1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/CXXInheritance.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/ExprObjC.h"
23 #include "clang/AST/RecursiveASTVisitor.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/AST/StmtObjC.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Sema/Initialization.h"
31 #include "clang/Sema/Lookup.h"
32 #include "clang/Sema/Scope.h"
33 #include "clang/Sema/ScopeInfo.h"
34 #include "llvm/ADT/ArrayRef.h"
35 #include "llvm/ADT/DenseMap.h"
36 #include "llvm/ADT/STLExtras.h"
37 #include "llvm/ADT/SmallPtrSet.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/SmallVector.h"
40 using namespace clang;
41 using namespace sema;
42 
ActOnExprStmt(ExprResult FE)43 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
44   if (FE.isInvalid())
45     return StmtError();
46 
47   FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
48                            /*DiscardedValue*/ true);
49   if (FE.isInvalid())
50     return StmtError();
51 
52   // C99 6.8.3p2: The expression in an expression statement is evaluated as a
53   // void expression for its side effects.  Conversion to void allows any
54   // operand, even incomplete types.
55 
56   // Same thing in for stmt first clause (when expr) and third clause.
57   return StmtResult(FE.getAs<Stmt>());
58 }
59 
60 
ActOnExprStmtError()61 StmtResult Sema::ActOnExprStmtError() {
62   DiscardCleanupsInEvaluationContext();
63   return StmtError();
64 }
65 
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)66 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
67                                bool HasLeadingEmptyMacro) {
68   return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
69 }
70 
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)71 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
72                                SourceLocation EndLoc) {
73   DeclGroupRef DG = dg.get();
74 
75   // If we have an invalid decl, just return an error.
76   if (DG.isNull()) return StmtError();
77 
78   return new (Context) DeclStmt(DG, StartLoc, EndLoc);
79 }
80 
ActOnForEachDeclStmt(DeclGroupPtrTy dg)81 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
82   DeclGroupRef DG = dg.get();
83 
84   // If we don't have a declaration, or we have an invalid declaration,
85   // just return.
86   if (DG.isNull() || !DG.isSingleDecl())
87     return;
88 
89   Decl *decl = DG.getSingleDecl();
90   if (!decl || decl->isInvalidDecl())
91     return;
92 
93   // Only variable declarations are permitted.
94   VarDecl *var = dyn_cast<VarDecl>(decl);
95   if (!var) {
96     Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
97     decl->setInvalidDecl();
98     return;
99   }
100 
101   // foreach variables are never actually initialized in the way that
102   // the parser came up with.
103   var->setInit(nullptr);
104 
105   // In ARC, we don't need to retain the iteration variable of a fast
106   // enumeration loop.  Rather than actually trying to catch that
107   // during declaration processing, we remove the consequences here.
108   if (getLangOpts().ObjCAutoRefCount) {
109     QualType type = var->getType();
110 
111     // Only do this if we inferred the lifetime.  Inferred lifetime
112     // will show up as a local qualifier because explicit lifetime
113     // should have shown up as an AttributedType instead.
114     if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
115       // Add 'const' and mark the variable as pseudo-strong.
116       var->setType(type.withConst());
117       var->setARCPseudoStrong(true);
118     }
119   }
120 }
121 
122 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
123 /// For '==' and '!=', suggest fixits for '=' or '|='.
124 ///
125 /// Adding a cast to void (or other expression wrappers) will prevent the
126 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)127 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
128   SourceLocation Loc;
129   bool IsNotEqual, CanAssign, IsRelational;
130 
131   if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
132     if (!Op->isComparisonOp())
133       return false;
134 
135     IsRelational = Op->isRelationalOp();
136     Loc = Op->getOperatorLoc();
137     IsNotEqual = Op->getOpcode() == BO_NE;
138     CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
139   } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
140     switch (Op->getOperator()) {
141     default:
142       return false;
143     case OO_EqualEqual:
144     case OO_ExclaimEqual:
145       IsRelational = false;
146       break;
147     case OO_Less:
148     case OO_Greater:
149     case OO_GreaterEqual:
150     case OO_LessEqual:
151       IsRelational = true;
152       break;
153     }
154 
155     Loc = Op->getOperatorLoc();
156     IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
157     CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
158   } else {
159     // Not a typo-prone comparison.
160     return false;
161   }
162 
163   // Suppress warnings when the operator, suspicious as it may be, comes from
164   // a macro expansion.
165   if (S.SourceMgr.isMacroBodyExpansion(Loc))
166     return false;
167 
168   S.Diag(Loc, diag::warn_unused_comparison)
169     << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
170 
171   // If the LHS is a plausible entity to assign to, provide a fixit hint to
172   // correct common typos.
173   if (!IsRelational && CanAssign) {
174     if (IsNotEqual)
175       S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
176         << FixItHint::CreateReplacement(Loc, "|=");
177     else
178       S.Diag(Loc, diag::note_equality_comparison_to_assign)
179         << FixItHint::CreateReplacement(Loc, "=");
180   }
181 
182   return true;
183 }
184 
DiagnoseUnusedExprResult(const Stmt * S)185 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
186   if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
187     return DiagnoseUnusedExprResult(Label->getSubStmt());
188 
189   const Expr *E = dyn_cast_or_null<Expr>(S);
190   if (!E)
191     return;
192 
193   // If we are in an unevaluated expression context, then there can be no unused
194   // results because the results aren't expected to be used in the first place.
195   if (isUnevaluatedContext())
196     return;
197 
198   SourceLocation ExprLoc = E->IgnoreParenImpCasts()->getExprLoc();
199   // In most cases, we don't want to warn if the expression is written in a
200   // macro body, or if the macro comes from a system header. If the offending
201   // expression is a call to a function with the warn_unused_result attribute,
202   // we warn no matter the location. Because of the order in which the various
203   // checks need to happen, we factor out the macro-related test here.
204   bool ShouldSuppress =
205       SourceMgr.isMacroBodyExpansion(ExprLoc) ||
206       SourceMgr.isInSystemMacro(ExprLoc);
207 
208   const Expr *WarnExpr;
209   SourceLocation Loc;
210   SourceRange R1, R2;
211   if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
212     return;
213 
214   // If this is a GNU statement expression expanded from a macro, it is probably
215   // unused because it is a function-like macro that can be used as either an
216   // expression or statement.  Don't warn, because it is almost certainly a
217   // false positive.
218   if (isa<StmtExpr>(E) && Loc.isMacroID())
219     return;
220 
221   // Check if this is the UNREFERENCED_PARAMETER from the Microsoft headers.
222   // That macro is frequently used to suppress "unused parameter" warnings,
223   // but its implementation makes clang's -Wunused-value fire.  Prevent this.
224   if (isa<ParenExpr>(E->IgnoreImpCasts()) && Loc.isMacroID()) {
225     SourceLocation SpellLoc = Loc;
226     if (findMacroSpelling(SpellLoc, "UNREFERENCED_PARAMETER"))
227       return;
228   }
229 
230   // Okay, we have an unused result.  Depending on what the base expression is,
231   // we might want to make a more specific diagnostic.  Check for one of these
232   // cases now.
233   unsigned DiagID = diag::warn_unused_expr;
234   if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
235     E = Temps->getSubExpr();
236   if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
237     E = TempExpr->getSubExpr();
238 
239   if (DiagnoseUnusedComparison(*this, E))
240     return;
241 
242   E = WarnExpr;
243   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
244     if (E->getType()->isVoidType())
245       return;
246 
247     // If the callee has attribute pure, const, or warn_unused_result, warn with
248     // a more specific message to make it clear what is happening. If the call
249     // is written in a macro body, only warn if it has the warn_unused_result
250     // attribute.
251     if (const Decl *FD = CE->getCalleeDecl()) {
252       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
253       if (Func ? Func->hasUnusedResultAttr()
254                : FD->hasAttr<WarnUnusedResultAttr>()) {
255         Diag(Loc, diag::warn_unused_result) << R1 << R2;
256         return;
257       }
258       if (ShouldSuppress)
259         return;
260       if (FD->hasAttr<PureAttr>()) {
261         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
262         return;
263       }
264       if (FD->hasAttr<ConstAttr>()) {
265         Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
266         return;
267       }
268     }
269   } else if (ShouldSuppress)
270     return;
271 
272   if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
273     if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
274       Diag(Loc, diag::err_arc_unused_init_message) << R1;
275       return;
276     }
277     const ObjCMethodDecl *MD = ME->getMethodDecl();
278     if (MD) {
279       if (MD->hasAttr<WarnUnusedResultAttr>()) {
280         Diag(Loc, diag::warn_unused_result) << R1 << R2;
281         return;
282       }
283     }
284   } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
285     const Expr *Source = POE->getSyntacticForm();
286     if (isa<ObjCSubscriptRefExpr>(Source))
287       DiagID = diag::warn_unused_container_subscript_expr;
288     else
289       DiagID = diag::warn_unused_property_expr;
290   } else if (const CXXFunctionalCastExpr *FC
291                                        = dyn_cast<CXXFunctionalCastExpr>(E)) {
292     if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
293         isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
294       return;
295   }
296   // Diagnose "(void*) blah" as a typo for "(void) blah".
297   else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
298     TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
299     QualType T = TI->getType();
300 
301     // We really do want to use the non-canonical type here.
302     if (T == Context.VoidPtrTy) {
303       PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
304 
305       Diag(Loc, diag::warn_unused_voidptr)
306         << FixItHint::CreateRemoval(TL.getStarLoc());
307       return;
308     }
309   }
310 
311   if (E->isGLValue() && E->getType().isVolatileQualified()) {
312     Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
313     return;
314   }
315 
316   DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
317 }
318 
ActOnStartOfCompoundStmt()319 void Sema::ActOnStartOfCompoundStmt() {
320   PushCompoundScope();
321 }
322 
ActOnFinishOfCompoundStmt()323 void Sema::ActOnFinishOfCompoundStmt() {
324   PopCompoundScope();
325 }
326 
getCurCompoundScope() const327 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
328   return getCurFunction()->CompoundScopes.back();
329 }
330 
ActOnCompoundStmt(SourceLocation L,SourceLocation R,ArrayRef<Stmt * > Elts,bool isStmtExpr)331 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
332                                    ArrayRef<Stmt *> Elts, bool isStmtExpr) {
333   const unsigned NumElts = Elts.size();
334 
335   // If we're in C89 mode, check that we don't have any decls after stmts.  If
336   // so, emit an extension diagnostic.
337   if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
338     // Note that __extension__ can be around a decl.
339     unsigned i = 0;
340     // Skip over all declarations.
341     for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
342       /*empty*/;
343 
344     // We found the end of the list or a statement.  Scan for another declstmt.
345     for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
346       /*empty*/;
347 
348     if (i != NumElts) {
349       Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
350       Diag(D->getLocation(), diag::ext_mixed_decls_code);
351     }
352   }
353   // Warn about unused expressions in statements.
354   for (unsigned i = 0; i != NumElts; ++i) {
355     // Ignore statements that are last in a statement expression.
356     if (isStmtExpr && i == NumElts - 1)
357       continue;
358 
359     DiagnoseUnusedExprResult(Elts[i]);
360   }
361 
362   // Check for suspicious empty body (null statement) in `for' and `while'
363   // statements.  Don't do anything for template instantiations, this just adds
364   // noise.
365   if (NumElts != 0 && !CurrentInstantiationScope &&
366       getCurCompoundScope().HasEmptyLoopBodies) {
367     for (unsigned i = 0; i != NumElts - 1; ++i)
368       DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
369   }
370 
371   return new (Context) CompoundStmt(Context, Elts, L, R);
372 }
373 
374 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)375 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
376                     SourceLocation DotDotDotLoc, Expr *RHSVal,
377                     SourceLocation ColonLoc) {
378   assert(LHSVal && "missing expression in case statement");
379 
380   if (getCurFunction()->SwitchStack.empty()) {
381     Diag(CaseLoc, diag::err_case_not_in_switch);
382     return StmtError();
383   }
384 
385   ExprResult LHS =
386       CorrectDelayedTyposInExpr(LHSVal, [this](class Expr *E) {
387         if (!getLangOpts().CPlusPlus11)
388           return VerifyIntegerConstantExpression(E);
389         if (Expr *CondExpr =
390                 getCurFunction()->SwitchStack.back()->getCond()) {
391           QualType CondType = CondExpr->getType();
392           llvm::APSInt TempVal;
393           return CheckConvertedConstantExpression(E, CondType, TempVal,
394                                                         CCEK_CaseValue);
395         }
396         return ExprError();
397       });
398   if (LHS.isInvalid())
399     return StmtError();
400   LHSVal = LHS.get();
401 
402   if (!getLangOpts().CPlusPlus11) {
403     // C99 6.8.4.2p3: The expression shall be an integer constant.
404     // However, GCC allows any evaluatable integer expression.
405     if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
406       LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
407       if (!LHSVal)
408         return StmtError();
409     }
410 
411     // GCC extension: The expression shall be an integer constant.
412 
413     if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
414       RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
415       // Recover from an error by just forgetting about it.
416     }
417   }
418 
419   LHS = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
420                                  getLangOpts().CPlusPlus11);
421   if (LHS.isInvalid())
422     return StmtError();
423 
424   auto RHS = RHSVal ? ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
425                                           getLangOpts().CPlusPlus11)
426                     : ExprResult();
427   if (RHS.isInvalid())
428     return StmtError();
429 
430   CaseStmt *CS = new (Context)
431       CaseStmt(LHS.get(), RHS.get(), CaseLoc, DotDotDotLoc, ColonLoc);
432   getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
433   return CS;
434 }
435 
436 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)437 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
438   DiagnoseUnusedExprResult(SubStmt);
439 
440   CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
441   CS->setSubStmt(SubStmt);
442 }
443 
444 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)445 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
446                        Stmt *SubStmt, Scope *CurScope) {
447   DiagnoseUnusedExprResult(SubStmt);
448 
449   if (getCurFunction()->SwitchStack.empty()) {
450     Diag(DefaultLoc, diag::err_default_not_in_switch);
451     return SubStmt;
452   }
453 
454   DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
455   getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
456   return DS;
457 }
458 
459 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)460 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
461                      SourceLocation ColonLoc, Stmt *SubStmt) {
462   // If the label was multiply defined, reject it now.
463   if (TheDecl->getStmt()) {
464     Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
465     Diag(TheDecl->getLocation(), diag::note_previous_definition);
466     return SubStmt;
467   }
468 
469   // Otherwise, things are good.  Fill in the declaration and return it.
470   LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
471   TheDecl->setStmt(LS);
472   if (!TheDecl->isGnuLocal()) {
473     TheDecl->setLocStart(IdentLoc);
474     if (!TheDecl->isMSAsmLabel()) {
475       // Don't update the location of MS ASM labels.  These will result in
476       // a diagnostic, and changing the location here will mess that up.
477       TheDecl->setLocation(IdentLoc);
478     }
479   }
480   return LS;
481 }
482 
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)483 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
484                                      ArrayRef<const Attr*> Attrs,
485                                      Stmt *SubStmt) {
486   // Fill in the declaration and return it.
487   AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
488   return LS;
489 }
490 
491 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)492 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
493                   Stmt *thenStmt, SourceLocation ElseLoc,
494                   Stmt *elseStmt) {
495   ExprResult CondResult(CondVal.release());
496 
497   VarDecl *ConditionVar = nullptr;
498   if (CondVar) {
499     ConditionVar = cast<VarDecl>(CondVar);
500     CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
501     CondResult = ActOnFinishFullExpr(CondResult.get(), IfLoc);
502   }
503   Expr *ConditionExpr = CondResult.getAs<Expr>();
504   if (ConditionExpr) {
505     DiagnoseUnusedExprResult(thenStmt);
506 
507     if (!elseStmt) {
508       DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
509                             diag::warn_empty_if_body);
510     }
511 
512     DiagnoseUnusedExprResult(elseStmt);
513   } else {
514     // Create a dummy Expr for the condition for error recovery
515     ConditionExpr = new (Context) OpaqueValueExpr(SourceLocation(),
516                                                   Context.BoolTy, VK_RValue);
517   }
518 
519   return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
520                               thenStmt, ElseLoc, elseStmt);
521 }
522 
523 namespace {
524   struct CaseCompareFunctor {
operator ()__anon27b5dcff0211::CaseCompareFunctor525     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
526                     const llvm::APSInt &RHS) {
527       return LHS.first < RHS;
528     }
operator ()__anon27b5dcff0211::CaseCompareFunctor529     bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
530                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
531       return LHS.first < RHS.first;
532     }
operator ()__anon27b5dcff0211::CaseCompareFunctor533     bool operator()(const llvm::APSInt &LHS,
534                     const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
535       return LHS < RHS.first;
536     }
537   };
538 }
539 
540 /// CmpCaseVals - Comparison predicate for sorting case values.
541 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)542 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
543                         const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
544   if (lhs.first < rhs.first)
545     return true;
546 
547   if (lhs.first == rhs.first &&
548       lhs.second->getCaseLoc().getRawEncoding()
549        < rhs.second->getCaseLoc().getRawEncoding())
550     return true;
551   return false;
552 }
553 
554 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
555 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)556 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
557                         const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
558 {
559   return lhs.first < rhs.first;
560 }
561 
562 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
563 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)564 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
565                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
566 {
567   return lhs.first == rhs.first;
568 }
569 
570 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
571 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)572 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
573   if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
574     expr = cleanups->getSubExpr();
575   while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
576     if (impcast->getCastKind() != CK_IntegralCast) break;
577     expr = impcast->getSubExpr();
578   }
579   return expr->getType();
580 }
581 
582 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)583 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
584                              Decl *CondVar) {
585   ExprResult CondResult;
586 
587   VarDecl *ConditionVar = nullptr;
588   if (CondVar) {
589     ConditionVar = cast<VarDecl>(CondVar);
590     CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
591     if (CondResult.isInvalid())
592       return StmtError();
593 
594     Cond = CondResult.get();
595   }
596 
597   if (!Cond)
598     return StmtError();
599 
600   class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
601     Expr *Cond;
602 
603   public:
604     SwitchConvertDiagnoser(Expr *Cond)
605         : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
606           Cond(Cond) {}
607 
608     SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
609                                          QualType T) override {
610       return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
611     }
612 
613     SemaDiagnosticBuilder diagnoseIncomplete(
614         Sema &S, SourceLocation Loc, QualType T) override {
615       return S.Diag(Loc, diag::err_switch_incomplete_class_type)
616                << T << Cond->getSourceRange();
617     }
618 
619     SemaDiagnosticBuilder diagnoseExplicitConv(
620         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
621       return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
622     }
623 
624     SemaDiagnosticBuilder noteExplicitConv(
625         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
626       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
627         << ConvTy->isEnumeralType() << ConvTy;
628     }
629 
630     SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
631                                             QualType T) override {
632       return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
633     }
634 
635     SemaDiagnosticBuilder noteAmbiguous(
636         Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
637       return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
638       << ConvTy->isEnumeralType() << ConvTy;
639     }
640 
641     SemaDiagnosticBuilder diagnoseConversion(
642         Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
643       llvm_unreachable("conversion functions are permitted");
644     }
645   } SwitchDiagnoser(Cond);
646 
647   CondResult =
648       PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
649   if (CondResult.isInvalid()) return StmtError();
650   Cond = CondResult.get();
651 
652   // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
653   CondResult = UsualUnaryConversions(Cond);
654   if (CondResult.isInvalid()) return StmtError();
655   Cond = CondResult.get();
656 
657   CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
658   if (CondResult.isInvalid())
659     return StmtError();
660   Cond = CondResult.get();
661 
662   getCurFunction()->setHasBranchIntoScope();
663 
664   SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
665   getCurFunction()->SwitchStack.push_back(SS);
666   return SS;
667 }
668 
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)669 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
670   Val = Val.extOrTrunc(BitWidth);
671   Val.setIsSigned(IsSigned);
672 }
673 
674 /// Check the specified case value is in range for the given unpromoted switch
675 /// type.
checkCaseValue(Sema & S,SourceLocation Loc,const llvm::APSInt & Val,unsigned UnpromotedWidth,bool UnpromotedSign)676 static void checkCaseValue(Sema &S, SourceLocation Loc, const llvm::APSInt &Val,
677                            unsigned UnpromotedWidth, bool UnpromotedSign) {
678   // If the case value was signed and negative and the switch expression is
679   // unsigned, don't bother to warn: this is implementation-defined behavior.
680   // FIXME: Introduce a second, default-ignored warning for this case?
681   if (UnpromotedWidth < Val.getBitWidth()) {
682     llvm::APSInt ConvVal(Val);
683     AdjustAPSInt(ConvVal, UnpromotedWidth, UnpromotedSign);
684     AdjustAPSInt(ConvVal, Val.getBitWidth(), Val.isSigned());
685     // FIXME: Use different diagnostics for overflow  in conversion to promoted
686     // type versus "switch expression cannot have this value". Use proper
687     // IntRange checking rather than just looking at the unpromoted type here.
688     if (ConvVal != Val)
689       S.Diag(Loc, diag::warn_case_value_overflow) << Val.toString(10)
690                                                   << ConvVal.toString(10);
691   }
692 }
693 
694 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
695 
696 /// Returns true if we should emit a diagnostic about this case expression not
697 /// being a part of the enum used in the switch controlling expression.
ShouldDiagnoseSwitchCaseNotInEnum(const Sema & S,const EnumDecl * ED,const Expr * CaseExpr,EnumValsTy::iterator & EI,EnumValsTy::iterator & EIEnd,const llvm::APSInt & Val)698 static bool ShouldDiagnoseSwitchCaseNotInEnum(const Sema &S,
699                                               const EnumDecl *ED,
700                                               const Expr *CaseExpr,
701                                               EnumValsTy::iterator &EI,
702                                               EnumValsTy::iterator &EIEnd,
703                                               const llvm::APSInt &Val) {
704   if (const DeclRefExpr *DRE =
705           dyn_cast<DeclRefExpr>(CaseExpr->IgnoreParenImpCasts())) {
706     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
707       QualType VarType = VD->getType();
708       QualType EnumType = S.Context.getTypeDeclType(ED);
709       if (VD->hasGlobalStorage() && VarType.isConstQualified() &&
710           S.Context.hasSameUnqualifiedType(EnumType, VarType))
711         return false;
712     }
713   }
714 
715   if (ED->hasAttr<FlagEnumAttr>()) {
716     return !S.IsValueInFlagEnum(ED, Val, false);
717   } else {
718     while (EI != EIEnd && EI->first < Val)
719       EI++;
720 
721     if (EI != EIEnd && EI->first == Val)
722       return false;
723   }
724 
725   return true;
726 }
727 
728 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)729 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
730                             Stmt *BodyStmt) {
731   SwitchStmt *SS = cast<SwitchStmt>(Switch);
732   assert(SS == getCurFunction()->SwitchStack.back() &&
733          "switch stack missing push/pop!");
734 
735   getCurFunction()->SwitchStack.pop_back();
736 
737   if (!BodyStmt) return StmtError();
738   SS->setBody(BodyStmt, SwitchLoc);
739 
740   Expr *CondExpr = SS->getCond();
741   if (!CondExpr) return StmtError();
742 
743   QualType CondType = CondExpr->getType();
744 
745   Expr *CondExprBeforePromotion = CondExpr;
746   QualType CondTypeBeforePromotion =
747       GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
748 
749   // C++ 6.4.2.p2:
750   // Integral promotions are performed (on the switch condition).
751   //
752   // A case value unrepresentable by the original switch condition
753   // type (before the promotion) doesn't make sense, even when it can
754   // be represented by the promoted type.  Therefore we need to find
755   // the pre-promotion type of the switch condition.
756   if (!CondExpr->isTypeDependent()) {
757     // We have already converted the expression to an integral or enumeration
758     // type, when we started the switch statement. If we don't have an
759     // appropriate type now, just return an error.
760     if (!CondType->isIntegralOrEnumerationType())
761       return StmtError();
762 
763     if (CondExpr->isKnownToHaveBooleanValue()) {
764       // switch(bool_expr) {...} is often a programmer error, e.g.
765       //   switch(n && mask) { ... }  // Doh - should be "n & mask".
766       // One can always use an if statement instead of switch(bool_expr).
767       Diag(SwitchLoc, diag::warn_bool_switch_condition)
768           << CondExpr->getSourceRange();
769     }
770   }
771 
772   // Get the bitwidth of the switched-on value after promotions. We must
773   // convert the integer case values to this width before comparison.
774   bool HasDependentValue
775     = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
776   unsigned CondWidth = HasDependentValue ? 0 : Context.getIntWidth(CondType);
777   bool CondIsSigned = CondType->isSignedIntegerOrEnumerationType();
778 
779   // Get the width and signedness that the condition might actually have, for
780   // warning purposes.
781   // FIXME: Grab an IntRange for the condition rather than using the unpromoted
782   // type.
783   unsigned CondWidthBeforePromotion
784     = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
785   bool CondIsSignedBeforePromotion
786     = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
787 
788   // Accumulate all of the case values in a vector so that we can sort them
789   // and detect duplicates.  This vector contains the APInt for the case after
790   // it has been converted to the condition type.
791   typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
792   CaseValsTy CaseVals;
793 
794   // Keep track of any GNU case ranges we see.  The APSInt is the low value.
795   typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
796   CaseRangesTy CaseRanges;
797 
798   DefaultStmt *TheDefaultStmt = nullptr;
799 
800   bool CaseListIsErroneous = false;
801 
802   for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
803        SC = SC->getNextSwitchCase()) {
804 
805     if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
806       if (TheDefaultStmt) {
807         Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
808         Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
809 
810         // FIXME: Remove the default statement from the switch block so that
811         // we'll return a valid AST.  This requires recursing down the AST and
812         // finding it, not something we are set up to do right now.  For now,
813         // just lop the entire switch stmt out of the AST.
814         CaseListIsErroneous = true;
815       }
816       TheDefaultStmt = DS;
817 
818     } else {
819       CaseStmt *CS = cast<CaseStmt>(SC);
820 
821       Expr *Lo = CS->getLHS();
822 
823       if (Lo->isTypeDependent() || Lo->isValueDependent()) {
824         HasDependentValue = true;
825         break;
826       }
827 
828       llvm::APSInt LoVal;
829 
830       if (getLangOpts().CPlusPlus11) {
831         // C++11 [stmt.switch]p2: the constant-expression shall be a converted
832         // constant expression of the promoted type of the switch condition.
833         ExprResult ConvLo =
834           CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
835         if (ConvLo.isInvalid()) {
836           CaseListIsErroneous = true;
837           continue;
838         }
839         Lo = ConvLo.get();
840       } else {
841         // We already verified that the expression has a i-c-e value (C99
842         // 6.8.4.2p3) - get that value now.
843         LoVal = Lo->EvaluateKnownConstInt(Context);
844 
845         // If the LHS is not the same type as the condition, insert an implicit
846         // cast.
847         Lo = DefaultLvalueConversion(Lo).get();
848         Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
849       }
850 
851       // Check the unconverted value is within the range of possible values of
852       // the switch expression.
853       checkCaseValue(*this, Lo->getLocStart(), LoVal,
854                      CondWidthBeforePromotion, CondIsSignedBeforePromotion);
855 
856       // Convert the value to the same width/sign as the condition.
857       AdjustAPSInt(LoVal, CondWidth, CondIsSigned);
858 
859       CS->setLHS(Lo);
860 
861       // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
862       if (CS->getRHS()) {
863         if (CS->getRHS()->isTypeDependent() ||
864             CS->getRHS()->isValueDependent()) {
865           HasDependentValue = true;
866           break;
867         }
868         CaseRanges.push_back(std::make_pair(LoVal, CS));
869       } else
870         CaseVals.push_back(std::make_pair(LoVal, CS));
871     }
872   }
873 
874   if (!HasDependentValue) {
875     // If we don't have a default statement, check whether the
876     // condition is constant.
877     llvm::APSInt ConstantCondValue;
878     bool HasConstantCond = false;
879     if (!HasDependentValue && !TheDefaultStmt) {
880       HasConstantCond = CondExpr->EvaluateAsInt(ConstantCondValue, Context,
881                                                 Expr::SE_AllowSideEffects);
882       assert(!HasConstantCond ||
883              (ConstantCondValue.getBitWidth() == CondWidth &&
884               ConstantCondValue.isSigned() == CondIsSigned));
885     }
886     bool ShouldCheckConstantCond = HasConstantCond;
887 
888     // Sort all the scalar case values so we can easily detect duplicates.
889     std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
890 
891     if (!CaseVals.empty()) {
892       for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
893         if (ShouldCheckConstantCond &&
894             CaseVals[i].first == ConstantCondValue)
895           ShouldCheckConstantCond = false;
896 
897         if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
898           // If we have a duplicate, report it.
899           // First, determine if either case value has a name
900           StringRef PrevString, CurrString;
901           Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
902           Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
903           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
904             PrevString = DeclRef->getDecl()->getName();
905           }
906           if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
907             CurrString = DeclRef->getDecl()->getName();
908           }
909           SmallString<16> CaseValStr;
910           CaseVals[i-1].first.toString(CaseValStr);
911 
912           if (PrevString == CurrString)
913             Diag(CaseVals[i].second->getLHS()->getLocStart(),
914                  diag::err_duplicate_case) <<
915                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString);
916           else
917             Diag(CaseVals[i].second->getLHS()->getLocStart(),
918                  diag::err_duplicate_case_differing_expr) <<
919                  (PrevString.empty() ? StringRef(CaseValStr) : PrevString) <<
920                  (CurrString.empty() ? StringRef(CaseValStr) : CurrString) <<
921                  CaseValStr;
922 
923           Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
924                diag::note_duplicate_case_prev);
925           // FIXME: We really want to remove the bogus case stmt from the
926           // substmt, but we have no way to do this right now.
927           CaseListIsErroneous = true;
928         }
929       }
930     }
931 
932     // Detect duplicate case ranges, which usually don't exist at all in
933     // the first place.
934     if (!CaseRanges.empty()) {
935       // Sort all the case ranges by their low value so we can easily detect
936       // overlaps between ranges.
937       std::stable_sort(CaseRanges.begin(), CaseRanges.end());
938 
939       // Scan the ranges, computing the high values and removing empty ranges.
940       std::vector<llvm::APSInt> HiVals;
941       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
942         llvm::APSInt &LoVal = CaseRanges[i].first;
943         CaseStmt *CR = CaseRanges[i].second;
944         Expr *Hi = CR->getRHS();
945         llvm::APSInt HiVal;
946 
947         if (getLangOpts().CPlusPlus11) {
948           // C++11 [stmt.switch]p2: the constant-expression shall be a converted
949           // constant expression of the promoted type of the switch condition.
950           ExprResult ConvHi =
951             CheckConvertedConstantExpression(Hi, CondType, HiVal,
952                                              CCEK_CaseValue);
953           if (ConvHi.isInvalid()) {
954             CaseListIsErroneous = true;
955             continue;
956           }
957           Hi = ConvHi.get();
958         } else {
959           HiVal = Hi->EvaluateKnownConstInt(Context);
960 
961           // If the RHS is not the same type as the condition, insert an
962           // implicit cast.
963           Hi = DefaultLvalueConversion(Hi).get();
964           Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
965         }
966 
967         // Check the unconverted value is within the range of possible values of
968         // the switch expression.
969         checkCaseValue(*this, Hi->getLocStart(), HiVal,
970                        CondWidthBeforePromotion, CondIsSignedBeforePromotion);
971 
972         // Convert the value to the same width/sign as the condition.
973         AdjustAPSInt(HiVal, CondWidth, CondIsSigned);
974 
975         CR->setRHS(Hi);
976 
977         // If the low value is bigger than the high value, the case is empty.
978         if (LoVal > HiVal) {
979           Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
980             << SourceRange(CR->getLHS()->getLocStart(),
981                            Hi->getLocEnd());
982           CaseRanges.erase(CaseRanges.begin()+i);
983           --i, --e;
984           continue;
985         }
986 
987         if (ShouldCheckConstantCond &&
988             LoVal <= ConstantCondValue &&
989             ConstantCondValue <= HiVal)
990           ShouldCheckConstantCond = false;
991 
992         HiVals.push_back(HiVal);
993       }
994 
995       // Rescan the ranges, looking for overlap with singleton values and other
996       // ranges.  Since the range list is sorted, we only need to compare case
997       // ranges with their neighbors.
998       for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
999         llvm::APSInt &CRLo = CaseRanges[i].first;
1000         llvm::APSInt &CRHi = HiVals[i];
1001         CaseStmt *CR = CaseRanges[i].second;
1002 
1003         // Check to see whether the case range overlaps with any
1004         // singleton cases.
1005         CaseStmt *OverlapStmt = nullptr;
1006         llvm::APSInt OverlapVal(32);
1007 
1008         // Find the smallest value >= the lower bound.  If I is in the
1009         // case range, then we have overlap.
1010         CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
1011                                                   CaseVals.end(), CRLo,
1012                                                   CaseCompareFunctor());
1013         if (I != CaseVals.end() && I->first < CRHi) {
1014           OverlapVal  = I->first;   // Found overlap with scalar.
1015           OverlapStmt = I->second;
1016         }
1017 
1018         // Find the smallest value bigger than the upper bound.
1019         I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
1020         if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
1021           OverlapVal  = (I-1)->first;      // Found overlap with scalar.
1022           OverlapStmt = (I-1)->second;
1023         }
1024 
1025         // Check to see if this case stmt overlaps with the subsequent
1026         // case range.
1027         if (i && CRLo <= HiVals[i-1]) {
1028           OverlapVal  = HiVals[i-1];       // Found overlap with range.
1029           OverlapStmt = CaseRanges[i-1].second;
1030         }
1031 
1032         if (OverlapStmt) {
1033           // If we have a duplicate, report it.
1034           Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
1035             << OverlapVal.toString(10);
1036           Diag(OverlapStmt->getLHS()->getLocStart(),
1037                diag::note_duplicate_case_prev);
1038           // FIXME: We really want to remove the bogus case stmt from the
1039           // substmt, but we have no way to do this right now.
1040           CaseListIsErroneous = true;
1041         }
1042       }
1043     }
1044 
1045     // Complain if we have a constant condition and we didn't find a match.
1046     if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1047       // TODO: it would be nice if we printed enums as enums, chars as
1048       // chars, etc.
1049       Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1050         << ConstantCondValue.toString(10)
1051         << CondExpr->getSourceRange();
1052     }
1053 
1054     // Check to see if switch is over an Enum and handles all of its
1055     // values.  We only issue a warning if there is not 'default:', but
1056     // we still do the analysis to preserve this information in the AST
1057     // (which can be used by flow-based analyes).
1058     //
1059     const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1060 
1061     // If switch has default case, then ignore it.
1062     if (!CaseListIsErroneous  && !HasConstantCond && ET) {
1063       const EnumDecl *ED = ET->getDecl();
1064       EnumValsTy EnumVals;
1065 
1066       // Gather all enum values, set their type and sort them,
1067       // allowing easier comparison with CaseVals.
1068       for (auto *EDI : ED->enumerators()) {
1069         llvm::APSInt Val = EDI->getInitVal();
1070         AdjustAPSInt(Val, CondWidth, CondIsSigned);
1071         EnumVals.push_back(std::make_pair(Val, EDI));
1072       }
1073       std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1074       auto EI = EnumVals.begin(), EIEnd =
1075         std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1076 
1077       // See which case values aren't in enum.
1078       for (CaseValsTy::const_iterator CI = CaseVals.begin();
1079           CI != CaseVals.end(); CI++) {
1080         Expr *CaseExpr = CI->second->getLHS();
1081         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1082                                               CI->first))
1083           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1084             << CondTypeBeforePromotion;
1085       }
1086 
1087       // See which of case ranges aren't in enum
1088       EI = EnumVals.begin();
1089       for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1090           RI != CaseRanges.end(); RI++) {
1091         Expr *CaseExpr = RI->second->getLHS();
1092         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1093                                               RI->first))
1094           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1095             << CondTypeBeforePromotion;
1096 
1097         llvm::APSInt Hi =
1098           RI->second->getRHS()->EvaluateKnownConstInt(Context);
1099         AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1100 
1101         CaseExpr = RI->second->getRHS();
1102         if (ShouldDiagnoseSwitchCaseNotInEnum(*this, ED, CaseExpr, EI, EIEnd,
1103                                               Hi))
1104           Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1105             << CondTypeBeforePromotion;
1106       }
1107 
1108       // Check which enum vals aren't in switch
1109       auto CI = CaseVals.begin();
1110       auto RI = CaseRanges.begin();
1111       bool hasCasesNotInSwitch = false;
1112 
1113       SmallVector<DeclarationName,8> UnhandledNames;
1114 
1115       for (EI = EnumVals.begin(); EI != EIEnd; EI++){
1116         // Drop unneeded case values
1117         while (CI != CaseVals.end() && CI->first < EI->first)
1118           CI++;
1119 
1120         if (CI != CaseVals.end() && CI->first == EI->first)
1121           continue;
1122 
1123         // Drop unneeded case ranges
1124         for (; RI != CaseRanges.end(); RI++) {
1125           llvm::APSInt Hi =
1126             RI->second->getRHS()->EvaluateKnownConstInt(Context);
1127           AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1128           if (EI->first <= Hi)
1129             break;
1130         }
1131 
1132         if (RI == CaseRanges.end() || EI->first < RI->first) {
1133           hasCasesNotInSwitch = true;
1134           UnhandledNames.push_back(EI->second->getDeclName());
1135         }
1136       }
1137 
1138       if (TheDefaultStmt && UnhandledNames.empty())
1139         Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1140 
1141       // Produce a nice diagnostic if multiple values aren't handled.
1142       if (!UnhandledNames.empty()) {
1143         DiagnosticBuilder DB = Diag(CondExpr->getExprLoc(),
1144                                     TheDefaultStmt ? diag::warn_def_missing_case
1145                                                    : diag::warn_missing_case)
1146                                << (int)UnhandledNames.size();
1147 
1148         for (size_t I = 0, E = std::min(UnhandledNames.size(), (size_t)3);
1149              I != E; ++I)
1150           DB << UnhandledNames[I];
1151       }
1152 
1153       if (!hasCasesNotInSwitch)
1154         SS->setAllEnumCasesCovered();
1155     }
1156   }
1157 
1158   if (BodyStmt)
1159     DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1160                           diag::warn_empty_switch_body);
1161 
1162   // FIXME: If the case list was broken is some way, we don't have a good system
1163   // to patch it up.  Instead, just return the whole substmt as broken.
1164   if (CaseListIsErroneous)
1165     return StmtError();
1166 
1167   return SS;
1168 }
1169 
1170 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1171 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1172                              Expr *SrcExpr) {
1173   if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1174     return;
1175 
1176   if (const EnumType *ET = DstType->getAs<EnumType>())
1177     if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1178         SrcType->isIntegerType()) {
1179       if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1180           SrcExpr->isIntegerConstantExpr(Context)) {
1181         // Get the bitwidth of the enum value before promotions.
1182         unsigned DstWidth = Context.getIntWidth(DstType);
1183         bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1184 
1185         llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1186         AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1187         const EnumDecl *ED = ET->getDecl();
1188 
1189         if (ED->hasAttr<FlagEnumAttr>()) {
1190           if (!IsValueInFlagEnum(ED, RhsVal, true))
1191             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1192               << DstType.getUnqualifiedType();
1193         } else {
1194           typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1195               EnumValsTy;
1196           EnumValsTy EnumVals;
1197 
1198           // Gather all enum values, set their type and sort them,
1199           // allowing easier comparison with rhs constant.
1200           for (auto *EDI : ED->enumerators()) {
1201             llvm::APSInt Val = EDI->getInitVal();
1202             AdjustAPSInt(Val, DstWidth, DstIsSigned);
1203             EnumVals.push_back(std::make_pair(Val, EDI));
1204           }
1205           if (EnumVals.empty())
1206             return;
1207           std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1208           EnumValsTy::iterator EIend =
1209               std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1210 
1211           // See which values aren't in the enum.
1212           EnumValsTy::const_iterator EI = EnumVals.begin();
1213           while (EI != EIend && EI->first < RhsVal)
1214             EI++;
1215           if (EI == EIend || EI->first != RhsVal) {
1216             Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1217                 << DstType.getUnqualifiedType();
1218           }
1219         }
1220       }
1221     }
1222 }
1223 
1224 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1225 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1226                      Decl *CondVar, Stmt *Body) {
1227   ExprResult CondResult(Cond.release());
1228 
1229   VarDecl *ConditionVar = nullptr;
1230   if (CondVar) {
1231     ConditionVar = cast<VarDecl>(CondVar);
1232     CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1233     CondResult = ActOnFinishFullExpr(CondResult.get(), WhileLoc);
1234     if (CondResult.isInvalid())
1235       return StmtError();
1236   }
1237   Expr *ConditionExpr = CondResult.get();
1238   if (!ConditionExpr)
1239     return StmtError();
1240   CheckBreakContinueBinding(ConditionExpr);
1241 
1242   DiagnoseUnusedExprResult(Body);
1243 
1244   if (isa<NullStmt>(Body))
1245     getCurCompoundScope().setHasEmptyLoopBodies();
1246 
1247   return new (Context)
1248       WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
1249 }
1250 
1251 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1252 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1253                   SourceLocation WhileLoc, SourceLocation CondLParen,
1254                   Expr *Cond, SourceLocation CondRParen) {
1255   assert(Cond && "ActOnDoStmt(): missing expression");
1256 
1257   CheckBreakContinueBinding(Cond);
1258   ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1259   if (CondResult.isInvalid())
1260     return StmtError();
1261   Cond = CondResult.get();
1262 
1263   CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1264   if (CondResult.isInvalid())
1265     return StmtError();
1266   Cond = CondResult.get();
1267 
1268   DiagnoseUnusedExprResult(Body);
1269 
1270   return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1271 }
1272 
1273 namespace {
1274   // This visitor will traverse a conditional statement and store all
1275   // the evaluated decls into a vector.  Simple is set to true if none
1276   // of the excluded constructs are used.
1277   class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1278     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1279     SmallVectorImpl<SourceRange> &Ranges;
1280     bool Simple;
1281   public:
1282     typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1283 
DeclExtractor(Sema & S,llvm::SmallPtrSetImpl<VarDecl * > & Decls,SmallVectorImpl<SourceRange> & Ranges)1284     DeclExtractor(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1285                   SmallVectorImpl<SourceRange> &Ranges) :
1286         Inherited(S.Context),
1287         Decls(Decls),
1288         Ranges(Ranges),
1289         Simple(true) {}
1290 
isSimple()1291     bool isSimple() { return Simple; }
1292 
1293     // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1294     void VisitMemberExpr(MemberExpr* E) {
1295       Simple = false;
1296     }
1297 
1298     // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1299     void VisitStmt(Stmt *S) {
1300       Simple = false;
1301     }
1302 
VisitBinaryOperator(BinaryOperator * E)1303     void VisitBinaryOperator(BinaryOperator *E) {
1304       Visit(E->getLHS());
1305       Visit(E->getRHS());
1306     }
1307 
VisitCastExpr(CastExpr * E)1308     void VisitCastExpr(CastExpr *E) {
1309       Visit(E->getSubExpr());
1310     }
1311 
VisitUnaryOperator(UnaryOperator * E)1312     void VisitUnaryOperator(UnaryOperator *E) {
1313       // Skip checking conditionals with derefernces.
1314       if (E->getOpcode() == UO_Deref)
1315         Simple = false;
1316       else
1317         Visit(E->getSubExpr());
1318     }
1319 
VisitConditionalOperator(ConditionalOperator * E)1320     void VisitConditionalOperator(ConditionalOperator *E) {
1321       Visit(E->getCond());
1322       Visit(E->getTrueExpr());
1323       Visit(E->getFalseExpr());
1324     }
1325 
VisitParenExpr(ParenExpr * E)1326     void VisitParenExpr(ParenExpr *E) {
1327       Visit(E->getSubExpr());
1328     }
1329 
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1330     void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1331       Visit(E->getOpaqueValue()->getSourceExpr());
1332       Visit(E->getFalseExpr());
1333     }
1334 
VisitIntegerLiteral(IntegerLiteral * E)1335     void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1336     void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1337     void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1338     void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1339     void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1340     void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1341 
VisitDeclRefExpr(DeclRefExpr * E)1342     void VisitDeclRefExpr(DeclRefExpr *E) {
1343       VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1344       if (!VD) return;
1345 
1346       Ranges.push_back(E->getSourceRange());
1347 
1348       Decls.insert(VD);
1349     }
1350 
1351   }; // end class DeclExtractor
1352 
1353   // DeclMatcher checks to see if the decls are used in a non-evaluated
1354   // context.
1355   class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1356     llvm::SmallPtrSetImpl<VarDecl*> &Decls;
1357     bool FoundDecl;
1358 
1359   public:
1360     typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1361 
DeclMatcher(Sema & S,llvm::SmallPtrSetImpl<VarDecl * > & Decls,Stmt * Statement)1362     DeclMatcher(Sema &S, llvm::SmallPtrSetImpl<VarDecl*> &Decls,
1363                 Stmt *Statement) :
1364         Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1365       if (!Statement) return;
1366 
1367       Visit(Statement);
1368     }
1369 
VisitReturnStmt(ReturnStmt * S)1370     void VisitReturnStmt(ReturnStmt *S) {
1371       FoundDecl = true;
1372     }
1373 
VisitBreakStmt(BreakStmt * S)1374     void VisitBreakStmt(BreakStmt *S) {
1375       FoundDecl = true;
1376     }
1377 
VisitGotoStmt(GotoStmt * S)1378     void VisitGotoStmt(GotoStmt *S) {
1379       FoundDecl = true;
1380     }
1381 
VisitCastExpr(CastExpr * E)1382     void VisitCastExpr(CastExpr *E) {
1383       if (E->getCastKind() == CK_LValueToRValue)
1384         CheckLValueToRValueCast(E->getSubExpr());
1385       else
1386         Visit(E->getSubExpr());
1387     }
1388 
CheckLValueToRValueCast(Expr * E)1389     void CheckLValueToRValueCast(Expr *E) {
1390       E = E->IgnoreParenImpCasts();
1391 
1392       if (isa<DeclRefExpr>(E)) {
1393         return;
1394       }
1395 
1396       if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1397         Visit(CO->getCond());
1398         CheckLValueToRValueCast(CO->getTrueExpr());
1399         CheckLValueToRValueCast(CO->getFalseExpr());
1400         return;
1401       }
1402 
1403       if (BinaryConditionalOperator *BCO =
1404               dyn_cast<BinaryConditionalOperator>(E)) {
1405         CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1406         CheckLValueToRValueCast(BCO->getFalseExpr());
1407         return;
1408       }
1409 
1410       Visit(E);
1411     }
1412 
VisitDeclRefExpr(DeclRefExpr * E)1413     void VisitDeclRefExpr(DeclRefExpr *E) {
1414       if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1415         if (Decls.count(VD))
1416           FoundDecl = true;
1417     }
1418 
FoundDeclInUse()1419     bool FoundDeclInUse() { return FoundDecl; }
1420 
1421   };  // end class DeclMatcher
1422 
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1423   void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1424                                         Expr *Third, Stmt *Body) {
1425     // Condition is empty
1426     if (!Second) return;
1427 
1428     if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1429                           Second->getLocStart()))
1430       return;
1431 
1432     PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1433     llvm::SmallPtrSet<VarDecl*, 8> Decls;
1434     SmallVector<SourceRange, 10> Ranges;
1435     DeclExtractor DE(S, Decls, Ranges);
1436     DE.Visit(Second);
1437 
1438     // Don't analyze complex conditionals.
1439     if (!DE.isSimple()) return;
1440 
1441     // No decls found.
1442     if (Decls.size() == 0) return;
1443 
1444     // Don't warn on volatile, static, or global variables.
1445     for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1446                                                    E = Decls.end();
1447          I != E; ++I)
1448       if ((*I)->getType().isVolatileQualified() ||
1449           (*I)->hasGlobalStorage()) return;
1450 
1451     if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1452         DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1453         DeclMatcher(S, Decls, Body).FoundDeclInUse())
1454       return;
1455 
1456     // Load decl names into diagnostic.
1457     if (Decls.size() > 4)
1458       PDiag << 0;
1459     else {
1460       PDiag << Decls.size();
1461       for (llvm::SmallPtrSetImpl<VarDecl*>::iterator I = Decls.begin(),
1462                                                      E = Decls.end();
1463            I != E; ++I)
1464         PDiag << (*I)->getDeclName();
1465     }
1466 
1467     // Load SourceRanges into diagnostic if there is room.
1468     // Otherwise, load the SourceRange of the conditional expression.
1469     if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1470       for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1471                                                   E = Ranges.end();
1472            I != E; ++I)
1473         PDiag << *I;
1474     else
1475       PDiag << Second->getSourceRange();
1476 
1477     S.Diag(Ranges.begin()->getBegin(), PDiag);
1478   }
1479 
1480   // If Statement is an incemement or decrement, return true and sets the
1481   // variables Increment and DRE.
ProcessIterationStmt(Sema & S,Stmt * Statement,bool & Increment,DeclRefExpr * & DRE)1482   bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1483                             DeclRefExpr *&DRE) {
1484     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1485       switch (UO->getOpcode()) {
1486         default: return false;
1487         case UO_PostInc:
1488         case UO_PreInc:
1489           Increment = true;
1490           break;
1491         case UO_PostDec:
1492         case UO_PreDec:
1493           Increment = false;
1494           break;
1495       }
1496       DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1497       return DRE;
1498     }
1499 
1500     if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1501       FunctionDecl *FD = Call->getDirectCallee();
1502       if (!FD || !FD->isOverloadedOperator()) return false;
1503       switch (FD->getOverloadedOperator()) {
1504         default: return false;
1505         case OO_PlusPlus:
1506           Increment = true;
1507           break;
1508         case OO_MinusMinus:
1509           Increment = false;
1510           break;
1511       }
1512       DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1513       return DRE;
1514     }
1515 
1516     return false;
1517   }
1518 
1519   // A visitor to determine if a continue or break statement is a
1520   // subexpression.
1521   class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
1522     SourceLocation BreakLoc;
1523     SourceLocation ContinueLoc;
1524   public:
BreakContinueFinder(Sema & S,Stmt * Body)1525     BreakContinueFinder(Sema &S, Stmt* Body) :
1526         Inherited(S.Context) {
1527       Visit(Body);
1528     }
1529 
1530     typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
1531 
VisitContinueStmt(ContinueStmt * E)1532     void VisitContinueStmt(ContinueStmt* E) {
1533       ContinueLoc = E->getContinueLoc();
1534     }
1535 
VisitBreakStmt(BreakStmt * E)1536     void VisitBreakStmt(BreakStmt* E) {
1537       BreakLoc = E->getBreakLoc();
1538     }
1539 
ContinueFound()1540     bool ContinueFound() { return ContinueLoc.isValid(); }
BreakFound()1541     bool BreakFound() { return BreakLoc.isValid(); }
GetContinueLoc()1542     SourceLocation GetContinueLoc() { return ContinueLoc; }
GetBreakLoc()1543     SourceLocation GetBreakLoc() { return BreakLoc; }
1544 
1545   };  // end class BreakContinueFinder
1546 
1547   // Emit a warning when a loop increment/decrement appears twice per loop
1548   // iteration.  The conditions which trigger this warning are:
1549   // 1) The last statement in the loop body and the third expression in the
1550   //    for loop are both increment or both decrement of the same variable
1551   // 2) No continue statements in the loop body.
CheckForRedundantIteration(Sema & S,Expr * Third,Stmt * Body)1552   void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1553     // Return when there is nothing to check.
1554     if (!Body || !Third) return;
1555 
1556     if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1557                           Third->getLocStart()))
1558       return;
1559 
1560     // Get the last statement from the loop body.
1561     CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1562     if (!CS || CS->body_empty()) return;
1563     Stmt *LastStmt = CS->body_back();
1564     if (!LastStmt) return;
1565 
1566     bool LoopIncrement, LastIncrement;
1567     DeclRefExpr *LoopDRE, *LastDRE;
1568 
1569     if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1570     if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1571 
1572     // Check that the two statements are both increments or both decrements
1573     // on the same variable.
1574     if (LoopIncrement != LastIncrement ||
1575         LoopDRE->getDecl() != LastDRE->getDecl()) return;
1576 
1577     if (BreakContinueFinder(S, Body).ContinueFound()) return;
1578 
1579     S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1580          << LastDRE->getDecl() << LastIncrement;
1581     S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1582          << LoopIncrement;
1583   }
1584 
1585 } // end namespace
1586 
1587 
CheckBreakContinueBinding(Expr * E)1588 void Sema::CheckBreakContinueBinding(Expr *E) {
1589   if (!E || getLangOpts().CPlusPlus)
1590     return;
1591   BreakContinueFinder BCFinder(*this, E);
1592   Scope *BreakParent = CurScope->getBreakParent();
1593   if (BCFinder.BreakFound() && BreakParent) {
1594     if (BreakParent->getFlags() & Scope::SwitchScope) {
1595       Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1596     } else {
1597       Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1598           << "break";
1599     }
1600   } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1601     Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1602         << "continue";
1603   }
1604 }
1605 
1606 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1607 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1608                    Stmt *First, FullExprArg second, Decl *secondVar,
1609                    FullExprArg third,
1610                    SourceLocation RParenLoc, Stmt *Body) {
1611   if (!getLangOpts().CPlusPlus) {
1612     if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1613       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1614       // declare identifiers for objects having storage class 'auto' or
1615       // 'register'.
1616       for (auto *DI : DS->decls()) {
1617         VarDecl *VD = dyn_cast<VarDecl>(DI);
1618         if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1619           VD = nullptr;
1620         if (!VD) {
1621           Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1622           DI->setInvalidDecl();
1623         }
1624       }
1625     }
1626   }
1627 
1628   CheckBreakContinueBinding(second.get());
1629   CheckBreakContinueBinding(third.get());
1630 
1631   CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1632   CheckForRedundantIteration(*this, third.get(), Body);
1633 
1634   ExprResult SecondResult(second.release());
1635   VarDecl *ConditionVar = nullptr;
1636   if (secondVar) {
1637     ConditionVar = cast<VarDecl>(secondVar);
1638     SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1639     SecondResult = ActOnFinishFullExpr(SecondResult.get(), ForLoc);
1640     if (SecondResult.isInvalid())
1641       return StmtError();
1642   }
1643 
1644   Expr *Third  = third.release().getAs<Expr>();
1645 
1646   DiagnoseUnusedExprResult(First);
1647   DiagnoseUnusedExprResult(Third);
1648   DiagnoseUnusedExprResult(Body);
1649 
1650   if (isa<NullStmt>(Body))
1651     getCurCompoundScope().setHasEmptyLoopBodies();
1652 
1653   return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
1654                                Third, Body, ForLoc, LParenLoc, RParenLoc);
1655 }
1656 
1657 /// In an Objective C collection iteration statement:
1658 ///   for (x in y)
1659 /// x can be an arbitrary l-value expression.  Bind it up as a
1660 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1661 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1662   // Reduce placeholder expressions here.  Note that this rejects the
1663   // use of pseudo-object l-values in this position.
1664   ExprResult result = CheckPlaceholderExpr(E);
1665   if (result.isInvalid()) return StmtError();
1666   E = result.get();
1667 
1668   ExprResult FullExpr = ActOnFinishFullExpr(E);
1669   if (FullExpr.isInvalid())
1670     return StmtError();
1671   return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1672 }
1673 
1674 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1675 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1676   if (!collection)
1677     return ExprError();
1678 
1679   ExprResult result = CorrectDelayedTyposInExpr(collection);
1680   if (!result.isUsable())
1681     return ExprError();
1682   collection = result.get();
1683 
1684   // Bail out early if we've got a type-dependent expression.
1685   if (collection->isTypeDependent()) return collection;
1686 
1687   // Perform normal l-value conversion.
1688   result = DefaultFunctionArrayLvalueConversion(collection);
1689   if (result.isInvalid())
1690     return ExprError();
1691   collection = result.get();
1692 
1693   // The operand needs to have object-pointer type.
1694   // TODO: should we do a contextual conversion?
1695   const ObjCObjectPointerType *pointerType =
1696     collection->getType()->getAs<ObjCObjectPointerType>();
1697   if (!pointerType)
1698     return Diag(forLoc, diag::err_collection_expr_type)
1699              << collection->getType() << collection->getSourceRange();
1700 
1701   // Check that the operand provides
1702   //   - countByEnumeratingWithState:objects:count:
1703   const ObjCObjectType *objectType = pointerType->getObjectType();
1704   ObjCInterfaceDecl *iface = objectType->getInterface();
1705 
1706   // If we have a forward-declared type, we can't do this check.
1707   // Under ARC, it is an error not to have a forward-declared class.
1708   if (iface &&
1709       (getLangOpts().ObjCAutoRefCount
1710            ? RequireCompleteType(forLoc, QualType(objectType, 0),
1711                                  diag::err_arc_collection_forward, collection)
1712            : !isCompleteType(forLoc, QualType(objectType, 0)))) {
1713     // Otherwise, if we have any useful type information, check that
1714     // the type declares the appropriate method.
1715   } else if (iface || !objectType->qual_empty()) {
1716     IdentifierInfo *selectorIdents[] = {
1717       &Context.Idents.get("countByEnumeratingWithState"),
1718       &Context.Idents.get("objects"),
1719       &Context.Idents.get("count")
1720     };
1721     Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1722 
1723     ObjCMethodDecl *method = nullptr;
1724 
1725     // If there's an interface, look in both the public and private APIs.
1726     if (iface) {
1727       method = iface->lookupInstanceMethod(selector);
1728       if (!method) method = iface->lookupPrivateMethod(selector);
1729     }
1730 
1731     // Also check protocol qualifiers.
1732     if (!method)
1733       method = LookupMethodInQualifiedType(selector, pointerType,
1734                                            /*instance*/ true);
1735 
1736     // If we didn't find it anywhere, give up.
1737     if (!method) {
1738       Diag(forLoc, diag::warn_collection_expr_type)
1739         << collection->getType() << selector << collection->getSourceRange();
1740     }
1741 
1742     // TODO: check for an incompatible signature?
1743   }
1744 
1745   // Wrap up any cleanups in the expression.
1746   return collection;
1747 }
1748 
1749 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1750 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1751                                  Stmt *First, Expr *collection,
1752                                  SourceLocation RParenLoc) {
1753 
1754   ExprResult CollectionExprResult =
1755     CheckObjCForCollectionOperand(ForLoc, collection);
1756 
1757   if (First) {
1758     QualType FirstType;
1759     if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1760       if (!DS->isSingleDecl())
1761         return StmtError(Diag((*DS->decl_begin())->getLocation(),
1762                          diag::err_toomany_element_decls));
1763 
1764       VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1765       if (!D || D->isInvalidDecl())
1766         return StmtError();
1767 
1768       FirstType = D->getType();
1769       // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1770       // declare identifiers for objects having storage class 'auto' or
1771       // 'register'.
1772       if (!D->hasLocalStorage())
1773         return StmtError(Diag(D->getLocation(),
1774                               diag::err_non_local_variable_decl_in_for));
1775 
1776       // If the type contained 'auto', deduce the 'auto' to 'id'.
1777       if (FirstType->getContainedAutoType()) {
1778         OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1779                                  VK_RValue);
1780         Expr *DeducedInit = &OpaqueId;
1781         if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1782                 DAR_Failed)
1783           DiagnoseAutoDeductionFailure(D, DeducedInit);
1784         if (FirstType.isNull()) {
1785           D->setInvalidDecl();
1786           return StmtError();
1787         }
1788 
1789         D->setType(FirstType);
1790 
1791         if (ActiveTemplateInstantiations.empty()) {
1792           SourceLocation Loc =
1793               D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1794           Diag(Loc, diag::warn_auto_var_is_id)
1795             << D->getDeclName();
1796         }
1797       }
1798 
1799     } else {
1800       Expr *FirstE = cast<Expr>(First);
1801       if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1802         return StmtError(Diag(First->getLocStart(),
1803                    diag::err_selector_element_not_lvalue)
1804           << First->getSourceRange());
1805 
1806       FirstType = static_cast<Expr*>(First)->getType();
1807       if (FirstType.isConstQualified())
1808         Diag(ForLoc, diag::err_selector_element_const_type)
1809           << FirstType << First->getSourceRange();
1810     }
1811     if (!FirstType->isDependentType() &&
1812         !FirstType->isObjCObjectPointerType() &&
1813         !FirstType->isBlockPointerType())
1814         return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1815                            << FirstType << First->getSourceRange());
1816   }
1817 
1818   if (CollectionExprResult.isInvalid())
1819     return StmtError();
1820 
1821   CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1822   if (CollectionExprResult.isInvalid())
1823     return StmtError();
1824 
1825   return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1826                                              nullptr, ForLoc, RParenLoc);
1827 }
1828 
1829 /// Finish building a variable declaration for a for-range statement.
1830 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int DiagID)1831 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1832                                   SourceLocation Loc, int DiagID) {
1833   if (Decl->getType()->isUndeducedType()) {
1834     ExprResult Res = SemaRef.CorrectDelayedTyposInExpr(Init);
1835     if (!Res.isUsable()) {
1836       Decl->setInvalidDecl();
1837       return true;
1838     }
1839     Init = Res.get();
1840   }
1841 
1842   // Deduce the type for the iterator variable now rather than leaving it to
1843   // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1844   QualType InitType;
1845   if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1846       SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1847           Sema::DAR_Failed)
1848     SemaRef.Diag(Loc, DiagID) << Init->getType();
1849   if (InitType.isNull()) {
1850     Decl->setInvalidDecl();
1851     return true;
1852   }
1853   Decl->setType(InitType);
1854 
1855   // In ARC, infer lifetime.
1856   // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1857   // we're doing the equivalent of fast iteration.
1858   if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1859       SemaRef.inferObjCARCLifetime(Decl))
1860     Decl->setInvalidDecl();
1861 
1862   SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1863                                /*TypeMayContainAuto=*/false);
1864   SemaRef.FinalizeDeclaration(Decl);
1865   SemaRef.CurContext->addHiddenDecl(Decl);
1866   return false;
1867 }
1868 
1869 namespace {
1870 // An enum to represent whether something is dealing with a call to begin()
1871 // or a call to end() in a range-based for loop.
1872 enum BeginEndFunction {
1873   BEF_begin,
1874   BEF_end
1875 };
1876 
1877 /// Produce a note indicating which begin/end function was implicitly called
1878 /// by a C++11 for-range statement. This is often not obvious from the code,
1879 /// nor from the diagnostics produced when analysing the implicit expressions
1880 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,BeginEndFunction BEF)1881 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1882                                   BeginEndFunction BEF) {
1883   CallExpr *CE = dyn_cast<CallExpr>(E);
1884   if (!CE)
1885     return;
1886   FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1887   if (!D)
1888     return;
1889   SourceLocation Loc = D->getLocation();
1890 
1891   std::string Description;
1892   bool IsTemplate = false;
1893   if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1894     Description = SemaRef.getTemplateArgumentBindingsText(
1895       FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1896     IsTemplate = true;
1897   }
1898 
1899   SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1900     << BEF << IsTemplate << Description << E->getType();
1901 }
1902 
1903 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1904 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1905                               QualType Type, const char *Name) {
1906   DeclContext *DC = SemaRef.CurContext;
1907   IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1908   TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1909   VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1910                                   TInfo, SC_None);
1911   Decl->setImplicit();
1912   return Decl;
1913 }
1914 
1915 }
1916 
ObjCEnumerationCollection(Expr * Collection)1917 static bool ObjCEnumerationCollection(Expr *Collection) {
1918   return !Collection->isTypeDependent()
1919           && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
1920 }
1921 
1922 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1923 ///
1924 /// C++11 [stmt.ranged]:
1925 ///   A range-based for statement is equivalent to
1926 ///
1927 ///   {
1928 ///     auto && __range = range-init;
1929 ///     for ( auto __begin = begin-expr,
1930 ///           __end = end-expr;
1931 ///           __begin != __end;
1932 ///           ++__begin ) {
1933 ///       for-range-declaration = *__begin;
1934 ///       statement
1935 ///     }
1936 ///   }
1937 ///
1938 /// The body of the loop is not available yet, since it cannot be analysed until
1939 /// we have determined the type of the for-range-declaration.
ActOnCXXForRangeStmt(Scope * S,SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)1940 StmtResult Sema::ActOnCXXForRangeStmt(Scope *S, SourceLocation ForLoc,
1941                                       SourceLocation CoawaitLoc, Stmt *First,
1942                                       SourceLocation ColonLoc, Expr *Range,
1943                                       SourceLocation RParenLoc,
1944                                       BuildForRangeKind Kind) {
1945   if (!First)
1946     return StmtError();
1947 
1948   if (Range && ObjCEnumerationCollection(Range))
1949     return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1950 
1951   DeclStmt *DS = dyn_cast<DeclStmt>(First);
1952   assert(DS && "first part of for range not a decl stmt");
1953 
1954   if (!DS->isSingleDecl()) {
1955     Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1956     return StmtError();
1957   }
1958 
1959   Decl *LoopVar = DS->getSingleDecl();
1960   if (LoopVar->isInvalidDecl() || !Range ||
1961       DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
1962     LoopVar->setInvalidDecl();
1963     return StmtError();
1964   }
1965 
1966   // Coroutines: 'for co_await' implicitly co_awaits its range.
1967   if (CoawaitLoc.isValid()) {
1968     ExprResult Coawait = ActOnCoawaitExpr(S, CoawaitLoc, Range);
1969     if (Coawait.isInvalid()) return StmtError();
1970     Range = Coawait.get();
1971   }
1972 
1973   // Build  auto && __range = range-init
1974   SourceLocation RangeLoc = Range->getLocStart();
1975   VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1976                                            Context.getAutoRRefDeductType(),
1977                                            "__range");
1978   if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1979                             diag::err_for_range_deduction_failure)) {
1980     LoopVar->setInvalidDecl();
1981     return StmtError();
1982   }
1983 
1984   // Claim the type doesn't contain auto: we've already done the checking.
1985   DeclGroupPtrTy RangeGroup =
1986       BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1987                            /*TypeMayContainAuto=*/ false);
1988   StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1989   if (RangeDecl.isInvalid()) {
1990     LoopVar->setInvalidDecl();
1991     return StmtError();
1992   }
1993 
1994   return BuildCXXForRangeStmt(ForLoc, CoawaitLoc, ColonLoc, RangeDecl.get(),
1995                               /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
1996                               /*Inc=*/nullptr, DS, RParenLoc, Kind);
1997 }
1998 
1999 /// \brief Create the initialization, compare, and increment steps for
2000 /// the range-based for loop expression.
2001 /// This function does not handle array-based for loops,
2002 /// which are created in Sema::BuildCXXForRangeStmt.
2003 ///
2004 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
2005 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
2006 /// CandidateSet and BEF are set and some non-success value is returned on
2007 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,BeginEndFunction * BEF)2008 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef,
2009                                             Expr *BeginRange, Expr *EndRange,
2010                                             QualType RangeType,
2011                                             VarDecl *BeginVar,
2012                                             VarDecl *EndVar,
2013                                             SourceLocation ColonLoc,
2014                                             OverloadCandidateSet *CandidateSet,
2015                                             ExprResult *BeginExpr,
2016                                             ExprResult *EndExpr,
2017                                             BeginEndFunction *BEF) {
2018   DeclarationNameInfo BeginNameInfo(
2019       &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
2020   DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
2021                                   ColonLoc);
2022 
2023   LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
2024                                  Sema::LookupMemberName);
2025   LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
2026 
2027   if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
2028     // - if _RangeT is a class type, the unqualified-ids begin and end are
2029     //   looked up in the scope of class _RangeT as if by class member access
2030     //   lookup (3.4.5), and if either (or both) finds at least one
2031     //   declaration, begin-expr and end-expr are __range.begin() and
2032     //   __range.end(), respectively;
2033     SemaRef.LookupQualifiedName(BeginMemberLookup, D);
2034     SemaRef.LookupQualifiedName(EndMemberLookup, D);
2035 
2036     if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
2037       SourceLocation RangeLoc = BeginVar->getLocation();
2038       *BEF = BeginMemberLookup.empty() ? BEF_end : BEF_begin;
2039 
2040       SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
2041           << RangeLoc << BeginRange->getType() << *BEF;
2042       return Sema::FRS_DiagnosticIssued;
2043     }
2044   } else {
2045     // - otherwise, begin-expr and end-expr are begin(__range) and
2046     //   end(__range), respectively, where begin and end are looked up with
2047     //   argument-dependent lookup (3.4.2). For the purposes of this name
2048     //   lookup, namespace std is an associated namespace.
2049 
2050   }
2051 
2052   *BEF = BEF_begin;
2053   Sema::ForRangeStatus RangeStatus =
2054       SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, BeginNameInfo,
2055                                         BeginMemberLookup, CandidateSet,
2056                                         BeginRange, BeginExpr);
2057 
2058   if (RangeStatus != Sema::FRS_Success) {
2059     if (RangeStatus == Sema::FRS_DiagnosticIssued)
2060       SemaRef.Diag(BeginRange->getLocStart(), diag::note_in_for_range)
2061           << ColonLoc << BEF_begin << BeginRange->getType();
2062     return RangeStatus;
2063   }
2064   if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2065                             diag::err_for_range_iter_deduction_failure)) {
2066     NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2067     return Sema::FRS_DiagnosticIssued;
2068   }
2069 
2070   *BEF = BEF_end;
2071   RangeStatus =
2072       SemaRef.BuildForRangeBeginEndCall(ColonLoc, ColonLoc, EndNameInfo,
2073                                         EndMemberLookup, CandidateSet,
2074                                         EndRange, EndExpr);
2075   if (RangeStatus != Sema::FRS_Success) {
2076     if (RangeStatus == Sema::FRS_DiagnosticIssued)
2077       SemaRef.Diag(EndRange->getLocStart(), diag::note_in_for_range)
2078           << ColonLoc << BEF_end << EndRange->getType();
2079     return RangeStatus;
2080   }
2081   if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2082                             diag::err_for_range_iter_deduction_failure)) {
2083     NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2084     return Sema::FRS_DiagnosticIssued;
2085   }
2086   return Sema::FRS_Success;
2087 }
2088 
2089 /// Speculatively attempt to dereference an invalid range expression.
2090 /// If the attempt fails, this function will return a valid, null StmtResult
2091 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,SourceLocation CoawaitLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)2092 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2093                                                  SourceLocation ForLoc,
2094                                                  SourceLocation CoawaitLoc,
2095                                                  Stmt *LoopVarDecl,
2096                                                  SourceLocation ColonLoc,
2097                                                  Expr *Range,
2098                                                  SourceLocation RangeLoc,
2099                                                  SourceLocation RParenLoc) {
2100   // Determine whether we can rebuild the for-range statement with a
2101   // dereferenced range expression.
2102   ExprResult AdjustedRange;
2103   {
2104     Sema::SFINAETrap Trap(SemaRef);
2105 
2106     AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2107     if (AdjustedRange.isInvalid())
2108       return StmtResult();
2109 
2110     StmtResult SR = SemaRef.ActOnCXXForRangeStmt(
2111         S, ForLoc, CoawaitLoc, LoopVarDecl, ColonLoc, AdjustedRange.get(),
2112         RParenLoc, Sema::BFRK_Check);
2113     if (SR.isInvalid())
2114       return StmtResult();
2115   }
2116 
2117   // The attempt to dereference worked well enough that it could produce a valid
2118   // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2119   // case there are any other (non-fatal) problems with it.
2120   SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2121     << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2122   return SemaRef.ActOnCXXForRangeStmt(S, ForLoc, CoawaitLoc, LoopVarDecl,
2123                                       ColonLoc, AdjustedRange.get(), RParenLoc,
2124                                       Sema::BFRK_Rebuild);
2125 }
2126 
2127 namespace {
2128 /// RAII object to automatically invalidate a declaration if an error occurs.
2129 struct InvalidateOnErrorScope {
InvalidateOnErrorScope__anon27b5dcff0511::InvalidateOnErrorScope2130   InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2131       : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
~InvalidateOnErrorScope__anon27b5dcff0511::InvalidateOnErrorScope2132   ~InvalidateOnErrorScope() {
2133     if (Enabled && Trap.hasErrorOccurred())
2134       D->setInvalidDecl();
2135   }
2136 
2137   DiagnosticErrorTrap Trap;
2138   Decl *D;
2139   bool Enabled;
2140 };
2141 }
2142 
2143 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2144 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation CoawaitLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)2145 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation CoawaitLoc,
2146                            SourceLocation ColonLoc,
2147                            Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2148                            Expr *Inc, Stmt *LoopVarDecl,
2149                            SourceLocation RParenLoc, BuildForRangeKind Kind) {
2150   // FIXME: This should not be used during template instantiation. We should
2151   // pick up the set of unqualified lookup results for the != and + operators
2152   // in the initial parse.
2153   //
2154   // Testcase (accepts-invalid):
2155   //   template<typename T> void f() { for (auto x : T()) {} }
2156   //   namespace N { struct X { X begin(); X end(); int operator*(); }; }
2157   //   bool operator!=(N::X, N::X); void operator++(N::X);
2158   //   void g() { f<N::X>(); }
2159   Scope *S = getCurScope();
2160 
2161   DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2162   VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2163   QualType RangeVarType = RangeVar->getType();
2164 
2165   DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2166   VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2167 
2168   // If we hit any errors, mark the loop variable as invalid if its type
2169   // contains 'auto'.
2170   InvalidateOnErrorScope Invalidate(*this, LoopVar,
2171                                     LoopVar->getType()->isUndeducedType());
2172 
2173   StmtResult BeginEndDecl = BeginEnd;
2174   ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2175 
2176   if (RangeVarType->isDependentType()) {
2177     // The range is implicitly used as a placeholder when it is dependent.
2178     RangeVar->markUsed(Context);
2179 
2180     // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2181     // them in properly when we instantiate the loop.
2182     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2183       LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2184   } else if (!BeginEndDecl.get()) {
2185     SourceLocation RangeLoc = RangeVar->getLocation();
2186 
2187     const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2188 
2189     ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2190                                                 VK_LValue, ColonLoc);
2191     if (BeginRangeRef.isInvalid())
2192       return StmtError();
2193 
2194     ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2195                                               VK_LValue, ColonLoc);
2196     if (EndRangeRef.isInvalid())
2197       return StmtError();
2198 
2199     QualType AutoType = Context.getAutoDeductType();
2200     Expr *Range = RangeVar->getInit();
2201     if (!Range)
2202       return StmtError();
2203     QualType RangeType = Range->getType();
2204 
2205     if (RequireCompleteType(RangeLoc, RangeType,
2206                             diag::err_for_range_incomplete_type))
2207       return StmtError();
2208 
2209     // Build auto __begin = begin-expr, __end = end-expr.
2210     VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2211                                              "__begin");
2212     VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2213                                            "__end");
2214 
2215     // Build begin-expr and end-expr and attach to __begin and __end variables.
2216     ExprResult BeginExpr, EndExpr;
2217     if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2218       // - if _RangeT is an array type, begin-expr and end-expr are __range and
2219       //   __range + __bound, respectively, where __bound is the array bound. If
2220       //   _RangeT is an array of unknown size or an array of incomplete type,
2221       //   the program is ill-formed;
2222 
2223       // begin-expr is __range.
2224       BeginExpr = BeginRangeRef;
2225       if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2226                                 diag::err_for_range_iter_deduction_failure)) {
2227         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2228         return StmtError();
2229       }
2230 
2231       // Find the array bound.
2232       ExprResult BoundExpr;
2233       if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2234         BoundExpr = IntegerLiteral::Create(
2235             Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2236       else if (const VariableArrayType *VAT =
2237                dyn_cast<VariableArrayType>(UnqAT))
2238         BoundExpr = VAT->getSizeExpr();
2239       else {
2240         // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2241         // UnqAT is not incomplete and Range is not type-dependent.
2242         llvm_unreachable("Unexpected array type in for-range");
2243       }
2244 
2245       // end-expr is __range + __bound.
2246       EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2247                            BoundExpr.get());
2248       if (EndExpr.isInvalid())
2249         return StmtError();
2250       if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2251                                 diag::err_for_range_iter_deduction_failure)) {
2252         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2253         return StmtError();
2254       }
2255     } else {
2256       OverloadCandidateSet CandidateSet(RangeLoc,
2257                                         OverloadCandidateSet::CSK_Normal);
2258       BeginEndFunction BEFFailure;
2259       ForRangeStatus RangeStatus =
2260           BuildNonArrayForRange(*this, BeginRangeRef.get(),
2261                                 EndRangeRef.get(), RangeType,
2262                                 BeginVar, EndVar, ColonLoc, &CandidateSet,
2263                                 &BeginExpr, &EndExpr, &BEFFailure);
2264 
2265       if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2266           BEFFailure == BEF_begin) {
2267         // If the range is being built from an array parameter, emit a
2268         // a diagnostic that it is being treated as a pointer.
2269         if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2270           if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2271             QualType ArrayTy = PVD->getOriginalType();
2272             QualType PointerTy = PVD->getType();
2273             if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2274               Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2275                 << RangeLoc << PVD << ArrayTy << PointerTy;
2276               Diag(PVD->getLocation(), diag::note_declared_at);
2277               return StmtError();
2278             }
2279           }
2280         }
2281 
2282         // If building the range failed, try dereferencing the range expression
2283         // unless a diagnostic was issued or the end function is problematic.
2284         StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2285                                                        CoawaitLoc,
2286                                                        LoopVarDecl, ColonLoc,
2287                                                        Range, RangeLoc,
2288                                                        RParenLoc);
2289         if (SR.isInvalid() || SR.isUsable())
2290           return SR;
2291       }
2292 
2293       // Otherwise, emit diagnostics if we haven't already.
2294       if (RangeStatus == FRS_NoViableFunction) {
2295         Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2296         Diag(Range->getLocStart(), diag::err_for_range_invalid)
2297             << RangeLoc << Range->getType() << BEFFailure;
2298         CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2299       }
2300       // Return an error if no fix was discovered.
2301       if (RangeStatus != FRS_Success)
2302         return StmtError();
2303     }
2304 
2305     assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2306            "invalid range expression in for loop");
2307 
2308     // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2309     QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2310     if (!Context.hasSameType(BeginType, EndType)) {
2311       Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2312         << BeginType << EndType;
2313       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2314       NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2315     }
2316 
2317     Decl *BeginEndDecls[] = { BeginVar, EndVar };
2318     // Claim the type doesn't contain auto: we've already done the checking.
2319     DeclGroupPtrTy BeginEndGroup =
2320         BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
2321                              /*TypeMayContainAuto=*/ false);
2322     BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2323 
2324     const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2325     ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2326                                            VK_LValue, ColonLoc);
2327     if (BeginRef.isInvalid())
2328       return StmtError();
2329 
2330     ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2331                                          VK_LValue, ColonLoc);
2332     if (EndRef.isInvalid())
2333       return StmtError();
2334 
2335     // Build and check __begin != __end expression.
2336     NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2337                            BeginRef.get(), EndRef.get());
2338     NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2339     NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2340     if (NotEqExpr.isInvalid()) {
2341       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2342         << RangeLoc << 0 << BeginRangeRef.get()->getType();
2343       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2344       if (!Context.hasSameType(BeginType, EndType))
2345         NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2346       return StmtError();
2347     }
2348 
2349     // Build and check ++__begin expression.
2350     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2351                                 VK_LValue, ColonLoc);
2352     if (BeginRef.isInvalid())
2353       return StmtError();
2354 
2355     IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2356     if (!IncrExpr.isInvalid() && CoawaitLoc.isValid())
2357       IncrExpr = ActOnCoawaitExpr(S, CoawaitLoc, IncrExpr.get());
2358     if (!IncrExpr.isInvalid())
2359       IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2360     if (IncrExpr.isInvalid()) {
2361       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2362         << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2363       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2364       return StmtError();
2365     }
2366 
2367     // Build and check *__begin  expression.
2368     BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2369                                 VK_LValue, ColonLoc);
2370     if (BeginRef.isInvalid())
2371       return StmtError();
2372 
2373     ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2374     if (DerefExpr.isInvalid()) {
2375       Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2376         << RangeLoc << 1 << BeginRangeRef.get()->getType();
2377       NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2378       return StmtError();
2379     }
2380 
2381     // Attach  *__begin  as initializer for VD. Don't touch it if we're just
2382     // trying to determine whether this would be a valid range.
2383     if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2384       AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2385                            /*TypeMayContainAuto=*/true);
2386       if (LoopVar->isInvalidDecl())
2387         NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2388     }
2389   }
2390 
2391   // Don't bother to actually allocate the result if we're just trying to
2392   // determine whether it would be valid.
2393   if (Kind == BFRK_Check)
2394     return StmtResult();
2395 
2396   return new (Context) CXXForRangeStmt(
2397       RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
2398       IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, CoawaitLoc,
2399       ColonLoc, RParenLoc);
2400 }
2401 
2402 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2403 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2404 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2405   if (!S || !B)
2406     return StmtError();
2407   ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2408 
2409   ForStmt->setBody(B);
2410   return S;
2411 }
2412 
2413 // Warn when the loop variable is a const reference that creates a copy.
2414 // Suggest using the non-reference type for copies.  If a copy can be prevented
2415 // suggest the const reference type that would do so.
2416 // For instance, given "for (const &Foo : Range)", suggest
2417 // "for (const Foo : Range)" to denote a copy is made for the loop.  If
2418 // possible, also suggest "for (const &Bar : Range)" if this type prevents
2419 // the copy altogether.
DiagnoseForRangeReferenceVariableCopies(Sema & SemaRef,const VarDecl * VD,QualType RangeInitType)2420 static void DiagnoseForRangeReferenceVariableCopies(Sema &SemaRef,
2421                                                     const VarDecl *VD,
2422                                                     QualType RangeInitType) {
2423   const Expr *InitExpr = VD->getInit();
2424   if (!InitExpr)
2425     return;
2426 
2427   QualType VariableType = VD->getType();
2428 
2429   const MaterializeTemporaryExpr *MTE =
2430       dyn_cast<MaterializeTemporaryExpr>(InitExpr);
2431 
2432   // No copy made.
2433   if (!MTE)
2434     return;
2435 
2436   const Expr *E = MTE->GetTemporaryExpr()->IgnoreImpCasts();
2437 
2438   // Searching for either UnaryOperator for dereference of a pointer or
2439   // CXXOperatorCallExpr for handling iterators.
2440   while (!isa<CXXOperatorCallExpr>(E) && !isa<UnaryOperator>(E)) {
2441     if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(E)) {
2442       E = CCE->getArg(0);
2443     } else if (const CXXMemberCallExpr *Call = dyn_cast<CXXMemberCallExpr>(E)) {
2444       const MemberExpr *ME = cast<MemberExpr>(Call->getCallee());
2445       E = ME->getBase();
2446     } else {
2447       const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E);
2448       E = MTE->GetTemporaryExpr();
2449     }
2450     E = E->IgnoreImpCasts();
2451   }
2452 
2453   bool ReturnsReference = false;
2454   if (isa<UnaryOperator>(E)) {
2455     ReturnsReference = true;
2456   } else {
2457     const CXXOperatorCallExpr *Call = cast<CXXOperatorCallExpr>(E);
2458     const FunctionDecl *FD = Call->getDirectCallee();
2459     QualType ReturnType = FD->getReturnType();
2460     ReturnsReference = ReturnType->isReferenceType();
2461   }
2462 
2463   if (ReturnsReference) {
2464     // Loop variable creates a temporary.  Suggest either to go with
2465     // non-reference loop variable to indiciate a copy is made, or
2466     // the correct time to bind a const reference.
2467     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_const_reference_copy)
2468         << VD << VariableType << E->getType();
2469     QualType NonReferenceType = VariableType.getNonReferenceType();
2470     NonReferenceType.removeLocalConst();
2471     QualType NewReferenceType =
2472         SemaRef.Context.getLValueReferenceType(E->getType().withConst());
2473     SemaRef.Diag(VD->getLocStart(), diag::note_use_type_or_non_reference)
2474         << NonReferenceType << NewReferenceType << VD->getSourceRange();
2475   } else {
2476     // The range always returns a copy, so a temporary is always created.
2477     // Suggest removing the reference from the loop variable.
2478     SemaRef.Diag(VD->getLocation(), diag::warn_for_range_variable_always_copy)
2479         << VD << RangeInitType;
2480     QualType NonReferenceType = VariableType.getNonReferenceType();
2481     NonReferenceType.removeLocalConst();
2482     SemaRef.Diag(VD->getLocStart(), diag::note_use_non_reference_type)
2483         << NonReferenceType << VD->getSourceRange();
2484   }
2485 }
2486 
2487 // Warns when the loop variable can be changed to a reference type to
2488 // prevent a copy.  For instance, if given "for (const Foo x : Range)" suggest
2489 // "for (const Foo &x : Range)" if this form does not make a copy.
DiagnoseForRangeConstVariableCopies(Sema & SemaRef,const VarDecl * VD)2490 static void DiagnoseForRangeConstVariableCopies(Sema &SemaRef,
2491                                                 const VarDecl *VD) {
2492   const Expr *InitExpr = VD->getInit();
2493   if (!InitExpr)
2494     return;
2495 
2496   QualType VariableType = VD->getType();
2497 
2498   if (const CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(InitExpr)) {
2499     if (!CE->getConstructor()->isCopyConstructor())
2500       return;
2501   } else if (const CastExpr *CE = dyn_cast<CastExpr>(InitExpr)) {
2502     if (CE->getCastKind() != CK_LValueToRValue)
2503       return;
2504   } else {
2505     return;
2506   }
2507 
2508   // TODO: Determine a maximum size that a POD type can be before a diagnostic
2509   // should be emitted.  Also, only ignore POD types with trivial copy
2510   // constructors.
2511   if (VariableType.isPODType(SemaRef.Context))
2512     return;
2513 
2514   // Suggest changing from a const variable to a const reference variable
2515   // if doing so will prevent a copy.
2516   SemaRef.Diag(VD->getLocation(), diag::warn_for_range_copy)
2517       << VD << VariableType << InitExpr->getType();
2518   SemaRef.Diag(VD->getLocStart(), diag::note_use_reference_type)
2519       << SemaRef.Context.getLValueReferenceType(VariableType)
2520       << VD->getSourceRange();
2521 }
2522 
2523 /// DiagnoseForRangeVariableCopies - Diagnose three cases and fixes for them.
2524 /// 1) for (const foo &x : foos) where foos only returns a copy.  Suggest
2525 ///    using "const foo x" to show that a copy is made
2526 /// 2) for (const bar &x : foos) where bar is a temporary intialized by bar.
2527 ///    Suggest either "const bar x" to keep the copying or "const foo& x" to
2528 ///    prevent the copy.
2529 /// 3) for (const foo x : foos) where x is constructed from a reference foo.
2530 ///    Suggest "const foo &x" to prevent the copy.
DiagnoseForRangeVariableCopies(Sema & SemaRef,const CXXForRangeStmt * ForStmt)2531 static void DiagnoseForRangeVariableCopies(Sema &SemaRef,
2532                                            const CXXForRangeStmt *ForStmt) {
2533   if (SemaRef.Diags.isIgnored(diag::warn_for_range_const_reference_copy,
2534                               ForStmt->getLocStart()) &&
2535       SemaRef.Diags.isIgnored(diag::warn_for_range_variable_always_copy,
2536                               ForStmt->getLocStart()) &&
2537       SemaRef.Diags.isIgnored(diag::warn_for_range_copy,
2538                               ForStmt->getLocStart())) {
2539     return;
2540   }
2541 
2542   const VarDecl *VD = ForStmt->getLoopVariable();
2543   if (!VD)
2544     return;
2545 
2546   QualType VariableType = VD->getType();
2547 
2548   if (VariableType->isIncompleteType())
2549     return;
2550 
2551   const Expr *InitExpr = VD->getInit();
2552   if (!InitExpr)
2553     return;
2554 
2555   if (VariableType->isReferenceType()) {
2556     DiagnoseForRangeReferenceVariableCopies(SemaRef, VD,
2557                                             ForStmt->getRangeInit()->getType());
2558   } else if (VariableType.isConstQualified()) {
2559     DiagnoseForRangeConstVariableCopies(SemaRef, VD);
2560   }
2561 }
2562 
2563 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2564 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2565 /// body cannot be performed until after the type of the range variable is
2566 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2567 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2568   if (!S || !B)
2569     return StmtError();
2570 
2571   if (isa<ObjCForCollectionStmt>(S))
2572     return FinishObjCForCollectionStmt(S, B);
2573 
2574   CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2575   ForStmt->setBody(B);
2576 
2577   DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2578                         diag::warn_empty_range_based_for_body);
2579 
2580   DiagnoseForRangeVariableCopies(*this, ForStmt);
2581 
2582   return S;
2583 }
2584 
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2585 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2586                                SourceLocation LabelLoc,
2587                                LabelDecl *TheDecl) {
2588   getCurFunction()->setHasBranchIntoScope();
2589   TheDecl->markUsed(Context);
2590   return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2591 }
2592 
2593 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2594 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2595                             Expr *E) {
2596   // Convert operand to void*
2597   if (!E->isTypeDependent()) {
2598     QualType ETy = E->getType();
2599     QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2600     ExprResult ExprRes = E;
2601     AssignConvertType ConvTy =
2602       CheckSingleAssignmentConstraints(DestTy, ExprRes);
2603     if (ExprRes.isInvalid())
2604       return StmtError();
2605     E = ExprRes.get();
2606     if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2607       return StmtError();
2608   }
2609 
2610   ExprResult ExprRes = ActOnFinishFullExpr(E);
2611   if (ExprRes.isInvalid())
2612     return StmtError();
2613   E = ExprRes.get();
2614 
2615   getCurFunction()->setHasIndirectGoto();
2616 
2617   return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2618 }
2619 
CheckJumpOutOfSEHFinally(Sema & S,SourceLocation Loc,const Scope & DestScope)2620 static void CheckJumpOutOfSEHFinally(Sema &S, SourceLocation Loc,
2621                                      const Scope &DestScope) {
2622   if (!S.CurrentSEHFinally.empty() &&
2623       DestScope.Contains(*S.CurrentSEHFinally.back())) {
2624     S.Diag(Loc, diag::warn_jump_out_of_seh_finally);
2625   }
2626 }
2627 
2628 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2629 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2630   Scope *S = CurScope->getContinueParent();
2631   if (!S) {
2632     // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2633     return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2634   }
2635   CheckJumpOutOfSEHFinally(*this, ContinueLoc, *S);
2636 
2637   return new (Context) ContinueStmt(ContinueLoc);
2638 }
2639 
2640 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2641 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2642   Scope *S = CurScope->getBreakParent();
2643   if (!S) {
2644     // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2645     return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2646   }
2647   if (S->isOpenMPLoopScope())
2648     return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2649                      << "break");
2650   CheckJumpOutOfSEHFinally(*this, BreakLoc, *S);
2651 
2652   return new (Context) BreakStmt(BreakLoc);
2653 }
2654 
2655 /// \brief Determine whether the given expression is a candidate for
2656 /// copy elision in either a return statement or a throw expression.
2657 ///
2658 /// \param ReturnType If we're determining the copy elision candidate for
2659 /// a return statement, this is the return type of the function. If we're
2660 /// determining the copy elision candidate for a throw expression, this will
2661 /// be a NULL type.
2662 ///
2663 /// \param E The expression being returned from the function or block, or
2664 /// being thrown.
2665 ///
2666 /// \param AllowFunctionParameter Whether we allow function parameters to
2667 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2668 /// we re-use this logic to determine whether we should try to move as part of
2669 /// a return or throw (which does allow function parameters).
2670 ///
2671 /// \returns The NRVO candidate variable, if the return statement may use the
2672 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2673 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2674                                        Expr *E,
2675                                        bool AllowFunctionParameter) {
2676   if (!getLangOpts().CPlusPlus)
2677     return nullptr;
2678 
2679   // - in a return statement in a function [where] ...
2680   // ... the expression is the name of a non-volatile automatic object ...
2681   DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2682   if (!DR || DR->refersToEnclosingVariableOrCapture())
2683     return nullptr;
2684   VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2685   if (!VD)
2686     return nullptr;
2687 
2688   if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
2689     return VD;
2690   return nullptr;
2691 }
2692 
isCopyElisionCandidate(QualType ReturnType,const VarDecl * VD,bool AllowFunctionParameter)2693 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2694                                   bool AllowFunctionParameter) {
2695   QualType VDType = VD->getType();
2696   // - in a return statement in a function with ...
2697   // ... a class return type ...
2698   if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2699     if (!ReturnType->isRecordType())
2700       return false;
2701     // ... the same cv-unqualified type as the function return type ...
2702     if (!VDType->isDependentType() &&
2703         !Context.hasSameUnqualifiedType(ReturnType, VDType))
2704       return false;
2705   }
2706 
2707   // ...object (other than a function or catch-clause parameter)...
2708   if (VD->getKind() != Decl::Var &&
2709       !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2710     return false;
2711   if (VD->isExceptionVariable()) return false;
2712 
2713   // ...automatic...
2714   if (!VD->hasLocalStorage()) return false;
2715 
2716   // ...non-volatile...
2717   if (VD->getType().isVolatileQualified()) return false;
2718 
2719   // __block variables can't be allocated in a way that permits NRVO.
2720   if (VD->hasAttr<BlocksAttr>()) return false;
2721 
2722   // Variables with higher required alignment than their type's ABI
2723   // alignment cannot use NRVO.
2724   if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2725       Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2726     return false;
2727 
2728   return true;
2729 }
2730 
2731 /// \brief Perform the initialization of a potentially-movable value, which
2732 /// is the result of return value.
2733 ///
2734 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2735 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2736 /// then falls back to treating them as lvalues if that failed.
2737 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2738 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2739                                       const VarDecl *NRVOCandidate,
2740                                       QualType ResultType,
2741                                       Expr *Value,
2742                                       bool AllowNRVO) {
2743   // C++0x [class.copy]p33:
2744   //   When the criteria for elision of a copy operation are met or would
2745   //   be met save for the fact that the source object is a function
2746   //   parameter, and the object to be copied is designated by an lvalue,
2747   //   overload resolution to select the constructor for the copy is first
2748   //   performed as if the object were designated by an rvalue.
2749   ExprResult Res = ExprError();
2750   if (AllowNRVO &&
2751       (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2752     ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2753                               Value->getType(), CK_NoOp, Value, VK_XValue);
2754 
2755     Expr *InitExpr = &AsRvalue;
2756     InitializationKind Kind
2757       = InitializationKind::CreateCopy(Value->getLocStart(),
2758                                        Value->getLocStart());
2759     InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2760 
2761     //   [...] If overload resolution fails, or if the type of the first
2762     //   parameter of the selected constructor is not an rvalue reference
2763     //   to the object's type (possibly cv-qualified), overload resolution
2764     //   is performed again, considering the object as an lvalue.
2765     if (Seq) {
2766       for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2767            StepEnd = Seq.step_end();
2768            Step != StepEnd; ++Step) {
2769         if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2770           continue;
2771 
2772         CXXConstructorDecl *Constructor
2773         = cast<CXXConstructorDecl>(Step->Function.Function);
2774 
2775         const RValueReferenceType *RRefType
2776           = Constructor->getParamDecl(0)->getType()
2777                                                  ->getAs<RValueReferenceType>();
2778 
2779         // If we don't meet the criteria, break out now.
2780         if (!RRefType ||
2781             !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2782                             Context.getTypeDeclType(Constructor->getParent())))
2783           break;
2784 
2785         // Promote "AsRvalue" to the heap, since we now need this
2786         // expression node to persist.
2787         Value = ImplicitCastExpr::Create(Context, Value->getType(),
2788                                          CK_NoOp, Value, nullptr, VK_XValue);
2789 
2790         // Complete type-checking the initialization of the return type
2791         // using the constructor we found.
2792         Res = Seq.Perform(*this, Entity, Kind, Value);
2793       }
2794     }
2795   }
2796 
2797   // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2798   // above, or overload resolution failed. Either way, we need to try
2799   // (again) now with the return value expression as written.
2800   if (Res.isInvalid())
2801     Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2802 
2803   return Res;
2804 }
2805 
2806 /// \brief Determine whether the declared return type of the specified function
2807 /// contains 'auto'.
hasDeducedReturnType(FunctionDecl * FD)2808 static bool hasDeducedReturnType(FunctionDecl *FD) {
2809   const FunctionProtoType *FPT =
2810       FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
2811   return FPT->getReturnType()->isUndeducedType();
2812 }
2813 
2814 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2815 /// for capturing scopes.
2816 ///
2817 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2818 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2819   // If this is the first return we've seen, infer the return type.
2820   // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2821   CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2822   QualType FnRetType = CurCap->ReturnType;
2823   LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
2824 
2825   if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
2826     // In C++1y, the return type may involve 'auto'.
2827     // FIXME: Blocks might have a return type of 'auto' explicitly specified.
2828     FunctionDecl *FD = CurLambda->CallOperator;
2829     if (CurCap->ReturnType.isNull())
2830       CurCap->ReturnType = FD->getReturnType();
2831 
2832     AutoType *AT = CurCap->ReturnType->getContainedAutoType();
2833     assert(AT && "lost auto type from lambda return type");
2834     if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2835       FD->setInvalidDecl();
2836       return StmtError();
2837     }
2838     CurCap->ReturnType = FnRetType = FD->getReturnType();
2839   } else if (CurCap->HasImplicitReturnType) {
2840     // For blocks/lambdas with implicit return types, we check each return
2841     // statement individually, and deduce the common return type when the block
2842     // or lambda is completed.
2843     // FIXME: Fold this into the 'auto' codepath above.
2844     if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2845       ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2846       if (Result.isInvalid())
2847         return StmtError();
2848       RetValExp = Result.get();
2849 
2850       // DR1048: even prior to C++14, we should use the 'auto' deduction rules
2851       // when deducing a return type for a lambda-expression (or by extension
2852       // for a block). These rules differ from the stated C++11 rules only in
2853       // that they remove top-level cv-qualifiers.
2854       if (!CurContext->isDependentContext())
2855         FnRetType = RetValExp->getType().getUnqualifiedType();
2856       else
2857         FnRetType = CurCap->ReturnType = Context.DependentTy;
2858     } else {
2859       if (RetValExp) {
2860         // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2861         // initializer list, because it is not an expression (even
2862         // though we represent it as one). We still deduce 'void'.
2863         Diag(ReturnLoc, diag::err_lambda_return_init_list)
2864           << RetValExp->getSourceRange();
2865       }
2866 
2867       FnRetType = Context.VoidTy;
2868     }
2869 
2870     // Although we'll properly infer the type of the block once it's completed,
2871     // make sure we provide a return type now for better error recovery.
2872     if (CurCap->ReturnType.isNull())
2873       CurCap->ReturnType = FnRetType;
2874   }
2875   assert(!FnRetType.isNull());
2876 
2877   if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2878     if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2879       Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2880       return StmtError();
2881     }
2882   } else if (CapturedRegionScopeInfo *CurRegion =
2883                  dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2884     Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2885     return StmtError();
2886   } else {
2887     assert(CurLambda && "unknown kind of captured scope");
2888     if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
2889             ->getNoReturnAttr()) {
2890       Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2891       return StmtError();
2892     }
2893   }
2894 
2895   // Otherwise, verify that this result type matches the previous one.  We are
2896   // pickier with blocks than for normal functions because we don't have GCC
2897   // compatibility to worry about here.
2898   const VarDecl *NRVOCandidate = nullptr;
2899   if (FnRetType->isDependentType()) {
2900     // Delay processing for now.  TODO: there are lots of dependent
2901     // types we can conclusively prove aren't void.
2902   } else if (FnRetType->isVoidType()) {
2903     if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2904         !(getLangOpts().CPlusPlus &&
2905           (RetValExp->isTypeDependent() ||
2906            RetValExp->getType()->isVoidType()))) {
2907       if (!getLangOpts().CPlusPlus &&
2908           RetValExp->getType()->isVoidType())
2909         Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2910       else {
2911         Diag(ReturnLoc, diag::err_return_block_has_expr);
2912         RetValExp = nullptr;
2913       }
2914     }
2915   } else if (!RetValExp) {
2916     return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2917   } else if (!RetValExp->isTypeDependent()) {
2918     // we have a non-void block with an expression, continue checking
2919 
2920     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2921     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2922     // function return.
2923 
2924     // In C++ the return statement is handled via a copy initialization.
2925     // the C version of which boils down to CheckSingleAssignmentConstraints.
2926     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2927     InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2928                                                                    FnRetType,
2929                                                       NRVOCandidate != nullptr);
2930     ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2931                                                      FnRetType, RetValExp);
2932     if (Res.isInvalid()) {
2933       // FIXME: Cleanup temporaries here, anyway?
2934       return StmtError();
2935     }
2936     RetValExp = Res.get();
2937     CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
2938   } else {
2939     NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2940   }
2941 
2942   if (RetValExp) {
2943     ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2944     if (ER.isInvalid())
2945       return StmtError();
2946     RetValExp = ER.get();
2947   }
2948   ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2949                                                 NRVOCandidate);
2950 
2951   // If we need to check for the named return value optimization,
2952   // or if we need to infer the return type,
2953   // save the return statement in our scope for later processing.
2954   if (CurCap->HasImplicitReturnType || NRVOCandidate)
2955     FunctionScopes.back()->Returns.push_back(Result);
2956 
2957   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
2958     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
2959 
2960   return Result;
2961 }
2962 
2963 namespace {
2964 /// \brief Marks all typedefs in all local classes in a type referenced.
2965 ///
2966 /// In a function like
2967 /// auto f() {
2968 ///   struct S { typedef int a; };
2969 ///   return S();
2970 /// }
2971 ///
2972 /// the local type escapes and could be referenced in some TUs but not in
2973 /// others. Pretend that all local typedefs are always referenced, to not warn
2974 /// on this. This isn't necessary if f has internal linkage, or the typedef
2975 /// is private.
2976 class LocalTypedefNameReferencer
2977     : public RecursiveASTVisitor<LocalTypedefNameReferencer> {
2978 public:
LocalTypedefNameReferencer(Sema & S)2979   LocalTypedefNameReferencer(Sema &S) : S(S) {}
2980   bool VisitRecordType(const RecordType *RT);
2981 private:
2982   Sema &S;
2983 };
VisitRecordType(const RecordType * RT)2984 bool LocalTypedefNameReferencer::VisitRecordType(const RecordType *RT) {
2985   auto *R = dyn_cast<CXXRecordDecl>(RT->getDecl());
2986   if (!R || !R->isLocalClass() || !R->isLocalClass()->isExternallyVisible() ||
2987       R->isDependentType())
2988     return true;
2989   for (auto *TmpD : R->decls())
2990     if (auto *T = dyn_cast<TypedefNameDecl>(TmpD))
2991       if (T->getAccess() != AS_private || R->hasFriends())
2992         S.MarkAnyDeclReferenced(T->getLocation(), T, /*OdrUse=*/false);
2993   return true;
2994 }
2995 }
2996 
getReturnTypeLoc(FunctionDecl * FD) const2997 TypeLoc Sema::getReturnTypeLoc(FunctionDecl *FD) const {
2998   TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
2999   while (auto ATL = TL.getAs<AttributedTypeLoc>())
3000     TL = ATL.getModifiedLoc().IgnoreParens();
3001   return TL.castAs<FunctionProtoTypeLoc>().getReturnLoc();
3002 }
3003 
3004 /// Deduce the return type for a function from a returned expression, per
3005 /// C++1y [dcl.spec.auto]p6.
DeduceFunctionTypeFromReturnExpr(FunctionDecl * FD,SourceLocation ReturnLoc,Expr * & RetExpr,AutoType * AT)3006 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
3007                                             SourceLocation ReturnLoc,
3008                                             Expr *&RetExpr,
3009                                             AutoType *AT) {
3010   TypeLoc OrigResultType = getReturnTypeLoc(FD);
3011   QualType Deduced;
3012 
3013   if (RetExpr && isa<InitListExpr>(RetExpr)) {
3014     //  If the deduction is for a return statement and the initializer is
3015     //  a braced-init-list, the program is ill-formed.
3016     Diag(RetExpr->getExprLoc(),
3017          getCurLambda() ? diag::err_lambda_return_init_list
3018                         : diag::err_auto_fn_return_init_list)
3019         << RetExpr->getSourceRange();
3020     return true;
3021   }
3022 
3023   if (FD->isDependentContext()) {
3024     // C++1y [dcl.spec.auto]p12:
3025     //   Return type deduction [...] occurs when the definition is
3026     //   instantiated even if the function body contains a return
3027     //   statement with a non-type-dependent operand.
3028     assert(AT->isDeduced() && "should have deduced to dependent type");
3029     return false;
3030   }
3031 
3032   if (RetExpr) {
3033     //  Otherwise, [...] deduce a value for U using the rules of template
3034     //  argument deduction.
3035     DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
3036 
3037     if (DAR == DAR_Failed && !FD->isInvalidDecl())
3038       Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
3039         << OrigResultType.getType() << RetExpr->getType();
3040 
3041     if (DAR != DAR_Succeeded)
3042       return true;
3043 
3044     // If a local type is part of the returned type, mark its fields as
3045     // referenced.
3046     LocalTypedefNameReferencer Referencer(*this);
3047     Referencer.TraverseType(RetExpr->getType());
3048   } else {
3049     //  In the case of a return with no operand, the initializer is considered
3050     //  to be void().
3051     //
3052     // Deduction here can only succeed if the return type is exactly 'cv auto'
3053     // or 'decltype(auto)', so just check for that case directly.
3054     if (!OrigResultType.getType()->getAs<AutoType>()) {
3055       Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
3056         << OrigResultType.getType();
3057       return true;
3058     }
3059     // We always deduce U = void in this case.
3060     Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
3061     if (Deduced.isNull())
3062       return true;
3063   }
3064 
3065   //  If a function with a declared return type that contains a placeholder type
3066   //  has multiple return statements, the return type is deduced for each return
3067   //  statement. [...] if the type deduced is not the same in each deduction,
3068   //  the program is ill-formed.
3069   if (AT->isDeduced() && !FD->isInvalidDecl()) {
3070     AutoType *NewAT = Deduced->getContainedAutoType();
3071     CanQualType OldDeducedType = Context.getCanonicalFunctionResultType(
3072                                    AT->getDeducedType());
3073     CanQualType NewDeducedType = Context.getCanonicalFunctionResultType(
3074                                    NewAT->getDeducedType());
3075     if (!FD->isDependentContext() && OldDeducedType != NewDeducedType) {
3076       const LambdaScopeInfo *LambdaSI = getCurLambda();
3077       if (LambdaSI && LambdaSI->HasImplicitReturnType) {
3078         Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
3079           << NewAT->getDeducedType() << AT->getDeducedType()
3080           << true /*IsLambda*/;
3081       } else {
3082         Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
3083           << (AT->isDecltypeAuto() ? 1 : 0)
3084           << NewAT->getDeducedType() << AT->getDeducedType();
3085       }
3086       return true;
3087     }
3088   } else if (!FD->isInvalidDecl()) {
3089     // Update all declarations of the function to have the deduced return type.
3090     Context.adjustDeducedFunctionResultType(FD, Deduced);
3091   }
3092 
3093   return false;
3094 }
3095 
3096 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp,Scope * CurScope)3097 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
3098                       Scope *CurScope) {
3099   StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
3100   if (R.isInvalid()) {
3101     return R;
3102   }
3103 
3104   if (VarDecl *VD =
3105       const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
3106     CurScope->addNRVOCandidate(VD);
3107   } else {
3108     CurScope->setNoNRVO();
3109   }
3110 
3111   CheckJumpOutOfSEHFinally(*this, ReturnLoc, *CurScope->getFnParent());
3112 
3113   return R;
3114 }
3115 
BuildReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)3116 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
3117   // Check for unexpanded parameter packs.
3118   if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
3119     return StmtError();
3120 
3121   if (isa<CapturingScopeInfo>(getCurFunction()))
3122     return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
3123 
3124   QualType FnRetType;
3125   QualType RelatedRetType;
3126   const AttrVec *Attrs = nullptr;
3127   bool isObjCMethod = false;
3128 
3129   if (const FunctionDecl *FD = getCurFunctionDecl()) {
3130     FnRetType = FD->getReturnType();
3131     if (FD->hasAttrs())
3132       Attrs = &FD->getAttrs();
3133     if (FD->isNoReturn())
3134       Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
3135         << FD->getDeclName();
3136   } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
3137     FnRetType = MD->getReturnType();
3138     isObjCMethod = true;
3139     if (MD->hasAttrs())
3140       Attrs = &MD->getAttrs();
3141     if (MD->hasRelatedResultType() && MD->getClassInterface()) {
3142       // In the implementation of a method with a related return type, the
3143       // type used to type-check the validity of return statements within the
3144       // method body is a pointer to the type of the class being implemented.
3145       RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
3146       RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
3147     }
3148   } else // If we don't have a function/method context, bail.
3149     return StmtError();
3150 
3151   // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
3152   // deduction.
3153   if (getLangOpts().CPlusPlus14) {
3154     if (AutoType *AT = FnRetType->getContainedAutoType()) {
3155       FunctionDecl *FD = cast<FunctionDecl>(CurContext);
3156       if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
3157         FD->setInvalidDecl();
3158         return StmtError();
3159       } else {
3160         FnRetType = FD->getReturnType();
3161       }
3162     }
3163   }
3164 
3165   bool HasDependentReturnType = FnRetType->isDependentType();
3166 
3167   ReturnStmt *Result = nullptr;
3168   if (FnRetType->isVoidType()) {
3169     if (RetValExp) {
3170       if (isa<InitListExpr>(RetValExp)) {
3171         // We simply never allow init lists as the return value of void
3172         // functions. This is compatible because this was never allowed before,
3173         // so there's no legacy code to deal with.
3174         NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3175         int FunctionKind = 0;
3176         if (isa<ObjCMethodDecl>(CurDecl))
3177           FunctionKind = 1;
3178         else if (isa<CXXConstructorDecl>(CurDecl))
3179           FunctionKind = 2;
3180         else if (isa<CXXDestructorDecl>(CurDecl))
3181           FunctionKind = 3;
3182 
3183         Diag(ReturnLoc, diag::err_return_init_list)
3184           << CurDecl->getDeclName() << FunctionKind
3185           << RetValExp->getSourceRange();
3186 
3187         // Drop the expression.
3188         RetValExp = nullptr;
3189       } else if (!RetValExp->isTypeDependent()) {
3190         // C99 6.8.6.4p1 (ext_ since GCC warns)
3191         unsigned D = diag::ext_return_has_expr;
3192         if (RetValExp->getType()->isVoidType()) {
3193           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3194           if (isa<CXXConstructorDecl>(CurDecl) ||
3195               isa<CXXDestructorDecl>(CurDecl))
3196             D = diag::err_ctor_dtor_returns_void;
3197           else
3198             D = diag::ext_return_has_void_expr;
3199         }
3200         else {
3201           ExprResult Result = RetValExp;
3202           Result = IgnoredValueConversions(Result.get());
3203           if (Result.isInvalid())
3204             return StmtError();
3205           RetValExp = Result.get();
3206           RetValExp = ImpCastExprToType(RetValExp,
3207                                         Context.VoidTy, CK_ToVoid).get();
3208         }
3209         // return of void in constructor/destructor is illegal in C++.
3210         if (D == diag::err_ctor_dtor_returns_void) {
3211           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3212           Diag(ReturnLoc, D)
3213             << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
3214             << RetValExp->getSourceRange();
3215         }
3216         // return (some void expression); is legal in C++.
3217         else if (D != diag::ext_return_has_void_expr ||
3218                  !getLangOpts().CPlusPlus) {
3219           NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
3220 
3221           int FunctionKind = 0;
3222           if (isa<ObjCMethodDecl>(CurDecl))
3223             FunctionKind = 1;
3224           else if (isa<CXXConstructorDecl>(CurDecl))
3225             FunctionKind = 2;
3226           else if (isa<CXXDestructorDecl>(CurDecl))
3227             FunctionKind = 3;
3228 
3229           Diag(ReturnLoc, D)
3230             << CurDecl->getDeclName() << FunctionKind
3231             << RetValExp->getSourceRange();
3232         }
3233       }
3234 
3235       if (RetValExp) {
3236         ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3237         if (ER.isInvalid())
3238           return StmtError();
3239         RetValExp = ER.get();
3240       }
3241     }
3242 
3243     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
3244   } else if (!RetValExp && !HasDependentReturnType) {
3245     FunctionDecl *FD = getCurFunctionDecl();
3246 
3247     unsigned DiagID;
3248     if (getLangOpts().CPlusPlus11 && FD && FD->isConstexpr()) {
3249       // C++11 [stmt.return]p2
3250       DiagID = diag::err_constexpr_return_missing_expr;
3251       FD->setInvalidDecl();
3252     } else if (getLangOpts().C99) {
3253       // C99 6.8.6.4p1 (ext_ since GCC warns)
3254       DiagID = diag::ext_return_missing_expr;
3255     } else {
3256       // C90 6.6.6.4p4
3257       DiagID = diag::warn_return_missing_expr;
3258     }
3259 
3260     if (FD)
3261       Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
3262     else
3263       Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
3264 
3265     Result = new (Context) ReturnStmt(ReturnLoc);
3266   } else {
3267     assert(RetValExp || HasDependentReturnType);
3268     const VarDecl *NRVOCandidate = nullptr;
3269 
3270     QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
3271 
3272     // C99 6.8.6.4p3(136): The return statement is not an assignment. The
3273     // overlap restriction of subclause 6.5.16.1 does not apply to the case of
3274     // function return.
3275 
3276     // In C++ the return statement is handled via a copy initialization,
3277     // the C version of which boils down to CheckSingleAssignmentConstraints.
3278     if (RetValExp)
3279       NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
3280     if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
3281       // we have a non-void function with an expression, continue checking
3282       InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
3283                                                                      RetType,
3284                                                       NRVOCandidate != nullptr);
3285       ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
3286                                                        RetType, RetValExp);
3287       if (Res.isInvalid()) {
3288         // FIXME: Clean up temporaries here anyway?
3289         return StmtError();
3290       }
3291       RetValExp = Res.getAs<Expr>();
3292 
3293       // If we have a related result type, we need to implicitly
3294       // convert back to the formal result type.  We can't pretend to
3295       // initialize the result again --- we might end double-retaining
3296       // --- so instead we initialize a notional temporary.
3297       if (!RelatedRetType.isNull()) {
3298         Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3299                                                             FnRetType);
3300         Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3301         if (Res.isInvalid()) {
3302           // FIXME: Clean up temporaries here anyway?
3303           return StmtError();
3304         }
3305         RetValExp = Res.getAs<Expr>();
3306       }
3307 
3308       CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3309                          getCurFunctionDecl());
3310     }
3311 
3312     if (RetValExp) {
3313       ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3314       if (ER.isInvalid())
3315         return StmtError();
3316       RetValExp = ER.get();
3317     }
3318     Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3319   }
3320 
3321   // If we need to check for the named return value optimization, save the
3322   // return statement in our scope for later processing.
3323   if (Result->getNRVOCandidate())
3324     FunctionScopes.back()->Returns.push_back(Result);
3325 
3326   if (FunctionScopes.back()->FirstReturnLoc.isInvalid())
3327     FunctionScopes.back()->FirstReturnLoc = ReturnLoc;
3328 
3329   return Result;
3330 }
3331 
3332 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)3333 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3334                            SourceLocation RParen, Decl *Parm,
3335                            Stmt *Body) {
3336   VarDecl *Var = cast_or_null<VarDecl>(Parm);
3337   if (Var && Var->isInvalidDecl())
3338     return StmtError();
3339 
3340   return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3341 }
3342 
3343 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)3344 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3345   return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3346 }
3347 
3348 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)3349 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3350                          MultiStmtArg CatchStmts, Stmt *Finally) {
3351   if (!getLangOpts().ObjCExceptions)
3352     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3353 
3354   getCurFunction()->setHasBranchProtectedScope();
3355   unsigned NumCatchStmts = CatchStmts.size();
3356   return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3357                                NumCatchStmts, Finally);
3358 }
3359 
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)3360 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3361   if (Throw) {
3362     ExprResult Result = DefaultLvalueConversion(Throw);
3363     if (Result.isInvalid())
3364       return StmtError();
3365 
3366     Result = ActOnFinishFullExpr(Result.get());
3367     if (Result.isInvalid())
3368       return StmtError();
3369     Throw = Result.get();
3370 
3371     QualType ThrowType = Throw->getType();
3372     // Make sure the expression type is an ObjC pointer or "void *".
3373     if (!ThrowType->isDependentType() &&
3374         !ThrowType->isObjCObjectPointerType()) {
3375       const PointerType *PT = ThrowType->getAs<PointerType>();
3376       if (!PT || !PT->getPointeeType()->isVoidType())
3377         return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3378                          << Throw->getType() << Throw->getSourceRange());
3379     }
3380   }
3381 
3382   return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3383 }
3384 
3385 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)3386 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3387                            Scope *CurScope) {
3388   if (!getLangOpts().ObjCExceptions)
3389     Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3390 
3391   if (!Throw) {
3392     // @throw without an expression designates a rethrow (which must occur
3393     // in the context of an @catch clause).
3394     Scope *AtCatchParent = CurScope;
3395     while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3396       AtCatchParent = AtCatchParent->getParent();
3397     if (!AtCatchParent)
3398       return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3399   }
3400   return BuildObjCAtThrowStmt(AtLoc, Throw);
3401 }
3402 
3403 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)3404 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3405   ExprResult result = DefaultLvalueConversion(operand);
3406   if (result.isInvalid())
3407     return ExprError();
3408   operand = result.get();
3409 
3410   // Make sure the expression type is an ObjC pointer or "void *".
3411   QualType type = operand->getType();
3412   if (!type->isDependentType() &&
3413       !type->isObjCObjectPointerType()) {
3414     const PointerType *pointerType = type->getAs<PointerType>();
3415     if (!pointerType || !pointerType->getPointeeType()->isVoidType()) {
3416       if (getLangOpts().CPlusPlus) {
3417         if (RequireCompleteType(atLoc, type,
3418                                 diag::err_incomplete_receiver_type))
3419           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3420                    << type << operand->getSourceRange();
3421 
3422         ExprResult result = PerformContextuallyConvertToObjCPointer(operand);
3423         if (!result.isUsable())
3424           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3425                    << type << operand->getSourceRange();
3426 
3427         operand = result.get();
3428       } else {
3429           return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3430                    << type << operand->getSourceRange();
3431       }
3432     }
3433   }
3434 
3435   // The operand to @synchronized is a full-expression.
3436   return ActOnFinishFullExpr(operand);
3437 }
3438 
3439 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)3440 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3441                                   Stmt *SyncBody) {
3442   // We can't jump into or indirect-jump out of a @synchronized block.
3443   getCurFunction()->setHasBranchProtectedScope();
3444   return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3445 }
3446 
3447 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3448 /// and creates a proper catch handler from them.
3449 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)3450 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3451                          Stmt *HandlerBlock) {
3452   // There's nothing to test that ActOnExceptionDecl didn't already test.
3453   return new (Context)
3454       CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3455 }
3456 
3457 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)3458 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3459   getCurFunction()->setHasBranchProtectedScope();
3460   return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3461 }
3462 
3463 namespace {
3464 class CatchHandlerType {
3465   QualType QT;
3466   unsigned IsPointer : 1;
3467 
3468   // This is a special constructor to be used only with DenseMapInfo's
3469   // getEmptyKey() and getTombstoneKey() functions.
3470   friend struct llvm::DenseMapInfo<CatchHandlerType>;
3471   enum Unique { ForDenseMap };
CatchHandlerType(QualType QT,Unique)3472   CatchHandlerType(QualType QT, Unique) : QT(QT), IsPointer(false) {}
3473 
3474 public:
3475   /// Used when creating a CatchHandlerType from a handler type; will determine
3476   /// whether the type is a pointer or reference and will strip off the top
3477   /// level pointer and cv-qualifiers.
CatchHandlerType(QualType Q)3478   CatchHandlerType(QualType Q) : QT(Q), IsPointer(false) {
3479     if (QT->isPointerType())
3480       IsPointer = true;
3481 
3482     if (IsPointer || QT->isReferenceType())
3483       QT = QT->getPointeeType();
3484     QT = QT.getUnqualifiedType();
3485   }
3486 
3487   /// Used when creating a CatchHandlerType from a base class type; pretends the
3488   /// type passed in had the pointer qualifier, does not need to get an
3489   /// unqualified type.
CatchHandlerType(QualType QT,bool IsPointer)3490   CatchHandlerType(QualType QT, bool IsPointer)
3491       : QT(QT), IsPointer(IsPointer) {}
3492 
underlying() const3493   QualType underlying() const { return QT; }
isPointer() const3494   bool isPointer() const { return IsPointer; }
3495 
operator ==(const CatchHandlerType & LHS,const CatchHandlerType & RHS)3496   friend bool operator==(const CatchHandlerType &LHS,
3497                          const CatchHandlerType &RHS) {
3498     // If the pointer qualification does not match, we can return early.
3499     if (LHS.IsPointer != RHS.IsPointer)
3500       return false;
3501     // Otherwise, check the underlying type without cv-qualifiers.
3502     return LHS.QT == RHS.QT;
3503   }
3504 };
3505 } // namespace
3506 
3507 namespace llvm {
3508 template <> struct DenseMapInfo<CatchHandlerType> {
getEmptyKeyllvm::DenseMapInfo3509   static CatchHandlerType getEmptyKey() {
3510     return CatchHandlerType(DenseMapInfo<QualType>::getEmptyKey(),
3511                        CatchHandlerType::ForDenseMap);
3512   }
3513 
getTombstoneKeyllvm::DenseMapInfo3514   static CatchHandlerType getTombstoneKey() {
3515     return CatchHandlerType(DenseMapInfo<QualType>::getTombstoneKey(),
3516                        CatchHandlerType::ForDenseMap);
3517   }
3518 
getHashValuellvm::DenseMapInfo3519   static unsigned getHashValue(const CatchHandlerType &Base) {
3520     return DenseMapInfo<QualType>::getHashValue(Base.underlying());
3521   }
3522 
isEqualllvm::DenseMapInfo3523   static bool isEqual(const CatchHandlerType &LHS,
3524                       const CatchHandlerType &RHS) {
3525     return LHS == RHS;
3526   }
3527 };
3528 
3529 // It's OK to treat CatchHandlerType as a POD type.
3530 template <> struct isPodLike<CatchHandlerType> {
3531   static const bool value = true;
3532 };
3533 }
3534 
3535 namespace {
3536 class CatchTypePublicBases {
3537   ASTContext &Ctx;
3538   const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &TypesToCheck;
3539   const bool CheckAgainstPointer;
3540 
3541   CXXCatchStmt *FoundHandler;
3542   CanQualType FoundHandlerType;
3543 
3544 public:
CatchTypePublicBases(ASTContext & Ctx,const llvm::DenseMap<CatchHandlerType,CXXCatchStmt * > & T,bool C)3545   CatchTypePublicBases(
3546       ASTContext &Ctx,
3547       const llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> &T, bool C)
3548       : Ctx(Ctx), TypesToCheck(T), CheckAgainstPointer(C),
3549         FoundHandler(nullptr) {}
3550 
getFoundHandler() const3551   CXXCatchStmt *getFoundHandler() const { return FoundHandler; }
getFoundHandlerType() const3552   CanQualType getFoundHandlerType() const { return FoundHandlerType; }
3553 
operator ()(const CXXBaseSpecifier * S,CXXBasePath &)3554   bool operator()(const CXXBaseSpecifier *S, CXXBasePath &) {
3555     if (S->getAccessSpecifier() == AccessSpecifier::AS_public) {
3556       CatchHandlerType Check(S->getType(), CheckAgainstPointer);
3557       auto M = TypesToCheck;
3558       auto I = M.find(Check);
3559       if (I != M.end()) {
3560         FoundHandler = I->second;
3561         FoundHandlerType = Ctx.getCanonicalType(S->getType());
3562         return true;
3563       }
3564     }
3565     return false;
3566   }
3567 };
3568 }
3569 
3570 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3571 /// handlers and creates a try statement from them.
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)3572 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3573                                   ArrayRef<Stmt *> Handlers) {
3574   // Don't report an error if 'try' is used in system headers.
3575   if (!getLangOpts().CXXExceptions &&
3576       !getSourceManager().isInSystemHeader(TryLoc))
3577     Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3578 
3579   if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3580     Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3581 
3582   sema::FunctionScopeInfo *FSI = getCurFunction();
3583 
3584   // C++ try is incompatible with SEH __try.
3585   if (!getLangOpts().Borland && FSI->FirstSEHTryLoc.isValid()) {
3586     Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3587     Diag(FSI->FirstSEHTryLoc, diag::note_conflicting_try_here) << "'__try'";
3588   }
3589 
3590   const unsigned NumHandlers = Handlers.size();
3591   assert(!Handlers.empty() &&
3592          "The parser shouldn't call this if there are no handlers.");
3593 
3594   llvm::DenseMap<CatchHandlerType, CXXCatchStmt *> HandledTypes;
3595   for (unsigned i = 0; i < NumHandlers; ++i) {
3596     CXXCatchStmt *H = cast<CXXCatchStmt>(Handlers[i]);
3597 
3598     // Diagnose when the handler is a catch-all handler, but it isn't the last
3599     // handler for the try block. [except.handle]p5. Also, skip exception
3600     // declarations that are invalid, since we can't usefully report on them.
3601     if (!H->getExceptionDecl()) {
3602       if (i < NumHandlers - 1)
3603         return StmtError(Diag(H->getLocStart(), diag::err_early_catch_all));
3604       continue;
3605     } else if (H->getExceptionDecl()->isInvalidDecl())
3606       continue;
3607 
3608     // Walk the type hierarchy to diagnose when this type has already been
3609     // handled (duplication), or cannot be handled (derivation inversion). We
3610     // ignore top-level cv-qualifiers, per [except.handle]p3
3611     CatchHandlerType HandlerCHT =
3612         (QualType)Context.getCanonicalType(H->getCaughtType());
3613 
3614     // We can ignore whether the type is a reference or a pointer; we need the
3615     // underlying declaration type in order to get at the underlying record
3616     // decl, if there is one.
3617     QualType Underlying = HandlerCHT.underlying();
3618     if (auto *RD = Underlying->getAsCXXRecordDecl()) {
3619       if (!RD->hasDefinition())
3620         continue;
3621       // Check that none of the public, unambiguous base classes are in the
3622       // map ([except.handle]p1). Give the base classes the same pointer
3623       // qualification as the original type we are basing off of. This allows
3624       // comparison against the handler type using the same top-level pointer
3625       // as the original type.
3626       CXXBasePaths Paths;
3627       Paths.setOrigin(RD);
3628       CatchTypePublicBases CTPB(Context, HandledTypes, HandlerCHT.isPointer());
3629       if (RD->lookupInBases(CTPB, Paths)) {
3630         const CXXCatchStmt *Problem = CTPB.getFoundHandler();
3631         if (!Paths.isAmbiguous(CTPB.getFoundHandlerType())) {
3632           Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
3633                diag::warn_exception_caught_by_earlier_handler)
3634               << H->getCaughtType();
3635           Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
3636                 diag::note_previous_exception_handler)
3637               << Problem->getCaughtType();
3638         }
3639       }
3640     }
3641 
3642     // Add the type the list of ones we have handled; diagnose if we've already
3643     // handled it.
3644     auto R = HandledTypes.insert(std::make_pair(H->getCaughtType(), H));
3645     if (!R.second) {
3646       const CXXCatchStmt *Problem = R.first->second;
3647       Diag(H->getExceptionDecl()->getTypeSpecStartLoc(),
3648            diag::warn_exception_caught_by_earlier_handler)
3649           << H->getCaughtType();
3650       Diag(Problem->getExceptionDecl()->getTypeSpecStartLoc(),
3651            diag::note_previous_exception_handler)
3652           << Problem->getCaughtType();
3653     }
3654   }
3655 
3656   FSI->setHasCXXTry(TryLoc);
3657 
3658   return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3659 }
3660 
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)3661 StmtResult Sema::ActOnSEHTryBlock(bool IsCXXTry, SourceLocation TryLoc,
3662                                   Stmt *TryBlock, Stmt *Handler) {
3663   assert(TryBlock && Handler);
3664 
3665   sema::FunctionScopeInfo *FSI = getCurFunction();
3666 
3667   // SEH __try is incompatible with C++ try. Borland appears to support this,
3668   // however.
3669   if (!getLangOpts().Borland) {
3670     if (FSI->FirstCXXTryLoc.isValid()) {
3671       Diag(TryLoc, diag::err_mixing_cxx_try_seh_try);
3672       Diag(FSI->FirstCXXTryLoc, diag::note_conflicting_try_here) << "'try'";
3673     }
3674   }
3675 
3676   FSI->setHasSEHTry(TryLoc);
3677 
3678   // Reject __try in Obj-C methods, blocks, and captured decls, since we don't
3679   // track if they use SEH.
3680   DeclContext *DC = CurContext;
3681   while (DC && !DC->isFunctionOrMethod())
3682     DC = DC->getParent();
3683   FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(DC);
3684   if (FD)
3685     FD->setUsesSEHTry(true);
3686   else
3687     Diag(TryLoc, diag::err_seh_try_outside_functions);
3688 
3689   // Reject __try on unsupported targets.
3690   if (!Context.getTargetInfo().isSEHTrySupported())
3691     Diag(TryLoc, diag::err_seh_try_unsupported);
3692 
3693   return SEHTryStmt::Create(Context, IsCXXTry, TryLoc, TryBlock, Handler);
3694 }
3695 
3696 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)3697 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3698                           Expr *FilterExpr,
3699                           Stmt *Block) {
3700   assert(FilterExpr && Block);
3701 
3702   if(!FilterExpr->getType()->isIntegerType()) {
3703     return StmtError(Diag(FilterExpr->getExprLoc(),
3704                      diag::err_filter_expression_integral)
3705                      << FilterExpr->getType());
3706   }
3707 
3708   return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3709 }
3710 
ActOnStartSEHFinallyBlock()3711 void Sema::ActOnStartSEHFinallyBlock() {
3712   CurrentSEHFinally.push_back(CurScope);
3713 }
3714 
ActOnAbortSEHFinallyBlock()3715 void Sema::ActOnAbortSEHFinallyBlock() {
3716   CurrentSEHFinally.pop_back();
3717 }
3718 
ActOnFinishSEHFinallyBlock(SourceLocation Loc,Stmt * Block)3719 StmtResult Sema::ActOnFinishSEHFinallyBlock(SourceLocation Loc, Stmt *Block) {
3720   assert(Block);
3721   CurrentSEHFinally.pop_back();
3722   return SEHFinallyStmt::Create(Context, Loc, Block);
3723 }
3724 
3725 StmtResult
ActOnSEHLeaveStmt(SourceLocation Loc,Scope * CurScope)3726 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
3727   Scope *SEHTryParent = CurScope;
3728   while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3729     SEHTryParent = SEHTryParent->getParent();
3730   if (!SEHTryParent)
3731     return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3732   CheckJumpOutOfSEHFinally(*this, Loc, *SEHTryParent);
3733 
3734   return new (Context) SEHLeaveStmt(Loc);
3735 }
3736 
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)3737 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3738                                             bool IsIfExists,
3739                                             NestedNameSpecifierLoc QualifierLoc,
3740                                             DeclarationNameInfo NameInfo,
3741                                             Stmt *Nested)
3742 {
3743   return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3744                                              QualifierLoc, NameInfo,
3745                                              cast<CompoundStmt>(Nested));
3746 }
3747 
3748 
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)3749 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3750                                             bool IsIfExists,
3751                                             CXXScopeSpec &SS,
3752                                             UnqualifiedId &Name,
3753                                             Stmt *Nested) {
3754   return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3755                                     SS.getWithLocInContext(Context),
3756                                     GetNameFromUnqualifiedId(Name),
3757                                     Nested);
3758 }
3759 
3760 RecordDecl*
CreateCapturedStmtRecordDecl(CapturedDecl * & CD,SourceLocation Loc,unsigned NumParams)3761 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3762                                    unsigned NumParams) {
3763   DeclContext *DC = CurContext;
3764   while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3765     DC = DC->getParent();
3766 
3767   RecordDecl *RD = nullptr;
3768   if (getLangOpts().CPlusPlus)
3769     RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
3770                                /*Id=*/nullptr);
3771   else
3772     RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
3773 
3774   RD->setCapturedRecord();
3775   DC->addDecl(RD);
3776   RD->setImplicit();
3777   RD->startDefinition();
3778 
3779   assert(NumParams > 0 && "CapturedStmt requires context parameter");
3780   CD = CapturedDecl::Create(Context, CurContext, NumParams);
3781   DC->addDecl(CD);
3782   return RD;
3783 }
3784 
buildCapturedStmtCaptureList(SmallVectorImpl<CapturedStmt::Capture> & Captures,SmallVectorImpl<Expr * > & CaptureInits,ArrayRef<CapturingScopeInfo::Capture> Candidates)3785 static void buildCapturedStmtCaptureList(
3786     SmallVectorImpl<CapturedStmt::Capture> &Captures,
3787     SmallVectorImpl<Expr *> &CaptureInits,
3788     ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3789 
3790   typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3791   for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3792 
3793     if (Cap->isThisCapture()) {
3794       Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3795                                                CapturedStmt::VCK_This));
3796       CaptureInits.push_back(Cap->getInitExpr());
3797       continue;
3798     } else if (Cap->isVLATypeCapture()) {
3799       Captures.push_back(
3800           CapturedStmt::Capture(Cap->getLocation(), CapturedStmt::VCK_VLAType));
3801       CaptureInits.push_back(nullptr);
3802       continue;
3803     }
3804 
3805     Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3806                                              Cap->isReferenceCapture()
3807                                                  ? CapturedStmt::VCK_ByRef
3808                                                  : CapturedStmt::VCK_ByCopy,
3809                                              Cap->getVariable()));
3810     CaptureInits.push_back(Cap->getInitExpr());
3811   }
3812 }
3813 
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,unsigned NumParams)3814 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3815                                     CapturedRegionKind Kind,
3816                                     unsigned NumParams) {
3817   CapturedDecl *CD = nullptr;
3818   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3819 
3820   // Build the context parameter
3821   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3822   IdentifierInfo *ParamName = &Context.Idents.get("__context");
3823   QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3824   ImplicitParamDecl *Param
3825     = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3826   DC->addDecl(Param);
3827 
3828   CD->setContextParam(0, Param);
3829 
3830   // Enter the capturing scope for this captured region.
3831   PushCapturedRegionScope(CurScope, CD, RD, Kind);
3832 
3833   if (CurScope)
3834     PushDeclContext(CurScope, CD);
3835   else
3836     CurContext = CD;
3837 
3838   PushExpressionEvaluationContext(PotentiallyEvaluated);
3839 }
3840 
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,ArrayRef<CapturedParamNameType> Params)3841 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3842                                     CapturedRegionKind Kind,
3843                                     ArrayRef<CapturedParamNameType> Params) {
3844   CapturedDecl *CD = nullptr;
3845   RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
3846 
3847   // Build the context parameter
3848   DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3849   bool ContextIsFound = false;
3850   unsigned ParamNum = 0;
3851   for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
3852                                                  E = Params.end();
3853        I != E; ++I, ++ParamNum) {
3854     if (I->second.isNull()) {
3855       assert(!ContextIsFound &&
3856              "null type has been found already for '__context' parameter");
3857       IdentifierInfo *ParamName = &Context.Idents.get("__context");
3858       QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3859       ImplicitParamDecl *Param
3860         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3861       DC->addDecl(Param);
3862       CD->setContextParam(ParamNum, Param);
3863       ContextIsFound = true;
3864     } else {
3865       IdentifierInfo *ParamName = &Context.Idents.get(I->first);
3866       ImplicitParamDecl *Param
3867         = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
3868       DC->addDecl(Param);
3869       CD->setParam(ParamNum, Param);
3870     }
3871   }
3872   assert(ContextIsFound && "no null type for '__context' parameter");
3873   if (!ContextIsFound) {
3874     // Add __context implicitly if it is not specified.
3875     IdentifierInfo *ParamName = &Context.Idents.get("__context");
3876     QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3877     ImplicitParamDecl *Param =
3878         ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3879     DC->addDecl(Param);
3880     CD->setContextParam(ParamNum, Param);
3881   }
3882   // Enter the capturing scope for this captured region.
3883   PushCapturedRegionScope(CurScope, CD, RD, Kind);
3884 
3885   if (CurScope)
3886     PushDeclContext(CurScope, CD);
3887   else
3888     CurContext = CD;
3889 
3890   PushExpressionEvaluationContext(PotentiallyEvaluated);
3891 }
3892 
ActOnCapturedRegionError()3893 void Sema::ActOnCapturedRegionError() {
3894   DiscardCleanupsInEvaluationContext();
3895   PopExpressionEvaluationContext();
3896 
3897   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3898   RecordDecl *Record = RSI->TheRecordDecl;
3899   Record->setInvalidDecl();
3900 
3901   SmallVector<Decl*, 4> Fields(Record->fields());
3902   ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
3903               SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
3904 
3905   PopDeclContext();
3906   PopFunctionScopeInfo();
3907 }
3908 
ActOnCapturedRegionEnd(Stmt * S)3909 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3910   CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3911 
3912   SmallVector<CapturedStmt::Capture, 4> Captures;
3913   SmallVector<Expr *, 4> CaptureInits;
3914   buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3915 
3916   CapturedDecl *CD = RSI->TheCapturedDecl;
3917   RecordDecl *RD = RSI->TheRecordDecl;
3918 
3919   CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3920                                            RSI->CapRegionKind, Captures,
3921                                            CaptureInits, CD, RD);
3922 
3923   CD->setBody(Res->getCapturedStmt());
3924   RD->completeDefinition();
3925 
3926   DiscardCleanupsInEvaluationContext();
3927   PopExpressionEvaluationContext();
3928 
3929   PopDeclContext();
3930   PopFunctionScopeInfo();
3931 
3932   return Res;
3933 }
3934