1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Transforms/Utils/Cloning.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 #include "llvm/Transforms/Utils/ValueMapper.h"
35 #include <map>
36 using namespace llvm;
37 
38 /// See comments in Cloning.h.
CloneBasicBlock(const BasicBlock * BB,ValueToValueMapTy & VMap,const Twine & NameSuffix,Function * F,ClonedCodeInfo * CodeInfo)39 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
40                                   ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo) {
43   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
44   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
45 
46   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
47 
48   // Loop over all instructions, and copy them over.
49   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
50        II != IE; ++II) {
51     Instruction *NewInst = II->clone();
52     if (II->hasName())
53       NewInst->setName(II->getName()+NameSuffix);
54     NewBB->getInstList().push_back(NewInst);
55     VMap[&*II] = NewInst; // Add instruction map to value.
56 
57     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
58     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
59       if (isa<ConstantInt>(AI->getArraySize()))
60         hasStaticAllocas = true;
61       else
62         hasDynamicAllocas = true;
63     }
64   }
65 
66   if (CodeInfo) {
67     CodeInfo->ContainsCalls          |= hasCalls;
68     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
69     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
70                                         BB != &BB->getParent()->getEntryBlock();
71   }
72   return NewBB;
73 }
74 
75 // Clone OldFunc into NewFunc, transforming the old arguments into references to
76 // VMap values.
77 //
CloneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,ValueMapTypeRemapper * TypeMapper,ValueMaterializer * Materializer)78 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
79                              ValueToValueMapTy &VMap,
80                              bool ModuleLevelChanges,
81                              SmallVectorImpl<ReturnInst*> &Returns,
82                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
83                              ValueMapTypeRemapper *TypeMapper,
84                              ValueMaterializer *Materializer) {
85   assert(NameSuffix && "NameSuffix cannot be null!");
86 
87 #ifndef NDEBUG
88   for (const Argument &I : OldFunc->args())
89     assert(VMap.count(&I) && "No mapping from source argument specified!");
90 #endif
91 
92   // Copy all attributes other than those stored in the AttributeSet.  We need
93   // to remap the parameter indices of the AttributeSet.
94   AttributeSet NewAttrs = NewFunc->getAttributes();
95   NewFunc->copyAttributesFrom(OldFunc);
96   NewFunc->setAttributes(NewAttrs);
97 
98   // Fix up the personality function that got copied over.
99   if (OldFunc->hasPersonalityFn())
100     NewFunc->setPersonalityFn(
101         MapValue(OldFunc->getPersonalityFn(), VMap,
102                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
103                  TypeMapper, Materializer));
104 
105   AttributeSet OldAttrs = OldFunc->getAttributes();
106   // Clone any argument attributes that are present in the VMap.
107   for (const Argument &OldArg : OldFunc->args())
108     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
109       AttributeSet attrs =
110           OldAttrs.getParamAttributes(OldArg.getArgNo() + 1);
111       if (attrs.getNumSlots() > 0)
112         NewArg->addAttr(attrs);
113     }
114 
115   NewFunc->setAttributes(
116       NewFunc->getAttributes()
117           .addAttributes(NewFunc->getContext(), AttributeSet::ReturnIndex,
118                          OldAttrs.getRetAttributes())
119           .addAttributes(NewFunc->getContext(), AttributeSet::FunctionIndex,
120                          OldAttrs.getFnAttributes()));
121 
122   // Loop over all of the basic blocks in the function, cloning them as
123   // appropriate.  Note that we save BE this way in order to handle cloning of
124   // recursive functions into themselves.
125   //
126   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
127        BI != BE; ++BI) {
128     const BasicBlock &BB = *BI;
129 
130     // Create a new basic block and copy instructions into it!
131     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
132 
133     // Add basic block mapping.
134     VMap[&BB] = CBB;
135 
136     // It is only legal to clone a function if a block address within that
137     // function is never referenced outside of the function.  Given that, we
138     // want to map block addresses from the old function to block addresses in
139     // the clone. (This is different from the generic ValueMapper
140     // implementation, which generates an invalid blockaddress when
141     // cloning a function.)
142     if (BB.hasAddressTaken()) {
143       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
144                                               const_cast<BasicBlock*>(&BB));
145       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
146     }
147 
148     // Note return instructions for the caller.
149     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
150       Returns.push_back(RI);
151   }
152 
153   // Loop over all of the instructions in the function, fixing up operand
154   // references as we go.  This uses VMap to do all the hard work.
155   for (Function::iterator BB =
156            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
157                           BE = NewFunc->end();
158        BB != BE; ++BB)
159     // Loop over all instructions, fixing each one as we find it...
160     for (Instruction &II : *BB)
161       RemapInstruction(&II, VMap,
162                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
163                        TypeMapper, Materializer);
164 }
165 
166 // Find the MDNode which corresponds to the subprogram data that described F.
FindSubprogram(const Function * F,DebugInfoFinder & Finder)167 static DISubprogram *FindSubprogram(const Function *F,
168                                     DebugInfoFinder &Finder) {
169   for (DISubprogram *Subprogram : Finder.subprograms()) {
170     if (Subprogram->describes(F))
171       return Subprogram;
172   }
173   return nullptr;
174 }
175 
176 // Add an operand to an existing MDNode. The new operand will be added at the
177 // back of the operand list.
AddOperand(DICompileUnit * CU,DISubprogramArray SPs,Metadata * NewSP)178 static void AddOperand(DICompileUnit *CU, DISubprogramArray SPs,
179                        Metadata *NewSP) {
180   SmallVector<Metadata *, 16> NewSPs;
181   NewSPs.reserve(SPs.size() + 1);
182   for (auto *SP : SPs)
183     NewSPs.push_back(SP);
184   NewSPs.push_back(NewSP);
185   CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
186 }
187 
188 // Clone the module-level debug info associated with OldFunc. The cloned data
189 // will point to NewFunc instead.
CloneDebugInfoMetadata(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap)190 static void CloneDebugInfoMetadata(Function *NewFunc, const Function *OldFunc,
191                             ValueToValueMapTy &VMap) {
192   DebugInfoFinder Finder;
193   Finder.processModule(*OldFunc->getParent());
194 
195   const DISubprogram *OldSubprogramMDNode = FindSubprogram(OldFunc, Finder);
196   if (!OldSubprogramMDNode) return;
197 
198   auto *NewSubprogram =
199       cast<DISubprogram>(MapMetadata(OldSubprogramMDNode, VMap));
200   NewFunc->setSubprogram(NewSubprogram);
201 
202   for (auto *CU : Finder.compile_units()) {
203     auto Subprograms = CU->getSubprograms();
204     // If the compile unit's function list contains the old function, it should
205     // also contain the new one.
206     for (auto *SP : Subprograms) {
207       if (SP == OldSubprogramMDNode) {
208         AddOperand(CU, Subprograms, NewSubprogram);
209         break;
210       }
211     }
212   }
213 }
214 
215 /// Return a copy of the specified function, but without
216 /// embedding the function into another module.  Also, any references specified
217 /// in the VMap are changed to refer to their mapped value instead of the
218 /// original one.  If any of the arguments to the function are in the VMap,
219 /// the arguments are deleted from the resultant function.  The VMap is
220 /// updated to include mappings from all of the instructions and basicblocks in
221 /// the function from their old to new values.
222 ///
CloneFunction(const Function * F,ValueToValueMapTy & VMap,bool ModuleLevelChanges,ClonedCodeInfo * CodeInfo)223 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
224                               bool ModuleLevelChanges,
225                               ClonedCodeInfo *CodeInfo) {
226   std::vector<Type*> ArgTypes;
227 
228   // The user might be deleting arguments to the function by specifying them in
229   // the VMap.  If so, we need to not add the arguments to the arg ty vector
230   //
231   for (const Argument &I : F->args())
232     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
233       ArgTypes.push_back(I.getType());
234 
235   // Create a new function type...
236   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
237                                     ArgTypes, F->getFunctionType()->isVarArg());
238 
239   // Create the new function...
240   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
241 
242   // Loop over the arguments, copying the names of the mapped arguments over...
243   Function::arg_iterator DestI = NewF->arg_begin();
244   for (const Argument & I : F->args())
245     if (VMap.count(&I) == 0) {     // Is this argument preserved?
246       DestI->setName(I.getName()); // Copy the name over...
247       VMap[&I] = &*DestI++;        // Add mapping to VMap
248     }
249 
250   if (ModuleLevelChanges)
251     CloneDebugInfoMetadata(NewF, F, VMap);
252 
253   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
254   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
255   return NewF;
256 }
257 
258 
259 
260 namespace {
261   /// This is a private class used to implement CloneAndPruneFunctionInto.
262   struct PruningFunctionCloner {
263     Function *NewFunc;
264     const Function *OldFunc;
265     ValueToValueMapTy &VMap;
266     bool ModuleLevelChanges;
267     const char *NameSuffix;
268     ClonedCodeInfo *CodeInfo;
269     CloningDirector *Director;
270     ValueMapTypeRemapper *TypeMapper;
271     ValueMaterializer *Materializer;
272 
273   public:
PruningFunctionCloner__anondaf9d3c70111::PruningFunctionCloner274     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
275                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
276                           const char *nameSuffix, ClonedCodeInfo *codeInfo,
277                           CloningDirector *Director)
278         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
279           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
280           CodeInfo(codeInfo), Director(Director) {
281       // These are optional components.  The Director may return null.
282       if (Director) {
283         TypeMapper = Director->getTypeRemapper();
284         Materializer = Director->getValueMaterializer();
285       } else {
286         TypeMapper = nullptr;
287         Materializer = nullptr;
288       }
289     }
290 
291     /// The specified block is found to be reachable, clone it and
292     /// anything that it can reach.
293     void CloneBlock(const BasicBlock *BB,
294                     BasicBlock::const_iterator StartingInst,
295                     std::vector<const BasicBlock*> &ToClone);
296   };
297 }
298 
299 /// The specified block is found to be reachable, clone it and
300 /// anything that it can reach.
CloneBlock(const BasicBlock * BB,BasicBlock::const_iterator StartingInst,std::vector<const BasicBlock * > & ToClone)301 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
302                                        BasicBlock::const_iterator StartingInst,
303                                        std::vector<const BasicBlock*> &ToClone){
304   WeakVH &BBEntry = VMap[BB];
305 
306   // Have we already cloned this block?
307   if (BBEntry) return;
308 
309   // Nope, clone it now.
310   BasicBlock *NewBB;
311   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
312   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
313 
314   // It is only legal to clone a function if a block address within that
315   // function is never referenced outside of the function.  Given that, we
316   // want to map block addresses from the old function to block addresses in
317   // the clone. (This is different from the generic ValueMapper
318   // implementation, which generates an invalid blockaddress when
319   // cloning a function.)
320   //
321   // Note that we don't need to fix the mapping for unreachable blocks;
322   // the default mapping there is safe.
323   if (BB->hasAddressTaken()) {
324     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
325                                             const_cast<BasicBlock*>(BB));
326     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
327   }
328 
329   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
330 
331   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
332   // loop doesn't include the terminator.
333   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
334        II != IE; ++II) {
335     // If the "Director" remaps the instruction, don't clone it.
336     if (Director) {
337       CloningDirector::CloningAction Action =
338           Director->handleInstruction(VMap, &*II, NewBB);
339       // If the cloning director says stop, we want to stop everything, not
340       // just break out of the loop (which would cause the terminator to be
341       // cloned).  The cloning director is responsible for inserting a proper
342       // terminator into the new basic block in this case.
343       if (Action == CloningDirector::StopCloningBB)
344         return;
345       // If the cloning director says skip, continue to the next instruction.
346       // In this case, the cloning director is responsible for mapping the
347       // skipped instruction to some value that is defined in the new
348       // basic block.
349       if (Action == CloningDirector::SkipInstruction)
350         continue;
351     }
352 
353     Instruction *NewInst = II->clone();
354 
355     // Eagerly remap operands to the newly cloned instruction, except for PHI
356     // nodes for which we defer processing until we update the CFG.
357     if (!isa<PHINode>(NewInst)) {
358       RemapInstruction(NewInst, VMap,
359                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
360                        TypeMapper, Materializer);
361 
362       // If we can simplify this instruction to some other value, simply add
363       // a mapping to that value rather than inserting a new instruction into
364       // the basic block.
365       if (Value *V =
366               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
367         // On the off-chance that this simplifies to an instruction in the old
368         // function, map it back into the new function.
369         if (Value *MappedV = VMap.lookup(V))
370           V = MappedV;
371 
372         VMap[&*II] = V;
373         delete NewInst;
374         continue;
375       }
376     }
377 
378     if (II->hasName())
379       NewInst->setName(II->getName()+NameSuffix);
380     VMap[&*II] = NewInst; // Add instruction map to value.
381     NewBB->getInstList().push_back(NewInst);
382     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
383 
384     if (CodeInfo)
385       if (auto CS = ImmutableCallSite(&*II))
386         if (CS.hasOperandBundles())
387           CodeInfo->OperandBundleCallSites.push_back(NewInst);
388 
389     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
390       if (isa<ConstantInt>(AI->getArraySize()))
391         hasStaticAllocas = true;
392       else
393         hasDynamicAllocas = true;
394     }
395   }
396 
397   // Finally, clone over the terminator.
398   const TerminatorInst *OldTI = BB->getTerminator();
399   bool TerminatorDone = false;
400   if (Director) {
401     CloningDirector::CloningAction Action
402                            = Director->handleInstruction(VMap, OldTI, NewBB);
403     // If the cloning director says stop, we want to stop everything, not
404     // just break out of the loop (which would cause the terminator to be
405     // cloned).  The cloning director is responsible for inserting a proper
406     // terminator into the new basic block in this case.
407     if (Action == CloningDirector::StopCloningBB)
408       return;
409     if (Action == CloningDirector::CloneSuccessors) {
410       // If the director says to skip with a terminate instruction, we still
411       // need to clone this block's successors.
412       const TerminatorInst *TI = NewBB->getTerminator();
413       for (const BasicBlock *Succ : TI->successors())
414         ToClone.push_back(Succ);
415       return;
416     }
417     assert(Action != CloningDirector::SkipInstruction &&
418            "SkipInstruction is not valid for terminators.");
419   }
420   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
421     if (BI->isConditional()) {
422       // If the condition was a known constant in the callee...
423       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
424       // Or is a known constant in the caller...
425       if (!Cond) {
426         Value *V = VMap[BI->getCondition()];
427         Cond = dyn_cast_or_null<ConstantInt>(V);
428       }
429 
430       // Constant fold to uncond branch!
431       if (Cond) {
432         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
433         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
434         ToClone.push_back(Dest);
435         TerminatorDone = true;
436       }
437     }
438   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
439     // If switching on a value known constant in the caller.
440     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
441     if (!Cond) { // Or known constant after constant prop in the callee...
442       Value *V = VMap[SI->getCondition()];
443       Cond = dyn_cast_or_null<ConstantInt>(V);
444     }
445     if (Cond) {     // Constant fold to uncond branch!
446       SwitchInst::ConstCaseIt Case = SI->findCaseValue(Cond);
447       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
448       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
449       ToClone.push_back(Dest);
450       TerminatorDone = true;
451     }
452   }
453 
454   if (!TerminatorDone) {
455     Instruction *NewInst = OldTI->clone();
456     if (OldTI->hasName())
457       NewInst->setName(OldTI->getName()+NameSuffix);
458     NewBB->getInstList().push_back(NewInst);
459     VMap[OldTI] = NewInst;             // Add instruction map to value.
460 
461     if (CodeInfo)
462       if (auto CS = ImmutableCallSite(OldTI))
463         if (CS.hasOperandBundles())
464           CodeInfo->OperandBundleCallSites.push_back(NewInst);
465 
466     // Recursively clone any reachable successor blocks.
467     const TerminatorInst *TI = BB->getTerminator();
468     for (const BasicBlock *Succ : TI->successors())
469       ToClone.push_back(Succ);
470   }
471 
472   if (CodeInfo) {
473     CodeInfo->ContainsCalls          |= hasCalls;
474     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
475     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
476       BB != &BB->getParent()->front();
477   }
478 }
479 
480 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
481 /// entire function. Instead it starts at an instruction provided by the caller
482 /// and copies (and prunes) only the code reachable from that instruction.
CloneAndPruneIntoFromInst(Function * NewFunc,const Function * OldFunc,const Instruction * StartingInst,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,CloningDirector * Director)483 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
484                                      const Instruction *StartingInst,
485                                      ValueToValueMapTy &VMap,
486                                      bool ModuleLevelChanges,
487                                      SmallVectorImpl<ReturnInst *> &Returns,
488                                      const char *NameSuffix,
489                                      ClonedCodeInfo *CodeInfo,
490                                      CloningDirector *Director) {
491   assert(NameSuffix && "NameSuffix cannot be null!");
492 
493   ValueMapTypeRemapper *TypeMapper = nullptr;
494   ValueMaterializer *Materializer = nullptr;
495 
496   if (Director) {
497     TypeMapper = Director->getTypeRemapper();
498     Materializer = Director->getValueMaterializer();
499   }
500 
501 #ifndef NDEBUG
502   // If the cloning starts at the beginning of the function, verify that
503   // the function arguments are mapped.
504   if (!StartingInst)
505     for (const Argument &II : OldFunc->args())
506       assert(VMap.count(&II) && "No mapping from source argument specified!");
507 #endif
508 
509   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
510                             NameSuffix, CodeInfo, Director);
511   const BasicBlock *StartingBB;
512   if (StartingInst)
513     StartingBB = StartingInst->getParent();
514   else {
515     StartingBB = &OldFunc->getEntryBlock();
516     StartingInst = &StartingBB->front();
517   }
518 
519   // Clone the entry block, and anything recursively reachable from it.
520   std::vector<const BasicBlock*> CloneWorklist;
521   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
522   while (!CloneWorklist.empty()) {
523     const BasicBlock *BB = CloneWorklist.back();
524     CloneWorklist.pop_back();
525     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
526   }
527 
528   // Loop over all of the basic blocks in the old function.  If the block was
529   // reachable, we have cloned it and the old block is now in the value map:
530   // insert it into the new function in the right order.  If not, ignore it.
531   //
532   // Defer PHI resolution until rest of function is resolved.
533   SmallVector<const PHINode*, 16> PHIToResolve;
534   for (const BasicBlock &BI : *OldFunc) {
535     Value *V = VMap[&BI];
536     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
537     if (!NewBB) continue;  // Dead block.
538 
539     // Add the new block to the new function.
540     NewFunc->getBasicBlockList().push_back(NewBB);
541 
542     // Handle PHI nodes specially, as we have to remove references to dead
543     // blocks.
544     for (BasicBlock::const_iterator I = BI.begin(), E = BI.end(); I != E; ++I) {
545       // PHI nodes may have been remapped to non-PHI nodes by the caller or
546       // during the cloning process.
547       if (const PHINode *PN = dyn_cast<PHINode>(I)) {
548         if (isa<PHINode>(VMap[PN]))
549           PHIToResolve.push_back(PN);
550         else
551           break;
552       } else {
553         break;
554       }
555     }
556 
557     // Finally, remap the terminator instructions, as those can't be remapped
558     // until all BBs are mapped.
559     RemapInstruction(NewBB->getTerminator(), VMap,
560                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
561                      TypeMapper, Materializer);
562   }
563 
564   // Defer PHI resolution until rest of function is resolved, PHI resolution
565   // requires the CFG to be up-to-date.
566   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
567     const PHINode *OPN = PHIToResolve[phino];
568     unsigned NumPreds = OPN->getNumIncomingValues();
569     const BasicBlock *OldBB = OPN->getParent();
570     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
571 
572     // Map operands for blocks that are live and remove operands for blocks
573     // that are dead.
574     for (; phino != PHIToResolve.size() &&
575          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
576       OPN = PHIToResolve[phino];
577       PHINode *PN = cast<PHINode>(VMap[OPN]);
578       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
579         Value *V = VMap[PN->getIncomingBlock(pred)];
580         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
581           Value *InVal = MapValue(PN->getIncomingValue(pred),
582                                   VMap,
583                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
584           assert(InVal && "Unknown input value?");
585           PN->setIncomingValue(pred, InVal);
586           PN->setIncomingBlock(pred, MappedBlock);
587         } else {
588           PN->removeIncomingValue(pred, false);
589           --pred, --e;  // Revisit the next entry.
590         }
591       }
592     }
593 
594     // The loop above has removed PHI entries for those blocks that are dead
595     // and has updated others.  However, if a block is live (i.e. copied over)
596     // but its terminator has been changed to not go to this block, then our
597     // phi nodes will have invalid entries.  Update the PHI nodes in this
598     // case.
599     PHINode *PN = cast<PHINode>(NewBB->begin());
600     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
601     if (NumPreds != PN->getNumIncomingValues()) {
602       assert(NumPreds < PN->getNumIncomingValues());
603       // Count how many times each predecessor comes to this block.
604       std::map<BasicBlock*, unsigned> PredCount;
605       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
606            PI != E; ++PI)
607         --PredCount[*PI];
608 
609       // Figure out how many entries to remove from each PHI.
610       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
611         ++PredCount[PN->getIncomingBlock(i)];
612 
613       // At this point, the excess predecessor entries are positive in the
614       // map.  Loop over all of the PHIs and remove excess predecessor
615       // entries.
616       BasicBlock::iterator I = NewBB->begin();
617       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
618         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
619              E = PredCount.end(); PCI != E; ++PCI) {
620           BasicBlock *Pred     = PCI->first;
621           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
622             PN->removeIncomingValue(Pred, false);
623         }
624       }
625     }
626 
627     // If the loops above have made these phi nodes have 0 or 1 operand,
628     // replace them with undef or the input value.  We must do this for
629     // correctness, because 0-operand phis are not valid.
630     PN = cast<PHINode>(NewBB->begin());
631     if (PN->getNumIncomingValues() == 0) {
632       BasicBlock::iterator I = NewBB->begin();
633       BasicBlock::const_iterator OldI = OldBB->begin();
634       while ((PN = dyn_cast<PHINode>(I++))) {
635         Value *NV = UndefValue::get(PN->getType());
636         PN->replaceAllUsesWith(NV);
637         assert(VMap[&*OldI] == PN && "VMap mismatch");
638         VMap[&*OldI] = NV;
639         PN->eraseFromParent();
640         ++OldI;
641       }
642     }
643   }
644 
645   // Make a second pass over the PHINodes now that all of them have been
646   // remapped into the new function, simplifying the PHINode and performing any
647   // recursive simplifications exposed. This will transparently update the
648   // WeakVH in the VMap. Notably, we rely on that so that if we coalesce
649   // two PHINodes, the iteration over the old PHIs remains valid, and the
650   // mapping will just map us to the new node (which may not even be a PHI
651   // node).
652   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
653     if (PHINode *PN = dyn_cast<PHINode>(VMap[PHIToResolve[Idx]]))
654       recursivelySimplifyInstruction(PN);
655 
656   // Now that the inlined function body has been fully constructed, go through
657   // and zap unconditional fall-through branches. This happens all the time when
658   // specializing code: code specialization turns conditional branches into
659   // uncond branches, and this code folds them.
660   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
661   Function::iterator I = Begin;
662   while (I != NewFunc->end()) {
663     // Check if this block has become dead during inlining or other
664     // simplifications. Note that the first block will appear dead, as it has
665     // not yet been wired up properly.
666     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
667                        I->getSinglePredecessor() == &*I)) {
668       BasicBlock *DeadBB = &*I++;
669       DeleteDeadBlock(DeadBB);
670       continue;
671     }
672 
673     // We need to simplify conditional branches and switches with a constant
674     // operand. We try to prune these out when cloning, but if the
675     // simplification required looking through PHI nodes, those are only
676     // available after forming the full basic block. That may leave some here,
677     // and we still want to prune the dead code as early as possible.
678     ConstantFoldTerminator(&*I);
679 
680     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
681     if (!BI || BI->isConditional()) { ++I; continue; }
682 
683     BasicBlock *Dest = BI->getSuccessor(0);
684     if (!Dest->getSinglePredecessor()) {
685       ++I; continue;
686     }
687 
688     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
689     // above should have zapped all of them..
690     assert(!isa<PHINode>(Dest->begin()));
691 
692     // We know all single-entry PHI nodes in the inlined function have been
693     // removed, so we just need to splice the blocks.
694     BI->eraseFromParent();
695 
696     // Make all PHI nodes that referred to Dest now refer to I as their source.
697     Dest->replaceAllUsesWith(&*I);
698 
699     // Move all the instructions in the succ to the pred.
700     I->getInstList().splice(I->end(), Dest->getInstList());
701 
702     // Remove the dest block.
703     Dest->eraseFromParent();
704 
705     // Do not increment I, iteratively merge all things this block branches to.
706   }
707 
708   // Make a final pass over the basic blocks from the old function to gather
709   // any return instructions which survived folding. We have to do this here
710   // because we can iteratively remove and merge returns above.
711   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
712                           E = NewFunc->end();
713        I != E; ++I)
714     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
715       Returns.push_back(RI);
716 }
717 
718 
719 /// This works exactly like CloneFunctionInto,
720 /// except that it does some simple constant prop and DCE on the fly.  The
721 /// effect of this is to copy significantly less code in cases where (for
722 /// example) a function call with constant arguments is inlined, and those
723 /// constant arguments cause a significant amount of code in the callee to be
724 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
725 /// used for things like CloneFunction or CloneModule.
CloneAndPruneFunctionInto(Function * NewFunc,const Function * OldFunc,ValueToValueMapTy & VMap,bool ModuleLevelChanges,SmallVectorImpl<ReturnInst * > & Returns,const char * NameSuffix,ClonedCodeInfo * CodeInfo,Instruction * TheCall)726 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
727                                      ValueToValueMapTy &VMap,
728                                      bool ModuleLevelChanges,
729                                      SmallVectorImpl<ReturnInst*> &Returns,
730                                      const char *NameSuffix,
731                                      ClonedCodeInfo *CodeInfo,
732                                      Instruction *TheCall) {
733   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
734                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo,
735                             nullptr);
736 }
737 
738 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock * > & Blocks,ValueToValueMapTy & VMap)739 void llvm::remapInstructionsInBlocks(
740     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
741   // Rewrite the code to refer to itself.
742   for (auto *BB : Blocks)
743     for (auto &Inst : *BB)
744       RemapInstruction(&Inst, VMap,
745                        RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
746 }
747 
748 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
749 /// Blocks.
750 ///
751 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
752 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
cloneLoopWithPreheader(BasicBlock * Before,BasicBlock * LoopDomBB,Loop * OrigLoop,ValueToValueMapTy & VMap,const Twine & NameSuffix,LoopInfo * LI,DominatorTree * DT,SmallVectorImpl<BasicBlock * > & Blocks)753 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
754                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
755                                    const Twine &NameSuffix, LoopInfo *LI,
756                                    DominatorTree *DT,
757                                    SmallVectorImpl<BasicBlock *> &Blocks) {
758   Function *F = OrigLoop->getHeader()->getParent();
759   Loop *ParentLoop = OrigLoop->getParentLoop();
760 
761   Loop *NewLoop = new Loop();
762   if (ParentLoop)
763     ParentLoop->addChildLoop(NewLoop);
764   else
765     LI->addTopLevelLoop(NewLoop);
766 
767   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
768   assert(OrigPH && "No preheader");
769   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
770   // To rename the loop PHIs.
771   VMap[OrigPH] = NewPH;
772   Blocks.push_back(NewPH);
773 
774   // Update LoopInfo.
775   if (ParentLoop)
776     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
777 
778   // Update DominatorTree.
779   DT->addNewBlock(NewPH, LoopDomBB);
780 
781   for (BasicBlock *BB : OrigLoop->getBlocks()) {
782     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
783     VMap[BB] = NewBB;
784 
785     // Update LoopInfo.
786     NewLoop->addBasicBlockToLoop(NewBB, *LI);
787 
788     // Update DominatorTree.
789     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
790     DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
791 
792     Blocks.push_back(NewBB);
793   }
794 
795   // Move them physically from the end of the block list.
796   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
797                                 NewPH);
798   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
799                                 NewLoop->getHeader()->getIterator(), F->end());
800 
801   return NewLoop;
802 }
803