1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_SPLINE_FITTING_H
11 #define EIGEN_SPLINE_FITTING_H
12 
13 #include <numeric>
14 
15 #include "SplineFwd.h"
16 
17 #include <Eigen/QR>
18 
19 namespace Eigen
20 {
21   /**
22    * \brief Computes knot averages.
23    * \ingroup Splines_Module
24    *
25    * The knots are computed as
26    * \f{align*}
27    *  u_0 & = \hdots = u_p = 0 \\
28    *  u_{m-p} & = \hdots = u_{m} = 1 \\
29    *  u_{j+p} & = \frac{1}{p}\sum_{i=j}^{j+p-1}\bar{u}_i \quad\quad j=1,\hdots,n-p
30    * \f}
31    * where \f$p\f$ is the degree and \f$m+1\f$ the number knots
32    * of the desired interpolating spline.
33    *
34    * \param[in] parameters The input parameters. During interpolation one for each data point.
35    * \param[in] degree The spline degree which is used during the interpolation.
36    * \param[out] knots The output knot vector.
37    *
38    * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
39    **/
40   template <typename KnotVectorType>
KnotAveraging(const KnotVectorType & parameters,DenseIndex degree,KnotVectorType & knots)41   void KnotAveraging(const KnotVectorType& parameters, DenseIndex degree, KnotVectorType& knots)
42   {
43     knots.resize(parameters.size()+degree+1);
44 
45     for (DenseIndex j=1; j<parameters.size()-degree; ++j)
46       knots(j+degree) = parameters.segment(j,degree).mean();
47 
48     knots.segment(0,degree+1) = KnotVectorType::Zero(degree+1);
49     knots.segment(knots.size()-degree-1,degree+1) = KnotVectorType::Ones(degree+1);
50   }
51 
52   /**
53    * \brief Computes chord length parameters which are required for spline interpolation.
54    * \ingroup Splines_Module
55    *
56    * \param[in] pts The data points to which a spline should be fit.
57    * \param[out] chord_lengths The resulting chord lenggth vector.
58    *
59    * \sa Les Piegl and Wayne Tiller, The NURBS book (2nd ed.), 1997, 9.2.1 Global Curve Interpolation to Point Data
60    **/
61   template <typename PointArrayType, typename KnotVectorType>
ChordLengths(const PointArrayType & pts,KnotVectorType & chord_lengths)62   void ChordLengths(const PointArrayType& pts, KnotVectorType& chord_lengths)
63   {
64     typedef typename KnotVectorType::Scalar Scalar;
65 
66     const DenseIndex n = pts.cols();
67 
68     // 1. compute the column-wise norms
69     chord_lengths.resize(pts.cols());
70     chord_lengths[0] = 0;
71     chord_lengths.rightCols(n-1) = (pts.array().leftCols(n-1) - pts.array().rightCols(n-1)).matrix().colwise().norm();
72 
73     // 2. compute the partial sums
74     std::partial_sum(chord_lengths.data(), chord_lengths.data()+n, chord_lengths.data());
75 
76     // 3. normalize the data
77     chord_lengths /= chord_lengths(n-1);
78     chord_lengths(n-1) = Scalar(1);
79   }
80 
81   /**
82    * \brief Spline fitting methods.
83    * \ingroup Splines_Module
84    **/
85   template <typename SplineType>
86   struct SplineFitting
87   {
88     typedef typename SplineType::KnotVectorType KnotVectorType;
89 
90     /**
91      * \brief Fits an interpolating Spline to the given data points.
92      *
93      * \param pts The points for which an interpolating spline will be computed.
94      * \param degree The degree of the interpolating spline.
95      *
96      * \returns A spline interpolating the initially provided points.
97      **/
98     template <typename PointArrayType>
99     static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree);
100 
101     /**
102      * \brief Fits an interpolating Spline to the given data points.
103      *
104      * \param pts The points for which an interpolating spline will be computed.
105      * \param degree The degree of the interpolating spline.
106      * \param knot_parameters The knot parameters for the interpolation.
107      *
108      * \returns A spline interpolating the initially provided points.
109      **/
110     template <typename PointArrayType>
111     static SplineType Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters);
112   };
113 
114   template <typename SplineType>
115   template <typename PointArrayType>
Interpolate(const PointArrayType & pts,DenseIndex degree,const KnotVectorType & knot_parameters)116   SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree, const KnotVectorType& knot_parameters)
117   {
118     typedef typename SplineType::KnotVectorType::Scalar Scalar;
119     typedef typename SplineType::ControlPointVectorType ControlPointVectorType;
120 
121     typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
122 
123     KnotVectorType knots;
124     KnotAveraging(knot_parameters, degree, knots);
125 
126     DenseIndex n = pts.cols();
127     MatrixType A = MatrixType::Zero(n,n);
128     for (DenseIndex i=1; i<n-1; ++i)
129     {
130       const DenseIndex span = SplineType::Span(knot_parameters[i], degree, knots);
131 
132       // The segment call should somehow be told the spline order at compile time.
133       A.row(i).segment(span-degree, degree+1) = SplineType::BasisFunctions(knot_parameters[i], degree, knots);
134     }
135     A(0,0) = 1.0;
136     A(n-1,n-1) = 1.0;
137 
138     HouseholderQR<MatrixType> qr(A);
139 
140     // Here, we are creating a temporary due to an Eigen issue.
141     ControlPointVectorType ctrls = qr.solve(MatrixType(pts.transpose())).transpose();
142 
143     return SplineType(knots, ctrls);
144   }
145 
146   template <typename SplineType>
147   template <typename PointArrayType>
Interpolate(const PointArrayType & pts,DenseIndex degree)148   SplineType SplineFitting<SplineType>::Interpolate(const PointArrayType& pts, DenseIndex degree)
149   {
150     KnotVectorType chord_lengths; // knot parameters
151     ChordLengths(pts, chord_lengths);
152     return Interpolate(pts, degree, chord_lengths);
153   }
154 }
155 
156 #endif // EIGEN_SPLINE_FITTING_H
157