RD)) {
3967 // A template constructor is never a copy constructor.
3968 // FIXME: However, it may actually be selected at the actual overload
3969 // resolution point.
3970 if (isa<FunctionTemplateDecl>(ND))
3971 continue;
3972 const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
3973 if (Constructor->isCopyConstructor(FoundTQs)) {
3974 FoundConstructor = true;
3975 const FunctionProtoType *CPT
3976 = Constructor->getType()->getAs<FunctionProtoType>();
3977 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3978 if (!CPT)
3979 return false;
3980 // TODO: check whether evaluating default arguments can throw.
3981 // For now, we'll be conservative and assume that they can throw.
3982 if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
3983 return false;
3984 }
3985 }
3986
3987 return FoundConstructor;
3988 }
3989 return false;
3990 case UTT_HasNothrowConstructor:
3991 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3992 // If __has_trivial_constructor (type) is true then the trait is
3993 // true, else if type is a cv class or union type (or array
3994 // thereof) with a default constructor that is known not to
3995 // throw an exception then the trait is true, else it is false.
3996 if (T.isPODType(C) || T->isObjCLifetimeType())
3997 return true;
3998 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3999 if (RD->hasTrivialDefaultConstructor() &&
4000 !RD->hasNonTrivialDefaultConstructor())
4001 return true;
4002
4003 bool FoundConstructor = false;
4004 for (const auto *ND : Self.LookupConstructors(RD)) {
4005 // FIXME: In C++0x, a constructor template can be a default constructor.
4006 if (isa<FunctionTemplateDecl>(ND))
4007 continue;
4008 const CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(ND);
4009 if (Constructor->isDefaultConstructor()) {
4010 FoundConstructor = true;
4011 const FunctionProtoType *CPT
4012 = Constructor->getType()->getAs<FunctionProtoType>();
4013 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4014 if (!CPT)
4015 return false;
4016 // FIXME: check whether evaluating default arguments can throw.
4017 // For now, we'll be conservative and assume that they can throw.
4018 if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4019 return false;
4020 }
4021 }
4022 return FoundConstructor;
4023 }
4024 return false;
4025 case UTT_HasVirtualDestructor:
4026 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4027 // If type is a class type with a virtual destructor ([class.dtor])
4028 // then the trait is true, else it is false.
4029 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4030 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4031 return Destructor->isVirtual();
4032 return false;
4033
4034 // These type trait expressions are modeled on the specifications for the
4035 // Embarcadero C++0x type trait functions:
4036 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4037 case UTT_IsCompleteType:
4038 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4039 // Returns True if and only if T is a complete type at the point of the
4040 // function call.
4041 return !T->isIncompleteType();
4042 }
4043 }
4044
4045 /// \brief Determine whether T has a non-trivial Objective-C lifetime in
4046 /// ARC mode.
hasNontrivialObjCLifetime(QualType T)4047 static bool hasNontrivialObjCLifetime(QualType T) {
4048 switch (T.getObjCLifetime()) {
4049 case Qualifiers::OCL_ExplicitNone:
4050 return false;
4051
4052 case Qualifiers::OCL_Strong:
4053 case Qualifiers::OCL_Weak:
4054 case Qualifiers::OCL_Autoreleasing:
4055 return true;
4056
4057 case Qualifiers::OCL_None:
4058 return T->isObjCLifetimeType();
4059 }
4060
4061 llvm_unreachable("Unknown ObjC lifetime qualifier");
4062 }
4063
4064 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4065 QualType RhsT, SourceLocation KeyLoc);
4066
evaluateTypeTrait(Sema & S,TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)4067 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4068 ArrayRef<TypeSourceInfo *> Args,
4069 SourceLocation RParenLoc) {
4070 if (Kind <= UTT_Last)
4071 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4072
4073 if (Kind <= BTT_Last)
4074 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4075 Args[1]->getType(), RParenLoc);
4076
4077 switch (Kind) {
4078 case clang::TT_IsConstructible:
4079 case clang::TT_IsNothrowConstructible:
4080 case clang::TT_IsTriviallyConstructible: {
4081 // C++11 [meta.unary.prop]:
4082 // is_trivially_constructible is defined as:
4083 //
4084 // is_constructible<T, Args...>::value is true and the variable
4085 // definition for is_constructible, as defined below, is known to call
4086 // no operation that is not trivial.
4087 //
4088 // The predicate condition for a template specialization
4089 // is_constructible<T, Args...> shall be satisfied if and only if the
4090 // following variable definition would be well-formed for some invented
4091 // variable t:
4092 //
4093 // T t(create<Args>()...);
4094 assert(!Args.empty());
4095
4096 // Precondition: T and all types in the parameter pack Args shall be
4097 // complete types, (possibly cv-qualified) void, or arrays of
4098 // unknown bound.
4099 for (const auto *TSI : Args) {
4100 QualType ArgTy = TSI->getType();
4101 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4102 continue;
4103
4104 if (S.RequireCompleteType(KWLoc, ArgTy,
4105 diag::err_incomplete_type_used_in_type_trait_expr))
4106 return false;
4107 }
4108
4109 // Make sure the first argument is not incomplete nor a function type.
4110 QualType T = Args[0]->getType();
4111 if (T->isIncompleteType() || T->isFunctionType())
4112 return false;
4113
4114 // Make sure the first argument is not an abstract type.
4115 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4116 if (RD && RD->isAbstract())
4117 return false;
4118
4119 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4120 SmallVector<Expr *, 2> ArgExprs;
4121 ArgExprs.reserve(Args.size() - 1);
4122 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4123 QualType ArgTy = Args[I]->getType();
4124 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4125 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4126 OpaqueArgExprs.push_back(
4127 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4128 ArgTy.getNonLValueExprType(S.Context),
4129 Expr::getValueKindForType(ArgTy)));
4130 }
4131 for (Expr &E : OpaqueArgExprs)
4132 ArgExprs.push_back(&E);
4133
4134 // Perform the initialization in an unevaluated context within a SFINAE
4135 // trap at translation unit scope.
4136 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
4137 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4138 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4139 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4140 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4141 RParenLoc));
4142 InitializationSequence Init(S, To, InitKind, ArgExprs);
4143 if (Init.Failed())
4144 return false;
4145
4146 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4147 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4148 return false;
4149
4150 if (Kind == clang::TT_IsConstructible)
4151 return true;
4152
4153 if (Kind == clang::TT_IsNothrowConstructible)
4154 return S.canThrow(Result.get()) == CT_Cannot;
4155
4156 if (Kind == clang::TT_IsTriviallyConstructible) {
4157 // Under Objective-C ARC, if the destination has non-trivial Objective-C
4158 // lifetime, this is a non-trivial construction.
4159 if (S.getLangOpts().ObjCAutoRefCount &&
4160 hasNontrivialObjCLifetime(T.getNonReferenceType()))
4161 return false;
4162
4163 // The initialization succeeded; now make sure there are no non-trivial
4164 // calls.
4165 return !Result.get()->hasNonTrivialCall(S.Context);
4166 }
4167
4168 llvm_unreachable("unhandled type trait");
4169 return false;
4170 }
4171 default: llvm_unreachable("not a TT");
4172 }
4173
4174 return false;
4175 }
4176
BuildTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<TypeSourceInfo * > Args,SourceLocation RParenLoc)4177 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4178 ArrayRef<TypeSourceInfo *> Args,
4179 SourceLocation RParenLoc) {
4180 QualType ResultType = Context.getLogicalOperationType();
4181
4182 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4183 *this, Kind, KWLoc, Args[0]->getType()))
4184 return ExprError();
4185
4186 bool Dependent = false;
4187 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4188 if (Args[I]->getType()->isDependentType()) {
4189 Dependent = true;
4190 break;
4191 }
4192 }
4193
4194 bool Result = false;
4195 if (!Dependent)
4196 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4197
4198 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4199 RParenLoc, Result);
4200 }
4201
ActOnTypeTrait(TypeTrait Kind,SourceLocation KWLoc,ArrayRef<ParsedType> Args,SourceLocation RParenLoc)4202 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4203 ArrayRef<ParsedType> Args,
4204 SourceLocation RParenLoc) {
4205 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4206 ConvertedArgs.reserve(Args.size());
4207
4208 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4209 TypeSourceInfo *TInfo;
4210 QualType T = GetTypeFromParser(Args[I], &TInfo);
4211 if (!TInfo)
4212 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4213
4214 ConvertedArgs.push_back(TInfo);
4215 }
4216
4217 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4218 }
4219
EvaluateBinaryTypeTrait(Sema & Self,TypeTrait BTT,QualType LhsT,QualType RhsT,SourceLocation KeyLoc)4220 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4221 QualType RhsT, SourceLocation KeyLoc) {
4222 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
4223 "Cannot evaluate traits of dependent types");
4224
4225 switch(BTT) {
4226 case BTT_IsBaseOf: {
4227 // C++0x [meta.rel]p2
4228 // Base is a base class of Derived without regard to cv-qualifiers or
4229 // Base and Derived are not unions and name the same class type without
4230 // regard to cv-qualifiers.
4231
4232 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4233 if (!lhsRecord) return false;
4234
4235 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4236 if (!rhsRecord) return false;
4237
4238 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
4239 == (lhsRecord == rhsRecord));
4240
4241 if (lhsRecord == rhsRecord)
4242 return !lhsRecord->getDecl()->isUnion();
4243
4244 // C++0x [meta.rel]p2:
4245 // If Base and Derived are class types and are different types
4246 // (ignoring possible cv-qualifiers) then Derived shall be a
4247 // complete type.
4248 if (Self.RequireCompleteType(KeyLoc, RhsT,
4249 diag::err_incomplete_type_used_in_type_trait_expr))
4250 return false;
4251
4252 return cast<CXXRecordDecl>(rhsRecord->getDecl())
4253 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
4254 }
4255 case BTT_IsSame:
4256 return Self.Context.hasSameType(LhsT, RhsT);
4257 case BTT_TypeCompatible:
4258 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
4259 RhsT.getUnqualifiedType());
4260 case BTT_IsConvertible:
4261 case BTT_IsConvertibleTo: {
4262 // C++0x [meta.rel]p4:
4263 // Given the following function prototype:
4264 //
4265 // template <class T>
4266 // typename add_rvalue_reference<T>::type create();
4267 //
4268 // the predicate condition for a template specialization
4269 // is_convertible<From, To> shall be satisfied if and only if
4270 // the return expression in the following code would be
4271 // well-formed, including any implicit conversions to the return
4272 // type of the function:
4273 //
4274 // To test() {
4275 // return create<From>();
4276 // }
4277 //
4278 // Access checking is performed as if in a context unrelated to To and
4279 // From. Only the validity of the immediate context of the expression
4280 // of the return-statement (including conversions to the return type)
4281 // is considered.
4282 //
4283 // We model the initialization as a copy-initialization of a temporary
4284 // of the appropriate type, which for this expression is identical to the
4285 // return statement (since NRVO doesn't apply).
4286
4287 // Functions aren't allowed to return function or array types.
4288 if (RhsT->isFunctionType() || RhsT->isArrayType())
4289 return false;
4290
4291 // A return statement in a void function must have void type.
4292 if (RhsT->isVoidType())
4293 return LhsT->isVoidType();
4294
4295 // A function definition requires a complete, non-abstract return type.
4296 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
4297 return false;
4298
4299 // Compute the result of add_rvalue_reference.
4300 if (LhsT->isObjectType() || LhsT->isFunctionType())
4301 LhsT = Self.Context.getRValueReferenceType(LhsT);
4302
4303 // Build a fake source and destination for initialization.
4304 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
4305 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4306 Expr::getValueKindForType(LhsT));
4307 Expr *FromPtr = &From;
4308 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
4309 SourceLocation()));
4310
4311 // Perform the initialization in an unevaluated context within a SFINAE
4312 // trap at translation unit scope.
4313 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4314 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4315 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4316 InitializationSequence Init(Self, To, Kind, FromPtr);
4317 if (Init.Failed())
4318 return false;
4319
4320 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
4321 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
4322 }
4323
4324 case BTT_IsNothrowAssignable:
4325 case BTT_IsTriviallyAssignable: {
4326 // C++11 [meta.unary.prop]p3:
4327 // is_trivially_assignable is defined as:
4328 // is_assignable<T, U>::value is true and the assignment, as defined by
4329 // is_assignable, is known to call no operation that is not trivial
4330 //
4331 // is_assignable is defined as:
4332 // The expression declval<T>() = declval<U>() is well-formed when
4333 // treated as an unevaluated operand (Clause 5).
4334 //
4335 // For both, T and U shall be complete types, (possibly cv-qualified)
4336 // void, or arrays of unknown bound.
4337 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4338 Self.RequireCompleteType(KeyLoc, LhsT,
4339 diag::err_incomplete_type_used_in_type_trait_expr))
4340 return false;
4341 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4342 Self.RequireCompleteType(KeyLoc, RhsT,
4343 diag::err_incomplete_type_used_in_type_trait_expr))
4344 return false;
4345
4346 // cv void is never assignable.
4347 if (LhsT->isVoidType() || RhsT->isVoidType())
4348 return false;
4349
4350 // Build expressions that emulate the effect of declval<T>() and
4351 // declval<U>().
4352 if (LhsT->isObjectType() || LhsT->isFunctionType())
4353 LhsT = Self.Context.getRValueReferenceType(LhsT);
4354 if (RhsT->isObjectType() || RhsT->isFunctionType())
4355 RhsT = Self.Context.getRValueReferenceType(RhsT);
4356 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4357 Expr::getValueKindForType(LhsT));
4358 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4359 Expr::getValueKindForType(RhsT));
4360
4361 // Attempt the assignment in an unevaluated context within a SFINAE
4362 // trap at translation unit scope.
4363 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4364 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4365 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4366 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4367 &Rhs);
4368 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4369 return false;
4370
4371 if (BTT == BTT_IsNothrowAssignable)
4372 return Self.canThrow(Result.get()) == CT_Cannot;
4373
4374 if (BTT == BTT_IsTriviallyAssignable) {
4375 // Under Objective-C ARC, if the destination has non-trivial Objective-C
4376 // lifetime, this is a non-trivial assignment.
4377 if (Self.getLangOpts().ObjCAutoRefCount &&
4378 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
4379 return false;
4380
4381 return !Result.get()->hasNonTrivialCall(Self.Context);
4382 }
4383
4384 llvm_unreachable("unhandled type trait");
4385 return false;
4386 }
4387 default: llvm_unreachable("not a BTT");
4388 }
4389 llvm_unreachable("Unknown type trait or not implemented");
4390 }
4391
ActOnArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,ParsedType Ty,Expr * DimExpr,SourceLocation RParen)4392 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
4393 SourceLocation KWLoc,
4394 ParsedType Ty,
4395 Expr* DimExpr,
4396 SourceLocation RParen) {
4397 TypeSourceInfo *TSInfo;
4398 QualType T = GetTypeFromParser(Ty, &TSInfo);
4399 if (!TSInfo)
4400 TSInfo = Context.getTrivialTypeSourceInfo(T);
4401
4402 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
4403 }
4404
EvaluateArrayTypeTrait(Sema & Self,ArrayTypeTrait ATT,QualType T,Expr * DimExpr,SourceLocation KeyLoc)4405 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
4406 QualType T, Expr *DimExpr,
4407 SourceLocation KeyLoc) {
4408 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
4409
4410 switch(ATT) {
4411 case ATT_ArrayRank:
4412 if (T->isArrayType()) {
4413 unsigned Dim = 0;
4414 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4415 ++Dim;
4416 T = AT->getElementType();
4417 }
4418 return Dim;
4419 }
4420 return 0;
4421
4422 case ATT_ArrayExtent: {
4423 llvm::APSInt Value;
4424 uint64_t Dim;
4425 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
4426 diag::err_dimension_expr_not_constant_integer,
4427 false).isInvalid())
4428 return 0;
4429 if (Value.isSigned() && Value.isNegative()) {
4430 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
4431 << DimExpr->getSourceRange();
4432 return 0;
4433 }
4434 Dim = Value.getLimitedValue();
4435
4436 if (T->isArrayType()) {
4437 unsigned D = 0;
4438 bool Matched = false;
4439 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4440 if (Dim == D) {
4441 Matched = true;
4442 break;
4443 }
4444 ++D;
4445 T = AT->getElementType();
4446 }
4447
4448 if (Matched && T->isArrayType()) {
4449 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4450 return CAT->getSize().getLimitedValue();
4451 }
4452 }
4453 return 0;
4454 }
4455 }
4456 llvm_unreachable("Unknown type trait or not implemented");
4457 }
4458
BuildArrayTypeTrait(ArrayTypeTrait ATT,SourceLocation KWLoc,TypeSourceInfo * TSInfo,Expr * DimExpr,SourceLocation RParen)4459 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4460 SourceLocation KWLoc,
4461 TypeSourceInfo *TSInfo,
4462 Expr* DimExpr,
4463 SourceLocation RParen) {
4464 QualType T = TSInfo->getType();
4465
4466 // FIXME: This should likely be tracked as an APInt to remove any host
4467 // assumptions about the width of size_t on the target.
4468 uint64_t Value = 0;
4469 if (!T->isDependentType())
4470 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4471
4472 // While the specification for these traits from the Embarcadero C++
4473 // compiler's documentation says the return type is 'unsigned int', Clang
4474 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4475 // compiler, there is no difference. On several other platforms this is an
4476 // important distinction.
4477 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4478 RParen, Context.getSizeType());
4479 }
4480
ActOnExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)4481 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4482 SourceLocation KWLoc,
4483 Expr *Queried,
4484 SourceLocation RParen) {
4485 // If error parsing the expression, ignore.
4486 if (!Queried)
4487 return ExprError();
4488
4489 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4490
4491 return Result;
4492 }
4493
EvaluateExpressionTrait(ExpressionTrait ET,Expr * E)4494 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4495 switch (ET) {
4496 case ET_IsLValueExpr: return E->isLValue();
4497 case ET_IsRValueExpr: return E->isRValue();
4498 }
4499 llvm_unreachable("Expression trait not covered by switch");
4500 }
4501
BuildExpressionTrait(ExpressionTrait ET,SourceLocation KWLoc,Expr * Queried,SourceLocation RParen)4502 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4503 SourceLocation KWLoc,
4504 Expr *Queried,
4505 SourceLocation RParen) {
4506 if (Queried->isTypeDependent()) {
4507 // Delay type-checking for type-dependent expressions.
4508 } else if (Queried->getType()->isPlaceholderType()) {
4509 ExprResult PE = CheckPlaceholderExpr(Queried);
4510 if (PE.isInvalid()) return ExprError();
4511 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4512 }
4513
4514 bool Value = EvaluateExpressionTrait(ET, Queried);
4515
4516 return new (Context)
4517 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4518 }
4519
CheckPointerToMemberOperands(ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,SourceLocation Loc,bool isIndirect)4520 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4521 ExprValueKind &VK,
4522 SourceLocation Loc,
4523 bool isIndirect) {
4524 assert(!LHS.get()->getType()->isPlaceholderType() &&
4525 !RHS.get()->getType()->isPlaceholderType() &&
4526 "placeholders should have been weeded out by now");
4527
4528 // The LHS undergoes lvalue conversions if this is ->*.
4529 if (isIndirect) {
4530 LHS = DefaultLvalueConversion(LHS.get());
4531 if (LHS.isInvalid()) return QualType();
4532 }
4533
4534 // The RHS always undergoes lvalue conversions.
4535 RHS = DefaultLvalueConversion(RHS.get());
4536 if (RHS.isInvalid()) return QualType();
4537
4538 const char *OpSpelling = isIndirect ? "->*" : ".*";
4539 // C++ 5.5p2
4540 // The binary operator .* [p3: ->*] binds its second operand, which shall
4541 // be of type "pointer to member of T" (where T is a completely-defined
4542 // class type) [...]
4543 QualType RHSType = RHS.get()->getType();
4544 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4545 if (!MemPtr) {
4546 Diag(Loc, diag::err_bad_memptr_rhs)
4547 << OpSpelling << RHSType << RHS.get()->getSourceRange();
4548 return QualType();
4549 }
4550
4551 QualType Class(MemPtr->getClass(), 0);
4552
4553 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4554 // member pointer points must be completely-defined. However, there is no
4555 // reason for this semantic distinction, and the rule is not enforced by
4556 // other compilers. Therefore, we do not check this property, as it is
4557 // likely to be considered a defect.
4558
4559 // C++ 5.5p2
4560 // [...] to its first operand, which shall be of class T or of a class of
4561 // which T is an unambiguous and accessible base class. [p3: a pointer to
4562 // such a class]
4563 QualType LHSType = LHS.get()->getType();
4564 if (isIndirect) {
4565 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4566 LHSType = Ptr->getPointeeType();
4567 else {
4568 Diag(Loc, diag::err_bad_memptr_lhs)
4569 << OpSpelling << 1 << LHSType
4570 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4571 return QualType();
4572 }
4573 }
4574
4575 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4576 // If we want to check the hierarchy, we need a complete type.
4577 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4578 OpSpelling, (int)isIndirect)) {
4579 return QualType();
4580 }
4581
4582 if (!IsDerivedFrom(Loc, LHSType, Class)) {
4583 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4584 << (int)isIndirect << LHS.get()->getType();
4585 return QualType();
4586 }
4587
4588 CXXCastPath BasePath;
4589 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4590 SourceRange(LHS.get()->getLocStart(),
4591 RHS.get()->getLocEnd()),
4592 &BasePath))
4593 return QualType();
4594
4595 // Cast LHS to type of use.
4596 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4597 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4598 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4599 &BasePath);
4600 }
4601
4602 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4603 // Diagnose use of pointer-to-member type which when used as
4604 // the functional cast in a pointer-to-member expression.
4605 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4606 return QualType();
4607 }
4608
4609 // C++ 5.5p2
4610 // The result is an object or a function of the type specified by the
4611 // second operand.
4612 // The cv qualifiers are the union of those in the pointer and the left side,
4613 // in accordance with 5.5p5 and 5.2.5.
4614 QualType Result = MemPtr->getPointeeType();
4615 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4616
4617 // C++0x [expr.mptr.oper]p6:
4618 // In a .* expression whose object expression is an rvalue, the program is
4619 // ill-formed if the second operand is a pointer to member function with
4620 // ref-qualifier &. In a ->* expression or in a .* expression whose object
4621 // expression is an lvalue, the program is ill-formed if the second operand
4622 // is a pointer to member function with ref-qualifier &&.
4623 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4624 switch (Proto->getRefQualifier()) {
4625 case RQ_None:
4626 // Do nothing
4627 break;
4628
4629 case RQ_LValue:
4630 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4631 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4632 << RHSType << 1 << LHS.get()->getSourceRange();
4633 break;
4634
4635 case RQ_RValue:
4636 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4637 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4638 << RHSType << 0 << LHS.get()->getSourceRange();
4639 break;
4640 }
4641 }
4642
4643 // C++ [expr.mptr.oper]p6:
4644 // The result of a .* expression whose second operand is a pointer
4645 // to a data member is of the same value category as its
4646 // first operand. The result of a .* expression whose second
4647 // operand is a pointer to a member function is a prvalue. The
4648 // result of an ->* expression is an lvalue if its second operand
4649 // is a pointer to data member and a prvalue otherwise.
4650 if (Result->isFunctionType()) {
4651 VK = VK_RValue;
4652 return Context.BoundMemberTy;
4653 } else if (isIndirect) {
4654 VK = VK_LValue;
4655 } else {
4656 VK = LHS.get()->getValueKind();
4657 }
4658
4659 return Result;
4660 }
4661
4662 /// \brief Try to convert a type to another according to C++0x 5.16p3.
4663 ///
4664 /// This is part of the parameter validation for the ? operator. If either
4665 /// value operand is a class type, the two operands are attempted to be
4666 /// converted to each other. This function does the conversion in one direction.
4667 /// It returns true if the program is ill-formed and has already been diagnosed
4668 /// as such.
TryClassUnification(Sema & Self,Expr * From,Expr * To,SourceLocation QuestionLoc,bool & HaveConversion,QualType & ToType)4669 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4670 SourceLocation QuestionLoc,
4671 bool &HaveConversion,
4672 QualType &ToType) {
4673 HaveConversion = false;
4674 ToType = To->getType();
4675
4676 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4677 SourceLocation());
4678 // C++0x 5.16p3
4679 // The process for determining whether an operand expression E1 of type T1
4680 // can be converted to match an operand expression E2 of type T2 is defined
4681 // as follows:
4682 // -- If E2 is an lvalue:
4683 bool ToIsLvalue = To->isLValue();
4684 if (ToIsLvalue) {
4685 // E1 can be converted to match E2 if E1 can be implicitly converted to
4686 // type "lvalue reference to T2", subject to the constraint that in the
4687 // conversion the reference must bind directly to E1.
4688 QualType T = Self.Context.getLValueReferenceType(ToType);
4689 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4690
4691 InitializationSequence InitSeq(Self, Entity, Kind, From);
4692 if (InitSeq.isDirectReferenceBinding()) {
4693 ToType = T;
4694 HaveConversion = true;
4695 return false;
4696 }
4697
4698 if (InitSeq.isAmbiguous())
4699 return InitSeq.Diagnose(Self, Entity, Kind, From);
4700 }
4701
4702 // -- If E2 is an rvalue, or if the conversion above cannot be done:
4703 // -- if E1 and E2 have class type, and the underlying class types are
4704 // the same or one is a base class of the other:
4705 QualType FTy = From->getType();
4706 QualType TTy = To->getType();
4707 const RecordType *FRec = FTy->getAs<RecordType>();
4708 const RecordType *TRec = TTy->getAs<RecordType>();
4709 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4710 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
4711 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
4712 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
4713 // E1 can be converted to match E2 if the class of T2 is the
4714 // same type as, or a base class of, the class of T1, and
4715 // [cv2 > cv1].
4716 if (FRec == TRec || FDerivedFromT) {
4717 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4718 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4719 InitializationSequence InitSeq(Self, Entity, Kind, From);
4720 if (InitSeq) {
4721 HaveConversion = true;
4722 return false;
4723 }
4724
4725 if (InitSeq.isAmbiguous())
4726 return InitSeq.Diagnose(Self, Entity, Kind, From);
4727 }
4728 }
4729
4730 return false;
4731 }
4732
4733 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4734 // implicitly converted to the type that expression E2 would have
4735 // if E2 were converted to an rvalue (or the type it has, if E2 is
4736 // an rvalue).
4737 //
4738 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4739 // to the array-to-pointer or function-to-pointer conversions.
4740 if (!TTy->getAs<TagType>())
4741 TTy = TTy.getUnqualifiedType();
4742
4743 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4744 InitializationSequence InitSeq(Self, Entity, Kind, From);
4745 HaveConversion = !InitSeq.Failed();
4746 ToType = TTy;
4747 if (InitSeq.isAmbiguous())
4748 return InitSeq.Diagnose(Self, Entity, Kind, From);
4749
4750 return false;
4751 }
4752
4753 /// \brief Try to find a common type for two according to C++0x 5.16p5.
4754 ///
4755 /// This is part of the parameter validation for the ? operator. If either
4756 /// value operand is a class type, overload resolution is used to find a
4757 /// conversion to a common type.
FindConditionalOverload(Sema & Self,ExprResult & LHS,ExprResult & RHS,SourceLocation QuestionLoc)4758 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4759 SourceLocation QuestionLoc) {
4760 Expr *Args[2] = { LHS.get(), RHS.get() };
4761 OverloadCandidateSet CandidateSet(QuestionLoc,
4762 OverloadCandidateSet::CSK_Operator);
4763 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4764 CandidateSet);
4765
4766 OverloadCandidateSet::iterator Best;
4767 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4768 case OR_Success: {
4769 // We found a match. Perform the conversions on the arguments and move on.
4770 ExprResult LHSRes =
4771 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4772 Best->Conversions[0], Sema::AA_Converting);
4773 if (LHSRes.isInvalid())
4774 break;
4775 LHS = LHSRes;
4776
4777 ExprResult RHSRes =
4778 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4779 Best->Conversions[1], Sema::AA_Converting);
4780 if (RHSRes.isInvalid())
4781 break;
4782 RHS = RHSRes;
4783 if (Best->Function)
4784 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4785 return false;
4786 }
4787
4788 case OR_No_Viable_Function:
4789
4790 // Emit a better diagnostic if one of the expressions is a null pointer
4791 // constant and the other is a pointer type. In this case, the user most
4792 // likely forgot to take the address of the other expression.
4793 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4794 return true;
4795
4796 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4797 << LHS.get()->getType() << RHS.get()->getType()
4798 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4799 return true;
4800
4801 case OR_Ambiguous:
4802 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4803 << LHS.get()->getType() << RHS.get()->getType()
4804 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4805 // FIXME: Print the possible common types by printing the return types of
4806 // the viable candidates.
4807 break;
4808
4809 case OR_Deleted:
4810 llvm_unreachable("Conditional operator has only built-in overloads");
4811 }
4812 return true;
4813 }
4814
4815 /// \brief Perform an "extended" implicit conversion as returned by
4816 /// TryClassUnification.
ConvertForConditional(Sema & Self,ExprResult & E,QualType T)4817 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4818 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4819 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4820 SourceLocation());
4821 Expr *Arg = E.get();
4822 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4823 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4824 if (Result.isInvalid())
4825 return true;
4826
4827 E = Result;
4828 return false;
4829 }
4830
4831 /// \brief Check the operands of ?: under C++ semantics.
4832 ///
4833 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4834 /// extension. In this case, LHS == Cond. (But they're not aliases.)
CXXCheckConditionalOperands(ExprResult & Cond,ExprResult & LHS,ExprResult & RHS,ExprValueKind & VK,ExprObjectKind & OK,SourceLocation QuestionLoc)4835 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4836 ExprResult &RHS, ExprValueKind &VK,
4837 ExprObjectKind &OK,
4838 SourceLocation QuestionLoc) {
4839 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4840 // interface pointers.
4841
4842 // C++11 [expr.cond]p1
4843 // The first expression is contextually converted to bool.
4844 if (!Cond.get()->isTypeDependent()) {
4845 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4846 if (CondRes.isInvalid())
4847 return QualType();
4848 Cond = CondRes;
4849 }
4850
4851 // Assume r-value.
4852 VK = VK_RValue;
4853 OK = OK_Ordinary;
4854
4855 // Either of the arguments dependent?
4856 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4857 return Context.DependentTy;
4858
4859 // C++11 [expr.cond]p2
4860 // If either the second or the third operand has type (cv) void, ...
4861 QualType LTy = LHS.get()->getType();
4862 QualType RTy = RHS.get()->getType();
4863 bool LVoid = LTy->isVoidType();
4864 bool RVoid = RTy->isVoidType();
4865 if (LVoid || RVoid) {
4866 // ... one of the following shall hold:
4867 // -- The second or the third operand (but not both) is a (possibly
4868 // parenthesized) throw-expression; the result is of the type
4869 // and value category of the other.
4870 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4871 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4872 if (LThrow != RThrow) {
4873 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4874 VK = NonThrow->getValueKind();
4875 // DR (no number yet): the result is a bit-field if the
4876 // non-throw-expression operand is a bit-field.
4877 OK = NonThrow->getObjectKind();
4878 return NonThrow->getType();
4879 }
4880
4881 // -- Both the second and third operands have type void; the result is of
4882 // type void and is a prvalue.
4883 if (LVoid && RVoid)
4884 return Context.VoidTy;
4885
4886 // Neither holds, error.
4887 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4888 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4889 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4890 return QualType();
4891 }
4892
4893 // Neither is void.
4894
4895 // C++11 [expr.cond]p3
4896 // Otherwise, if the second and third operand have different types, and
4897 // either has (cv) class type [...] an attempt is made to convert each of
4898 // those operands to the type of the other.
4899 if (!Context.hasSameType(LTy, RTy) &&
4900 (LTy->isRecordType() || RTy->isRecordType())) {
4901 // These return true if a single direction is already ambiguous.
4902 QualType L2RType, R2LType;
4903 bool HaveL2R, HaveR2L;
4904 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4905 return QualType();
4906 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4907 return QualType();
4908
4909 // If both can be converted, [...] the program is ill-formed.
4910 if (HaveL2R && HaveR2L) {
4911 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4912 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4913 return QualType();
4914 }
4915
4916 // If exactly one conversion is possible, that conversion is applied to
4917 // the chosen operand and the converted operands are used in place of the
4918 // original operands for the remainder of this section.
4919 if (HaveL2R) {
4920 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4921 return QualType();
4922 LTy = LHS.get()->getType();
4923 } else if (HaveR2L) {
4924 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4925 return QualType();
4926 RTy = RHS.get()->getType();
4927 }
4928 }
4929
4930 // C++11 [expr.cond]p3
4931 // if both are glvalues of the same value category and the same type except
4932 // for cv-qualification, an attempt is made to convert each of those
4933 // operands to the type of the other.
4934 ExprValueKind LVK = LHS.get()->getValueKind();
4935 ExprValueKind RVK = RHS.get()->getValueKind();
4936 if (!Context.hasSameType(LTy, RTy) &&
4937 Context.hasSameUnqualifiedType(LTy, RTy) &&
4938 LVK == RVK && LVK != VK_RValue) {
4939 // Since the unqualified types are reference-related and we require the
4940 // result to be as if a reference bound directly, the only conversion
4941 // we can perform is to add cv-qualifiers.
4942 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4943 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4944 if (RCVR.isStrictSupersetOf(LCVR)) {
4945 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4946 LTy = LHS.get()->getType();
4947 }
4948 else if (LCVR.isStrictSupersetOf(RCVR)) {
4949 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4950 RTy = RHS.get()->getType();
4951 }
4952 }
4953
4954 // C++11 [expr.cond]p4
4955 // If the second and third operands are glvalues of the same value
4956 // category and have the same type, the result is of that type and
4957 // value category and it is a bit-field if the second or the third
4958 // operand is a bit-field, or if both are bit-fields.
4959 // We only extend this to bitfields, not to the crazy other kinds of
4960 // l-values.
4961 bool Same = Context.hasSameType(LTy, RTy);
4962 if (Same && LVK == RVK && LVK != VK_RValue &&
4963 LHS.get()->isOrdinaryOrBitFieldObject() &&
4964 RHS.get()->isOrdinaryOrBitFieldObject()) {
4965 VK = LHS.get()->getValueKind();
4966 if (LHS.get()->getObjectKind() == OK_BitField ||
4967 RHS.get()->getObjectKind() == OK_BitField)
4968 OK = OK_BitField;
4969 return LTy;
4970 }
4971
4972 // C++11 [expr.cond]p5
4973 // Otherwise, the result is a prvalue. If the second and third operands
4974 // do not have the same type, and either has (cv) class type, ...
4975 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4976 // ... overload resolution is used to determine the conversions (if any)
4977 // to be applied to the operands. If the overload resolution fails, the
4978 // program is ill-formed.
4979 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4980 return QualType();
4981 }
4982
4983 // C++11 [expr.cond]p6
4984 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4985 // conversions are performed on the second and third operands.
4986 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4987 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4988 if (LHS.isInvalid() || RHS.isInvalid())
4989 return QualType();
4990 LTy = LHS.get()->getType();
4991 RTy = RHS.get()->getType();
4992
4993 // After those conversions, one of the following shall hold:
4994 // -- The second and third operands have the same type; the result
4995 // is of that type. If the operands have class type, the result
4996 // is a prvalue temporary of the result type, which is
4997 // copy-initialized from either the second operand or the third
4998 // operand depending on the value of the first operand.
4999 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5000 if (LTy->isRecordType()) {
5001 // The operands have class type. Make a temporary copy.
5002 if (RequireNonAbstractType(QuestionLoc, LTy,
5003 diag::err_allocation_of_abstract_type))
5004 return QualType();
5005 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5006
5007 ExprResult LHSCopy = PerformCopyInitialization(Entity,
5008 SourceLocation(),
5009 LHS);
5010 if (LHSCopy.isInvalid())
5011 return QualType();
5012
5013 ExprResult RHSCopy = PerformCopyInitialization(Entity,
5014 SourceLocation(),
5015 RHS);
5016 if (RHSCopy.isInvalid())
5017 return QualType();
5018
5019 LHS = LHSCopy;
5020 RHS = RHSCopy;
5021 }
5022
5023 return LTy;
5024 }
5025
5026 // Extension: conditional operator involving vector types.
5027 if (LTy->isVectorType() || RTy->isVectorType())
5028 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5029 /*AllowBothBool*/true,
5030 /*AllowBoolConversions*/false);
5031
5032 // -- The second and third operands have arithmetic or enumeration type;
5033 // the usual arithmetic conversions are performed to bring them to a
5034 // common type, and the result is of that type.
5035 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5036 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5037 if (LHS.isInvalid() || RHS.isInvalid())
5038 return QualType();
5039
5040 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5041 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5042
5043 return ResTy;
5044 }
5045
5046 // -- The second and third operands have pointer type, or one has pointer
5047 // type and the other is a null pointer constant, or both are null
5048 // pointer constants, at least one of which is non-integral; pointer
5049 // conversions and qualification conversions are performed to bring them
5050 // to their composite pointer type. The result is of the composite
5051 // pointer type.
5052 // -- The second and third operands have pointer to member type, or one has
5053 // pointer to member type and the other is a null pointer constant;
5054 // pointer to member conversions and qualification conversions are
5055 // performed to bring them to a common type, whose cv-qualification
5056 // shall match the cv-qualification of either the second or the third
5057 // operand. The result is of the common type.
5058 bool NonStandardCompositeType = false;
5059 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
5060 isSFINAEContext() ? nullptr
5061 : &NonStandardCompositeType);
5062 if (!Composite.isNull()) {
5063 if (NonStandardCompositeType)
5064 Diag(QuestionLoc,
5065 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
5066 << LTy << RTy << Composite
5067 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5068
5069 return Composite;
5070 }
5071
5072 // Similarly, attempt to find composite type of two objective-c pointers.
5073 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5074 if (!Composite.isNull())
5075 return Composite;
5076
5077 // Check if we are using a null with a non-pointer type.
5078 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5079 return QualType();
5080
5081 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5082 << LHS.get()->getType() << RHS.get()->getType()
5083 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5084 return QualType();
5085 }
5086
5087 /// \brief Find a merged pointer type and convert the two expressions to it.
5088 ///
5089 /// This finds the composite pointer type (or member pointer type) for @p E1
5090 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this
5091 /// type and returns it.
5092 /// It does not emit diagnostics.
5093 ///
5094 /// \param Loc The location of the operator requiring these two expressions to
5095 /// be converted to the composite pointer type.
5096 ///
5097 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
5098 /// a non-standard (but still sane) composite type to which both expressions
5099 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType
5100 /// will be set true.
FindCompositePointerType(SourceLocation Loc,Expr * & E1,Expr * & E2,bool * NonStandardCompositeType)5101 QualType Sema::FindCompositePointerType(SourceLocation Loc,
5102 Expr *&E1, Expr *&E2,
5103 bool *NonStandardCompositeType) {
5104 if (NonStandardCompositeType)
5105 *NonStandardCompositeType = false;
5106
5107 assert(getLangOpts().CPlusPlus && "This function assumes C++");
5108 QualType T1 = E1->getType(), T2 = E2->getType();
5109
5110 // C++11 5.9p2
5111 // Pointer conversions and qualification conversions are performed on
5112 // pointer operands to bring them to their composite pointer type. If
5113 // one operand is a null pointer constant, the composite pointer type is
5114 // std::nullptr_t if the other operand is also a null pointer constant or,
5115 // if the other operand is a pointer, the type of the other operand.
5116 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
5117 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
5118 if (T1->isNullPtrType() &&
5119 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5120 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5121 return T1;
5122 }
5123 if (T2->isNullPtrType() &&
5124 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5125 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5126 return T2;
5127 }
5128 return QualType();
5129 }
5130
5131 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5132 if (T2->isMemberPointerType())
5133 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
5134 else
5135 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
5136 return T2;
5137 }
5138 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5139 if (T1->isMemberPointerType())
5140 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
5141 else
5142 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
5143 return T1;
5144 }
5145
5146 // Now both have to be pointers or member pointers.
5147 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
5148 (!T2->isPointerType() && !T2->isMemberPointerType()))
5149 return QualType();
5150
5151 // Otherwise, of one of the operands has type "pointer to cv1 void," then
5152 // the other has type "pointer to cv2 T" and the composite pointer type is
5153 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
5154 // Otherwise, the composite pointer type is a pointer type similar to the
5155 // type of one of the operands, with a cv-qualification signature that is
5156 // the union of the cv-qualification signatures of the operand types.
5157 // In practice, the first part here is redundant; it's subsumed by the second.
5158 // What we do here is, we build the two possible composite types, and try the
5159 // conversions in both directions. If only one works, or if the two composite
5160 // types are the same, we have succeeded.
5161 // FIXME: extended qualifiers?
5162 typedef SmallVector<unsigned, 4> QualifierVector;
5163 QualifierVector QualifierUnion;
5164 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
5165 ContainingClassVector;
5166 ContainingClassVector MemberOfClass;
5167 QualType Composite1 = Context.getCanonicalType(T1),
5168 Composite2 = Context.getCanonicalType(T2);
5169 unsigned NeedConstBefore = 0;
5170 do {
5171 const PointerType *Ptr1, *Ptr2;
5172 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
5173 (Ptr2 = Composite2->getAs<PointerType>())) {
5174 Composite1 = Ptr1->getPointeeType();
5175 Composite2 = Ptr2->getPointeeType();
5176
5177 // If we're allowed to create a non-standard composite type, keep track
5178 // of where we need to fill in additional 'const' qualifiers.
5179 if (NonStandardCompositeType &&
5180 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5181 NeedConstBefore = QualifierUnion.size();
5182
5183 QualifierUnion.push_back(
5184 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5185 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
5186 continue;
5187 }
5188
5189 const MemberPointerType *MemPtr1, *MemPtr2;
5190 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
5191 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
5192 Composite1 = MemPtr1->getPointeeType();
5193 Composite2 = MemPtr2->getPointeeType();
5194
5195 // If we're allowed to create a non-standard composite type, keep track
5196 // of where we need to fill in additional 'const' qualifiers.
5197 if (NonStandardCompositeType &&
5198 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5199 NeedConstBefore = QualifierUnion.size();
5200
5201 QualifierUnion.push_back(
5202 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5203 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
5204 MemPtr2->getClass()));
5205 continue;
5206 }
5207
5208 // FIXME: block pointer types?
5209
5210 // Cannot unwrap any more types.
5211 break;
5212 } while (true);
5213
5214 if (NeedConstBefore && NonStandardCompositeType) {
5215 // Extension: Add 'const' to qualifiers that come before the first qualifier
5216 // mismatch, so that our (non-standard!) composite type meets the
5217 // requirements of C++ [conv.qual]p4 bullet 3.
5218 for (unsigned I = 0; I != NeedConstBefore; ++I) {
5219 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
5220 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
5221 *NonStandardCompositeType = true;
5222 }
5223 }
5224 }
5225
5226 // Rewrap the composites as pointers or member pointers with the union CVRs.
5227 ContainingClassVector::reverse_iterator MOC
5228 = MemberOfClass.rbegin();
5229 for (QualifierVector::reverse_iterator
5230 I = QualifierUnion.rbegin(),
5231 E = QualifierUnion.rend();
5232 I != E; (void)++I, ++MOC) {
5233 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
5234 if (MOC->first && MOC->second) {
5235 // Rebuild member pointer type
5236 Composite1 = Context.getMemberPointerType(
5237 Context.getQualifiedType(Composite1, Quals),
5238 MOC->first);
5239 Composite2 = Context.getMemberPointerType(
5240 Context.getQualifiedType(Composite2, Quals),
5241 MOC->second);
5242 } else {
5243 // Rebuild pointer type
5244 Composite1
5245 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
5246 Composite2
5247 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
5248 }
5249 }
5250
5251 // Try to convert to the first composite pointer type.
5252 InitializedEntity Entity1
5253 = InitializedEntity::InitializeTemporary(Composite1);
5254 InitializationKind Kind
5255 = InitializationKind::CreateCopy(Loc, SourceLocation());
5256 InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
5257 InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
5258
5259 if (E1ToC1 && E2ToC1) {
5260 // Conversion to Composite1 is viable.
5261 if (!Context.hasSameType(Composite1, Composite2)) {
5262 // Composite2 is a different type from Composite1. Check whether
5263 // Composite2 is also viable.
5264 InitializedEntity Entity2
5265 = InitializedEntity::InitializeTemporary(Composite2);
5266 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5267 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5268 if (E1ToC2 && E2ToC2) {
5269 // Both Composite1 and Composite2 are viable and are different;
5270 // this is an ambiguity.
5271 return QualType();
5272 }
5273 }
5274
5275 // Convert E1 to Composite1
5276 ExprResult E1Result
5277 = E1ToC1.Perform(*this, Entity1, Kind, E1);
5278 if (E1Result.isInvalid())
5279 return QualType();
5280 E1 = E1Result.getAs<Expr>();
5281
5282 // Convert E2 to Composite1
5283 ExprResult E2Result
5284 = E2ToC1.Perform(*this, Entity1, Kind, E2);
5285 if (E2Result.isInvalid())
5286 return QualType();
5287 E2 = E2Result.getAs<Expr>();
5288
5289 return Composite1;
5290 }
5291
5292 // Check whether Composite2 is viable.
5293 InitializedEntity Entity2
5294 = InitializedEntity::InitializeTemporary(Composite2);
5295 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
5296 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
5297 if (!E1ToC2 || !E2ToC2)
5298 return QualType();
5299
5300 // Convert E1 to Composite2
5301 ExprResult E1Result
5302 = E1ToC2.Perform(*this, Entity2, Kind, E1);
5303 if (E1Result.isInvalid())
5304 return QualType();
5305 E1 = E1Result.getAs<Expr>();
5306
5307 // Convert E2 to Composite2
5308 ExprResult E2Result
5309 = E2ToC2.Perform(*this, Entity2, Kind, E2);
5310 if (E2Result.isInvalid())
5311 return QualType();
5312 E2 = E2Result.getAs<Expr>();
5313
5314 return Composite2;
5315 }
5316
MaybeBindToTemporary(Expr * E)5317 ExprResult Sema::MaybeBindToTemporary(Expr *E) {
5318 if (!E)
5319 return ExprError();
5320
5321 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
5322
5323 // If the result is a glvalue, we shouldn't bind it.
5324 if (!E->isRValue())
5325 return E;
5326
5327 // In ARC, calls that return a retainable type can return retained,
5328 // in which case we have to insert a consuming cast.
5329 if (getLangOpts().ObjCAutoRefCount &&
5330 E->getType()->isObjCRetainableType()) {
5331
5332 bool ReturnsRetained;
5333
5334 // For actual calls, we compute this by examining the type of the
5335 // called value.
5336 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
5337 Expr *Callee = Call->getCallee()->IgnoreParens();
5338 QualType T = Callee->getType();
5339
5340 if (T == Context.BoundMemberTy) {
5341 // Handle pointer-to-members.
5342 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
5343 T = BinOp->getRHS()->getType();
5344 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
5345 T = Mem->getMemberDecl()->getType();
5346 }
5347
5348 if (const PointerType *Ptr = T->getAs<PointerType>())
5349 T = Ptr->getPointeeType();
5350 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
5351 T = Ptr->getPointeeType();
5352 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
5353 T = MemPtr->getPointeeType();
5354
5355 const FunctionType *FTy = T->getAs<FunctionType>();
5356 assert(FTy && "call to value not of function type?");
5357 ReturnsRetained = FTy->getExtInfo().getProducesResult();
5358
5359 // ActOnStmtExpr arranges things so that StmtExprs of retainable
5360 // type always produce a +1 object.
5361 } else if (isa<StmtExpr>(E)) {
5362 ReturnsRetained = true;
5363
5364 // We hit this case with the lambda conversion-to-block optimization;
5365 // we don't want any extra casts here.
5366 } else if (isa<CastExpr>(E) &&
5367 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
5368 return E;
5369
5370 // For message sends and property references, we try to find an
5371 // actual method. FIXME: we should infer retention by selector in
5372 // cases where we don't have an actual method.
5373 } else {
5374 ObjCMethodDecl *D = nullptr;
5375 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
5376 D = Send->getMethodDecl();
5377 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
5378 D = BoxedExpr->getBoxingMethod();
5379 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
5380 D = ArrayLit->getArrayWithObjectsMethod();
5381 } else if (ObjCDictionaryLiteral *DictLit
5382 = dyn_cast<ObjCDictionaryLiteral>(E)) {
5383 D = DictLit->getDictWithObjectsMethod();
5384 }
5385
5386 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
5387
5388 // Don't do reclaims on performSelector calls; despite their
5389 // return type, the invoked method doesn't necessarily actually
5390 // return an object.
5391 if (!ReturnsRetained &&
5392 D && D->getMethodFamily() == OMF_performSelector)
5393 return E;
5394 }
5395
5396 // Don't reclaim an object of Class type.
5397 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
5398 return E;
5399
5400 ExprNeedsCleanups = true;
5401
5402 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
5403 : CK_ARCReclaimReturnedObject);
5404 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
5405 VK_RValue);
5406 }
5407
5408 if (!getLangOpts().CPlusPlus)
5409 return E;
5410
5411 // Search for the base element type (cf. ASTContext::getBaseElementType) with
5412 // a fast path for the common case that the type is directly a RecordType.
5413 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
5414 const RecordType *RT = nullptr;
5415 while (!RT) {
5416 switch (T->getTypeClass()) {
5417 case Type::Record:
5418 RT = cast<RecordType>(T);
5419 break;
5420 case Type::ConstantArray:
5421 case Type::IncompleteArray:
5422 case Type::VariableArray:
5423 case Type::DependentSizedArray:
5424 T = cast<ArrayType>(T)->getElementType().getTypePtr();
5425 break;
5426 default:
5427 return E;
5428 }
5429 }
5430
5431 // That should be enough to guarantee that this type is complete, if we're
5432 // not processing a decltype expression.
5433 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
5434 if (RD->isInvalidDecl() || RD->isDependentContext())
5435 return E;
5436
5437 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
5438 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
5439
5440 if (Destructor) {
5441 MarkFunctionReferenced(E->getExprLoc(), Destructor);
5442 CheckDestructorAccess(E->getExprLoc(), Destructor,
5443 PDiag(diag::err_access_dtor_temp)
5444 << E->getType());
5445 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
5446 return ExprError();
5447
5448 // If destructor is trivial, we can avoid the extra copy.
5449 if (Destructor->isTrivial())
5450 return E;
5451
5452 // We need a cleanup, but we don't need to remember the temporary.
5453 ExprNeedsCleanups = true;
5454 }
5455
5456 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5457 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5458
5459 if (IsDecltype)
5460 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5461
5462 return Bind;
5463 }
5464
5465 ExprResult
MaybeCreateExprWithCleanups(ExprResult SubExpr)5466 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5467 if (SubExpr.isInvalid())
5468 return ExprError();
5469
5470 return MaybeCreateExprWithCleanups(SubExpr.get());
5471 }
5472
MaybeCreateExprWithCleanups(Expr * SubExpr)5473 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5474 assert(SubExpr && "subexpression can't be null!");
5475
5476 CleanupVarDeclMarking();
5477
5478 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5479 assert(ExprCleanupObjects.size() >= FirstCleanup);
5480 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5481 if (!ExprNeedsCleanups)
5482 return SubExpr;
5483
5484 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5485 ExprCleanupObjects.size() - FirstCleanup);
5486
5487 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5488 DiscardCleanupsInEvaluationContext();
5489
5490 return E;
5491 }
5492
MaybeCreateStmtWithCleanups(Stmt * SubStmt)5493 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5494 assert(SubStmt && "sub-statement can't be null!");
5495
5496 CleanupVarDeclMarking();
5497
5498 if (!ExprNeedsCleanups)
5499 return SubStmt;
5500
5501 // FIXME: In order to attach the temporaries, wrap the statement into
5502 // a StmtExpr; currently this is only used for asm statements.
5503 // This is hacky, either create a new CXXStmtWithTemporaries statement or
5504 // a new AsmStmtWithTemporaries.
5505 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5506 SourceLocation(),
5507 SourceLocation());
5508 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5509 SourceLocation());
5510 return MaybeCreateExprWithCleanups(E);
5511 }
5512
5513 /// Process the expression contained within a decltype. For such expressions,
5514 /// certain semantic checks on temporaries are delayed until this point, and
5515 /// are omitted for the 'topmost' call in the decltype expression. If the
5516 /// topmost call bound a temporary, strip that temporary off the expression.
ActOnDecltypeExpression(Expr * E)5517 ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5518 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5519
5520 // C++11 [expr.call]p11:
5521 // If a function call is a prvalue of object type,
5522 // -- if the function call is either
5523 // -- the operand of a decltype-specifier, or
5524 // -- the right operand of a comma operator that is the operand of a
5525 // decltype-specifier,
5526 // a temporary object is not introduced for the prvalue.
5527
5528 // Recursively rebuild ParenExprs and comma expressions to strip out the
5529 // outermost CXXBindTemporaryExpr, if any.
5530 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5531 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5532 if (SubExpr.isInvalid())
5533 return ExprError();
5534 if (SubExpr.get() == PE->getSubExpr())
5535 return E;
5536 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5537 }
5538 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5539 if (BO->getOpcode() == BO_Comma) {
5540 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5541 if (RHS.isInvalid())
5542 return ExprError();
5543 if (RHS.get() == BO->getRHS())
5544 return E;
5545 return new (Context) BinaryOperator(
5546 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5547 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5548 }
5549 }
5550
5551 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5552 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5553 : nullptr;
5554 if (TopCall)
5555 E = TopCall;
5556 else
5557 TopBind = nullptr;
5558
5559 // Disable the special decltype handling now.
5560 ExprEvalContexts.back().IsDecltype = false;
5561
5562 // In MS mode, don't perform any extra checking of call return types within a
5563 // decltype expression.
5564 if (getLangOpts().MSVCCompat)
5565 return E;
5566
5567 // Perform the semantic checks we delayed until this point.
5568 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5569 I != N; ++I) {
5570 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5571 if (Call == TopCall)
5572 continue;
5573
5574 if (CheckCallReturnType(Call->getCallReturnType(Context),
5575 Call->getLocStart(),
5576 Call, Call->getDirectCallee()))
5577 return ExprError();
5578 }
5579
5580 // Now all relevant types are complete, check the destructors are accessible
5581 // and non-deleted, and annotate them on the temporaries.
5582 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5583 I != N; ++I) {
5584 CXXBindTemporaryExpr *Bind =
5585 ExprEvalContexts.back().DelayedDecltypeBinds[I];
5586 if (Bind == TopBind)
5587 continue;
5588
5589 CXXTemporary *Temp = Bind->getTemporary();
5590
5591 CXXRecordDecl *RD =
5592 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5593 CXXDestructorDecl *Destructor = LookupDestructor(RD);
5594 Temp->setDestructor(Destructor);
5595
5596 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5597 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5598 PDiag(diag::err_access_dtor_temp)
5599 << Bind->getType());
5600 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5601 return ExprError();
5602
5603 // We need a cleanup, but we don't need to remember the temporary.
5604 ExprNeedsCleanups = true;
5605 }
5606
5607 // Possibly strip off the top CXXBindTemporaryExpr.
5608 return E;
5609 }
5610
5611 /// Note a set of 'operator->' functions that were used for a member access.
noteOperatorArrows(Sema & S,ArrayRef<FunctionDecl * > OperatorArrows)5612 static void noteOperatorArrows(Sema &S,
5613 ArrayRef<FunctionDecl *> OperatorArrows) {
5614 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5615 // FIXME: Make this configurable?
5616 unsigned Limit = 9;
5617 if (OperatorArrows.size() > Limit) {
5618 // Produce Limit-1 normal notes and one 'skipping' note.
5619 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5620 SkipCount = OperatorArrows.size() - (Limit - 1);
5621 }
5622
5623 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5624 if (I == SkipStart) {
5625 S.Diag(OperatorArrows[I]->getLocation(),
5626 diag::note_operator_arrows_suppressed)
5627 << SkipCount;
5628 I += SkipCount;
5629 } else {
5630 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5631 << OperatorArrows[I]->getCallResultType();
5632 ++I;
5633 }
5634 }
5635 }
5636
ActOnStartCXXMemberReference(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,ParsedType & ObjectType,bool & MayBePseudoDestructor)5637 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
5638 SourceLocation OpLoc,
5639 tok::TokenKind OpKind,
5640 ParsedType &ObjectType,
5641 bool &MayBePseudoDestructor) {
5642 // Since this might be a postfix expression, get rid of ParenListExprs.
5643 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5644 if (Result.isInvalid()) return ExprError();
5645 Base = Result.get();
5646
5647 Result = CheckPlaceholderExpr(Base);
5648 if (Result.isInvalid()) return ExprError();
5649 Base = Result.get();
5650
5651 QualType BaseType = Base->getType();
5652 MayBePseudoDestructor = false;
5653 if (BaseType->isDependentType()) {
5654 // If we have a pointer to a dependent type and are using the -> operator,
5655 // the object type is the type that the pointer points to. We might still
5656 // have enough information about that type to do something useful.
5657 if (OpKind == tok::arrow)
5658 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5659 BaseType = Ptr->getPointeeType();
5660
5661 ObjectType = ParsedType::make(BaseType);
5662 MayBePseudoDestructor = true;
5663 return Base;
5664 }
5665
5666 // C++ [over.match.oper]p8:
5667 // [...] When operator->returns, the operator-> is applied to the value
5668 // returned, with the original second operand.
5669 if (OpKind == tok::arrow) {
5670 QualType StartingType = BaseType;
5671 bool NoArrowOperatorFound = false;
5672 bool FirstIteration = true;
5673 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5674 // The set of types we've considered so far.
5675 llvm::SmallPtrSet<CanQualType,8> CTypes;
5676 SmallVector<FunctionDecl*, 8> OperatorArrows;
5677 CTypes.insert(Context.getCanonicalType(BaseType));
5678
5679 while (BaseType->isRecordType()) {
5680 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5681 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5682 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5683 noteOperatorArrows(*this, OperatorArrows);
5684 Diag(OpLoc, diag::note_operator_arrow_depth)
5685 << getLangOpts().ArrowDepth;
5686 return ExprError();
5687 }
5688
5689 Result = BuildOverloadedArrowExpr(
5690 S, Base, OpLoc,
5691 // When in a template specialization and on the first loop iteration,
5692 // potentially give the default diagnostic (with the fixit in a
5693 // separate note) instead of having the error reported back to here
5694 // and giving a diagnostic with a fixit attached to the error itself.
5695 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5696 ? nullptr
5697 : &NoArrowOperatorFound);
5698 if (Result.isInvalid()) {
5699 if (NoArrowOperatorFound) {
5700 if (FirstIteration) {
5701 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5702 << BaseType << 1 << Base->getSourceRange()
5703 << FixItHint::CreateReplacement(OpLoc, ".");
5704 OpKind = tok::period;
5705 break;
5706 }
5707 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5708 << BaseType << Base->getSourceRange();
5709 CallExpr *CE = dyn_cast<CallExpr>(Base);
5710 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5711 Diag(CD->getLocStart(),
5712 diag::note_member_reference_arrow_from_operator_arrow);
5713 }
5714 }
5715 return ExprError();
5716 }
5717 Base = Result.get();
5718 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5719 OperatorArrows.push_back(OpCall->getDirectCallee());
5720 BaseType = Base->getType();
5721 CanQualType CBaseType = Context.getCanonicalType(BaseType);
5722 if (!CTypes.insert(CBaseType).second) {
5723 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5724 noteOperatorArrows(*this, OperatorArrows);
5725 return ExprError();
5726 }
5727 FirstIteration = false;
5728 }
5729
5730 if (OpKind == tok::arrow &&
5731 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5732 BaseType = BaseType->getPointeeType();
5733 }
5734
5735 // Objective-C properties allow "." access on Objective-C pointer types,
5736 // so adjust the base type to the object type itself.
5737 if (BaseType->isObjCObjectPointerType())
5738 BaseType = BaseType->getPointeeType();
5739
5740 // C++ [basic.lookup.classref]p2:
5741 // [...] If the type of the object expression is of pointer to scalar
5742 // type, the unqualified-id is looked up in the context of the complete
5743 // postfix-expression.
5744 //
5745 // This also indicates that we could be parsing a pseudo-destructor-name.
5746 // Note that Objective-C class and object types can be pseudo-destructor
5747 // expressions or normal member (ivar or property) access expressions, and
5748 // it's legal for the type to be incomplete if this is a pseudo-destructor
5749 // call. We'll do more incomplete-type checks later in the lookup process,
5750 // so just skip this check for ObjC types.
5751 if (BaseType->isObjCObjectOrInterfaceType()) {
5752 ObjectType = ParsedType::make(BaseType);
5753 MayBePseudoDestructor = true;
5754 return Base;
5755 } else if (!BaseType->isRecordType()) {
5756 ObjectType = ParsedType();
5757 MayBePseudoDestructor = true;
5758 return Base;
5759 }
5760
5761 // The object type must be complete (or dependent), or
5762 // C++11 [expr.prim.general]p3:
5763 // Unlike the object expression in other contexts, *this is not required to
5764 // be of complete type for purposes of class member access (5.2.5) outside
5765 // the member function body.
5766 if (!BaseType->isDependentType() &&
5767 !isThisOutsideMemberFunctionBody(BaseType) &&
5768 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5769 return ExprError();
5770
5771 // C++ [basic.lookup.classref]p2:
5772 // If the id-expression in a class member access (5.2.5) is an
5773 // unqualified-id, and the type of the object expression is of a class
5774 // type C (or of pointer to a class type C), the unqualified-id is looked
5775 // up in the scope of class C. [...]
5776 ObjectType = ParsedType::make(BaseType);
5777 return Base;
5778 }
5779
CheckArrow(Sema & S,QualType & ObjectType,Expr * & Base,tok::TokenKind & OpKind,SourceLocation OpLoc)5780 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5781 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5782 if (Base->hasPlaceholderType()) {
5783 ExprResult result = S.CheckPlaceholderExpr(Base);
5784 if (result.isInvalid()) return true;
5785 Base = result.get();
5786 }
5787 ObjectType = Base->getType();
5788
5789 // C++ [expr.pseudo]p2:
5790 // The left-hand side of the dot operator shall be of scalar type. The
5791 // left-hand side of the arrow operator shall be of pointer to scalar type.
5792 // This scalar type is the object type.
5793 // Note that this is rather different from the normal handling for the
5794 // arrow operator.
5795 if (OpKind == tok::arrow) {
5796 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5797 ObjectType = Ptr->getPointeeType();
5798 } else if (!Base->isTypeDependent()) {
5799 // The user wrote "p->" when she probably meant "p."; fix it.
5800 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5801 << ObjectType << true
5802 << FixItHint::CreateReplacement(OpLoc, ".");
5803 if (S.isSFINAEContext())
5804 return true;
5805
5806 OpKind = tok::period;
5807 }
5808 }
5809
5810 return false;
5811 }
5812
BuildPseudoDestructorExpr(Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,const CXXScopeSpec & SS,TypeSourceInfo * ScopeTypeInfo,SourceLocation CCLoc,SourceLocation TildeLoc,PseudoDestructorTypeStorage Destructed)5813 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5814 SourceLocation OpLoc,
5815 tok::TokenKind OpKind,
5816 const CXXScopeSpec &SS,
5817 TypeSourceInfo *ScopeTypeInfo,
5818 SourceLocation CCLoc,
5819 SourceLocation TildeLoc,
5820 PseudoDestructorTypeStorage Destructed) {
5821 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5822
5823 QualType ObjectType;
5824 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5825 return ExprError();
5826
5827 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5828 !ObjectType->isVectorType()) {
5829 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5830 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5831 else {
5832 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5833 << ObjectType << Base->getSourceRange();
5834 return ExprError();
5835 }
5836 }
5837
5838 // C++ [expr.pseudo]p2:
5839 // [...] The cv-unqualified versions of the object type and of the type
5840 // designated by the pseudo-destructor-name shall be the same type.
5841 if (DestructedTypeInfo) {
5842 QualType DestructedType = DestructedTypeInfo->getType();
5843 SourceLocation DestructedTypeStart
5844 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5845 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5846 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5847 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5848 << ObjectType << DestructedType << Base->getSourceRange()
5849 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5850
5851 // Recover by setting the destructed type to the object type.
5852 DestructedType = ObjectType;
5853 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5854 DestructedTypeStart);
5855 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5856 } else if (DestructedType.getObjCLifetime() !=
5857 ObjectType.getObjCLifetime()) {
5858
5859 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5860 // Okay: just pretend that the user provided the correctly-qualified
5861 // type.
5862 } else {
5863 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5864 << ObjectType << DestructedType << Base->getSourceRange()
5865 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5866 }
5867
5868 // Recover by setting the destructed type to the object type.
5869 DestructedType = ObjectType;
5870 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5871 DestructedTypeStart);
5872 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5873 }
5874 }
5875 }
5876
5877 // C++ [expr.pseudo]p2:
5878 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5879 // form
5880 //
5881 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5882 //
5883 // shall designate the same scalar type.
5884 if (ScopeTypeInfo) {
5885 QualType ScopeType = ScopeTypeInfo->getType();
5886 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5887 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5888
5889 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5890 diag::err_pseudo_dtor_type_mismatch)
5891 << ObjectType << ScopeType << Base->getSourceRange()
5892 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5893
5894 ScopeType = QualType();
5895 ScopeTypeInfo = nullptr;
5896 }
5897 }
5898
5899 Expr *Result
5900 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5901 OpKind == tok::arrow, OpLoc,
5902 SS.getWithLocInContext(Context),
5903 ScopeTypeInfo,
5904 CCLoc,
5905 TildeLoc,
5906 Destructed);
5907
5908 return Result;
5909 }
5910
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,CXXScopeSpec & SS,UnqualifiedId & FirstTypeName,SourceLocation CCLoc,SourceLocation TildeLoc,UnqualifiedId & SecondTypeName)5911 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5912 SourceLocation OpLoc,
5913 tok::TokenKind OpKind,
5914 CXXScopeSpec &SS,
5915 UnqualifiedId &FirstTypeName,
5916 SourceLocation CCLoc,
5917 SourceLocation TildeLoc,
5918 UnqualifiedId &SecondTypeName) {
5919 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5920 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5921 "Invalid first type name in pseudo-destructor");
5922 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5923 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5924 "Invalid second type name in pseudo-destructor");
5925
5926 QualType ObjectType;
5927 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5928 return ExprError();
5929
5930 // Compute the object type that we should use for name lookup purposes. Only
5931 // record types and dependent types matter.
5932 ParsedType ObjectTypePtrForLookup;
5933 if (!SS.isSet()) {
5934 if (ObjectType->isRecordType())
5935 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5936 else if (ObjectType->isDependentType())
5937 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5938 }
5939
5940 // Convert the name of the type being destructed (following the ~) into a
5941 // type (with source-location information).
5942 QualType DestructedType;
5943 TypeSourceInfo *DestructedTypeInfo = nullptr;
5944 PseudoDestructorTypeStorage Destructed;
5945 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5946 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5947 SecondTypeName.StartLocation,
5948 S, &SS, true, false, ObjectTypePtrForLookup);
5949 if (!T &&
5950 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5951 (!SS.isSet() && ObjectType->isDependentType()))) {
5952 // The name of the type being destroyed is a dependent name, and we
5953 // couldn't find anything useful in scope. Just store the identifier and
5954 // it's location, and we'll perform (qualified) name lookup again at
5955 // template instantiation time.
5956 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5957 SecondTypeName.StartLocation);
5958 } else if (!T) {
5959 Diag(SecondTypeName.StartLocation,
5960 diag::err_pseudo_dtor_destructor_non_type)
5961 << SecondTypeName.Identifier << ObjectType;
5962 if (isSFINAEContext())
5963 return ExprError();
5964
5965 // Recover by assuming we had the right type all along.
5966 DestructedType = ObjectType;
5967 } else
5968 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5969 } else {
5970 // Resolve the template-id to a type.
5971 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5972 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5973 TemplateId->NumArgs);
5974 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5975 TemplateId->TemplateKWLoc,
5976 TemplateId->Template,
5977 TemplateId->TemplateNameLoc,
5978 TemplateId->LAngleLoc,
5979 TemplateArgsPtr,
5980 TemplateId->RAngleLoc);
5981 if (T.isInvalid() || !T.get()) {
5982 // Recover by assuming we had the right type all along.
5983 DestructedType = ObjectType;
5984 } else
5985 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5986 }
5987
5988 // If we've performed some kind of recovery, (re-)build the type source
5989 // information.
5990 if (!DestructedType.isNull()) {
5991 if (!DestructedTypeInfo)
5992 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5993 SecondTypeName.StartLocation);
5994 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5995 }
5996
5997 // Convert the name of the scope type (the type prior to '::') into a type.
5998 TypeSourceInfo *ScopeTypeInfo = nullptr;
5999 QualType ScopeType;
6000 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6001 FirstTypeName.Identifier) {
6002 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6003 ParsedType T = getTypeName(*FirstTypeName.Identifier,
6004 FirstTypeName.StartLocation,
6005 S, &SS, true, false, ObjectTypePtrForLookup);
6006 if (!T) {
6007 Diag(FirstTypeName.StartLocation,
6008 diag::err_pseudo_dtor_destructor_non_type)
6009 << FirstTypeName.Identifier << ObjectType;
6010
6011 if (isSFINAEContext())
6012 return ExprError();
6013
6014 // Just drop this type. It's unnecessary anyway.
6015 ScopeType = QualType();
6016 } else
6017 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
6018 } else {
6019 // Resolve the template-id to a type.
6020 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
6021 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6022 TemplateId->NumArgs);
6023 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6024 TemplateId->TemplateKWLoc,
6025 TemplateId->Template,
6026 TemplateId->TemplateNameLoc,
6027 TemplateId->LAngleLoc,
6028 TemplateArgsPtr,
6029 TemplateId->RAngleLoc);
6030 if (T.isInvalid() || !T.get()) {
6031 // Recover by dropping this type.
6032 ScopeType = QualType();
6033 } else
6034 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
6035 }
6036 }
6037
6038 if (!ScopeType.isNull() && !ScopeTypeInfo)
6039 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
6040 FirstTypeName.StartLocation);
6041
6042
6043 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
6044 ScopeTypeInfo, CCLoc, TildeLoc,
6045 Destructed);
6046 }
6047
ActOnPseudoDestructorExpr(Scope * S,Expr * Base,SourceLocation OpLoc,tok::TokenKind OpKind,SourceLocation TildeLoc,const DeclSpec & DS)6048 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6049 SourceLocation OpLoc,
6050 tok::TokenKind OpKind,
6051 SourceLocation TildeLoc,
6052 const DeclSpec& DS) {
6053 QualType ObjectType;
6054 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6055 return ExprError();
6056
6057 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
6058 false);
6059
6060 TypeLocBuilder TLB;
6061 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
6062 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
6063 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
6064 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
6065
6066 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
6067 nullptr, SourceLocation(), TildeLoc,
6068 Destructed);
6069 }
6070
BuildCXXMemberCallExpr(Expr * E,NamedDecl * FoundDecl,CXXConversionDecl * Method,bool HadMultipleCandidates)6071 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
6072 CXXConversionDecl *Method,
6073 bool HadMultipleCandidates) {
6074 if (Method->getParent()->isLambda() &&
6075 Method->getConversionType()->isBlockPointerType()) {
6076 // This is a lambda coversion to block pointer; check if the argument
6077 // is a LambdaExpr.
6078 Expr *SubE = E;
6079 CastExpr *CE = dyn_cast<CastExpr>(SubE);
6080 if (CE && CE->getCastKind() == CK_NoOp)
6081 SubE = CE->getSubExpr();
6082 SubE = SubE->IgnoreParens();
6083 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
6084 SubE = BE->getSubExpr();
6085 if (isa<LambdaExpr>(SubE)) {
6086 // For the conversion to block pointer on a lambda expression, we
6087 // construct a special BlockLiteral instead; this doesn't really make
6088 // a difference in ARC, but outside of ARC the resulting block literal
6089 // follows the normal lifetime rules for block literals instead of being
6090 // autoreleased.
6091 DiagnosticErrorTrap Trap(Diags);
6092 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
6093 E->getExprLoc(),
6094 Method, E);
6095 if (Exp.isInvalid())
6096 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
6097 return Exp;
6098 }
6099 }
6100
6101 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
6102 FoundDecl, Method);
6103 if (Exp.isInvalid())
6104 return true;
6105
6106 MemberExpr *ME = new (Context) MemberExpr(
6107 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
6108 Context.BoundMemberTy, VK_RValue, OK_Ordinary);
6109 if (HadMultipleCandidates)
6110 ME->setHadMultipleCandidates(true);
6111 MarkMemberReferenced(ME);
6112
6113 QualType ResultType = Method->getReturnType();
6114 ExprValueKind VK = Expr::getValueKindForType(ResultType);
6115 ResultType = ResultType.getNonLValueExprType(Context);
6116
6117 CXXMemberCallExpr *CE =
6118 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
6119 Exp.get()->getLocEnd());
6120 return CE;
6121 }
6122
BuildCXXNoexceptExpr(SourceLocation KeyLoc,Expr * Operand,SourceLocation RParen)6123 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6124 SourceLocation RParen) {
6125 // If the operand is an unresolved lookup expression, the expression is ill-
6126 // formed per [over.over]p1, because overloaded function names cannot be used
6127 // without arguments except in explicit contexts.
6128 ExprResult R = CheckPlaceholderExpr(Operand);
6129 if (R.isInvalid())
6130 return R;
6131
6132 // The operand may have been modified when checking the placeholder type.
6133 Operand = R.get();
6134
6135 if (ActiveTemplateInstantiations.empty() &&
6136 Operand->HasSideEffects(Context, false)) {
6137 // The expression operand for noexcept is in an unevaluated expression
6138 // context, so side effects could result in unintended consequences.
6139 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6140 }
6141
6142 CanThrowResult CanThrow = canThrow(Operand);
6143 return new (Context)
6144 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
6145 }
6146
ActOnNoexceptExpr(SourceLocation KeyLoc,SourceLocation,Expr * Operand,SourceLocation RParen)6147 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
6148 Expr *Operand, SourceLocation RParen) {
6149 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
6150 }
6151
IsSpecialDiscardedValue(Expr * E)6152 static bool IsSpecialDiscardedValue(Expr *E) {
6153 // In C++11, discarded-value expressions of a certain form are special,
6154 // according to [expr]p10:
6155 // The lvalue-to-rvalue conversion (4.1) is applied only if the
6156 // expression is an lvalue of volatile-qualified type and it has
6157 // one of the following forms:
6158 E = E->IgnoreParens();
6159
6160 // - id-expression (5.1.1),
6161 if (isa<DeclRefExpr>(E))
6162 return true;
6163
6164 // - subscripting (5.2.1),
6165 if (isa<ArraySubscriptExpr>(E))
6166 return true;
6167
6168 // - class member access (5.2.5),
6169 if (isa<MemberExpr>(E))
6170 return true;
6171
6172 // - indirection (5.3.1),
6173 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
6174 if (UO->getOpcode() == UO_Deref)
6175 return true;
6176
6177 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6178 // - pointer-to-member operation (5.5),
6179 if (BO->isPtrMemOp())
6180 return true;
6181
6182 // - comma expression (5.18) where the right operand is one of the above.
6183 if (BO->getOpcode() == BO_Comma)
6184 return IsSpecialDiscardedValue(BO->getRHS());
6185 }
6186
6187 // - conditional expression (5.16) where both the second and the third
6188 // operands are one of the above, or
6189 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
6190 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
6191 IsSpecialDiscardedValue(CO->getFalseExpr());
6192 // The related edge case of "*x ?: *x".
6193 if (BinaryConditionalOperator *BCO =
6194 dyn_cast<BinaryConditionalOperator>(E)) {
6195 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
6196 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
6197 IsSpecialDiscardedValue(BCO->getFalseExpr());
6198 }
6199
6200 // Objective-C++ extensions to the rule.
6201 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
6202 return true;
6203
6204 return false;
6205 }
6206
6207 /// Perform the conversions required for an expression used in a
6208 /// context that ignores the result.
IgnoredValueConversions(Expr * E)6209 ExprResult Sema::IgnoredValueConversions(Expr *E) {
6210 if (E->hasPlaceholderType()) {
6211 ExprResult result = CheckPlaceholderExpr(E);
6212 if (result.isInvalid()) return E;
6213 E = result.get();
6214 }
6215
6216 // C99 6.3.2.1:
6217 // [Except in specific positions,] an lvalue that does not have
6218 // array type is converted to the value stored in the
6219 // designated object (and is no longer an lvalue).
6220 if (E->isRValue()) {
6221 // In C, function designators (i.e. expressions of function type)
6222 // are r-values, but we still want to do function-to-pointer decay
6223 // on them. This is both technically correct and convenient for
6224 // some clients.
6225 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
6226 return DefaultFunctionArrayConversion(E);
6227
6228 return E;
6229 }
6230
6231 if (getLangOpts().CPlusPlus) {
6232 // The C++11 standard defines the notion of a discarded-value expression;
6233 // normally, we don't need to do anything to handle it, but if it is a
6234 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
6235 // conversion.
6236 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
6237 E->getType().isVolatileQualified() &&
6238 IsSpecialDiscardedValue(E)) {
6239 ExprResult Res = DefaultLvalueConversion(E);
6240 if (Res.isInvalid())
6241 return E;
6242 E = Res.get();
6243 }
6244 return E;
6245 }
6246
6247 // GCC seems to also exclude expressions of incomplete enum type.
6248 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
6249 if (!T->getDecl()->isComplete()) {
6250 // FIXME: stupid workaround for a codegen bug!
6251 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
6252 return E;
6253 }
6254 }
6255
6256 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
6257 if (Res.isInvalid())
6258 return E;
6259 E = Res.get();
6260
6261 if (!E->getType()->isVoidType())
6262 RequireCompleteType(E->getExprLoc(), E->getType(),
6263 diag::err_incomplete_type);
6264 return E;
6265 }
6266
6267 // If we can unambiguously determine whether Var can never be used
6268 // in a constant expression, return true.
6269 // - if the variable and its initializer are non-dependent, then
6270 // we can unambiguously check if the variable is a constant expression.
6271 // - if the initializer is not value dependent - we can determine whether
6272 // it can be used to initialize a constant expression. If Init can not
6273 // be used to initialize a constant expression we conclude that Var can
6274 // never be a constant expression.
6275 // - FXIME: if the initializer is dependent, we can still do some analysis and
6276 // identify certain cases unambiguously as non-const by using a Visitor:
6277 // - such as those that involve odr-use of a ParmVarDecl, involve a new
6278 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
VariableCanNeverBeAConstantExpression(VarDecl * Var,ASTContext & Context)6279 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
6280 ASTContext &Context) {
6281 if (isa<ParmVarDecl>(Var)) return true;
6282 const VarDecl *DefVD = nullptr;
6283
6284 // If there is no initializer - this can not be a constant expression.
6285 if (!Var->getAnyInitializer(DefVD)) return true;
6286 assert(DefVD);
6287 if (DefVD->isWeak()) return false;
6288 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
6289
6290 Expr *Init = cast<Expr>(Eval->Value);
6291
6292 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
6293 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
6294 // of value-dependent expressions, and use it here to determine whether the
6295 // initializer is a potential constant expression.
6296 return false;
6297 }
6298
6299 return !IsVariableAConstantExpression(Var, Context);
6300 }
6301
6302 /// \brief Check if the current lambda has any potential captures
6303 /// that must be captured by any of its enclosing lambdas that are ready to
6304 /// capture. If there is a lambda that can capture a nested
6305 /// potential-capture, go ahead and do so. Also, check to see if any
6306 /// variables are uncaptureable or do not involve an odr-use so do not
6307 /// need to be captured.
6308
CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(Expr * const FE,LambdaScopeInfo * const CurrentLSI,Sema & S)6309 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
6310 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
6311
6312 assert(!S.isUnevaluatedContext());
6313 assert(S.CurContext->isDependentContext());
6314 assert(CurrentLSI->CallOperator == S.CurContext &&
6315 "The current call operator must be synchronized with Sema's CurContext");
6316
6317 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
6318
6319 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
6320 S.FunctionScopes.data(), S.FunctionScopes.size());
6321
6322 // All the potentially captureable variables in the current nested
6323 // lambda (within a generic outer lambda), must be captured by an
6324 // outer lambda that is enclosed within a non-dependent context.
6325 const unsigned NumPotentialCaptures =
6326 CurrentLSI->getNumPotentialVariableCaptures();
6327 for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
6328 Expr *VarExpr = nullptr;
6329 VarDecl *Var = nullptr;
6330 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
6331 // If the variable is clearly identified as non-odr-used and the full
6332 // expression is not instantiation dependent, only then do we not
6333 // need to check enclosing lambda's for speculative captures.
6334 // For e.g.:
6335 // Even though 'x' is not odr-used, it should be captured.
6336 // int test() {
6337 // const int x = 10;
6338 // auto L = [=](auto a) {
6339 // (void) +x + a;
6340 // };
6341 // }
6342 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
6343 !IsFullExprInstantiationDependent)
6344 continue;
6345
6346 // If we have a capture-capable lambda for the variable, go ahead and
6347 // capture the variable in that lambda (and all its enclosing lambdas).
6348 if (const Optional<unsigned> Index =
6349 getStackIndexOfNearestEnclosingCaptureCapableLambda(
6350 FunctionScopesArrayRef, Var, S)) {
6351 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6352 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
6353 &FunctionScopeIndexOfCapturableLambda);
6354 }
6355 const bool IsVarNeverAConstantExpression =
6356 VariableCanNeverBeAConstantExpression(Var, S.Context);
6357 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
6358 // This full expression is not instantiation dependent or the variable
6359 // can not be used in a constant expression - which means
6360 // this variable must be odr-used here, so diagnose a
6361 // capture violation early, if the variable is un-captureable.
6362 // This is purely for diagnosing errors early. Otherwise, this
6363 // error would get diagnosed when the lambda becomes capture ready.
6364 QualType CaptureType, DeclRefType;
6365 SourceLocation ExprLoc = VarExpr->getExprLoc();
6366 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6367 /*EllipsisLoc*/ SourceLocation(),
6368 /*BuildAndDiagnose*/false, CaptureType,
6369 DeclRefType, nullptr)) {
6370 // We will never be able to capture this variable, and we need
6371 // to be able to in any and all instantiations, so diagnose it.
6372 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
6373 /*EllipsisLoc*/ SourceLocation(),
6374 /*BuildAndDiagnose*/true, CaptureType,
6375 DeclRefType, nullptr);
6376 }
6377 }
6378 }
6379
6380 // Check if 'this' needs to be captured.
6381 if (CurrentLSI->hasPotentialThisCapture()) {
6382 // If we have a capture-capable lambda for 'this', go ahead and capture
6383 // 'this' in that lambda (and all its enclosing lambdas).
6384 if (const Optional<unsigned> Index =
6385 getStackIndexOfNearestEnclosingCaptureCapableLambda(
6386 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
6387 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
6388 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
6389 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
6390 &FunctionScopeIndexOfCapturableLambda);
6391 }
6392 }
6393
6394 // Reset all the potential captures at the end of each full-expression.
6395 CurrentLSI->clearPotentialCaptures();
6396 }
6397
attemptRecovery(Sema & SemaRef,const TypoCorrectionConsumer & Consumer,TypoCorrection TC)6398 static ExprResult attemptRecovery(Sema &SemaRef,
6399 const TypoCorrectionConsumer &Consumer,
6400 TypoCorrection TC) {
6401 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
6402 Consumer.getLookupResult().getLookupKind());
6403 const CXXScopeSpec *SS = Consumer.getSS();
6404 CXXScopeSpec NewSS;
6405
6406 // Use an approprate CXXScopeSpec for building the expr.
6407 if (auto *NNS = TC.getCorrectionSpecifier())
6408 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
6409 else if (SS && !TC.WillReplaceSpecifier())
6410 NewSS = *SS;
6411
6412 if (auto *ND = TC.getCorrectionDecl()) {
6413 R.setLookupName(ND->getDeclName());
6414 R.addDecl(ND);
6415 if (ND->isCXXClassMember()) {
6416 // Figure out the correct naming class to add to the LookupResult.
6417 CXXRecordDecl *Record = nullptr;
6418 if (auto *NNS = TC.getCorrectionSpecifier())
6419 Record = NNS->getAsType()->getAsCXXRecordDecl();
6420 if (!Record)
6421 Record =
6422 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
6423 if (Record)
6424 R.setNamingClass(Record);
6425
6426 // Detect and handle the case where the decl might be an implicit
6427 // member.
6428 bool MightBeImplicitMember;
6429 if (!Consumer.isAddressOfOperand())
6430 MightBeImplicitMember = true;
6431 else if (!NewSS.isEmpty())
6432 MightBeImplicitMember = false;
6433 else if (R.isOverloadedResult())
6434 MightBeImplicitMember = false;
6435 else if (R.isUnresolvableResult())
6436 MightBeImplicitMember = true;
6437 else
6438 MightBeImplicitMember = isa<FieldDecl>(ND) ||
6439 isa<IndirectFieldDecl>(ND) ||
6440 isa<MSPropertyDecl>(ND);
6441
6442 if (MightBeImplicitMember)
6443 return SemaRef.BuildPossibleImplicitMemberExpr(
6444 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
6445 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
6446 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
6447 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
6448 Ivar->getIdentifier());
6449 }
6450 }
6451
6452 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
6453 /*AcceptInvalidDecl*/ true);
6454 }
6455
6456 namespace {
6457 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
6458 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
6459
6460 public:
FindTypoExprs(llvm::SmallSetVector<TypoExpr *,2> & TypoExprs)6461 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
6462 : TypoExprs(TypoExprs) {}
VisitTypoExpr(TypoExpr * TE)6463 bool VisitTypoExpr(TypoExpr *TE) {
6464 TypoExprs.insert(TE);
6465 return true;
6466 }
6467 };
6468
6469 class TransformTypos : public TreeTransform<TransformTypos> {
6470 typedef TreeTransform<TransformTypos> BaseTransform;
6471
6472 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
6473 // process of being initialized.
6474 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
6475 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
6476 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
6477 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
6478
6479 /// \brief Emit diagnostics for all of the TypoExprs encountered.
6480 /// If the TypoExprs were successfully corrected, then the diagnostics should
6481 /// suggest the corrections. Otherwise the diagnostics will not suggest
6482 /// anything (having been passed an empty TypoCorrection).
EmitAllDiagnostics()6483 void EmitAllDiagnostics() {
6484 for (auto E : TypoExprs) {
6485 TypoExpr *TE = cast<TypoExpr>(E);
6486 auto &State = SemaRef.getTypoExprState(TE);
6487 if (State.DiagHandler) {
6488 TypoCorrection TC = State.Consumer->getCurrentCorrection();
6489 ExprResult Replacement = TransformCache[TE];
6490
6491 // Extract the NamedDecl from the transformed TypoExpr and add it to the
6492 // TypoCorrection, replacing the existing decls. This ensures the right
6493 // NamedDecl is used in diagnostics e.g. in the case where overload
6494 // resolution was used to select one from several possible decls that
6495 // had been stored in the TypoCorrection.
6496 if (auto *ND = getDeclFromExpr(
6497 Replacement.isInvalid() ? nullptr : Replacement.get()))
6498 TC.setCorrectionDecl(ND);
6499
6500 State.DiagHandler(TC);
6501 }
6502 SemaRef.clearDelayedTypo(TE);
6503 }
6504 }
6505
6506 /// \brief If corrections for the first TypoExpr have been exhausted for a
6507 /// given combination of the other TypoExprs, retry those corrections against
6508 /// the next combination of substitutions for the other TypoExprs by advancing
6509 /// to the next potential correction of the second TypoExpr. For the second
6510 /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
6511 /// the stream is reset and the next TypoExpr's stream is advanced by one (a
6512 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
6513 /// TransformCache). Returns true if there is still any untried combinations
6514 /// of corrections.
CheckAndAdvanceTypoExprCorrectionStreams()6515 bool CheckAndAdvanceTypoExprCorrectionStreams() {
6516 for (auto TE : TypoExprs) {
6517 auto &State = SemaRef.getTypoExprState(TE);
6518 TransformCache.erase(TE);
6519 if (!State.Consumer->finished())
6520 return true;
6521 State.Consumer->resetCorrectionStream();
6522 }
6523 return false;
6524 }
6525
getDeclFromExpr(Expr * E)6526 NamedDecl *getDeclFromExpr(Expr *E) {
6527 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
6528 E = OverloadResolution[OE];
6529
6530 if (!E)
6531 return nullptr;
6532 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
6533 return DRE->getDecl();
6534 if (auto *ME = dyn_cast<MemberExpr>(E))
6535 return ME->getMemberDecl();
6536 // FIXME: Add any other expr types that could be be seen by the delayed typo
6537 // correction TreeTransform for which the corresponding TypoCorrection could
6538 // contain multiple decls.
6539 return nullptr;
6540 }
6541
TryTransform(Expr * E)6542 ExprResult TryTransform(Expr *E) {
6543 Sema::SFINAETrap Trap(SemaRef);
6544 ExprResult Res = TransformExpr(E);
6545 if (Trap.hasErrorOccurred() || Res.isInvalid())
6546 return ExprError();
6547
6548 return ExprFilter(Res.get());
6549 }
6550
6551 public:
TransformTypos(Sema & SemaRef,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)6552 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
6553 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
6554
RebuildCallExpr(Expr * Callee,SourceLocation LParenLoc,MultiExprArg Args,SourceLocation RParenLoc,Expr * ExecConfig=nullptr)6555 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
6556 MultiExprArg Args,
6557 SourceLocation RParenLoc,
6558 Expr *ExecConfig = nullptr) {
6559 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
6560 RParenLoc, ExecConfig);
6561 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
6562 if (Result.isUsable()) {
6563 Expr *ResultCall = Result.get();
6564 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
6565 ResultCall = BE->getSubExpr();
6566 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
6567 OverloadResolution[OE] = CE->getCallee();
6568 }
6569 }
6570 return Result;
6571 }
6572
TransformLambdaExpr(LambdaExpr * E)6573 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
6574
TransformBlockExpr(BlockExpr * E)6575 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
6576
Transform(Expr * E)6577 ExprResult Transform(Expr *E) {
6578 ExprResult Res;
6579 while (true) {
6580 Res = TryTransform(E);
6581
6582 // Exit if either the transform was valid or if there were no TypoExprs
6583 // to transform that still have any untried correction candidates..
6584 if (!Res.isInvalid() ||
6585 !CheckAndAdvanceTypoExprCorrectionStreams())
6586 break;
6587 }
6588
6589 // Ensure none of the TypoExprs have multiple typo correction candidates
6590 // with the same edit length that pass all the checks and filters.
6591 // TODO: Properly handle various permutations of possible corrections when
6592 // there is more than one potentially ambiguous typo correction.
6593 // Also, disable typo correction while attempting the transform when
6594 // handling potentially ambiguous typo corrections as any new TypoExprs will
6595 // have been introduced by the application of one of the correction
6596 // candidates and add little to no value if corrected.
6597 SemaRef.DisableTypoCorrection = true;
6598 while (!AmbiguousTypoExprs.empty()) {
6599 auto TE = AmbiguousTypoExprs.back();
6600 auto Cached = TransformCache[TE];
6601 auto &State = SemaRef.getTypoExprState(TE);
6602 State.Consumer->saveCurrentPosition();
6603 TransformCache.erase(TE);
6604 if (!TryTransform(E).isInvalid()) {
6605 State.Consumer->resetCorrectionStream();
6606 TransformCache.erase(TE);
6607 Res = ExprError();
6608 break;
6609 }
6610 AmbiguousTypoExprs.remove(TE);
6611 State.Consumer->restoreSavedPosition();
6612 TransformCache[TE] = Cached;
6613 }
6614 SemaRef.DisableTypoCorrection = false;
6615
6616 // Ensure that all of the TypoExprs within the current Expr have been found.
6617 if (!Res.isUsable())
6618 FindTypoExprs(TypoExprs).TraverseStmt(E);
6619
6620 EmitAllDiagnostics();
6621
6622 return Res;
6623 }
6624
TransformTypoExpr(TypoExpr * E)6625 ExprResult TransformTypoExpr(TypoExpr *E) {
6626 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
6627 // cached transformation result if there is one and the TypoExpr isn't the
6628 // first one that was encountered.
6629 auto &CacheEntry = TransformCache[E];
6630 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
6631 return CacheEntry;
6632 }
6633
6634 auto &State = SemaRef.getTypoExprState(E);
6635 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
6636
6637 // For the first TypoExpr and an uncached TypoExpr, find the next likely
6638 // typo correction and return it.
6639 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
6640 if (InitDecl && TC.getCorrectionDecl() == InitDecl)
6641 continue;
6642 ExprResult NE = State.RecoveryHandler ?
6643 State.RecoveryHandler(SemaRef, E, TC) :
6644 attemptRecovery(SemaRef, *State.Consumer, TC);
6645 if (!NE.isInvalid()) {
6646 // Check whether there may be a second viable correction with the same
6647 // edit distance; if so, remember this TypoExpr may have an ambiguous
6648 // correction so it can be more thoroughly vetted later.
6649 TypoCorrection Next;
6650 if ((Next = State.Consumer->peekNextCorrection()) &&
6651 Next.getEditDistance(false) == TC.getEditDistance(false)) {
6652 AmbiguousTypoExprs.insert(E);
6653 } else {
6654 AmbiguousTypoExprs.remove(E);
6655 }
6656 assert(!NE.isUnset() &&
6657 "Typo was transformed into a valid-but-null ExprResult");
6658 return CacheEntry = NE;
6659 }
6660 }
6661 return CacheEntry = ExprError();
6662 }
6663 };
6664 }
6665
6666 ExprResult
CorrectDelayedTyposInExpr(Expr * E,VarDecl * InitDecl,llvm::function_ref<ExprResult (Expr *)> Filter)6667 Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
6668 llvm::function_ref<ExprResult(Expr *)> Filter) {
6669 // If the current evaluation context indicates there are uncorrected typos
6670 // and the current expression isn't guaranteed to not have typos, try to
6671 // resolve any TypoExpr nodes that might be in the expression.
6672 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
6673 (E->isTypeDependent() || E->isValueDependent() ||
6674 E->isInstantiationDependent())) {
6675 auto TyposInContext = ExprEvalContexts.back().NumTypos;
6676 assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr");
6677 ExprEvalContexts.back().NumTypos = ~0U;
6678 auto TyposResolved = DelayedTypos.size();
6679 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
6680 ExprEvalContexts.back().NumTypos = TyposInContext;
6681 TyposResolved -= DelayedTypos.size();
6682 if (Result.isInvalid() || Result.get() != E) {
6683 ExprEvalContexts.back().NumTypos -= TyposResolved;
6684 return Result;
6685 }
6686 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
6687 }
6688 return E;
6689 }
6690
ActOnFinishFullExpr(Expr * FE,SourceLocation CC,bool DiscardedValue,bool IsConstexpr,bool IsLambdaInitCaptureInitializer)6691 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
6692 bool DiscardedValue,
6693 bool IsConstexpr,
6694 bool IsLambdaInitCaptureInitializer) {
6695 ExprResult FullExpr = FE;
6696
6697 if (!FullExpr.get())
6698 return ExprError();
6699
6700 // If we are an init-expression in a lambdas init-capture, we should not
6701 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
6702 // containing full-expression is done).
6703 // template<class ... Ts> void test(Ts ... t) {
6704 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
6705 // return a;
6706 // }() ...);
6707 // }
6708 // FIXME: This is a hack. It would be better if we pushed the lambda scope
6709 // when we parse the lambda introducer, and teach capturing (but not
6710 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
6711 // corresponding class yet (that is, have LambdaScopeInfo either represent a
6712 // lambda where we've entered the introducer but not the body, or represent a
6713 // lambda where we've entered the body, depending on where the
6714 // parser/instantiation has got to).
6715 if (!IsLambdaInitCaptureInitializer &&
6716 DiagnoseUnexpandedParameterPack(FullExpr.get()))
6717 return ExprError();
6718
6719 // Top-level expressions default to 'id' when we're in a debugger.
6720 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
6721 FullExpr.get()->getType() == Context.UnknownAnyTy) {
6722 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
6723 if (FullExpr.isInvalid())
6724 return ExprError();
6725 }
6726
6727 if (DiscardedValue) {
6728 FullExpr = CheckPlaceholderExpr(FullExpr.get());
6729 if (FullExpr.isInvalid())
6730 return ExprError();
6731
6732 FullExpr = IgnoredValueConversions(FullExpr.get());
6733 if (FullExpr.isInvalid())
6734 return ExprError();
6735 }
6736
6737 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
6738 if (FullExpr.isInvalid())
6739 return ExprError();
6740
6741 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
6742
6743 // At the end of this full expression (which could be a deeply nested
6744 // lambda), if there is a potential capture within the nested lambda,
6745 // have the outer capture-able lambda try and capture it.
6746 // Consider the following code:
6747 // void f(int, int);
6748 // void f(const int&, double);
6749 // void foo() {
6750 // const int x = 10, y = 20;
6751 // auto L = [=](auto a) {
6752 // auto M = [=](auto b) {
6753 // f(x, b); <-- requires x to be captured by L and M
6754 // f(y, a); <-- requires y to be captured by L, but not all Ms
6755 // };
6756 // };
6757 // }
6758
6759 // FIXME: Also consider what happens for something like this that involves
6760 // the gnu-extension statement-expressions or even lambda-init-captures:
6761 // void f() {
6762 // const int n = 0;
6763 // auto L = [&](auto a) {
6764 // +n + ({ 0; a; });
6765 // };
6766 // }
6767 //
6768 // Here, we see +n, and then the full-expression 0; ends, so we don't
6769 // capture n (and instead remove it from our list of potential captures),
6770 // and then the full-expression +n + ({ 0; }); ends, but it's too late
6771 // for us to see that we need to capture n after all.
6772
6773 LambdaScopeInfo *const CurrentLSI = getCurLambda();
6774 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6775 // even if CurContext is not a lambda call operator. Refer to that Bug Report
6776 // for an example of the code that might cause this asynchrony.
6777 // By ensuring we are in the context of a lambda's call operator
6778 // we can fix the bug (we only need to check whether we need to capture
6779 // if we are within a lambda's body); but per the comments in that
6780 // PR, a proper fix would entail :
6781 // "Alternative suggestion:
6782 // - Add to Sema an integer holding the smallest (outermost) scope
6783 // index that we are *lexically* within, and save/restore/set to
6784 // FunctionScopes.size() in InstantiatingTemplate's
6785 // constructor/destructor.
6786 // - Teach the handful of places that iterate over FunctionScopes to
6787 // stop at the outermost enclosing lexical scope."
6788 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6789 if (IsInLambdaDeclContext && CurrentLSI &&
6790 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6791 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6792 *this);
6793 return MaybeCreateExprWithCleanups(FullExpr);
6794 }
6795
ActOnFinishFullStmt(Stmt * FullStmt)6796 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6797 if (!FullStmt) return StmtError();
6798
6799 return MaybeCreateStmtWithCleanups(FullStmt);
6800 }
6801
6802 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,CXXScopeSpec & SS,const DeclarationNameInfo & TargetNameInfo)6803 Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6804 CXXScopeSpec &SS,
6805 const DeclarationNameInfo &TargetNameInfo) {
6806 DeclarationName TargetName = TargetNameInfo.getName();
6807 if (!TargetName)
6808 return IER_DoesNotExist;
6809
6810 // If the name itself is dependent, then the result is dependent.
6811 if (TargetName.isDependentName())
6812 return IER_Dependent;
6813
6814 // Do the redeclaration lookup in the current scope.
6815 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6816 Sema::NotForRedeclaration);
6817 LookupParsedName(R, S, &SS);
6818 R.suppressDiagnostics();
6819
6820 switch (R.getResultKind()) {
6821 case LookupResult::Found:
6822 case LookupResult::FoundOverloaded:
6823 case LookupResult::FoundUnresolvedValue:
6824 case LookupResult::Ambiguous:
6825 return IER_Exists;
6826
6827 case LookupResult::NotFound:
6828 return IER_DoesNotExist;
6829
6830 case LookupResult::NotFoundInCurrentInstantiation:
6831 return IER_Dependent;
6832 }
6833
6834 llvm_unreachable("Invalid LookupResult Kind!");
6835 }
6836
6837 Sema::IfExistsResult
CheckMicrosoftIfExistsSymbol(Scope * S,SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name)6838 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6839 bool IsIfExists, CXXScopeSpec &SS,
6840 UnqualifiedId &Name) {
6841 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6842
6843 // Check for unexpanded parameter packs.
6844 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6845 collectUnexpandedParameterPacks(SS, Unexpanded);
6846 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6847 if (!Unexpanded.empty()) {
6848 DiagnoseUnexpandedParameterPacks(KeywordLoc,
6849 IsIfExists? UPPC_IfExists
6850 : UPPC_IfNotExists,
6851 Unexpanded);
6852 return IER_Error;
6853 }
6854
6855 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6856 }
6857