1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // TODO(sameeragarwal): row_block_counter can perhaps be replaced by
32 // Chunk::start ?
33
34 #ifndef CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
35 #define CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
36
37 // Eigen has an internal threshold switching between different matrix
38 // multiplication algorithms. In particular for matrices larger than
39 // EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD it uses a cache friendly
40 // matrix matrix product algorithm that has a higher setup cost. For
41 // matrix sizes close to this threshold, especially when the matrices
42 // are thin and long, the default choice may not be optimal. This is
43 // the case for us, as the default choice causes a 30% performance
44 // regression when we moved from Eigen2 to Eigen3.
45
46 #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 10
47
48 // This include must come before any #ifndef check on Ceres compile options.
49 #include "ceres/internal/port.h"
50
51 #ifdef CERES_USE_OPENMP
52 #include <omp.h>
53 #endif
54
55 #include <algorithm>
56 #include <map>
57 #include "ceres/block_random_access_matrix.h"
58 #include "ceres/block_sparse_matrix.h"
59 #include "ceres/block_structure.h"
60 #include "ceres/internal/eigen.h"
61 #include "ceres/internal/fixed_array.h"
62 #include "ceres/internal/scoped_ptr.h"
63 #include "ceres/map_util.h"
64 #include "ceres/schur_eliminator.h"
65 #include "ceres/small_blas.h"
66 #include "ceres/stl_util.h"
67 #include "Eigen/Dense"
68 #include "glog/logging.h"
69
70 namespace ceres {
71 namespace internal {
72
73 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
~SchurEliminator()74 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::~SchurEliminator() {
75 STLDeleteElements(&rhs_locks_);
76 }
77
78 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
79 void
80 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
Init(int num_eliminate_blocks,const CompressedRowBlockStructure * bs)81 Init(int num_eliminate_blocks, const CompressedRowBlockStructure* bs) {
82 CHECK_GT(num_eliminate_blocks, 0)
83 << "SchurComplementSolver cannot be initialized with "
84 << "num_eliminate_blocks = 0.";
85
86 num_eliminate_blocks_ = num_eliminate_blocks;
87
88 const int num_col_blocks = bs->cols.size();
89 const int num_row_blocks = bs->rows.size();
90
91 buffer_size_ = 1;
92 chunks_.clear();
93 lhs_row_layout_.clear();
94
95 int lhs_num_rows = 0;
96 // Add a map object for each block in the reduced linear system
97 // and build the row/column block structure of the reduced linear
98 // system.
99 lhs_row_layout_.resize(num_col_blocks - num_eliminate_blocks_);
100 for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
101 lhs_row_layout_[i - num_eliminate_blocks_] = lhs_num_rows;
102 lhs_num_rows += bs->cols[i].size;
103 }
104
105 int r = 0;
106 // Iterate over the row blocks of A, and detect the chunks. The
107 // matrix should already have been ordered so that all rows
108 // containing the same y block are vertically contiguous. Along
109 // the way also compute the amount of space each chunk will need
110 // to perform the elimination.
111 while (r < num_row_blocks) {
112 const int chunk_block_id = bs->rows[r].cells.front().block_id;
113 if (chunk_block_id >= num_eliminate_blocks_) {
114 break;
115 }
116
117 chunks_.push_back(Chunk());
118 Chunk& chunk = chunks_.back();
119 chunk.size = 0;
120 chunk.start = r;
121 int buffer_size = 0;
122 const int e_block_size = bs->cols[chunk_block_id].size;
123
124 // Add to the chunk until the first block in the row is
125 // different than the one in the first row for the chunk.
126 while (r + chunk.size < num_row_blocks) {
127 const CompressedRow& row = bs->rows[r + chunk.size];
128 if (row.cells.front().block_id != chunk_block_id) {
129 break;
130 }
131
132 // Iterate over the blocks in the row, ignoring the first
133 // block since it is the one to be eliminated.
134 for (int c = 1; c < row.cells.size(); ++c) {
135 const Cell& cell = row.cells[c];
136 if (InsertIfNotPresent(
137 &(chunk.buffer_layout), cell.block_id, buffer_size)) {
138 buffer_size += e_block_size * bs->cols[cell.block_id].size;
139 }
140 }
141
142 buffer_size_ = max(buffer_size, buffer_size_);
143 ++chunk.size;
144 }
145
146 CHECK_GT(chunk.size, 0);
147 r += chunk.size;
148 }
149 const Chunk& chunk = chunks_.back();
150
151 uneliminated_row_begins_ = chunk.start + chunk.size;
152 if (num_threads_ > 1) {
153 random_shuffle(chunks_.begin(), chunks_.end());
154 }
155
156 buffer_.reset(new double[buffer_size_ * num_threads_]);
157
158 // chunk_outer_product_buffer_ only needs to store e_block_size *
159 // f_block_size, which is always less than buffer_size_, so we just
160 // allocate buffer_size_ per thread.
161 chunk_outer_product_buffer_.reset(new double[buffer_size_ * num_threads_]);
162
163 STLDeleteElements(&rhs_locks_);
164 rhs_locks_.resize(num_col_blocks - num_eliminate_blocks_);
165 for (int i = 0; i < num_col_blocks - num_eliminate_blocks_; ++i) {
166 rhs_locks_[i] = new Mutex;
167 }
168 }
169
170 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
171 void
172 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
Eliminate(const BlockSparseMatrix * A,const double * b,const double * D,BlockRandomAccessMatrix * lhs,double * rhs)173 Eliminate(const BlockSparseMatrix* A,
174 const double* b,
175 const double* D,
176 BlockRandomAccessMatrix* lhs,
177 double* rhs) {
178 if (lhs->num_rows() > 0) {
179 lhs->SetZero();
180 VectorRef(rhs, lhs->num_rows()).setZero();
181 }
182
183 const CompressedRowBlockStructure* bs = A->block_structure();
184 const int num_col_blocks = bs->cols.size();
185
186 // Add the diagonal to the schur complement.
187 if (D != NULL) {
188 #pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
189 for (int i = num_eliminate_blocks_; i < num_col_blocks; ++i) {
190 const int block_id = i - num_eliminate_blocks_;
191 int r, c, row_stride, col_stride;
192 CellInfo* cell_info = lhs->GetCell(block_id, block_id,
193 &r, &c,
194 &row_stride, &col_stride);
195 if (cell_info != NULL) {
196 const int block_size = bs->cols[i].size;
197 typename EigenTypes<kFBlockSize>::ConstVectorRef
198 diag(D + bs->cols[i].position, block_size);
199
200 CeresMutexLock l(&cell_info->m);
201 MatrixRef m(cell_info->values, row_stride, col_stride);
202 m.block(r, c, block_size, block_size).diagonal()
203 += diag.array().square().matrix();
204 }
205 }
206 }
207
208 // Eliminate y blocks one chunk at a time. For each chunk,x3
209 // compute the entries of the normal equations and the gradient
210 // vector block corresponding to the y block and then apply
211 // Gaussian elimination to them. The matrix ete stores the normal
212 // matrix corresponding to the block being eliminated and array
213 // buffer_ contains the non-zero blocks in the row corresponding
214 // to this y block in the normal equations. This computation is
215 // done in ChunkDiagonalBlockAndGradient. UpdateRhs then applies
216 // gaussian elimination to the rhs of the normal equations,
217 // updating the rhs of the reduced linear system by modifying rhs
218 // blocks for all the z blocks that share a row block/residual
219 // term with the y block. EliminateRowOuterProduct does the
220 // corresponding operation for the lhs of the reduced linear
221 // system.
222 #pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
223 for (int i = 0; i < chunks_.size(); ++i) {
224 #ifdef CERES_USE_OPENMP
225 int thread_id = omp_get_thread_num();
226 #else
227 int thread_id = 0;
228 #endif
229 double* buffer = buffer_.get() + thread_id * buffer_size_;
230 const Chunk& chunk = chunks_[i];
231 const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
232 const int e_block_size = bs->cols[e_block_id].size;
233
234 VectorRef(buffer, buffer_size_).setZero();
235
236 typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix
237 ete(e_block_size, e_block_size);
238
239 if (D != NULL) {
240 const typename EigenTypes<kEBlockSize>::ConstVectorRef
241 diag(D + bs->cols[e_block_id].position, e_block_size);
242 ete = diag.array().square().matrix().asDiagonal();
243 } else {
244 ete.setZero();
245 }
246
247 FixedArray<double, 8> g(e_block_size);
248 typename EigenTypes<kEBlockSize>::VectorRef gref(g.get(), e_block_size);
249 gref.setZero();
250
251 // We are going to be computing
252 //
253 // S += F'F - F'E(E'E)^{-1}E'F
254 //
255 // for each Chunk. The computation is broken down into a number of
256 // function calls as below.
257
258 // Compute the outer product of the e_blocks with themselves (ete
259 // = E'E). Compute the product of the e_blocks with the
260 // corresonding f_blocks (buffer = E'F), the gradient of the terms
261 // in this chunk (g) and add the outer product of the f_blocks to
262 // Schur complement (S += F'F).
263 ChunkDiagonalBlockAndGradient(
264 chunk, A, b, chunk.start, &ete, g.get(), buffer, lhs);
265
266 // Normally one wouldn't compute the inverse explicitly, but
267 // e_block_size will typically be a small number like 3, in
268 // which case its much faster to compute the inverse once and
269 // use it to multiply other matrices/vectors instead of doing a
270 // Solve call over and over again.
271 typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix inverse_ete =
272 ete
273 .template selfadjointView<Eigen::Upper>()
274 .llt()
275 .solve(Matrix::Identity(e_block_size, e_block_size));
276
277 // For the current chunk compute and update the rhs of the reduced
278 // linear system.
279 //
280 // rhs = F'b - F'E(E'E)^(-1) E'b
281
282 FixedArray<double, 8> inverse_ete_g(e_block_size);
283 MatrixVectorMultiply<kEBlockSize, kEBlockSize, 0>(
284 inverse_ete.data(),
285 e_block_size,
286 e_block_size,
287 g.get(),
288 inverse_ete_g.get());
289
290 UpdateRhs(chunk, A, b, chunk.start, inverse_ete_g.get(), rhs);
291
292 // S -= F'E(E'E)^{-1}E'F
293 ChunkOuterProduct(bs, inverse_ete, buffer, chunk.buffer_layout, lhs);
294 }
295
296 // For rows with no e_blocks, the schur complement update reduces to
297 // S += F'F.
298 NoEBlockRowsUpdate(A, b, uneliminated_row_begins_, lhs, rhs);
299 }
300
301 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
302 void
303 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
BackSubstitute(const BlockSparseMatrix * A,const double * b,const double * D,const double * z,double * y)304 BackSubstitute(const BlockSparseMatrix* A,
305 const double* b,
306 const double* D,
307 const double* z,
308 double* y) {
309 const CompressedRowBlockStructure* bs = A->block_structure();
310 #pragma omp parallel for num_threads(num_threads_) schedule(dynamic)
311 for (int i = 0; i < chunks_.size(); ++i) {
312 const Chunk& chunk = chunks_[i];
313 const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
314 const int e_block_size = bs->cols[e_block_id].size;
315
316 double* y_ptr = y + bs->cols[e_block_id].position;
317 typename EigenTypes<kEBlockSize>::VectorRef y_block(y_ptr, e_block_size);
318
319 typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix
320 ete(e_block_size, e_block_size);
321 if (D != NULL) {
322 const typename EigenTypes<kEBlockSize>::ConstVectorRef
323 diag(D + bs->cols[e_block_id].position, e_block_size);
324 ete = diag.array().square().matrix().asDiagonal();
325 } else {
326 ete.setZero();
327 }
328
329 const double* values = A->values();
330 for (int j = 0; j < chunk.size; ++j) {
331 const CompressedRow& row = bs->rows[chunk.start + j];
332 const Cell& e_cell = row.cells.front();
333 DCHECK_EQ(e_block_id, e_cell.block_id);
334
335 FixedArray<double, 8> sj(row.block.size);
336
337 typename EigenTypes<kRowBlockSize>::VectorRef(sj.get(), row.block.size) =
338 typename EigenTypes<kRowBlockSize>::ConstVectorRef
339 (b + bs->rows[chunk.start + j].block.position, row.block.size);
340
341 for (int c = 1; c < row.cells.size(); ++c) {
342 const int f_block_id = row.cells[c].block_id;
343 const int f_block_size = bs->cols[f_block_id].size;
344 const int r_block = f_block_id - num_eliminate_blocks_;
345
346 MatrixVectorMultiply<kRowBlockSize, kFBlockSize, -1>(
347 values + row.cells[c].position, row.block.size, f_block_size,
348 z + lhs_row_layout_[r_block],
349 sj.get());
350 }
351
352 MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
353 values + e_cell.position, row.block.size, e_block_size,
354 sj.get(),
355 y_ptr);
356
357 MatrixTransposeMatrixMultiply
358 <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
359 values + e_cell.position, row.block.size, e_block_size,
360 values + e_cell.position, row.block.size, e_block_size,
361 ete.data(), 0, 0, e_block_size, e_block_size);
362 }
363
364 ete.llt().solveInPlace(y_block);
365 }
366 }
367
368 // Update the rhs of the reduced linear system. Compute
369 //
370 // F'b - F'E(E'E)^(-1) E'b
371 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
372 void
373 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
UpdateRhs(const Chunk & chunk,const BlockSparseMatrix * A,const double * b,int row_block_counter,const double * inverse_ete_g,double * rhs)374 UpdateRhs(const Chunk& chunk,
375 const BlockSparseMatrix* A,
376 const double* b,
377 int row_block_counter,
378 const double* inverse_ete_g,
379 double* rhs) {
380 const CompressedRowBlockStructure* bs = A->block_structure();
381 const int e_block_id = bs->rows[chunk.start].cells.front().block_id;
382 const int e_block_size = bs->cols[e_block_id].size;
383
384 int b_pos = bs->rows[row_block_counter].block.position;
385 const double* values = A->values();
386 for (int j = 0; j < chunk.size; ++j) {
387 const CompressedRow& row = bs->rows[row_block_counter + j];
388 const Cell& e_cell = row.cells.front();
389
390 typename EigenTypes<kRowBlockSize>::Vector sj =
391 typename EigenTypes<kRowBlockSize>::ConstVectorRef
392 (b + b_pos, row.block.size);
393
394 MatrixVectorMultiply<kRowBlockSize, kEBlockSize, -1>(
395 values + e_cell.position, row.block.size, e_block_size,
396 inverse_ete_g, sj.data());
397
398 for (int c = 1; c < row.cells.size(); ++c) {
399 const int block_id = row.cells[c].block_id;
400 const int block_size = bs->cols[block_id].size;
401 const int block = block_id - num_eliminate_blocks_;
402 CeresMutexLock l(rhs_locks_[block]);
403 MatrixTransposeVectorMultiply<kRowBlockSize, kFBlockSize, 1>(
404 values + row.cells[c].position,
405 row.block.size, block_size,
406 sj.data(), rhs + lhs_row_layout_[block]);
407 }
408 b_pos += row.block.size;
409 }
410 }
411
412 // Given a Chunk - set of rows with the same e_block, e.g. in the
413 // following Chunk with two rows.
414 //
415 // E F
416 // [ y11 0 0 0 | z11 0 0 0 z51]
417 // [ y12 0 0 0 | z12 z22 0 0 0]
418 //
419 // this function computes twp matrices. The diagonal block matrix
420 //
421 // ete = y11 * y11' + y12 * y12'
422 //
423 // and the off diagonal blocks in the Guass Newton Hessian.
424 //
425 // buffer = [y11'(z11 + z12), y12' * z22, y11' * z51]
426 //
427 // which are zero compressed versions of the block sparse matrices E'E
428 // and E'F.
429 //
430 // and the gradient of the e_block, E'b.
431 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
432 void
433 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
ChunkDiagonalBlockAndGradient(const Chunk & chunk,const BlockSparseMatrix * A,const double * b,int row_block_counter,typename EigenTypes<kEBlockSize,kEBlockSize>::Matrix * ete,double * g,double * buffer,BlockRandomAccessMatrix * lhs)434 ChunkDiagonalBlockAndGradient(
435 const Chunk& chunk,
436 const BlockSparseMatrix* A,
437 const double* b,
438 int row_block_counter,
439 typename EigenTypes<kEBlockSize, kEBlockSize>::Matrix* ete,
440 double* g,
441 double* buffer,
442 BlockRandomAccessMatrix* lhs) {
443 const CompressedRowBlockStructure* bs = A->block_structure();
444
445 int b_pos = bs->rows[row_block_counter].block.position;
446 const int e_block_size = ete->rows();
447
448 // Iterate over the rows in this chunk, for each row, compute the
449 // contribution of its F blocks to the Schur complement, the
450 // contribution of its E block to the matrix EE' (ete), and the
451 // corresponding block in the gradient vector.
452 const double* values = A->values();
453 for (int j = 0; j < chunk.size; ++j) {
454 const CompressedRow& row = bs->rows[row_block_counter + j];
455
456 if (row.cells.size() > 1) {
457 EBlockRowOuterProduct(A, row_block_counter + j, lhs);
458 }
459
460 // Extract the e_block, ETE += E_i' E_i
461 const Cell& e_cell = row.cells.front();
462 MatrixTransposeMatrixMultiply
463 <kRowBlockSize, kEBlockSize, kRowBlockSize, kEBlockSize, 1>(
464 values + e_cell.position, row.block.size, e_block_size,
465 values + e_cell.position, row.block.size, e_block_size,
466 ete->data(), 0, 0, e_block_size, e_block_size);
467
468 // g += E_i' b_i
469 MatrixTransposeVectorMultiply<kRowBlockSize, kEBlockSize, 1>(
470 values + e_cell.position, row.block.size, e_block_size,
471 b + b_pos,
472 g);
473
474
475 // buffer = E'F. This computation is done by iterating over the
476 // f_blocks for each row in the chunk.
477 for (int c = 1; c < row.cells.size(); ++c) {
478 const int f_block_id = row.cells[c].block_id;
479 const int f_block_size = bs->cols[f_block_id].size;
480 double* buffer_ptr =
481 buffer + FindOrDie(chunk.buffer_layout, f_block_id);
482 MatrixTransposeMatrixMultiply
483 <kRowBlockSize, kEBlockSize, kRowBlockSize, kFBlockSize, 1>(
484 values + e_cell.position, row.block.size, e_block_size,
485 values + row.cells[c].position, row.block.size, f_block_size,
486 buffer_ptr, 0, 0, e_block_size, f_block_size);
487 }
488 b_pos += row.block.size;
489 }
490 }
491
492 // Compute the outer product F'E(E'E)^{-1}E'F and subtract it from the
493 // Schur complement matrix, i.e
494 //
495 // S -= F'E(E'E)^{-1}E'F.
496 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
497 void
498 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
ChunkOuterProduct(const CompressedRowBlockStructure * bs,const Matrix & inverse_ete,const double * buffer,const BufferLayoutType & buffer_layout,BlockRandomAccessMatrix * lhs)499 ChunkOuterProduct(const CompressedRowBlockStructure* bs,
500 const Matrix& inverse_ete,
501 const double* buffer,
502 const BufferLayoutType& buffer_layout,
503 BlockRandomAccessMatrix* lhs) {
504 // This is the most computationally expensive part of this
505 // code. Profiling experiments reveal that the bottleneck is not the
506 // computation of the right-hand matrix product, but memory
507 // references to the left hand side.
508 const int e_block_size = inverse_ete.rows();
509 BufferLayoutType::const_iterator it1 = buffer_layout.begin();
510
511 #ifdef CERES_USE_OPENMP
512 int thread_id = omp_get_thread_num();
513 #else
514 int thread_id = 0;
515 #endif
516 double* b1_transpose_inverse_ete =
517 chunk_outer_product_buffer_.get() + thread_id * buffer_size_;
518
519 // S(i,j) -= bi' * ete^{-1} b_j
520 for (; it1 != buffer_layout.end(); ++it1) {
521 const int block1 = it1->first - num_eliminate_blocks_;
522 const int block1_size = bs->cols[it1->first].size;
523 MatrixTransposeMatrixMultiply
524 <kEBlockSize, kFBlockSize, kEBlockSize, kEBlockSize, 0>(
525 buffer + it1->second, e_block_size, block1_size,
526 inverse_ete.data(), e_block_size, e_block_size,
527 b1_transpose_inverse_ete, 0, 0, block1_size, e_block_size);
528
529 BufferLayoutType::const_iterator it2 = it1;
530 for (; it2 != buffer_layout.end(); ++it2) {
531 const int block2 = it2->first - num_eliminate_blocks_;
532
533 int r, c, row_stride, col_stride;
534 CellInfo* cell_info = lhs->GetCell(block1, block2,
535 &r, &c,
536 &row_stride, &col_stride);
537 if (cell_info != NULL) {
538 const int block2_size = bs->cols[it2->first].size;
539 CeresMutexLock l(&cell_info->m);
540 MatrixMatrixMultiply
541 <kFBlockSize, kEBlockSize, kEBlockSize, kFBlockSize, -1>(
542 b1_transpose_inverse_ete, block1_size, e_block_size,
543 buffer + it2->second, e_block_size, block2_size,
544 cell_info->values, r, c, row_stride, col_stride);
545 }
546 }
547 }
548 }
549
550 // For rows with no e_blocks, the schur complement update reduces to S
551 // += F'F. This function iterates over the rows of A with no e_block,
552 // and calls NoEBlockRowOuterProduct on each row.
553 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
554 void
555 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
NoEBlockRowsUpdate(const BlockSparseMatrix * A,const double * b,int row_block_counter,BlockRandomAccessMatrix * lhs,double * rhs)556 NoEBlockRowsUpdate(const BlockSparseMatrix* A,
557 const double* b,
558 int row_block_counter,
559 BlockRandomAccessMatrix* lhs,
560 double* rhs) {
561 const CompressedRowBlockStructure* bs = A->block_structure();
562 const double* values = A->values();
563 for (; row_block_counter < bs->rows.size(); ++row_block_counter) {
564 const CompressedRow& row = bs->rows[row_block_counter];
565 for (int c = 0; c < row.cells.size(); ++c) {
566 const int block_id = row.cells[c].block_id;
567 const int block_size = bs->cols[block_id].size;
568 const int block = block_id - num_eliminate_blocks_;
569 MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
570 values + row.cells[c].position, row.block.size, block_size,
571 b + row.block.position,
572 rhs + lhs_row_layout_[block]);
573 }
574 NoEBlockRowOuterProduct(A, row_block_counter, lhs);
575 }
576 }
577
578
579 // A row r of A, which has no e_blocks gets added to the Schur
580 // Complement as S += r r'. This function is responsible for computing
581 // the contribution of a single row r to the Schur complement. It is
582 // very similar in structure to EBlockRowOuterProduct except for
583 // one difference. It does not use any of the template
584 // parameters. This is because the algorithm used for detecting the
585 // static structure of the matrix A only pays attention to rows with
586 // e_blocks. This is becase rows without e_blocks are rare and
587 // typically arise from regularization terms in the original
588 // optimization problem, and have a very different structure than the
589 // rows with e_blocks. Including them in the static structure
590 // detection will lead to most template parameters being set to
591 // dynamic. Since the number of rows without e_blocks is small, the
592 // lack of templating is not an issue.
593 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
594 void
595 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
NoEBlockRowOuterProduct(const BlockSparseMatrix * A,int row_block_index,BlockRandomAccessMatrix * lhs)596 NoEBlockRowOuterProduct(const BlockSparseMatrix* A,
597 int row_block_index,
598 BlockRandomAccessMatrix* lhs) {
599 const CompressedRowBlockStructure* bs = A->block_structure();
600 const CompressedRow& row = bs->rows[row_block_index];
601 const double* values = A->values();
602 for (int i = 0; i < row.cells.size(); ++i) {
603 const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
604 DCHECK_GE(block1, 0);
605
606 const int block1_size = bs->cols[row.cells[i].block_id].size;
607 int r, c, row_stride, col_stride;
608 CellInfo* cell_info = lhs->GetCell(block1, block1,
609 &r, &c,
610 &row_stride, &col_stride);
611 if (cell_info != NULL) {
612 CeresMutexLock l(&cell_info->m);
613 // This multiply currently ignores the fact that this is a
614 // symmetric outer product.
615 MatrixTransposeMatrixMultiply
616 <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
617 values + row.cells[i].position, row.block.size, block1_size,
618 values + row.cells[i].position, row.block.size, block1_size,
619 cell_info->values, r, c, row_stride, col_stride);
620 }
621
622 for (int j = i + 1; j < row.cells.size(); ++j) {
623 const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
624 DCHECK_GE(block2, 0);
625 DCHECK_LT(block1, block2);
626 int r, c, row_stride, col_stride;
627 CellInfo* cell_info = lhs->GetCell(block1, block2,
628 &r, &c,
629 &row_stride, &col_stride);
630 if (cell_info != NULL) {
631 const int block2_size = bs->cols[row.cells[j].block_id].size;
632 CeresMutexLock l(&cell_info->m);
633 MatrixTransposeMatrixMultiply
634 <Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, Eigen::Dynamic, 1>(
635 values + row.cells[i].position, row.block.size, block1_size,
636 values + row.cells[j].position, row.block.size, block2_size,
637 cell_info->values, r, c, row_stride, col_stride);
638 }
639 }
640 }
641 }
642
643 // For a row with an e_block, compute the contribition S += F'F. This
644 // function has the same structure as NoEBlockRowOuterProduct, except
645 // that this function uses the template parameters.
646 template <int kRowBlockSize, int kEBlockSize, int kFBlockSize>
647 void
648 SchurEliminator<kRowBlockSize, kEBlockSize, kFBlockSize>::
EBlockRowOuterProduct(const BlockSparseMatrix * A,int row_block_index,BlockRandomAccessMatrix * lhs)649 EBlockRowOuterProduct(const BlockSparseMatrix* A,
650 int row_block_index,
651 BlockRandomAccessMatrix* lhs) {
652 const CompressedRowBlockStructure* bs = A->block_structure();
653 const CompressedRow& row = bs->rows[row_block_index];
654 const double* values = A->values();
655 for (int i = 1; i < row.cells.size(); ++i) {
656 const int block1 = row.cells[i].block_id - num_eliminate_blocks_;
657 DCHECK_GE(block1, 0);
658
659 const int block1_size = bs->cols[row.cells[i].block_id].size;
660 int r, c, row_stride, col_stride;
661 CellInfo* cell_info = lhs->GetCell(block1, block1,
662 &r, &c,
663 &row_stride, &col_stride);
664 if (cell_info != NULL) {
665 CeresMutexLock l(&cell_info->m);
666 // block += b1.transpose() * b1;
667 MatrixTransposeMatrixMultiply
668 <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
669 values + row.cells[i].position, row.block.size, block1_size,
670 values + row.cells[i].position, row.block.size, block1_size,
671 cell_info->values, r, c, row_stride, col_stride);
672 }
673
674 for (int j = i + 1; j < row.cells.size(); ++j) {
675 const int block2 = row.cells[j].block_id - num_eliminate_blocks_;
676 DCHECK_GE(block2, 0);
677 DCHECK_LT(block1, block2);
678 const int block2_size = bs->cols[row.cells[j].block_id].size;
679 int r, c, row_stride, col_stride;
680 CellInfo* cell_info = lhs->GetCell(block1, block2,
681 &r, &c,
682 &row_stride, &col_stride);
683 if (cell_info != NULL) {
684 // block += b1.transpose() * b2;
685 CeresMutexLock l(&cell_info->m);
686 MatrixTransposeMatrixMultiply
687 <kRowBlockSize, kFBlockSize, kRowBlockSize, kFBlockSize, 1>(
688 values + row.cells[i].position, row.block.size, block1_size,
689 values + row.cells[j].position, row.block.size, block2_size,
690 cell_info->values, r, c, row_stride, col_stride);
691 }
692 }
693 }
694 }
695
696 } // namespace internal
697 } // namespace ceres
698
699 #endif // CERES_INTERNAL_SCHUR_ELIMINATOR_IMPL_H_
700