1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for Objective C declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/RecursiveASTVisitor.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Sema/DeclSpec.h"
24 #include "clang/Sema/ExternalSemaSource.h"
25 #include "clang/Sema/Lookup.h"
26 #include "clang/Sema/Scope.h"
27 #include "clang/Sema/ScopeInfo.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/DenseSet.h"
30 #include "TypeLocBuilder.h"
31
32 using namespace clang;
33
34 /// Check whether the given method, which must be in the 'init'
35 /// family, is a valid member of that family.
36 ///
37 /// \param receiverTypeIfCall - if null, check this as if declaring it;
38 /// if non-null, check this as if making a call to it with the given
39 /// receiver type
40 ///
41 /// \return true to indicate that there was an error and appropriate
42 /// actions were taken
checkInitMethod(ObjCMethodDecl * method,QualType receiverTypeIfCall)43 bool Sema::checkInitMethod(ObjCMethodDecl *method,
44 QualType receiverTypeIfCall) {
45 if (method->isInvalidDecl()) return true;
46
47 // This castAs is safe: methods that don't return an object
48 // pointer won't be inferred as inits and will reject an explicit
49 // objc_method_family(init).
50
51 // We ignore protocols here. Should we? What about Class?
52
53 const ObjCObjectType *result =
54 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
55
56 if (result->isObjCId()) {
57 return false;
58 } else if (result->isObjCClass()) {
59 // fall through: always an error
60 } else {
61 ObjCInterfaceDecl *resultClass = result->getInterface();
62 assert(resultClass && "unexpected object type!");
63
64 // It's okay for the result type to still be a forward declaration
65 // if we're checking an interface declaration.
66 if (!resultClass->hasDefinition()) {
67 if (receiverTypeIfCall.isNull() &&
68 !isa<ObjCImplementationDecl>(method->getDeclContext()))
69 return false;
70
71 // Otherwise, we try to compare class types.
72 } else {
73 // If this method was declared in a protocol, we can't check
74 // anything unless we have a receiver type that's an interface.
75 const ObjCInterfaceDecl *receiverClass = nullptr;
76 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
77 if (receiverTypeIfCall.isNull())
78 return false;
79
80 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
81 ->getInterfaceDecl();
82
83 // This can be null for calls to e.g. id<Foo>.
84 if (!receiverClass) return false;
85 } else {
86 receiverClass = method->getClassInterface();
87 assert(receiverClass && "method not associated with a class!");
88 }
89
90 // If either class is a subclass of the other, it's fine.
91 if (receiverClass->isSuperClassOf(resultClass) ||
92 resultClass->isSuperClassOf(receiverClass))
93 return false;
94 }
95 }
96
97 SourceLocation loc = method->getLocation();
98
99 // If we're in a system header, and this is not a call, just make
100 // the method unusable.
101 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
102 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
103 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
104 return true;
105 }
106
107 // Otherwise, it's an error.
108 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
109 method->setInvalidDecl();
110 return true;
111 }
112
CheckObjCMethodOverride(ObjCMethodDecl * NewMethod,const ObjCMethodDecl * Overridden)113 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
114 const ObjCMethodDecl *Overridden) {
115 if (Overridden->hasRelatedResultType() &&
116 !NewMethod->hasRelatedResultType()) {
117 // This can only happen when the method follows a naming convention that
118 // implies a related result type, and the original (overridden) method has
119 // a suitable return type, but the new (overriding) method does not have
120 // a suitable return type.
121 QualType ResultType = NewMethod->getReturnType();
122 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
123
124 // Figure out which class this method is part of, if any.
125 ObjCInterfaceDecl *CurrentClass
126 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
127 if (!CurrentClass) {
128 DeclContext *DC = NewMethod->getDeclContext();
129 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
130 CurrentClass = Cat->getClassInterface();
131 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
132 CurrentClass = Impl->getClassInterface();
133 else if (ObjCCategoryImplDecl *CatImpl
134 = dyn_cast<ObjCCategoryImplDecl>(DC))
135 CurrentClass = CatImpl->getClassInterface();
136 }
137
138 if (CurrentClass) {
139 Diag(NewMethod->getLocation(),
140 diag::warn_related_result_type_compatibility_class)
141 << Context.getObjCInterfaceType(CurrentClass)
142 << ResultType
143 << ResultTypeRange;
144 } else {
145 Diag(NewMethod->getLocation(),
146 diag::warn_related_result_type_compatibility_protocol)
147 << ResultType
148 << ResultTypeRange;
149 }
150
151 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
152 Diag(Overridden->getLocation(),
153 diag::note_related_result_type_family)
154 << /*overridden method*/ 0
155 << Family;
156 else
157 Diag(Overridden->getLocation(),
158 diag::note_related_result_type_overridden);
159 }
160 if (getLangOpts().ObjCAutoRefCount) {
161 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
162 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
163 Diag(NewMethod->getLocation(),
164 diag::err_nsreturns_retained_attribute_mismatch) << 1;
165 Diag(Overridden->getLocation(), diag::note_previous_decl)
166 << "method";
167 }
168 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
169 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
170 Diag(NewMethod->getLocation(),
171 diag::err_nsreturns_retained_attribute_mismatch) << 0;
172 Diag(Overridden->getLocation(), diag::note_previous_decl)
173 << "method";
174 }
175 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
176 oe = Overridden->param_end();
177 for (ObjCMethodDecl::param_iterator
178 ni = NewMethod->param_begin(), ne = NewMethod->param_end();
179 ni != ne && oi != oe; ++ni, ++oi) {
180 const ParmVarDecl *oldDecl = (*oi);
181 ParmVarDecl *newDecl = (*ni);
182 if (newDecl->hasAttr<NSConsumedAttr>() !=
183 oldDecl->hasAttr<NSConsumedAttr>()) {
184 Diag(newDecl->getLocation(),
185 diag::err_nsconsumed_attribute_mismatch);
186 Diag(oldDecl->getLocation(), diag::note_previous_decl)
187 << "parameter";
188 }
189 }
190 }
191 }
192
193 /// \brief Check a method declaration for compatibility with the Objective-C
194 /// ARC conventions.
CheckARCMethodDecl(ObjCMethodDecl * method)195 bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
196 ObjCMethodFamily family = method->getMethodFamily();
197 switch (family) {
198 case OMF_None:
199 case OMF_finalize:
200 case OMF_retain:
201 case OMF_release:
202 case OMF_autorelease:
203 case OMF_retainCount:
204 case OMF_self:
205 case OMF_initialize:
206 case OMF_performSelector:
207 return false;
208
209 case OMF_dealloc:
210 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
211 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
212 if (ResultTypeRange.isInvalid())
213 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
214 << method->getReturnType()
215 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
216 else
217 Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
218 << method->getReturnType()
219 << FixItHint::CreateReplacement(ResultTypeRange, "void");
220 return true;
221 }
222 return false;
223
224 case OMF_init:
225 // If the method doesn't obey the init rules, don't bother annotating it.
226 if (checkInitMethod(method, QualType()))
227 return true;
228
229 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
230
231 // Don't add a second copy of this attribute, but otherwise don't
232 // let it be suppressed.
233 if (method->hasAttr<NSReturnsRetainedAttr>())
234 return false;
235 break;
236
237 case OMF_alloc:
238 case OMF_copy:
239 case OMF_mutableCopy:
240 case OMF_new:
241 if (method->hasAttr<NSReturnsRetainedAttr>() ||
242 method->hasAttr<NSReturnsNotRetainedAttr>() ||
243 method->hasAttr<NSReturnsAutoreleasedAttr>())
244 return false;
245 break;
246 }
247
248 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
249 return false;
250 }
251
DiagnoseObjCImplementedDeprecations(Sema & S,NamedDecl * ND,SourceLocation ImplLoc,int select)252 static void DiagnoseObjCImplementedDeprecations(Sema &S,
253 NamedDecl *ND,
254 SourceLocation ImplLoc,
255 int select) {
256 if (ND && ND->isDeprecated()) {
257 S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
258 if (select == 0)
259 S.Diag(ND->getLocation(), diag::note_method_declared_at)
260 << ND->getDeclName();
261 else
262 S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
263 }
264 }
265
266 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
267 /// pool.
AddAnyMethodToGlobalPool(Decl * D)268 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
269 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
270
271 // If we don't have a valid method decl, simply return.
272 if (!MDecl)
273 return;
274 if (MDecl->isInstanceMethod())
275 AddInstanceMethodToGlobalPool(MDecl, true);
276 else
277 AddFactoryMethodToGlobalPool(MDecl, true);
278 }
279
280 /// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
281 /// has explicit ownership attribute; false otherwise.
282 static bool
HasExplicitOwnershipAttr(Sema & S,ParmVarDecl * Param)283 HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
284 QualType T = Param->getType();
285
286 if (const PointerType *PT = T->getAs<PointerType>()) {
287 T = PT->getPointeeType();
288 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
289 T = RT->getPointeeType();
290 } else {
291 return true;
292 }
293
294 // If we have a lifetime qualifier, but it's local, we must have
295 // inferred it. So, it is implicit.
296 return !T.getLocalQualifiers().hasObjCLifetime();
297 }
298
299 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
300 /// and user declared, in the method definition's AST.
ActOnStartOfObjCMethodDef(Scope * FnBodyScope,Decl * D)301 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
302 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
303 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
304
305 // If we don't have a valid method decl, simply return.
306 if (!MDecl)
307 return;
308
309 // Allow all of Sema to see that we are entering a method definition.
310 PushDeclContext(FnBodyScope, MDecl);
311 PushFunctionScope();
312
313 // Create Decl objects for each parameter, entrring them in the scope for
314 // binding to their use.
315
316 // Insert the invisible arguments, self and _cmd!
317 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
318
319 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
320 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
321
322 // The ObjC parser requires parameter names so there's no need to check.
323 CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
324 /*CheckParameterNames=*/false);
325
326 // Introduce all of the other parameters into this scope.
327 for (auto *Param : MDecl->params()) {
328 if (!Param->isInvalidDecl() &&
329 getLangOpts().ObjCAutoRefCount &&
330 !HasExplicitOwnershipAttr(*this, Param))
331 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
332 Param->getType();
333
334 if (Param->getIdentifier())
335 PushOnScopeChains(Param, FnBodyScope);
336 }
337
338 // In ARC, disallow definition of retain/release/autorelease/retainCount
339 if (getLangOpts().ObjCAutoRefCount) {
340 switch (MDecl->getMethodFamily()) {
341 case OMF_retain:
342 case OMF_retainCount:
343 case OMF_release:
344 case OMF_autorelease:
345 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
346 << 0 << MDecl->getSelector();
347 break;
348
349 case OMF_None:
350 case OMF_dealloc:
351 case OMF_finalize:
352 case OMF_alloc:
353 case OMF_init:
354 case OMF_mutableCopy:
355 case OMF_copy:
356 case OMF_new:
357 case OMF_self:
358 case OMF_initialize:
359 case OMF_performSelector:
360 break;
361 }
362 }
363
364 // Warn on deprecated methods under -Wdeprecated-implementations,
365 // and prepare for warning on missing super calls.
366 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
367 ObjCMethodDecl *IMD =
368 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
369
370 if (IMD) {
371 ObjCImplDecl *ImplDeclOfMethodDef =
372 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
373 ObjCContainerDecl *ContDeclOfMethodDecl =
374 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
375 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
376 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
377 ImplDeclOfMethodDecl = OID->getImplementation();
378 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
379 if (CD->IsClassExtension()) {
380 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
381 ImplDeclOfMethodDecl = OID->getImplementation();
382 } else
383 ImplDeclOfMethodDecl = CD->getImplementation();
384 }
385 // No need to issue deprecated warning if deprecated mehod in class/category
386 // is being implemented in its own implementation (no overriding is involved).
387 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
388 DiagnoseObjCImplementedDeprecations(*this,
389 dyn_cast<NamedDecl>(IMD),
390 MDecl->getLocation(), 0);
391 }
392
393 if (MDecl->getMethodFamily() == OMF_init) {
394 if (MDecl->isDesignatedInitializerForTheInterface()) {
395 getCurFunction()->ObjCIsDesignatedInit = true;
396 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
397 IC->getSuperClass() != nullptr;
398 } else if (IC->hasDesignatedInitializers()) {
399 getCurFunction()->ObjCIsSecondaryInit = true;
400 getCurFunction()->ObjCWarnForNoInitDelegation = true;
401 }
402 }
403
404 // If this is "dealloc" or "finalize", set some bit here.
405 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
406 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
407 // Only do this if the current class actually has a superclass.
408 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
409 ObjCMethodFamily Family = MDecl->getMethodFamily();
410 if (Family == OMF_dealloc) {
411 if (!(getLangOpts().ObjCAutoRefCount ||
412 getLangOpts().getGC() == LangOptions::GCOnly))
413 getCurFunction()->ObjCShouldCallSuper = true;
414
415 } else if (Family == OMF_finalize) {
416 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
417 getCurFunction()->ObjCShouldCallSuper = true;
418
419 } else {
420 const ObjCMethodDecl *SuperMethod =
421 SuperClass->lookupMethod(MDecl->getSelector(),
422 MDecl->isInstanceMethod());
423 getCurFunction()->ObjCShouldCallSuper =
424 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
425 }
426 }
427 }
428 }
429
430 namespace {
431
432 // Callback to only accept typo corrections that are Objective-C classes.
433 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
434 // function will reject corrections to that class.
435 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
436 public:
ObjCInterfaceValidatorCCC()437 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
ObjCInterfaceValidatorCCC(ObjCInterfaceDecl * IDecl)438 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
439 : CurrentIDecl(IDecl) {}
440
ValidateCandidate(const TypoCorrection & candidate)441 bool ValidateCandidate(const TypoCorrection &candidate) override {
442 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
443 return ID && !declaresSameEntity(ID, CurrentIDecl);
444 }
445
446 private:
447 ObjCInterfaceDecl *CurrentIDecl;
448 };
449
450 } // end anonymous namespace
451
diagnoseUseOfProtocols(Sema & TheSema,ObjCContainerDecl * CD,ObjCProtocolDecl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs)452 static void diagnoseUseOfProtocols(Sema &TheSema,
453 ObjCContainerDecl *CD,
454 ObjCProtocolDecl *const *ProtoRefs,
455 unsigned NumProtoRefs,
456 const SourceLocation *ProtoLocs) {
457 assert(ProtoRefs);
458 // Diagnose availability in the context of the ObjC container.
459 Sema::ContextRAII SavedContext(TheSema, CD);
460 for (unsigned i = 0; i < NumProtoRefs; ++i) {
461 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i]);
462 }
463 }
464
465 void Sema::
ActOnSuperClassOfClassInterface(Scope * S,SourceLocation AtInterfaceLoc,ObjCInterfaceDecl * IDecl,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange)466 ActOnSuperClassOfClassInterface(Scope *S,
467 SourceLocation AtInterfaceLoc,
468 ObjCInterfaceDecl *IDecl,
469 IdentifierInfo *ClassName,
470 SourceLocation ClassLoc,
471 IdentifierInfo *SuperName,
472 SourceLocation SuperLoc,
473 ArrayRef<ParsedType> SuperTypeArgs,
474 SourceRange SuperTypeArgsRange) {
475 // Check if a different kind of symbol declared in this scope.
476 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
477 LookupOrdinaryName);
478
479 if (!PrevDecl) {
480 // Try to correct for a typo in the superclass name without correcting
481 // to the class we're defining.
482 if (TypoCorrection Corrected = CorrectTypo(
483 DeclarationNameInfo(SuperName, SuperLoc),
484 LookupOrdinaryName, TUScope,
485 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
486 CTK_ErrorRecovery)) {
487 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
488 << SuperName << ClassName);
489 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
490 }
491 }
492
493 if (declaresSameEntity(PrevDecl, IDecl)) {
494 Diag(SuperLoc, diag::err_recursive_superclass)
495 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
496 IDecl->setEndOfDefinitionLoc(ClassLoc);
497 } else {
498 ObjCInterfaceDecl *SuperClassDecl =
499 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
500 QualType SuperClassType;
501
502 // Diagnose classes that inherit from deprecated classes.
503 if (SuperClassDecl) {
504 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
505 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
506 }
507
508 if (PrevDecl && !SuperClassDecl) {
509 // The previous declaration was not a class decl. Check if we have a
510 // typedef. If we do, get the underlying class type.
511 if (const TypedefNameDecl *TDecl =
512 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
513 QualType T = TDecl->getUnderlyingType();
514 if (T->isObjCObjectType()) {
515 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
516 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
517 SuperClassType = Context.getTypeDeclType(TDecl);
518
519 // This handles the following case:
520 // @interface NewI @end
521 // typedef NewI DeprI __attribute__((deprecated("blah")))
522 // @interface SI : DeprI /* warn here */ @end
523 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
524 }
525 }
526 }
527
528 // This handles the following case:
529 //
530 // typedef int SuperClass;
531 // @interface MyClass : SuperClass {} @end
532 //
533 if (!SuperClassDecl) {
534 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
535 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
536 }
537 }
538
539 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
540 if (!SuperClassDecl)
541 Diag(SuperLoc, diag::err_undef_superclass)
542 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
543 else if (RequireCompleteType(SuperLoc,
544 SuperClassType,
545 diag::err_forward_superclass,
546 SuperClassDecl->getDeclName(),
547 ClassName,
548 SourceRange(AtInterfaceLoc, ClassLoc))) {
549 SuperClassDecl = nullptr;
550 SuperClassType = QualType();
551 }
552 }
553
554 if (SuperClassType.isNull()) {
555 assert(!SuperClassDecl && "Failed to set SuperClassType?");
556 return;
557 }
558
559 // Handle type arguments on the superclass.
560 TypeSourceInfo *SuperClassTInfo = nullptr;
561 if (!SuperTypeArgs.empty()) {
562 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
563 S,
564 SuperLoc,
565 CreateParsedType(SuperClassType,
566 nullptr),
567 SuperTypeArgsRange.getBegin(),
568 SuperTypeArgs,
569 SuperTypeArgsRange.getEnd(),
570 SourceLocation(),
571 { },
572 { },
573 SourceLocation());
574 if (!fullSuperClassType.isUsable())
575 return;
576
577 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
578 &SuperClassTInfo);
579 }
580
581 if (!SuperClassTInfo) {
582 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
583 SuperLoc);
584 }
585
586 IDecl->setSuperClass(SuperClassTInfo);
587 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
588 }
589 }
590
actOnObjCTypeParam(Scope * S,ObjCTypeParamVariance variance,SourceLocation varianceLoc,unsigned index,IdentifierInfo * paramName,SourceLocation paramLoc,SourceLocation colonLoc,ParsedType parsedTypeBound)591 DeclResult Sema::actOnObjCTypeParam(Scope *S,
592 ObjCTypeParamVariance variance,
593 SourceLocation varianceLoc,
594 unsigned index,
595 IdentifierInfo *paramName,
596 SourceLocation paramLoc,
597 SourceLocation colonLoc,
598 ParsedType parsedTypeBound) {
599 // If there was an explicitly-provided type bound, check it.
600 TypeSourceInfo *typeBoundInfo = nullptr;
601 if (parsedTypeBound) {
602 // The type bound can be any Objective-C pointer type.
603 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
604 if (typeBound->isObjCObjectPointerType()) {
605 // okay
606 } else if (typeBound->isObjCObjectType()) {
607 // The user forgot the * on an Objective-C pointer type, e.g.,
608 // "T : NSView".
609 SourceLocation starLoc = getLocForEndOfToken(
610 typeBoundInfo->getTypeLoc().getEndLoc());
611 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
612 diag::err_objc_type_param_bound_missing_pointer)
613 << typeBound << paramName
614 << FixItHint::CreateInsertion(starLoc, " *");
615
616 // Create a new type location builder so we can update the type
617 // location information we have.
618 TypeLocBuilder builder;
619 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
620
621 // Create the Objective-C pointer type.
622 typeBound = Context.getObjCObjectPointerType(typeBound);
623 ObjCObjectPointerTypeLoc newT
624 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
625 newT.setStarLoc(starLoc);
626
627 // Form the new type source information.
628 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
629 } else {
630 // Not a valid type bound.
631 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
632 diag::err_objc_type_param_bound_nonobject)
633 << typeBound << paramName;
634
635 // Forget the bound; we'll default to id later.
636 typeBoundInfo = nullptr;
637 }
638
639 // Type bounds cannot have qualifiers (even indirectly) or explicit
640 // nullability.
641 if (typeBoundInfo) {
642 QualType typeBound = typeBoundInfo->getType();
643 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
644 if (qual || typeBound.hasQualifiers()) {
645 bool diagnosed = false;
646 SourceRange rangeToRemove;
647 if (qual) {
648 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
649 rangeToRemove = attr.getLocalSourceRange();
650 if (attr.getTypePtr()->getImmediateNullability()) {
651 Diag(attr.getLocStart(),
652 diag::err_objc_type_param_bound_explicit_nullability)
653 << paramName << typeBound
654 << FixItHint::CreateRemoval(rangeToRemove);
655 diagnosed = true;
656 }
657 }
658 }
659
660 if (!diagnosed) {
661 Diag(qual ? qual.getLocStart()
662 : typeBoundInfo->getTypeLoc().getLocStart(),
663 diag::err_objc_type_param_bound_qualified)
664 << paramName << typeBound << typeBound.getQualifiers().getAsString()
665 << FixItHint::CreateRemoval(rangeToRemove);
666 }
667
668 // If the type bound has qualifiers other than CVR, we need to strip
669 // them or we'll probably assert later when trying to apply new
670 // qualifiers.
671 Qualifiers quals = typeBound.getQualifiers();
672 quals.removeCVRQualifiers();
673 if (!quals.empty()) {
674 typeBoundInfo =
675 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
676 }
677 }
678 }
679 }
680
681 // If there was no explicit type bound (or we removed it due to an error),
682 // use 'id' instead.
683 if (!typeBoundInfo) {
684 colonLoc = SourceLocation();
685 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
686 }
687
688 // Create the type parameter.
689 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
690 index, paramLoc, paramName, colonLoc,
691 typeBoundInfo);
692 }
693
actOnObjCTypeParamList(Scope * S,SourceLocation lAngleLoc,ArrayRef<Decl * > typeParamsIn,SourceLocation rAngleLoc)694 ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
695 SourceLocation lAngleLoc,
696 ArrayRef<Decl *> typeParamsIn,
697 SourceLocation rAngleLoc) {
698 // We know that the array only contains Objective-C type parameters.
699 ArrayRef<ObjCTypeParamDecl *>
700 typeParams(
701 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
702 typeParamsIn.size());
703
704 // Diagnose redeclarations of type parameters.
705 // We do this now because Objective-C type parameters aren't pushed into
706 // scope until later (after the instance variable block), but we want the
707 // diagnostics to occur right after we parse the type parameter list.
708 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
709 for (auto typeParam : typeParams) {
710 auto known = knownParams.find(typeParam->getIdentifier());
711 if (known != knownParams.end()) {
712 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
713 << typeParam->getIdentifier()
714 << SourceRange(known->second->getLocation());
715
716 typeParam->setInvalidDecl();
717 } else {
718 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
719
720 // Push the type parameter into scope.
721 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
722 }
723 }
724
725 // Create the parameter list.
726 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
727 }
728
popObjCTypeParamList(Scope * S,ObjCTypeParamList * typeParamList)729 void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
730 for (auto typeParam : *typeParamList) {
731 if (!typeParam->isInvalidDecl()) {
732 S->RemoveDecl(typeParam);
733 IdResolver.RemoveDecl(typeParam);
734 }
735 }
736 }
737
738 namespace {
739 /// The context in which an Objective-C type parameter list occurs, for use
740 /// in diagnostics.
741 enum class TypeParamListContext {
742 ForwardDeclaration,
743 Definition,
744 Category,
745 Extension
746 };
747 } // end anonymous namespace
748
749 /// Check consistency between two Objective-C type parameter lists, e.g.,
750 /// between a category/extension and an \@interface or between an \@class and an
751 /// \@interface.
checkTypeParamListConsistency(Sema & S,ObjCTypeParamList * prevTypeParams,ObjCTypeParamList * newTypeParams,TypeParamListContext newContext)752 static bool checkTypeParamListConsistency(Sema &S,
753 ObjCTypeParamList *prevTypeParams,
754 ObjCTypeParamList *newTypeParams,
755 TypeParamListContext newContext) {
756 // If the sizes don't match, complain about that.
757 if (prevTypeParams->size() != newTypeParams->size()) {
758 SourceLocation diagLoc;
759 if (newTypeParams->size() > prevTypeParams->size()) {
760 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
761 } else {
762 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
763 }
764
765 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
766 << static_cast<unsigned>(newContext)
767 << (newTypeParams->size() > prevTypeParams->size())
768 << prevTypeParams->size()
769 << newTypeParams->size();
770
771 return true;
772 }
773
774 // Match up the type parameters.
775 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
776 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
777 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
778
779 // Check for consistency of the variance.
780 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
781 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
782 newContext != TypeParamListContext::Definition) {
783 // When the new type parameter is invariant and is not part
784 // of the definition, just propagate the variance.
785 newTypeParam->setVariance(prevTypeParam->getVariance());
786 } else if (prevTypeParam->getVariance()
787 == ObjCTypeParamVariance::Invariant &&
788 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
789 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
790 ->getDefinition() == prevTypeParam->getDeclContext())) {
791 // When the old parameter is invariant and was not part of the
792 // definition, just ignore the difference because it doesn't
793 // matter.
794 } else {
795 {
796 // Diagnose the conflict and update the second declaration.
797 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
798 if (diagLoc.isInvalid())
799 diagLoc = newTypeParam->getLocStart();
800
801 auto diag = S.Diag(diagLoc,
802 diag::err_objc_type_param_variance_conflict)
803 << static_cast<unsigned>(newTypeParam->getVariance())
804 << newTypeParam->getDeclName()
805 << static_cast<unsigned>(prevTypeParam->getVariance())
806 << prevTypeParam->getDeclName();
807 switch (prevTypeParam->getVariance()) {
808 case ObjCTypeParamVariance::Invariant:
809 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
810 break;
811
812 case ObjCTypeParamVariance::Covariant:
813 case ObjCTypeParamVariance::Contravariant: {
814 StringRef newVarianceStr
815 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
816 ? "__covariant"
817 : "__contravariant";
818 if (newTypeParam->getVariance()
819 == ObjCTypeParamVariance::Invariant) {
820 diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
821 (newVarianceStr + " ").str());
822 } else {
823 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
824 newVarianceStr);
825 }
826 }
827 }
828 }
829
830 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
831 << prevTypeParam->getDeclName();
832
833 // Override the variance.
834 newTypeParam->setVariance(prevTypeParam->getVariance());
835 }
836 }
837
838 // If the bound types match, there's nothing to do.
839 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
840 newTypeParam->getUnderlyingType()))
841 continue;
842
843 // If the new type parameter's bound was explicit, complain about it being
844 // different from the original.
845 if (newTypeParam->hasExplicitBound()) {
846 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
847 ->getTypeLoc().getSourceRange();
848 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
849 << newTypeParam->getUnderlyingType()
850 << newTypeParam->getDeclName()
851 << prevTypeParam->hasExplicitBound()
852 << prevTypeParam->getUnderlyingType()
853 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
854 << prevTypeParam->getDeclName()
855 << FixItHint::CreateReplacement(
856 newBoundRange,
857 prevTypeParam->getUnderlyingType().getAsString(
858 S.Context.getPrintingPolicy()));
859
860 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
861 << prevTypeParam->getDeclName();
862
863 // Override the new type parameter's bound type with the previous type,
864 // so that it's consistent.
865 newTypeParam->setTypeSourceInfo(
866 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
867 continue;
868 }
869
870 // The new type parameter got the implicit bound of 'id'. That's okay for
871 // categories and extensions (overwrite it later), but not for forward
872 // declarations and @interfaces, because those must be standalone.
873 if (newContext == TypeParamListContext::ForwardDeclaration ||
874 newContext == TypeParamListContext::Definition) {
875 // Diagnose this problem for forward declarations and definitions.
876 SourceLocation insertionLoc
877 = S.getLocForEndOfToken(newTypeParam->getLocation());
878 std::string newCode
879 = " : " + prevTypeParam->getUnderlyingType().getAsString(
880 S.Context.getPrintingPolicy());
881 S.Diag(newTypeParam->getLocation(),
882 diag::err_objc_type_param_bound_missing)
883 << prevTypeParam->getUnderlyingType()
884 << newTypeParam->getDeclName()
885 << (newContext == TypeParamListContext::ForwardDeclaration)
886 << FixItHint::CreateInsertion(insertionLoc, newCode);
887
888 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
889 << prevTypeParam->getDeclName();
890 }
891
892 // Update the new type parameter's bound to match the previous one.
893 newTypeParam->setTypeSourceInfo(
894 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
895 }
896
897 return false;
898 }
899
900 Decl *Sema::
ActOnStartClassInterface(Scope * S,SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * SuperName,SourceLocation SuperLoc,ArrayRef<ParsedType> SuperTypeArgs,SourceRange SuperTypeArgsRange,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)901 ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
902 IdentifierInfo *ClassName, SourceLocation ClassLoc,
903 ObjCTypeParamList *typeParamList,
904 IdentifierInfo *SuperName, SourceLocation SuperLoc,
905 ArrayRef<ParsedType> SuperTypeArgs,
906 SourceRange SuperTypeArgsRange,
907 Decl * const *ProtoRefs, unsigned NumProtoRefs,
908 const SourceLocation *ProtoLocs,
909 SourceLocation EndProtoLoc, AttributeList *AttrList) {
910 assert(ClassName && "Missing class identifier");
911
912 // Check for another declaration kind with the same name.
913 NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
914 LookupOrdinaryName, ForRedeclaration);
915
916 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
917 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
918 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
919 }
920
921 // Create a declaration to describe this @interface.
922 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
923
924 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
925 // A previous decl with a different name is because of
926 // @compatibility_alias, for example:
927 // \code
928 // @class NewImage;
929 // @compatibility_alias OldImage NewImage;
930 // \endcode
931 // A lookup for 'OldImage' will return the 'NewImage' decl.
932 //
933 // In such a case use the real declaration name, instead of the alias one,
934 // otherwise we will break IdentifierResolver and redecls-chain invariants.
935 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
936 // has been aliased.
937 ClassName = PrevIDecl->getIdentifier();
938 }
939
940 // If there was a forward declaration with type parameters, check
941 // for consistency.
942 if (PrevIDecl) {
943 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
944 if (typeParamList) {
945 // Both have type parameter lists; check for consistency.
946 if (checkTypeParamListConsistency(*this, prevTypeParamList,
947 typeParamList,
948 TypeParamListContext::Definition)) {
949 typeParamList = nullptr;
950 }
951 } else {
952 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
953 << ClassName;
954 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
955 << ClassName;
956
957 // Clone the type parameter list.
958 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
959 for (auto typeParam : *prevTypeParamList) {
960 clonedTypeParams.push_back(
961 ObjCTypeParamDecl::Create(
962 Context,
963 CurContext,
964 typeParam->getVariance(),
965 SourceLocation(),
966 typeParam->getIndex(),
967 SourceLocation(),
968 typeParam->getIdentifier(),
969 SourceLocation(),
970 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
971 }
972
973 typeParamList = ObjCTypeParamList::create(Context,
974 SourceLocation(),
975 clonedTypeParams,
976 SourceLocation());
977 }
978 }
979 }
980
981 ObjCInterfaceDecl *IDecl
982 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
983 typeParamList, PrevIDecl, ClassLoc);
984 if (PrevIDecl) {
985 // Class already seen. Was it a definition?
986 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
987 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
988 << PrevIDecl->getDeclName();
989 Diag(Def->getLocation(), diag::note_previous_definition);
990 IDecl->setInvalidDecl();
991 }
992 }
993
994 if (AttrList)
995 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
996 PushOnScopeChains(IDecl, TUScope);
997
998 // Start the definition of this class. If we're in a redefinition case, there
999 // may already be a definition, so we'll end up adding to it.
1000 if (!IDecl->hasDefinition())
1001 IDecl->startDefinition();
1002
1003 if (SuperName) {
1004 // Diagnose availability in the context of the @interface.
1005 ContextRAII SavedContext(*this, IDecl);
1006
1007 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1008 ClassName, ClassLoc,
1009 SuperName, SuperLoc, SuperTypeArgs,
1010 SuperTypeArgsRange);
1011 } else { // we have a root class.
1012 IDecl->setEndOfDefinitionLoc(ClassLoc);
1013 }
1014
1015 // Check then save referenced protocols.
1016 if (NumProtoRefs) {
1017 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1018 NumProtoRefs, ProtoLocs);
1019 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1020 ProtoLocs, Context);
1021 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1022 }
1023
1024 CheckObjCDeclScope(IDecl);
1025 return ActOnObjCContainerStartDefinition(IDecl);
1026 }
1027
1028 /// ActOnTypedefedProtocols - this action finds protocol list as part of the
1029 /// typedef'ed use for a qualified super class and adds them to the list
1030 /// of the protocols.
ActOnTypedefedProtocols(SmallVectorImpl<Decl * > & ProtocolRefs,IdentifierInfo * SuperName,SourceLocation SuperLoc)1031 void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1032 IdentifierInfo *SuperName,
1033 SourceLocation SuperLoc) {
1034 if (!SuperName)
1035 return;
1036 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1037 LookupOrdinaryName);
1038 if (!IDecl)
1039 return;
1040
1041 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1042 QualType T = TDecl->getUnderlyingType();
1043 if (T->isObjCObjectType())
1044 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
1045 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1046 }
1047 }
1048
1049 /// ActOnCompatibilityAlias - this action is called after complete parsing of
1050 /// a \@compatibility_alias declaration. It sets up the alias relationships.
ActOnCompatibilityAlias(SourceLocation AtLoc,IdentifierInfo * AliasName,SourceLocation AliasLocation,IdentifierInfo * ClassName,SourceLocation ClassLocation)1051 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1052 IdentifierInfo *AliasName,
1053 SourceLocation AliasLocation,
1054 IdentifierInfo *ClassName,
1055 SourceLocation ClassLocation) {
1056 // Look for previous declaration of alias name
1057 NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
1058 LookupOrdinaryName, ForRedeclaration);
1059 if (ADecl) {
1060 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1061 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1062 return nullptr;
1063 }
1064 // Check for class declaration
1065 NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1066 LookupOrdinaryName, ForRedeclaration);
1067 if (const TypedefNameDecl *TDecl =
1068 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1069 QualType T = TDecl->getUnderlyingType();
1070 if (T->isObjCObjectType()) {
1071 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1072 ClassName = IDecl->getIdentifier();
1073 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1074 LookupOrdinaryName, ForRedeclaration);
1075 }
1076 }
1077 }
1078 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1079 if (!CDecl) {
1080 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1081 if (CDeclU)
1082 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1083 return nullptr;
1084 }
1085
1086 // Everything checked out, instantiate a new alias declaration AST.
1087 ObjCCompatibleAliasDecl *AliasDecl =
1088 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1089
1090 if (!CheckObjCDeclScope(AliasDecl))
1091 PushOnScopeChains(AliasDecl, TUScope);
1092
1093 return AliasDecl;
1094 }
1095
CheckForwardProtocolDeclarationForCircularDependency(IdentifierInfo * PName,SourceLocation & Ploc,SourceLocation PrevLoc,const ObjCList<ObjCProtocolDecl> & PList)1096 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1097 IdentifierInfo *PName,
1098 SourceLocation &Ploc, SourceLocation PrevLoc,
1099 const ObjCList<ObjCProtocolDecl> &PList) {
1100
1101 bool res = false;
1102 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1103 E = PList.end(); I != E; ++I) {
1104 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1105 Ploc)) {
1106 if (PDecl->getIdentifier() == PName) {
1107 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1108 Diag(PrevLoc, diag::note_previous_definition);
1109 res = true;
1110 }
1111
1112 if (!PDecl->hasDefinition())
1113 continue;
1114
1115 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1116 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1117 res = true;
1118 }
1119 }
1120 return res;
1121 }
1122
1123 Decl *
ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,IdentifierInfo * ProtocolName,SourceLocation ProtocolLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc,AttributeList * AttrList)1124 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
1125 IdentifierInfo *ProtocolName,
1126 SourceLocation ProtocolLoc,
1127 Decl * const *ProtoRefs,
1128 unsigned NumProtoRefs,
1129 const SourceLocation *ProtoLocs,
1130 SourceLocation EndProtoLoc,
1131 AttributeList *AttrList) {
1132 bool err = false;
1133 // FIXME: Deal with AttrList.
1134 assert(ProtocolName && "Missing protocol identifier");
1135 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1136 ForRedeclaration);
1137 ObjCProtocolDecl *PDecl = nullptr;
1138 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1139 // If we already have a definition, complain.
1140 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1141 Diag(Def->getLocation(), diag::note_previous_definition);
1142
1143 // Create a new protocol that is completely distinct from previous
1144 // declarations, and do not make this protocol available for name lookup.
1145 // That way, we'll end up completely ignoring the duplicate.
1146 // FIXME: Can we turn this into an error?
1147 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1148 ProtocolLoc, AtProtoInterfaceLoc,
1149 /*PrevDecl=*/nullptr);
1150 PDecl->startDefinition();
1151 } else {
1152 if (PrevDecl) {
1153 // Check for circular dependencies among protocol declarations. This can
1154 // only happen if this protocol was forward-declared.
1155 ObjCList<ObjCProtocolDecl> PList;
1156 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1157 err = CheckForwardProtocolDeclarationForCircularDependency(
1158 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1159 }
1160
1161 // Create the new declaration.
1162 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1163 ProtocolLoc, AtProtoInterfaceLoc,
1164 /*PrevDecl=*/PrevDecl);
1165
1166 PushOnScopeChains(PDecl, TUScope);
1167 PDecl->startDefinition();
1168 }
1169
1170 if (AttrList)
1171 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1172
1173 // Merge attributes from previous declarations.
1174 if (PrevDecl)
1175 mergeDeclAttributes(PDecl, PrevDecl);
1176
1177 if (!err && NumProtoRefs ) {
1178 /// Check then save referenced protocols.
1179 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1180 NumProtoRefs, ProtoLocs);
1181 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1182 ProtoLocs, Context);
1183 }
1184
1185 CheckObjCDeclScope(PDecl);
1186 return ActOnObjCContainerStartDefinition(PDecl);
1187 }
1188
NestedProtocolHasNoDefinition(ObjCProtocolDecl * PDecl,ObjCProtocolDecl * & UndefinedProtocol)1189 static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1190 ObjCProtocolDecl *&UndefinedProtocol) {
1191 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1192 UndefinedProtocol = PDecl;
1193 return true;
1194 }
1195
1196 for (auto *PI : PDecl->protocols())
1197 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1198 UndefinedProtocol = PI;
1199 return true;
1200 }
1201 return false;
1202 }
1203
1204 /// FindProtocolDeclaration - This routine looks up protocols and
1205 /// issues an error if they are not declared. It returns list of
1206 /// protocol declarations in its 'Protocols' argument.
1207 void
FindProtocolDeclaration(bool WarnOnDeclarations,bool ForObjCContainer,ArrayRef<IdentifierLocPair> ProtocolId,SmallVectorImpl<Decl * > & Protocols)1208 Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1209 ArrayRef<IdentifierLocPair> ProtocolId,
1210 SmallVectorImpl<Decl *> &Protocols) {
1211 for (const IdentifierLocPair &Pair : ProtocolId) {
1212 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1213 if (!PDecl) {
1214 TypoCorrection Corrected = CorrectTypo(
1215 DeclarationNameInfo(Pair.first, Pair.second),
1216 LookupObjCProtocolName, TUScope, nullptr,
1217 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1218 CTK_ErrorRecovery);
1219 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1220 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1221 << Pair.first);
1222 }
1223
1224 if (!PDecl) {
1225 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1226 continue;
1227 }
1228 // If this is a forward protocol declaration, get its definition.
1229 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1230 PDecl = PDecl->getDefinition();
1231
1232 // For an objc container, delay protocol reference checking until after we
1233 // can set the objc decl as the availability context, otherwise check now.
1234 if (!ForObjCContainer) {
1235 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1236 }
1237
1238 // If this is a forward declaration and we are supposed to warn in this
1239 // case, do it.
1240 // FIXME: Recover nicely in the hidden case.
1241 ObjCProtocolDecl *UndefinedProtocol;
1242
1243 if (WarnOnDeclarations &&
1244 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1245 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1246 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1247 << UndefinedProtocol;
1248 }
1249 Protocols.push_back(PDecl);
1250 }
1251 }
1252
1253 namespace {
1254 // Callback to only accept typo corrections that are either
1255 // Objective-C protocols or valid Objective-C type arguments.
1256 class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1257 ASTContext &Context;
1258 Sema::LookupNameKind LookupKind;
1259 public:
ObjCTypeArgOrProtocolValidatorCCC(ASTContext & context,Sema::LookupNameKind lookupKind)1260 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1261 Sema::LookupNameKind lookupKind)
1262 : Context(context), LookupKind(lookupKind) { }
1263
ValidateCandidate(const TypoCorrection & candidate)1264 bool ValidateCandidate(const TypoCorrection &candidate) override {
1265 // If we're allowed to find protocols and we have a protocol, accept it.
1266 if (LookupKind != Sema::LookupOrdinaryName) {
1267 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1268 return true;
1269 }
1270
1271 // If we're allowed to find type names and we have one, accept it.
1272 if (LookupKind != Sema::LookupObjCProtocolName) {
1273 // If we have a type declaration, we might accept this result.
1274 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1275 // If we found a tag declaration outside of C++, skip it. This
1276 // can happy because we look for any name when there is no
1277 // bias to protocol or type names.
1278 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1279 return false;
1280
1281 // Make sure the type is something we would accept as a type
1282 // argument.
1283 auto type = Context.getTypeDeclType(typeDecl);
1284 if (type->isObjCObjectPointerType() ||
1285 type->isBlockPointerType() ||
1286 type->isDependentType() ||
1287 type->isObjCObjectType())
1288 return true;
1289
1290 return false;
1291 }
1292
1293 // If we have an Objective-C class type, accept it; there will
1294 // be another fix to add the '*'.
1295 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1296 return true;
1297
1298 return false;
1299 }
1300
1301 return false;
1302 }
1303 };
1304 } // end anonymous namespace
1305
actOnObjCTypeArgsOrProtocolQualifiers(Scope * S,ParsedType baseType,SourceLocation lAngleLoc,ArrayRef<IdentifierInfo * > identifiers,ArrayRef<SourceLocation> identifierLocs,SourceLocation rAngleLoc,SourceLocation & typeArgsLAngleLoc,SmallVectorImpl<ParsedType> & typeArgs,SourceLocation & typeArgsRAngleLoc,SourceLocation & protocolLAngleLoc,SmallVectorImpl<Decl * > & protocols,SourceLocation & protocolRAngleLoc,bool warnOnIncompleteProtocols)1306 void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1307 Scope *S,
1308 ParsedType baseType,
1309 SourceLocation lAngleLoc,
1310 ArrayRef<IdentifierInfo *> identifiers,
1311 ArrayRef<SourceLocation> identifierLocs,
1312 SourceLocation rAngleLoc,
1313 SourceLocation &typeArgsLAngleLoc,
1314 SmallVectorImpl<ParsedType> &typeArgs,
1315 SourceLocation &typeArgsRAngleLoc,
1316 SourceLocation &protocolLAngleLoc,
1317 SmallVectorImpl<Decl *> &protocols,
1318 SourceLocation &protocolRAngleLoc,
1319 bool warnOnIncompleteProtocols) {
1320 // Local function that updates the declaration specifiers with
1321 // protocol information.
1322 unsigned numProtocolsResolved = 0;
1323 auto resolvedAsProtocols = [&] {
1324 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1325
1326 // Determine whether the base type is a parameterized class, in
1327 // which case we want to warn about typos such as
1328 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1329 ObjCInterfaceDecl *baseClass = nullptr;
1330 QualType base = GetTypeFromParser(baseType, nullptr);
1331 bool allAreTypeNames = false;
1332 SourceLocation firstClassNameLoc;
1333 if (!base.isNull()) {
1334 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1335 baseClass = objcObjectType->getInterface();
1336 if (baseClass) {
1337 if (auto typeParams = baseClass->getTypeParamList()) {
1338 if (typeParams->size() == numProtocolsResolved) {
1339 // Note that we should be looking for type names, too.
1340 allAreTypeNames = true;
1341 }
1342 }
1343 }
1344 }
1345 }
1346
1347 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1348 ObjCProtocolDecl *&proto
1349 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1350 // For an objc container, delay protocol reference checking until after we
1351 // can set the objc decl as the availability context, otherwise check now.
1352 if (!warnOnIncompleteProtocols) {
1353 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1354 }
1355
1356 // If this is a forward protocol declaration, get its definition.
1357 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1358 proto = proto->getDefinition();
1359
1360 // If this is a forward declaration and we are supposed to warn in this
1361 // case, do it.
1362 // FIXME: Recover nicely in the hidden case.
1363 ObjCProtocolDecl *forwardDecl = nullptr;
1364 if (warnOnIncompleteProtocols &&
1365 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1366 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1367 << proto->getDeclName();
1368 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1369 << forwardDecl;
1370 }
1371
1372 // If everything this far has been a type name (and we care
1373 // about such things), check whether this name refers to a type
1374 // as well.
1375 if (allAreTypeNames) {
1376 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1377 LookupOrdinaryName)) {
1378 if (isa<ObjCInterfaceDecl>(decl)) {
1379 if (firstClassNameLoc.isInvalid())
1380 firstClassNameLoc = identifierLocs[i];
1381 } else if (!isa<TypeDecl>(decl)) {
1382 // Not a type.
1383 allAreTypeNames = false;
1384 }
1385 } else {
1386 allAreTypeNames = false;
1387 }
1388 }
1389 }
1390
1391 // All of the protocols listed also have type names, and at least
1392 // one is an Objective-C class name. Check whether all of the
1393 // protocol conformances are declared by the base class itself, in
1394 // which case we warn.
1395 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1396 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1397 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1398 bool allProtocolsDeclared = true;
1399 for (auto proto : protocols) {
1400 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1401 allProtocolsDeclared = false;
1402 break;
1403 }
1404 }
1405
1406 if (allProtocolsDeclared) {
1407 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1408 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1409 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1410 " *");
1411 }
1412 }
1413
1414 protocolLAngleLoc = lAngleLoc;
1415 protocolRAngleLoc = rAngleLoc;
1416 assert(protocols.size() == identifierLocs.size());
1417 };
1418
1419 // Attempt to resolve all of the identifiers as protocols.
1420 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1421 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1422 protocols.push_back(proto);
1423 if (proto)
1424 ++numProtocolsResolved;
1425 }
1426
1427 // If all of the names were protocols, these were protocol qualifiers.
1428 if (numProtocolsResolved == identifiers.size())
1429 return resolvedAsProtocols();
1430
1431 // Attempt to resolve all of the identifiers as type names or
1432 // Objective-C class names. The latter is technically ill-formed,
1433 // but is probably something like \c NSArray<NSView *> missing the
1434 // \c*.
1435 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1436 SmallVector<TypeOrClassDecl, 4> typeDecls;
1437 unsigned numTypeDeclsResolved = 0;
1438 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1439 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1440 LookupOrdinaryName);
1441 if (!decl) {
1442 typeDecls.push_back(TypeOrClassDecl());
1443 continue;
1444 }
1445
1446 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1447 typeDecls.push_back(typeDecl);
1448 ++numTypeDeclsResolved;
1449 continue;
1450 }
1451
1452 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1453 typeDecls.push_back(objcClass);
1454 ++numTypeDeclsResolved;
1455 continue;
1456 }
1457
1458 typeDecls.push_back(TypeOrClassDecl());
1459 }
1460
1461 AttributeFactory attrFactory;
1462
1463 // Local function that forms a reference to the given type or
1464 // Objective-C class declaration.
1465 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1466 -> TypeResult {
1467 // Form declaration specifiers. They simply refer to the type.
1468 DeclSpec DS(attrFactory);
1469 const char* prevSpec; // unused
1470 unsigned diagID; // unused
1471 QualType type;
1472 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1473 type = Context.getTypeDeclType(actualTypeDecl);
1474 else
1475 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1476 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1477 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1478 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1479 parsedType, Context.getPrintingPolicy());
1480 // Use the identifier location for the type source range.
1481 DS.SetRangeStart(loc);
1482 DS.SetRangeEnd(loc);
1483
1484 // Form the declarator.
1485 Declarator D(DS, Declarator::TypeNameContext);
1486
1487 // If we have a typedef of an Objective-C class type that is missing a '*',
1488 // add the '*'.
1489 if (type->getAs<ObjCInterfaceType>()) {
1490 SourceLocation starLoc = getLocForEndOfToken(loc);
1491 ParsedAttributes parsedAttrs(attrFactory);
1492 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1493 SourceLocation(),
1494 SourceLocation(),
1495 SourceLocation(),
1496 SourceLocation()),
1497 parsedAttrs,
1498 starLoc);
1499
1500 // Diagnose the missing '*'.
1501 Diag(loc, diag::err_objc_type_arg_missing_star)
1502 << type
1503 << FixItHint::CreateInsertion(starLoc, " *");
1504 }
1505
1506 // Convert this to a type.
1507 return ActOnTypeName(S, D);
1508 };
1509
1510 // Local function that updates the declaration specifiers with
1511 // type argument information.
1512 auto resolvedAsTypeDecls = [&] {
1513 // We did not resolve these as protocols.
1514 protocols.clear();
1515
1516 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1517 // Map type declarations to type arguments.
1518 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1519 // Map type reference to a type.
1520 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1521 if (!type.isUsable()) {
1522 typeArgs.clear();
1523 return;
1524 }
1525
1526 typeArgs.push_back(type.get());
1527 }
1528
1529 typeArgsLAngleLoc = lAngleLoc;
1530 typeArgsRAngleLoc = rAngleLoc;
1531 };
1532
1533 // If all of the identifiers can be resolved as type names or
1534 // Objective-C class names, we have type arguments.
1535 if (numTypeDeclsResolved == identifiers.size())
1536 return resolvedAsTypeDecls();
1537
1538 // Error recovery: some names weren't found, or we have a mix of
1539 // type and protocol names. Go resolve all of the unresolved names
1540 // and complain if we can't find a consistent answer.
1541 LookupNameKind lookupKind = LookupAnyName;
1542 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1543 // If we already have a protocol or type. Check whether it is the
1544 // right thing.
1545 if (protocols[i] || typeDecls[i]) {
1546 // If we haven't figured out whether we want types or protocols
1547 // yet, try to figure it out from this name.
1548 if (lookupKind == LookupAnyName) {
1549 // If this name refers to both a protocol and a type (e.g., \c
1550 // NSObject), don't conclude anything yet.
1551 if (protocols[i] && typeDecls[i])
1552 continue;
1553
1554 // Otherwise, let this name decide whether we'll be correcting
1555 // toward types or protocols.
1556 lookupKind = protocols[i] ? LookupObjCProtocolName
1557 : LookupOrdinaryName;
1558 continue;
1559 }
1560
1561 // If we want protocols and we have a protocol, there's nothing
1562 // more to do.
1563 if (lookupKind == LookupObjCProtocolName && protocols[i])
1564 continue;
1565
1566 // If we want types and we have a type declaration, there's
1567 // nothing more to do.
1568 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1569 continue;
1570
1571 // We have a conflict: some names refer to protocols and others
1572 // refer to types.
1573 Diag(identifierLocs[i], diag::err_objc_type_args_and_protocols)
1574 << (protocols[i] != nullptr)
1575 << identifiers[i]
1576 << identifiers[0]
1577 << SourceRange(identifierLocs[0]);
1578
1579 protocols.clear();
1580 typeArgs.clear();
1581 return;
1582 }
1583
1584 // Perform typo correction on the name.
1585 TypoCorrection corrected = CorrectTypo(
1586 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1587 nullptr,
1588 llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1589 lookupKind),
1590 CTK_ErrorRecovery);
1591 if (corrected) {
1592 // Did we find a protocol?
1593 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1594 diagnoseTypo(corrected,
1595 PDiag(diag::err_undeclared_protocol_suggest)
1596 << identifiers[i]);
1597 lookupKind = LookupObjCProtocolName;
1598 protocols[i] = proto;
1599 ++numProtocolsResolved;
1600 continue;
1601 }
1602
1603 // Did we find a type?
1604 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1605 diagnoseTypo(corrected,
1606 PDiag(diag::err_unknown_typename_suggest)
1607 << identifiers[i]);
1608 lookupKind = LookupOrdinaryName;
1609 typeDecls[i] = typeDecl;
1610 ++numTypeDeclsResolved;
1611 continue;
1612 }
1613
1614 // Did we find an Objective-C class?
1615 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1616 diagnoseTypo(corrected,
1617 PDiag(diag::err_unknown_type_or_class_name_suggest)
1618 << identifiers[i] << true);
1619 lookupKind = LookupOrdinaryName;
1620 typeDecls[i] = objcClass;
1621 ++numTypeDeclsResolved;
1622 continue;
1623 }
1624 }
1625
1626 // We couldn't find anything.
1627 Diag(identifierLocs[i],
1628 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1629 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1630 : diag::err_unknown_typename))
1631 << identifiers[i];
1632 protocols.clear();
1633 typeArgs.clear();
1634 return;
1635 }
1636
1637 // If all of the names were (corrected to) protocols, these were
1638 // protocol qualifiers.
1639 if (numProtocolsResolved == identifiers.size())
1640 return resolvedAsProtocols();
1641
1642 // Otherwise, all of the names were (corrected to) types.
1643 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1644 return resolvedAsTypeDecls();
1645 }
1646
1647 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1648 /// a class method in its extension.
1649 ///
DiagnoseClassExtensionDupMethods(ObjCCategoryDecl * CAT,ObjCInterfaceDecl * ID)1650 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1651 ObjCInterfaceDecl *ID) {
1652 if (!ID)
1653 return; // Possibly due to previous error
1654
1655 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1656 for (auto *MD : ID->methods())
1657 MethodMap[MD->getSelector()] = MD;
1658
1659 if (MethodMap.empty())
1660 return;
1661 for (const auto *Method : CAT->methods()) {
1662 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1663 if (PrevMethod &&
1664 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1665 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1666 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1667 << Method->getDeclName();
1668 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1669 }
1670 }
1671 }
1672
1673 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1674 Sema::DeclGroupPtrTy
ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,ArrayRef<IdentifierLocPair> IdentList,AttributeList * attrList)1675 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1676 ArrayRef<IdentifierLocPair> IdentList,
1677 AttributeList *attrList) {
1678 SmallVector<Decl *, 8> DeclsInGroup;
1679 for (const IdentifierLocPair &IdentPair : IdentList) {
1680 IdentifierInfo *Ident = IdentPair.first;
1681 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1682 ForRedeclaration);
1683 ObjCProtocolDecl *PDecl
1684 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1685 IdentPair.second, AtProtocolLoc,
1686 PrevDecl);
1687
1688 PushOnScopeChains(PDecl, TUScope);
1689 CheckObjCDeclScope(PDecl);
1690
1691 if (attrList)
1692 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1693
1694 if (PrevDecl)
1695 mergeDeclAttributes(PDecl, PrevDecl);
1696
1697 DeclsInGroup.push_back(PDecl);
1698 }
1699
1700 return BuildDeclaratorGroup(DeclsInGroup, false);
1701 }
1702
1703 Decl *Sema::
ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,ObjCTypeParamList * typeParamList,IdentifierInfo * CategoryName,SourceLocation CategoryLoc,Decl * const * ProtoRefs,unsigned NumProtoRefs,const SourceLocation * ProtoLocs,SourceLocation EndProtoLoc)1704 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
1705 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1706 ObjCTypeParamList *typeParamList,
1707 IdentifierInfo *CategoryName,
1708 SourceLocation CategoryLoc,
1709 Decl * const *ProtoRefs,
1710 unsigned NumProtoRefs,
1711 const SourceLocation *ProtoLocs,
1712 SourceLocation EndProtoLoc) {
1713 ObjCCategoryDecl *CDecl;
1714 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1715
1716 /// Check that class of this category is already completely declared.
1717
1718 if (!IDecl
1719 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1720 diag::err_category_forward_interface,
1721 CategoryName == nullptr)) {
1722 // Create an invalid ObjCCategoryDecl to serve as context for
1723 // the enclosing method declarations. We mark the decl invalid
1724 // to make it clear that this isn't a valid AST.
1725 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1726 ClassLoc, CategoryLoc, CategoryName,
1727 IDecl, typeParamList);
1728 CDecl->setInvalidDecl();
1729 CurContext->addDecl(CDecl);
1730
1731 if (!IDecl)
1732 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1733 return ActOnObjCContainerStartDefinition(CDecl);
1734 }
1735
1736 if (!CategoryName && IDecl->getImplementation()) {
1737 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1738 Diag(IDecl->getImplementation()->getLocation(),
1739 diag::note_implementation_declared);
1740 }
1741
1742 if (CategoryName) {
1743 /// Check for duplicate interface declaration for this category
1744 if (ObjCCategoryDecl *Previous
1745 = IDecl->FindCategoryDeclaration(CategoryName)) {
1746 // Class extensions can be declared multiple times, categories cannot.
1747 Diag(CategoryLoc, diag::warn_dup_category_def)
1748 << ClassName << CategoryName;
1749 Diag(Previous->getLocation(), diag::note_previous_definition);
1750 }
1751 }
1752
1753 // If we have a type parameter list, check it.
1754 if (typeParamList) {
1755 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1756 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1757 CategoryName
1758 ? TypeParamListContext::Category
1759 : TypeParamListContext::Extension))
1760 typeParamList = nullptr;
1761 } else {
1762 Diag(typeParamList->getLAngleLoc(),
1763 diag::err_objc_parameterized_category_nonclass)
1764 << (CategoryName != nullptr)
1765 << ClassName
1766 << typeParamList->getSourceRange();
1767
1768 typeParamList = nullptr;
1769 }
1770 }
1771
1772 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1773 ClassLoc, CategoryLoc, CategoryName, IDecl,
1774 typeParamList);
1775 // FIXME: PushOnScopeChains?
1776 CurContext->addDecl(CDecl);
1777
1778 if (NumProtoRefs) {
1779 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1780 NumProtoRefs, ProtoLocs);
1781 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1782 ProtoLocs, Context);
1783 // Protocols in the class extension belong to the class.
1784 if (CDecl->IsClassExtension())
1785 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1786 NumProtoRefs, Context);
1787 }
1788
1789 CheckObjCDeclScope(CDecl);
1790 return ActOnObjCContainerStartDefinition(CDecl);
1791 }
1792
1793 /// ActOnStartCategoryImplementation - Perform semantic checks on the
1794 /// category implementation declaration and build an ObjCCategoryImplDecl
1795 /// object.
ActOnStartCategoryImplementation(SourceLocation AtCatImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * CatName,SourceLocation CatLoc)1796 Decl *Sema::ActOnStartCategoryImplementation(
1797 SourceLocation AtCatImplLoc,
1798 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1799 IdentifierInfo *CatName, SourceLocation CatLoc) {
1800 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1801 ObjCCategoryDecl *CatIDecl = nullptr;
1802 if (IDecl && IDecl->hasDefinition()) {
1803 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1804 if (!CatIDecl) {
1805 // Category @implementation with no corresponding @interface.
1806 // Create and install one.
1807 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1808 ClassLoc, CatLoc,
1809 CatName, IDecl,
1810 /*typeParamList=*/nullptr);
1811 CatIDecl->setImplicit();
1812 }
1813 }
1814
1815 ObjCCategoryImplDecl *CDecl =
1816 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1817 ClassLoc, AtCatImplLoc, CatLoc);
1818 /// Check that class of this category is already completely declared.
1819 if (!IDecl) {
1820 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1821 CDecl->setInvalidDecl();
1822 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1823 diag::err_undef_interface)) {
1824 CDecl->setInvalidDecl();
1825 }
1826
1827 // FIXME: PushOnScopeChains?
1828 CurContext->addDecl(CDecl);
1829
1830 // If the interface is deprecated/unavailable, warn/error about it.
1831 if (IDecl)
1832 DiagnoseUseOfDecl(IDecl, ClassLoc);
1833
1834 /// Check that CatName, category name, is not used in another implementation.
1835 if (CatIDecl) {
1836 if (CatIDecl->getImplementation()) {
1837 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1838 << CatName;
1839 Diag(CatIDecl->getImplementation()->getLocation(),
1840 diag::note_previous_definition);
1841 CDecl->setInvalidDecl();
1842 } else {
1843 CatIDecl->setImplementation(CDecl);
1844 // Warn on implementating category of deprecated class under
1845 // -Wdeprecated-implementations flag.
1846 DiagnoseObjCImplementedDeprecations(*this,
1847 dyn_cast<NamedDecl>(IDecl),
1848 CDecl->getLocation(), 2);
1849 }
1850 }
1851
1852 CheckObjCDeclScope(CDecl);
1853 return ActOnObjCContainerStartDefinition(CDecl);
1854 }
1855
ActOnStartClassImplementation(SourceLocation AtClassImplLoc,IdentifierInfo * ClassName,SourceLocation ClassLoc,IdentifierInfo * SuperClassname,SourceLocation SuperClassLoc)1856 Decl *Sema::ActOnStartClassImplementation(
1857 SourceLocation AtClassImplLoc,
1858 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1859 IdentifierInfo *SuperClassname,
1860 SourceLocation SuperClassLoc) {
1861 ObjCInterfaceDecl *IDecl = nullptr;
1862 // Check for another declaration kind with the same name.
1863 NamedDecl *PrevDecl
1864 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1865 ForRedeclaration);
1866 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1867 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1868 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1869 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1870 // FIXME: This will produce an error if the definition of the interface has
1871 // been imported from a module but is not visible.
1872 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1873 diag::warn_undef_interface);
1874 } else {
1875 // We did not find anything with the name ClassName; try to correct for
1876 // typos in the class name.
1877 TypoCorrection Corrected = CorrectTypo(
1878 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1879 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1880 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1881 // Suggest the (potentially) correct interface name. Don't provide a
1882 // code-modification hint or use the typo name for recovery, because
1883 // this is just a warning. The program may actually be correct.
1884 diagnoseTypo(Corrected,
1885 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1886 /*ErrorRecovery*/false);
1887 } else {
1888 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1889 }
1890 }
1891
1892 // Check that super class name is valid class name
1893 ObjCInterfaceDecl *SDecl = nullptr;
1894 if (SuperClassname) {
1895 // Check if a different kind of symbol declared in this scope.
1896 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1897 LookupOrdinaryName);
1898 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1899 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1900 << SuperClassname;
1901 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1902 } else {
1903 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1904 if (SDecl && !SDecl->hasDefinition())
1905 SDecl = nullptr;
1906 if (!SDecl)
1907 Diag(SuperClassLoc, diag::err_undef_superclass)
1908 << SuperClassname << ClassName;
1909 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1910 // This implementation and its interface do not have the same
1911 // super class.
1912 Diag(SuperClassLoc, diag::err_conflicting_super_class)
1913 << SDecl->getDeclName();
1914 Diag(SDecl->getLocation(), diag::note_previous_definition);
1915 }
1916 }
1917 }
1918
1919 if (!IDecl) {
1920 // Legacy case of @implementation with no corresponding @interface.
1921 // Build, chain & install the interface decl into the identifier.
1922
1923 // FIXME: Do we support attributes on the @implementation? If so we should
1924 // copy them over.
1925 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1926 ClassName, /*typeParamList=*/nullptr,
1927 /*PrevDecl=*/nullptr, ClassLoc,
1928 true);
1929 IDecl->startDefinition();
1930 if (SDecl) {
1931 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
1932 Context.getObjCInterfaceType(SDecl),
1933 SuperClassLoc));
1934 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1935 } else {
1936 IDecl->setEndOfDefinitionLoc(ClassLoc);
1937 }
1938
1939 PushOnScopeChains(IDecl, TUScope);
1940 } else {
1941 // Mark the interface as being completed, even if it was just as
1942 // @class ....;
1943 // declaration; the user cannot reopen it.
1944 if (!IDecl->hasDefinition())
1945 IDecl->startDefinition();
1946 }
1947
1948 ObjCImplementationDecl* IMPDecl =
1949 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1950 ClassLoc, AtClassImplLoc, SuperClassLoc);
1951
1952 if (CheckObjCDeclScope(IMPDecl))
1953 return ActOnObjCContainerStartDefinition(IMPDecl);
1954
1955 // Check that there is no duplicate implementation of this class.
1956 if (IDecl->getImplementation()) {
1957 // FIXME: Don't leak everything!
1958 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1959 Diag(IDecl->getImplementation()->getLocation(),
1960 diag::note_previous_definition);
1961 IMPDecl->setInvalidDecl();
1962 } else { // add it to the list.
1963 IDecl->setImplementation(IMPDecl);
1964 PushOnScopeChains(IMPDecl, TUScope);
1965 // Warn on implementating deprecated class under
1966 // -Wdeprecated-implementations flag.
1967 DiagnoseObjCImplementedDeprecations(*this,
1968 dyn_cast<NamedDecl>(IDecl),
1969 IMPDecl->getLocation(), 1);
1970 }
1971 return ActOnObjCContainerStartDefinition(IMPDecl);
1972 }
1973
1974 Sema::DeclGroupPtrTy
ActOnFinishObjCImplementation(Decl * ObjCImpDecl,ArrayRef<Decl * > Decls)1975 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1976 SmallVector<Decl *, 64> DeclsInGroup;
1977 DeclsInGroup.reserve(Decls.size() + 1);
1978
1979 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1980 Decl *Dcl = Decls[i];
1981 if (!Dcl)
1982 continue;
1983 if (Dcl->getDeclContext()->isFileContext())
1984 Dcl->setTopLevelDeclInObjCContainer();
1985 DeclsInGroup.push_back(Dcl);
1986 }
1987
1988 DeclsInGroup.push_back(ObjCImpDecl);
1989
1990 return BuildDeclaratorGroup(DeclsInGroup, false);
1991 }
1992
CheckImplementationIvars(ObjCImplementationDecl * ImpDecl,ObjCIvarDecl ** ivars,unsigned numIvars,SourceLocation RBrace)1993 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1994 ObjCIvarDecl **ivars, unsigned numIvars,
1995 SourceLocation RBrace) {
1996 assert(ImpDecl && "missing implementation decl");
1997 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1998 if (!IDecl)
1999 return;
2000 /// Check case of non-existing \@interface decl.
2001 /// (legacy objective-c \@implementation decl without an \@interface decl).
2002 /// Add implementations's ivar to the synthesize class's ivar list.
2003 if (IDecl->isImplicitInterfaceDecl()) {
2004 IDecl->setEndOfDefinitionLoc(RBrace);
2005 // Add ivar's to class's DeclContext.
2006 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2007 ivars[i]->setLexicalDeclContext(ImpDecl);
2008 IDecl->makeDeclVisibleInContext(ivars[i]);
2009 ImpDecl->addDecl(ivars[i]);
2010 }
2011
2012 return;
2013 }
2014 // If implementation has empty ivar list, just return.
2015 if (numIvars == 0)
2016 return;
2017
2018 assert(ivars && "missing @implementation ivars");
2019 if (LangOpts.ObjCRuntime.isNonFragile()) {
2020 if (ImpDecl->getSuperClass())
2021 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2022 for (unsigned i = 0; i < numIvars; i++) {
2023 ObjCIvarDecl* ImplIvar = ivars[i];
2024 if (const ObjCIvarDecl *ClsIvar =
2025 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2026 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2027 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2028 continue;
2029 }
2030 // Check class extensions (unnamed categories) for duplicate ivars.
2031 for (const auto *CDecl : IDecl->visible_extensions()) {
2032 if (const ObjCIvarDecl *ClsExtIvar =
2033 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2034 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2035 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2036 continue;
2037 }
2038 }
2039 // Instance ivar to Implementation's DeclContext.
2040 ImplIvar->setLexicalDeclContext(ImpDecl);
2041 IDecl->makeDeclVisibleInContext(ImplIvar);
2042 ImpDecl->addDecl(ImplIvar);
2043 }
2044 return;
2045 }
2046 // Check interface's Ivar list against those in the implementation.
2047 // names and types must match.
2048 //
2049 unsigned j = 0;
2050 ObjCInterfaceDecl::ivar_iterator
2051 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2052 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2053 ObjCIvarDecl* ImplIvar = ivars[j++];
2054 ObjCIvarDecl* ClsIvar = *IVI;
2055 assert (ImplIvar && "missing implementation ivar");
2056 assert (ClsIvar && "missing class ivar");
2057
2058 // First, make sure the types match.
2059 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2060 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2061 << ImplIvar->getIdentifier()
2062 << ImplIvar->getType() << ClsIvar->getType();
2063 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2064 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2065 ImplIvar->getBitWidthValue(Context) !=
2066 ClsIvar->getBitWidthValue(Context)) {
2067 Diag(ImplIvar->getBitWidth()->getLocStart(),
2068 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2069 Diag(ClsIvar->getBitWidth()->getLocStart(),
2070 diag::note_previous_definition);
2071 }
2072 // Make sure the names are identical.
2073 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2074 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2075 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2076 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2077 }
2078 --numIvars;
2079 }
2080
2081 if (numIvars > 0)
2082 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2083 else if (IVI != IVE)
2084 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2085 }
2086
WarnUndefinedMethod(Sema & S,SourceLocation ImpLoc,ObjCMethodDecl * method,bool & IncompleteImpl,unsigned DiagID,NamedDecl * NeededFor=nullptr)2087 static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2088 ObjCMethodDecl *method,
2089 bool &IncompleteImpl,
2090 unsigned DiagID,
2091 NamedDecl *NeededFor = nullptr) {
2092 // No point warning no definition of method which is 'unavailable'.
2093 switch (method->getAvailability()) {
2094 case AR_Available:
2095 case AR_Deprecated:
2096 break;
2097
2098 // Don't warn about unavailable or not-yet-introduced methods.
2099 case AR_NotYetIntroduced:
2100 case AR_Unavailable:
2101 return;
2102 }
2103
2104 // FIXME: For now ignore 'IncompleteImpl'.
2105 // Previously we grouped all unimplemented methods under a single
2106 // warning, but some users strongly voiced that they would prefer
2107 // separate warnings. We will give that approach a try, as that
2108 // matches what we do with protocols.
2109 {
2110 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2111 B << method;
2112 if (NeededFor)
2113 B << NeededFor;
2114 }
2115
2116 // Issue a note to the original declaration.
2117 SourceLocation MethodLoc = method->getLocStart();
2118 if (MethodLoc.isValid())
2119 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2120 }
2121
2122 /// Determines if type B can be substituted for type A. Returns true if we can
2123 /// guarantee that anything that the user will do to an object of type A can
2124 /// also be done to an object of type B. This is trivially true if the two
2125 /// types are the same, or if B is a subclass of A. It becomes more complex
2126 /// in cases where protocols are involved.
2127 ///
2128 /// Object types in Objective-C describe the minimum requirements for an
2129 /// object, rather than providing a complete description of a type. For
2130 /// example, if A is a subclass of B, then B* may refer to an instance of A.
2131 /// The principle of substitutability means that we may use an instance of A
2132 /// anywhere that we may use an instance of B - it will implement all of the
2133 /// ivars of B and all of the methods of B.
2134 ///
2135 /// This substitutability is important when type checking methods, because
2136 /// the implementation may have stricter type definitions than the interface.
2137 /// The interface specifies minimum requirements, but the implementation may
2138 /// have more accurate ones. For example, a method may privately accept
2139 /// instances of B, but only publish that it accepts instances of A. Any
2140 /// object passed to it will be type checked against B, and so will implicitly
2141 /// by a valid A*. Similarly, a method may return a subclass of the class that
2142 /// it is declared as returning.
2143 ///
2144 /// This is most important when considering subclassing. A method in a
2145 /// subclass must accept any object as an argument that its superclass's
2146 /// implementation accepts. It may, however, accept a more general type
2147 /// without breaking substitutability (i.e. you can still use the subclass
2148 /// anywhere that you can use the superclass, but not vice versa). The
2149 /// converse requirement applies to return types: the return type for a
2150 /// subclass method must be a valid object of the kind that the superclass
2151 /// advertises, but it may be specified more accurately. This avoids the need
2152 /// for explicit down-casting by callers.
2153 ///
2154 /// Note: This is a stricter requirement than for assignment.
isObjCTypeSubstitutable(ASTContext & Context,const ObjCObjectPointerType * A,const ObjCObjectPointerType * B,bool rejectId)2155 static bool isObjCTypeSubstitutable(ASTContext &Context,
2156 const ObjCObjectPointerType *A,
2157 const ObjCObjectPointerType *B,
2158 bool rejectId) {
2159 // Reject a protocol-unqualified id.
2160 if (rejectId && B->isObjCIdType()) return false;
2161
2162 // If B is a qualified id, then A must also be a qualified id and it must
2163 // implement all of the protocols in B. It may not be a qualified class.
2164 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2165 // stricter definition so it is not substitutable for id<A>.
2166 if (B->isObjCQualifiedIdType()) {
2167 return A->isObjCQualifiedIdType() &&
2168 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2169 QualType(B,0),
2170 false);
2171 }
2172
2173 /*
2174 // id is a special type that bypasses type checking completely. We want a
2175 // warning when it is used in one place but not another.
2176 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2177
2178
2179 // If B is a qualified id, then A must also be a qualified id (which it isn't
2180 // if we've got this far)
2181 if (B->isObjCQualifiedIdType()) return false;
2182 */
2183
2184 // Now we know that A and B are (potentially-qualified) class types. The
2185 // normal rules for assignment apply.
2186 return Context.canAssignObjCInterfaces(A, B);
2187 }
2188
getTypeRange(TypeSourceInfo * TSI)2189 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2190 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2191 }
2192
2193 /// Determine whether two set of Objective-C declaration qualifiers conflict.
objcModifiersConflict(Decl::ObjCDeclQualifier x,Decl::ObjCDeclQualifier y)2194 static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2195 Decl::ObjCDeclQualifier y) {
2196 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2197 (y & ~Decl::OBJC_TQ_CSNullability);
2198 }
2199
CheckMethodOverrideReturn(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2200 static bool CheckMethodOverrideReturn(Sema &S,
2201 ObjCMethodDecl *MethodImpl,
2202 ObjCMethodDecl *MethodDecl,
2203 bool IsProtocolMethodDecl,
2204 bool IsOverridingMode,
2205 bool Warn) {
2206 if (IsProtocolMethodDecl &&
2207 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2208 MethodImpl->getObjCDeclQualifier())) {
2209 if (Warn) {
2210 S.Diag(MethodImpl->getLocation(),
2211 (IsOverridingMode
2212 ? diag::warn_conflicting_overriding_ret_type_modifiers
2213 : diag::warn_conflicting_ret_type_modifiers))
2214 << MethodImpl->getDeclName()
2215 << MethodImpl->getReturnTypeSourceRange();
2216 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2217 << MethodDecl->getReturnTypeSourceRange();
2218 }
2219 else
2220 return false;
2221 }
2222 if (Warn && IsOverridingMode &&
2223 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2224 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2225 MethodDecl->getReturnType(),
2226 false)) {
2227 auto nullabilityMethodImpl =
2228 *MethodImpl->getReturnType()->getNullability(S.Context);
2229 auto nullabilityMethodDecl =
2230 *MethodDecl->getReturnType()->getNullability(S.Context);
2231 S.Diag(MethodImpl->getLocation(),
2232 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2233 << DiagNullabilityKind(
2234 nullabilityMethodImpl,
2235 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2236 != 0))
2237 << DiagNullabilityKind(
2238 nullabilityMethodDecl,
2239 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2240 != 0));
2241 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2242 }
2243
2244 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2245 MethodDecl->getReturnType()))
2246 return true;
2247 if (!Warn)
2248 return false;
2249
2250 unsigned DiagID =
2251 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2252 : diag::warn_conflicting_ret_types;
2253
2254 // Mismatches between ObjC pointers go into a different warning
2255 // category, and sometimes they're even completely whitelisted.
2256 if (const ObjCObjectPointerType *ImplPtrTy =
2257 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2258 if (const ObjCObjectPointerType *IfacePtrTy =
2259 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2260 // Allow non-matching return types as long as they don't violate
2261 // the principle of substitutability. Specifically, we permit
2262 // return types that are subclasses of the declared return type,
2263 // or that are more-qualified versions of the declared type.
2264 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2265 return false;
2266
2267 DiagID =
2268 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2269 : diag::warn_non_covariant_ret_types;
2270 }
2271 }
2272
2273 S.Diag(MethodImpl->getLocation(), DiagID)
2274 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2275 << MethodImpl->getReturnType()
2276 << MethodImpl->getReturnTypeSourceRange();
2277 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2278 ? diag::note_previous_declaration
2279 : diag::note_previous_definition)
2280 << MethodDecl->getReturnTypeSourceRange();
2281 return false;
2282 }
2283
CheckMethodOverrideParam(Sema & S,ObjCMethodDecl * MethodImpl,ObjCMethodDecl * MethodDecl,ParmVarDecl * ImplVar,ParmVarDecl * IfaceVar,bool IsProtocolMethodDecl,bool IsOverridingMode,bool Warn)2284 static bool CheckMethodOverrideParam(Sema &S,
2285 ObjCMethodDecl *MethodImpl,
2286 ObjCMethodDecl *MethodDecl,
2287 ParmVarDecl *ImplVar,
2288 ParmVarDecl *IfaceVar,
2289 bool IsProtocolMethodDecl,
2290 bool IsOverridingMode,
2291 bool Warn) {
2292 if (IsProtocolMethodDecl &&
2293 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2294 IfaceVar->getObjCDeclQualifier())) {
2295 if (Warn) {
2296 if (IsOverridingMode)
2297 S.Diag(ImplVar->getLocation(),
2298 diag::warn_conflicting_overriding_param_modifiers)
2299 << getTypeRange(ImplVar->getTypeSourceInfo())
2300 << MethodImpl->getDeclName();
2301 else S.Diag(ImplVar->getLocation(),
2302 diag::warn_conflicting_param_modifiers)
2303 << getTypeRange(ImplVar->getTypeSourceInfo())
2304 << MethodImpl->getDeclName();
2305 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2306 << getTypeRange(IfaceVar->getTypeSourceInfo());
2307 }
2308 else
2309 return false;
2310 }
2311
2312 QualType ImplTy = ImplVar->getType();
2313 QualType IfaceTy = IfaceVar->getType();
2314 if (Warn && IsOverridingMode &&
2315 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2316 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2317 S.Diag(ImplVar->getLocation(),
2318 diag::warn_conflicting_nullability_attr_overriding_param_types)
2319 << DiagNullabilityKind(
2320 *ImplTy->getNullability(S.Context),
2321 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2322 != 0))
2323 << DiagNullabilityKind(
2324 *IfaceTy->getNullability(S.Context),
2325 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2326 != 0));
2327 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2328 }
2329 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2330 return true;
2331
2332 if (!Warn)
2333 return false;
2334 unsigned DiagID =
2335 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2336 : diag::warn_conflicting_param_types;
2337
2338 // Mismatches between ObjC pointers go into a different warning
2339 // category, and sometimes they're even completely whitelisted.
2340 if (const ObjCObjectPointerType *ImplPtrTy =
2341 ImplTy->getAs<ObjCObjectPointerType>()) {
2342 if (const ObjCObjectPointerType *IfacePtrTy =
2343 IfaceTy->getAs<ObjCObjectPointerType>()) {
2344 // Allow non-matching argument types as long as they don't
2345 // violate the principle of substitutability. Specifically, the
2346 // implementation must accept any objects that the superclass
2347 // accepts, however it may also accept others.
2348 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2349 return false;
2350
2351 DiagID =
2352 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2353 : diag::warn_non_contravariant_param_types;
2354 }
2355 }
2356
2357 S.Diag(ImplVar->getLocation(), DiagID)
2358 << getTypeRange(ImplVar->getTypeSourceInfo())
2359 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2360 S.Diag(IfaceVar->getLocation(),
2361 (IsOverridingMode ? diag::note_previous_declaration
2362 : diag::note_previous_definition))
2363 << getTypeRange(IfaceVar->getTypeSourceInfo());
2364 return false;
2365 }
2366
2367 /// In ARC, check whether the conventional meanings of the two methods
2368 /// match. If they don't, it's a hard error.
checkMethodFamilyMismatch(Sema & S,ObjCMethodDecl * impl,ObjCMethodDecl * decl)2369 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2370 ObjCMethodDecl *decl) {
2371 ObjCMethodFamily implFamily = impl->getMethodFamily();
2372 ObjCMethodFamily declFamily = decl->getMethodFamily();
2373 if (implFamily == declFamily) return false;
2374
2375 // Since conventions are sorted by selector, the only possibility is
2376 // that the types differ enough to cause one selector or the other
2377 // to fall out of the family.
2378 assert(implFamily == OMF_None || declFamily == OMF_None);
2379
2380 // No further diagnostics required on invalid declarations.
2381 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2382
2383 const ObjCMethodDecl *unmatched = impl;
2384 ObjCMethodFamily family = declFamily;
2385 unsigned errorID = diag::err_arc_lost_method_convention;
2386 unsigned noteID = diag::note_arc_lost_method_convention;
2387 if (declFamily == OMF_None) {
2388 unmatched = decl;
2389 family = implFamily;
2390 errorID = diag::err_arc_gained_method_convention;
2391 noteID = diag::note_arc_gained_method_convention;
2392 }
2393
2394 // Indexes into a %select clause in the diagnostic.
2395 enum FamilySelector {
2396 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2397 };
2398 FamilySelector familySelector = FamilySelector();
2399
2400 switch (family) {
2401 case OMF_None: llvm_unreachable("logic error, no method convention");
2402 case OMF_retain:
2403 case OMF_release:
2404 case OMF_autorelease:
2405 case OMF_dealloc:
2406 case OMF_finalize:
2407 case OMF_retainCount:
2408 case OMF_self:
2409 case OMF_initialize:
2410 case OMF_performSelector:
2411 // Mismatches for these methods don't change ownership
2412 // conventions, so we don't care.
2413 return false;
2414
2415 case OMF_init: familySelector = F_init; break;
2416 case OMF_alloc: familySelector = F_alloc; break;
2417 case OMF_copy: familySelector = F_copy; break;
2418 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2419 case OMF_new: familySelector = F_new; break;
2420 }
2421
2422 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2423 ReasonSelector reasonSelector;
2424
2425 // The only reason these methods don't fall within their families is
2426 // due to unusual result types.
2427 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2428 reasonSelector = R_UnrelatedReturn;
2429 } else {
2430 reasonSelector = R_NonObjectReturn;
2431 }
2432
2433 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2434 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2435
2436 return true;
2437 }
2438
WarnConflictingTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2439 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2440 ObjCMethodDecl *MethodDecl,
2441 bool IsProtocolMethodDecl) {
2442 if (getLangOpts().ObjCAutoRefCount &&
2443 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2444 return;
2445
2446 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2447 IsProtocolMethodDecl, false,
2448 true);
2449
2450 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2451 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2452 EF = MethodDecl->param_end();
2453 IM != EM && IF != EF; ++IM, ++IF) {
2454 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2455 IsProtocolMethodDecl, false, true);
2456 }
2457
2458 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2459 Diag(ImpMethodDecl->getLocation(),
2460 diag::warn_conflicting_variadic);
2461 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2462 }
2463 }
2464
CheckConflictingOverridingMethod(ObjCMethodDecl * Method,ObjCMethodDecl * Overridden,bool IsProtocolMethodDecl)2465 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2466 ObjCMethodDecl *Overridden,
2467 bool IsProtocolMethodDecl) {
2468
2469 CheckMethodOverrideReturn(*this, Method, Overridden,
2470 IsProtocolMethodDecl, true,
2471 true);
2472
2473 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2474 IF = Overridden->param_begin(), EM = Method->param_end(),
2475 EF = Overridden->param_end();
2476 IM != EM && IF != EF; ++IM, ++IF) {
2477 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2478 IsProtocolMethodDecl, true, true);
2479 }
2480
2481 if (Method->isVariadic() != Overridden->isVariadic()) {
2482 Diag(Method->getLocation(),
2483 diag::warn_conflicting_overriding_variadic);
2484 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2485 }
2486 }
2487
2488 /// WarnExactTypedMethods - This routine issues a warning if method
2489 /// implementation declaration matches exactly that of its declaration.
WarnExactTypedMethods(ObjCMethodDecl * ImpMethodDecl,ObjCMethodDecl * MethodDecl,bool IsProtocolMethodDecl)2490 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2491 ObjCMethodDecl *MethodDecl,
2492 bool IsProtocolMethodDecl) {
2493 // don't issue warning when protocol method is optional because primary
2494 // class is not required to implement it and it is safe for protocol
2495 // to implement it.
2496 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2497 return;
2498 // don't issue warning when primary class's method is
2499 // depecated/unavailable.
2500 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2501 MethodDecl->hasAttr<DeprecatedAttr>())
2502 return;
2503
2504 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2505 IsProtocolMethodDecl, false, false);
2506 if (match)
2507 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2508 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2509 EF = MethodDecl->param_end();
2510 IM != EM && IF != EF; ++IM, ++IF) {
2511 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2512 *IM, *IF,
2513 IsProtocolMethodDecl, false, false);
2514 if (!match)
2515 break;
2516 }
2517 if (match)
2518 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2519 if (match)
2520 match = !(MethodDecl->isClassMethod() &&
2521 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2522
2523 if (match) {
2524 Diag(ImpMethodDecl->getLocation(),
2525 diag::warn_category_method_impl_match);
2526 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2527 << MethodDecl->getDeclName();
2528 }
2529 }
2530
2531 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2532 /// improve the efficiency of selector lookups and type checking by associating
2533 /// with each protocol / interface / category the flattened instance tables. If
2534 /// we used an immutable set to keep the table then it wouldn't add significant
2535 /// memory cost and it would be handy for lookups.
2536
2537 typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2538 typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2539
findProtocolsWithExplicitImpls(const ObjCProtocolDecl * PDecl,ProtocolNameSet & PNS)2540 static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2541 ProtocolNameSet &PNS) {
2542 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2543 PNS.insert(PDecl->getIdentifier());
2544 for (const auto *PI : PDecl->protocols())
2545 findProtocolsWithExplicitImpls(PI, PNS);
2546 }
2547
2548 /// Recursively populates a set with all conformed protocols in a class
2549 /// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2550 /// attribute.
findProtocolsWithExplicitImpls(const ObjCInterfaceDecl * Super,ProtocolNameSet & PNS)2551 static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2552 ProtocolNameSet &PNS) {
2553 if (!Super)
2554 return;
2555
2556 for (const auto *I : Super->all_referenced_protocols())
2557 findProtocolsWithExplicitImpls(I, PNS);
2558
2559 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2560 }
2561
2562 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
2563 /// Declared in protocol, and those referenced by it.
CheckProtocolMethodDefs(Sema & S,SourceLocation ImpLoc,ObjCProtocolDecl * PDecl,bool & IncompleteImpl,const Sema::SelectorSet & InsMap,const Sema::SelectorSet & ClsMap,ObjCContainerDecl * CDecl,LazyProtocolNameSet & ProtocolsExplictImpl)2564 static void CheckProtocolMethodDefs(Sema &S,
2565 SourceLocation ImpLoc,
2566 ObjCProtocolDecl *PDecl,
2567 bool& IncompleteImpl,
2568 const Sema::SelectorSet &InsMap,
2569 const Sema::SelectorSet &ClsMap,
2570 ObjCContainerDecl *CDecl,
2571 LazyProtocolNameSet &ProtocolsExplictImpl) {
2572 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2573 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2574 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2575 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2576
2577 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2578 ObjCInterfaceDecl *NSIDecl = nullptr;
2579
2580 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2581 // then we should check if any class in the super class hierarchy also
2582 // conforms to this protocol, either directly or via protocol inheritance.
2583 // If so, we can skip checking this protocol completely because we
2584 // know that a parent class already satisfies this protocol.
2585 //
2586 // Note: we could generalize this logic for all protocols, and merely
2587 // add the limit on looking at the super class chain for just
2588 // specially marked protocols. This may be a good optimization. This
2589 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2590 // protocols for now for controlled evaluation.
2591 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2592 if (!ProtocolsExplictImpl) {
2593 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2594 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2595 }
2596 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2597 ProtocolsExplictImpl->end())
2598 return;
2599
2600 // If no super class conforms to the protocol, we should not search
2601 // for methods in the super class to implicitly satisfy the protocol.
2602 Super = nullptr;
2603 }
2604
2605 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2606 // check to see if class implements forwardInvocation method and objects
2607 // of this class are derived from 'NSProxy' so that to forward requests
2608 // from one object to another.
2609 // Under such conditions, which means that every method possible is
2610 // implemented in the class, we should not issue "Method definition not
2611 // found" warnings.
2612 // FIXME: Use a general GetUnarySelector method for this.
2613 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2614 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2615 if (InsMap.count(fISelector))
2616 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2617 // need be implemented in the implementation.
2618 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2619 }
2620
2621 // If this is a forward protocol declaration, get its definition.
2622 if (!PDecl->isThisDeclarationADefinition() &&
2623 PDecl->getDefinition())
2624 PDecl = PDecl->getDefinition();
2625
2626 // If a method lookup fails locally we still need to look and see if
2627 // the method was implemented by a base class or an inherited
2628 // protocol. This lookup is slow, but occurs rarely in correct code
2629 // and otherwise would terminate in a warning.
2630
2631 // check unimplemented instance methods.
2632 if (!NSIDecl)
2633 for (auto *method : PDecl->instance_methods()) {
2634 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2635 !method->isPropertyAccessor() &&
2636 !InsMap.count(method->getSelector()) &&
2637 (!Super || !Super->lookupMethod(method->getSelector(),
2638 true /* instance */,
2639 false /* shallowCategory */,
2640 true /* followsSuper */,
2641 nullptr /* category */))) {
2642 // If a method is not implemented in the category implementation but
2643 // has been declared in its primary class, superclass,
2644 // or in one of their protocols, no need to issue the warning.
2645 // This is because method will be implemented in the primary class
2646 // or one of its super class implementation.
2647
2648 // Ugly, but necessary. Method declared in protcol might have
2649 // have been synthesized due to a property declared in the class which
2650 // uses the protocol.
2651 if (ObjCMethodDecl *MethodInClass =
2652 IDecl->lookupMethod(method->getSelector(),
2653 true /* instance */,
2654 true /* shallowCategoryLookup */,
2655 false /* followSuper */))
2656 if (C || MethodInClass->isPropertyAccessor())
2657 continue;
2658 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2659 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2660 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2661 PDecl);
2662 }
2663 }
2664 }
2665 // check unimplemented class methods
2666 for (auto *method : PDecl->class_methods()) {
2667 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2668 !ClsMap.count(method->getSelector()) &&
2669 (!Super || !Super->lookupMethod(method->getSelector(),
2670 false /* class method */,
2671 false /* shallowCategoryLookup */,
2672 true /* followSuper */,
2673 nullptr /* category */))) {
2674 // See above comment for instance method lookups.
2675 if (C && IDecl->lookupMethod(method->getSelector(),
2676 false /* class */,
2677 true /* shallowCategoryLookup */,
2678 false /* followSuper */))
2679 continue;
2680
2681 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2682 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2683 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2684 }
2685 }
2686 }
2687 // Check on this protocols's referenced protocols, recursively.
2688 for (auto *PI : PDecl->protocols())
2689 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2690 CDecl, ProtocolsExplictImpl);
2691 }
2692
2693 /// MatchAllMethodDeclarations - Check methods declared in interface
2694 /// or protocol against those declared in their implementations.
2695 ///
MatchAllMethodDeclarations(const SelectorSet & InsMap,const SelectorSet & ClsMap,SelectorSet & InsMapSeen,SelectorSet & ClsMapSeen,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool & IncompleteImpl,bool ImmediateClass,bool WarnCategoryMethodImpl)2696 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2697 const SelectorSet &ClsMap,
2698 SelectorSet &InsMapSeen,
2699 SelectorSet &ClsMapSeen,
2700 ObjCImplDecl* IMPDecl,
2701 ObjCContainerDecl* CDecl,
2702 bool &IncompleteImpl,
2703 bool ImmediateClass,
2704 bool WarnCategoryMethodImpl) {
2705 // Check and see if instance methods in class interface have been
2706 // implemented in the implementation class. If so, their types match.
2707 for (auto *I : CDecl->instance_methods()) {
2708 if (!InsMapSeen.insert(I->getSelector()).second)
2709 continue;
2710 if (!I->isPropertyAccessor() &&
2711 !InsMap.count(I->getSelector())) {
2712 if (ImmediateClass)
2713 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2714 diag::warn_undef_method_impl);
2715 continue;
2716 } else {
2717 ObjCMethodDecl *ImpMethodDecl =
2718 IMPDecl->getInstanceMethod(I->getSelector());
2719 assert(CDecl->getInstanceMethod(I->getSelector()) &&
2720 "Expected to find the method through lookup as well");
2721 // ImpMethodDecl may be null as in a @dynamic property.
2722 if (ImpMethodDecl) {
2723 if (!WarnCategoryMethodImpl)
2724 WarnConflictingTypedMethods(ImpMethodDecl, I,
2725 isa<ObjCProtocolDecl>(CDecl));
2726 else if (!I->isPropertyAccessor())
2727 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2728 }
2729 }
2730 }
2731
2732 // Check and see if class methods in class interface have been
2733 // implemented in the implementation class. If so, their types match.
2734 for (auto *I : CDecl->class_methods()) {
2735 if (!ClsMapSeen.insert(I->getSelector()).second)
2736 continue;
2737 if (!ClsMap.count(I->getSelector())) {
2738 if (ImmediateClass)
2739 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2740 diag::warn_undef_method_impl);
2741 } else {
2742 ObjCMethodDecl *ImpMethodDecl =
2743 IMPDecl->getClassMethod(I->getSelector());
2744 assert(CDecl->getClassMethod(I->getSelector()) &&
2745 "Expected to find the method through lookup as well");
2746 if (!WarnCategoryMethodImpl)
2747 WarnConflictingTypedMethods(ImpMethodDecl, I,
2748 isa<ObjCProtocolDecl>(CDecl));
2749 else
2750 WarnExactTypedMethods(ImpMethodDecl, I,
2751 isa<ObjCProtocolDecl>(CDecl));
2752 }
2753 }
2754
2755 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2756 // Also, check for methods declared in protocols inherited by
2757 // this protocol.
2758 for (auto *PI : PD->protocols())
2759 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2760 IMPDecl, PI, IncompleteImpl, false,
2761 WarnCategoryMethodImpl);
2762 }
2763
2764 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2765 // when checking that methods in implementation match their declaration,
2766 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2767 // extension; as well as those in categories.
2768 if (!WarnCategoryMethodImpl) {
2769 for (auto *Cat : I->visible_categories())
2770 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2771 IMPDecl, Cat, IncompleteImpl,
2772 ImmediateClass && Cat->IsClassExtension(),
2773 WarnCategoryMethodImpl);
2774 } else {
2775 // Also methods in class extensions need be looked at next.
2776 for (auto *Ext : I->visible_extensions())
2777 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2778 IMPDecl, Ext, IncompleteImpl, false,
2779 WarnCategoryMethodImpl);
2780 }
2781
2782 // Check for any implementation of a methods declared in protocol.
2783 for (auto *PI : I->all_referenced_protocols())
2784 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2785 IMPDecl, PI, IncompleteImpl, false,
2786 WarnCategoryMethodImpl);
2787
2788 // FIXME. For now, we are not checking for extact match of methods
2789 // in category implementation and its primary class's super class.
2790 if (!WarnCategoryMethodImpl && I->getSuperClass())
2791 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2792 IMPDecl,
2793 I->getSuperClass(), IncompleteImpl, false);
2794 }
2795 }
2796
2797 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2798 /// category matches with those implemented in its primary class and
2799 /// warns each time an exact match is found.
CheckCategoryVsClassMethodMatches(ObjCCategoryImplDecl * CatIMPDecl)2800 void Sema::CheckCategoryVsClassMethodMatches(
2801 ObjCCategoryImplDecl *CatIMPDecl) {
2802 // Get category's primary class.
2803 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2804 if (!CatDecl)
2805 return;
2806 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2807 if (!IDecl)
2808 return;
2809 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2810 SelectorSet InsMap, ClsMap;
2811
2812 for (const auto *I : CatIMPDecl->instance_methods()) {
2813 Selector Sel = I->getSelector();
2814 // When checking for methods implemented in the category, skip over
2815 // those declared in category class's super class. This is because
2816 // the super class must implement the method.
2817 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2818 continue;
2819 InsMap.insert(Sel);
2820 }
2821
2822 for (const auto *I : CatIMPDecl->class_methods()) {
2823 Selector Sel = I->getSelector();
2824 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2825 continue;
2826 ClsMap.insert(Sel);
2827 }
2828 if (InsMap.empty() && ClsMap.empty())
2829 return;
2830
2831 SelectorSet InsMapSeen, ClsMapSeen;
2832 bool IncompleteImpl = false;
2833 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2834 CatIMPDecl, IDecl,
2835 IncompleteImpl, false,
2836 true /*WarnCategoryMethodImpl*/);
2837 }
2838
ImplMethodsVsClassMethods(Scope * S,ObjCImplDecl * IMPDecl,ObjCContainerDecl * CDecl,bool IncompleteImpl)2839 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2840 ObjCContainerDecl* CDecl,
2841 bool IncompleteImpl) {
2842 SelectorSet InsMap;
2843 // Check and see if instance methods in class interface have been
2844 // implemented in the implementation class.
2845 for (const auto *I : IMPDecl->instance_methods())
2846 InsMap.insert(I->getSelector());
2847
2848 // Add the selectors for getters/setters of @dynamic properties.
2849 for (const auto *PImpl : IMPDecl->property_impls()) {
2850 // We only care about @dynamic implementations.
2851 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2852 continue;
2853
2854 const auto *P = PImpl->getPropertyDecl();
2855 if (!P) continue;
2856
2857 InsMap.insert(P->getGetterName());
2858 if (!P->getSetterName().isNull())
2859 InsMap.insert(P->getSetterName());
2860 }
2861
2862 // Check and see if properties declared in the interface have either 1)
2863 // an implementation or 2) there is a @synthesize/@dynamic implementation
2864 // of the property in the @implementation.
2865 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2866 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2867 LangOpts.ObjCRuntime.isNonFragile() &&
2868 !IDecl->isObjCRequiresPropertyDefs();
2869 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2870 }
2871
2872 // Diagnose null-resettable synthesized setters.
2873 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2874
2875 SelectorSet ClsMap;
2876 for (const auto *I : IMPDecl->class_methods())
2877 ClsMap.insert(I->getSelector());
2878
2879 // Check for type conflict of methods declared in a class/protocol and
2880 // its implementation; if any.
2881 SelectorSet InsMapSeen, ClsMapSeen;
2882 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2883 IMPDecl, CDecl,
2884 IncompleteImpl, true);
2885
2886 // check all methods implemented in category against those declared
2887 // in its primary class.
2888 if (ObjCCategoryImplDecl *CatDecl =
2889 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2890 CheckCategoryVsClassMethodMatches(CatDecl);
2891
2892 // Check the protocol list for unimplemented methods in the @implementation
2893 // class.
2894 // Check and see if class methods in class interface have been
2895 // implemented in the implementation class.
2896
2897 LazyProtocolNameSet ExplicitImplProtocols;
2898
2899 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2900 for (auto *PI : I->all_referenced_protocols())
2901 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2902 InsMap, ClsMap, I, ExplicitImplProtocols);
2903 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2904 // For extended class, unimplemented methods in its protocols will
2905 // be reported in the primary class.
2906 if (!C->IsClassExtension()) {
2907 for (auto *P : C->protocols())
2908 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2909 IncompleteImpl, InsMap, ClsMap, CDecl,
2910 ExplicitImplProtocols);
2911 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2912 /*SynthesizeProperties=*/false);
2913 }
2914 } else
2915 llvm_unreachable("invalid ObjCContainerDecl type.");
2916 }
2917
2918 Sema::DeclGroupPtrTy
ActOnForwardClassDeclaration(SourceLocation AtClassLoc,IdentifierInfo ** IdentList,SourceLocation * IdentLocs,ArrayRef<ObjCTypeParamList * > TypeParamLists,unsigned NumElts)2919 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2920 IdentifierInfo **IdentList,
2921 SourceLocation *IdentLocs,
2922 ArrayRef<ObjCTypeParamList *> TypeParamLists,
2923 unsigned NumElts) {
2924 SmallVector<Decl *, 8> DeclsInGroup;
2925 for (unsigned i = 0; i != NumElts; ++i) {
2926 // Check for another declaration kind with the same name.
2927 NamedDecl *PrevDecl
2928 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2929 LookupOrdinaryName, ForRedeclaration);
2930 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2931 // GCC apparently allows the following idiom:
2932 //
2933 // typedef NSObject < XCElementTogglerP > XCElementToggler;
2934 // @class XCElementToggler;
2935 //
2936 // Here we have chosen to ignore the forward class declaration
2937 // with a warning. Since this is the implied behavior.
2938 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2939 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2940 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2941 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2942 } else {
2943 // a forward class declaration matching a typedef name of a class refers
2944 // to the underlying class. Just ignore the forward class with a warning
2945 // as this will force the intended behavior which is to lookup the
2946 // typedef name.
2947 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2948 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
2949 << IdentList[i];
2950 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2951 continue;
2952 }
2953 }
2954 }
2955
2956 // Create a declaration to describe this forward declaration.
2957 ObjCInterfaceDecl *PrevIDecl
2958 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2959
2960 IdentifierInfo *ClassName = IdentList[i];
2961 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2962 // A previous decl with a different name is because of
2963 // @compatibility_alias, for example:
2964 // \code
2965 // @class NewImage;
2966 // @compatibility_alias OldImage NewImage;
2967 // \endcode
2968 // A lookup for 'OldImage' will return the 'NewImage' decl.
2969 //
2970 // In such a case use the real declaration name, instead of the alias one,
2971 // otherwise we will break IdentifierResolver and redecls-chain invariants.
2972 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
2973 // has been aliased.
2974 ClassName = PrevIDecl->getIdentifier();
2975 }
2976
2977 // If this forward declaration has type parameters, compare them with the
2978 // type parameters of the previous declaration.
2979 ObjCTypeParamList *TypeParams = TypeParamLists[i];
2980 if (PrevIDecl && TypeParams) {
2981 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
2982 // Check for consistency with the previous declaration.
2983 if (checkTypeParamListConsistency(
2984 *this, PrevTypeParams, TypeParams,
2985 TypeParamListContext::ForwardDeclaration)) {
2986 TypeParams = nullptr;
2987 }
2988 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
2989 // The @interface does not have type parameters. Complain.
2990 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
2991 << ClassName
2992 << TypeParams->getSourceRange();
2993 Diag(Def->getLocation(), diag::note_defined_here)
2994 << ClassName;
2995
2996 TypeParams = nullptr;
2997 }
2998 }
2999
3000 ObjCInterfaceDecl *IDecl
3001 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3002 ClassName, TypeParams, PrevIDecl,
3003 IdentLocs[i]);
3004 IDecl->setAtEndRange(IdentLocs[i]);
3005
3006 PushOnScopeChains(IDecl, TUScope);
3007 CheckObjCDeclScope(IDecl);
3008 DeclsInGroup.push_back(IDecl);
3009 }
3010
3011 return BuildDeclaratorGroup(DeclsInGroup, false);
3012 }
3013
3014 static bool tryMatchRecordTypes(ASTContext &Context,
3015 Sema::MethodMatchStrategy strategy,
3016 const Type *left, const Type *right);
3017
matchTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,QualType leftQT,QualType rightQT)3018 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3019 QualType leftQT, QualType rightQT) {
3020 const Type *left =
3021 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3022 const Type *right =
3023 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3024
3025 if (left == right) return true;
3026
3027 // If we're doing a strict match, the types have to match exactly.
3028 if (strategy == Sema::MMS_strict) return false;
3029
3030 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3031
3032 // Otherwise, use this absurdly complicated algorithm to try to
3033 // validate the basic, low-level compatibility of the two types.
3034
3035 // As a minimum, require the sizes and alignments to match.
3036 TypeInfo LeftTI = Context.getTypeInfo(left);
3037 TypeInfo RightTI = Context.getTypeInfo(right);
3038 if (LeftTI.Width != RightTI.Width)
3039 return false;
3040
3041 if (LeftTI.Align != RightTI.Align)
3042 return false;
3043
3044 // Consider all the kinds of non-dependent canonical types:
3045 // - functions and arrays aren't possible as return and parameter types
3046
3047 // - vector types of equal size can be arbitrarily mixed
3048 if (isa<VectorType>(left)) return isa<VectorType>(right);
3049 if (isa<VectorType>(right)) return false;
3050
3051 // - references should only match references of identical type
3052 // - structs, unions, and Objective-C objects must match more-or-less
3053 // exactly
3054 // - everything else should be a scalar
3055 if (!left->isScalarType() || !right->isScalarType())
3056 return tryMatchRecordTypes(Context, strategy, left, right);
3057
3058 // Make scalars agree in kind, except count bools as chars, and group
3059 // all non-member pointers together.
3060 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3061 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3062 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3063 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3064 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3065 leftSK = Type::STK_ObjCObjectPointer;
3066 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3067 rightSK = Type::STK_ObjCObjectPointer;
3068
3069 // Note that data member pointers and function member pointers don't
3070 // intermix because of the size differences.
3071
3072 return (leftSK == rightSK);
3073 }
3074
tryMatchRecordTypes(ASTContext & Context,Sema::MethodMatchStrategy strategy,const Type * lt,const Type * rt)3075 static bool tryMatchRecordTypes(ASTContext &Context,
3076 Sema::MethodMatchStrategy strategy,
3077 const Type *lt, const Type *rt) {
3078 assert(lt && rt && lt != rt);
3079
3080 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3081 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3082 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3083
3084 // Require union-hood to match.
3085 if (left->isUnion() != right->isUnion()) return false;
3086
3087 // Require an exact match if either is non-POD.
3088 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3089 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3090 return false;
3091
3092 // Require size and alignment to match.
3093 TypeInfo LeftTI = Context.getTypeInfo(lt);
3094 TypeInfo RightTI = Context.getTypeInfo(rt);
3095 if (LeftTI.Width != RightTI.Width)
3096 return false;
3097
3098 if (LeftTI.Align != RightTI.Align)
3099 return false;
3100
3101 // Require fields to match.
3102 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3103 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3104 for (; li != le && ri != re; ++li, ++ri) {
3105 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3106 return false;
3107 }
3108 return (li == le && ri == re);
3109 }
3110
3111 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3112 /// returns true, or false, accordingly.
3113 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
MatchTwoMethodDeclarations(const ObjCMethodDecl * left,const ObjCMethodDecl * right,MethodMatchStrategy strategy)3114 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3115 const ObjCMethodDecl *right,
3116 MethodMatchStrategy strategy) {
3117 if (!matchTypes(Context, strategy, left->getReturnType(),
3118 right->getReturnType()))
3119 return false;
3120
3121 // If either is hidden, it is not considered to match.
3122 if (left->isHidden() || right->isHidden())
3123 return false;
3124
3125 if (getLangOpts().ObjCAutoRefCount &&
3126 (left->hasAttr<NSReturnsRetainedAttr>()
3127 != right->hasAttr<NSReturnsRetainedAttr>() ||
3128 left->hasAttr<NSConsumesSelfAttr>()
3129 != right->hasAttr<NSConsumesSelfAttr>()))
3130 return false;
3131
3132 ObjCMethodDecl::param_const_iterator
3133 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3134 re = right->param_end();
3135
3136 for (; li != le && ri != re; ++li, ++ri) {
3137 assert(ri != right->param_end() && "Param mismatch");
3138 const ParmVarDecl *lparm = *li, *rparm = *ri;
3139
3140 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3141 return false;
3142
3143 if (getLangOpts().ObjCAutoRefCount &&
3144 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3145 return false;
3146 }
3147 return true;
3148 }
3149
addMethodToGlobalList(ObjCMethodList * List,ObjCMethodDecl * Method)3150 void Sema::addMethodToGlobalList(ObjCMethodList *List,
3151 ObjCMethodDecl *Method) {
3152 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3153 // inside categories.
3154 if (ObjCCategoryDecl *CD =
3155 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3156 if (!CD->IsClassExtension() && List->getBits() < 2)
3157 List->setBits(List->getBits() + 1);
3158
3159 // If the list is empty, make it a singleton list.
3160 if (List->getMethod() == nullptr) {
3161 List->setMethod(Method);
3162 List->setNext(nullptr);
3163 return;
3164 }
3165
3166 // We've seen a method with this name, see if we have already seen this type
3167 // signature.
3168 ObjCMethodList *Previous = List;
3169 for (; List; Previous = List, List = List->getNext()) {
3170 // If we are building a module, keep all of the methods.
3171 if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
3172 continue;
3173
3174 if (!MatchTwoMethodDeclarations(Method, List->getMethod())) {
3175 // Even if two method types do not match, we would like to say
3176 // there is more than one declaration so unavailability/deprecated
3177 // warning is not too noisy.
3178 if (!Method->isDefined())
3179 List->setHasMoreThanOneDecl(true);
3180 continue;
3181 }
3182
3183 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3184
3185 // Propagate the 'defined' bit.
3186 if (Method->isDefined())
3187 PrevObjCMethod->setDefined(true);
3188 else {
3189 // Objective-C doesn't allow an @interface for a class after its
3190 // @implementation. So if Method is not defined and there already is
3191 // an entry for this type signature, Method has to be for a different
3192 // class than PrevObjCMethod.
3193 List->setHasMoreThanOneDecl(true);
3194 }
3195
3196 // If a method is deprecated, push it in the global pool.
3197 // This is used for better diagnostics.
3198 if (Method->isDeprecated()) {
3199 if (!PrevObjCMethod->isDeprecated())
3200 List->setMethod(Method);
3201 }
3202 // If the new method is unavailable, push it into global pool
3203 // unless previous one is deprecated.
3204 if (Method->isUnavailable()) {
3205 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3206 List->setMethod(Method);
3207 }
3208
3209 return;
3210 }
3211
3212 // We have a new signature for an existing method - add it.
3213 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3214 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3215 Previous->setNext(new (Mem) ObjCMethodList(Method));
3216 }
3217
3218 /// \brief Read the contents of the method pool for a given selector from
3219 /// external storage.
ReadMethodPool(Selector Sel)3220 void Sema::ReadMethodPool(Selector Sel) {
3221 assert(ExternalSource && "We need an external AST source");
3222 ExternalSource->ReadMethodPool(Sel);
3223 }
3224
AddMethodToGlobalPool(ObjCMethodDecl * Method,bool impl,bool instance)3225 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3226 bool instance) {
3227 // Ignore methods of invalid containers.
3228 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3229 return;
3230
3231 if (ExternalSource)
3232 ReadMethodPool(Method->getSelector());
3233
3234 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3235 if (Pos == MethodPool.end())
3236 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3237 GlobalMethods())).first;
3238
3239 Method->setDefined(impl);
3240
3241 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3242 addMethodToGlobalList(&Entry, Method);
3243 }
3244
3245 /// Determines if this is an "acceptable" loose mismatch in the global
3246 /// method pool. This exists mostly as a hack to get around certain
3247 /// global mismatches which we can't afford to make warnings / errors.
3248 /// Really, what we want is a way to take a method out of the global
3249 /// method pool.
isAcceptableMethodMismatch(ObjCMethodDecl * chosen,ObjCMethodDecl * other)3250 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3251 ObjCMethodDecl *other) {
3252 if (!chosen->isInstanceMethod())
3253 return false;
3254
3255 Selector sel = chosen->getSelector();
3256 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3257 return false;
3258
3259 // Don't complain about mismatches for -length if the method we
3260 // chose has an integral result type.
3261 return (chosen->getReturnType()->isIntegerType());
3262 }
3263
CollectMultipleMethodsInGlobalPool(Selector Sel,SmallVectorImpl<ObjCMethodDecl * > & Methods,bool instance)3264 bool Sema::CollectMultipleMethodsInGlobalPool(
3265 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods, bool instance) {
3266 if (ExternalSource)
3267 ReadMethodPool(Sel);
3268
3269 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3270 if (Pos == MethodPool.end())
3271 return false;
3272 // Gather the non-hidden methods.
3273 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3274 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3275 if (M->getMethod() && !M->getMethod()->isHidden())
3276 Methods.push_back(M->getMethod());
3277 return Methods.size() > 1;
3278 }
3279
AreMultipleMethodsInGlobalPool(Selector Sel,ObjCMethodDecl * BestMethod,SourceRange R,bool receiverIdOrClass)3280 bool Sema::AreMultipleMethodsInGlobalPool(Selector Sel, ObjCMethodDecl *BestMethod,
3281 SourceRange R,
3282 bool receiverIdOrClass) {
3283 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3284 // Test for no method in the pool which should not trigger any warning by
3285 // caller.
3286 if (Pos == MethodPool.end())
3287 return true;
3288 ObjCMethodList &MethList =
3289 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3290
3291 // Diagnose finding more than one method in global pool
3292 SmallVector<ObjCMethodDecl *, 4> Methods;
3293 Methods.push_back(BestMethod);
3294 for (ObjCMethodList *ML = &MethList; ML; ML = ML->getNext())
3295 if (ObjCMethodDecl *M = ML->getMethod())
3296 if (!M->isHidden() && M != BestMethod && !M->hasAttr<UnavailableAttr>())
3297 Methods.push_back(M);
3298 if (Methods.size() > 1)
3299 DiagnoseMultipleMethodInGlobalPool(Methods, Sel, R, receiverIdOrClass);
3300
3301 return MethList.hasMoreThanOneDecl();
3302 }
3303
LookupMethodInGlobalPool(Selector Sel,SourceRange R,bool receiverIdOrClass,bool instance)3304 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3305 bool receiverIdOrClass,
3306 bool instance) {
3307 if (ExternalSource)
3308 ReadMethodPool(Sel);
3309
3310 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3311 if (Pos == MethodPool.end())
3312 return nullptr;
3313
3314 // Gather the non-hidden methods.
3315 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3316 SmallVector<ObjCMethodDecl *, 4> Methods;
3317 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3318 if (M->getMethod() && !M->getMethod()->isHidden())
3319 return M->getMethod();
3320 }
3321 return nullptr;
3322 }
3323
DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl * > & Methods,Selector Sel,SourceRange R,bool receiverIdOrClass)3324 void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3325 Selector Sel, SourceRange R,
3326 bool receiverIdOrClass) {
3327 // We found multiple methods, so we may have to complain.
3328 bool issueDiagnostic = false, issueError = false;
3329
3330 // We support a warning which complains about *any* difference in
3331 // method signature.
3332 bool strictSelectorMatch =
3333 receiverIdOrClass &&
3334 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3335 if (strictSelectorMatch) {
3336 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3337 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3338 issueDiagnostic = true;
3339 break;
3340 }
3341 }
3342 }
3343
3344 // If we didn't see any strict differences, we won't see any loose
3345 // differences. In ARC, however, we also need to check for loose
3346 // mismatches, because most of them are errors.
3347 if (!strictSelectorMatch ||
3348 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3349 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3350 // This checks if the methods differ in type mismatch.
3351 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3352 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3353 issueDiagnostic = true;
3354 if (getLangOpts().ObjCAutoRefCount)
3355 issueError = true;
3356 break;
3357 }
3358 }
3359
3360 if (issueDiagnostic) {
3361 if (issueError)
3362 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3363 else if (strictSelectorMatch)
3364 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3365 else
3366 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3367
3368 Diag(Methods[0]->getLocStart(),
3369 issueError ? diag::note_possibility : diag::note_using)
3370 << Methods[0]->getSourceRange();
3371 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3372 Diag(Methods[I]->getLocStart(), diag::note_also_found)
3373 << Methods[I]->getSourceRange();
3374 }
3375 }
3376 }
3377
LookupImplementedMethodInGlobalPool(Selector Sel)3378 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3379 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3380 if (Pos == MethodPool.end())
3381 return nullptr;
3382
3383 GlobalMethods &Methods = Pos->second;
3384 for (const ObjCMethodList *Method = &Methods.first; Method;
3385 Method = Method->getNext())
3386 if (Method->getMethod() &&
3387 (Method->getMethod()->isDefined() ||
3388 Method->getMethod()->isPropertyAccessor()))
3389 return Method->getMethod();
3390
3391 for (const ObjCMethodList *Method = &Methods.second; Method;
3392 Method = Method->getNext())
3393 if (Method->getMethod() &&
3394 (Method->getMethod()->isDefined() ||
3395 Method->getMethod()->isPropertyAccessor()))
3396 return Method->getMethod();
3397 return nullptr;
3398 }
3399
3400 static void
HelperSelectorsForTypoCorrection(SmallVectorImpl<const ObjCMethodDecl * > & BestMethod,StringRef Typo,const ObjCMethodDecl * Method)3401 HelperSelectorsForTypoCorrection(
3402 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3403 StringRef Typo, const ObjCMethodDecl * Method) {
3404 const unsigned MaxEditDistance = 1;
3405 unsigned BestEditDistance = MaxEditDistance + 1;
3406 std::string MethodName = Method->getSelector().getAsString();
3407
3408 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3409 if (MinPossibleEditDistance > 0 &&
3410 Typo.size() / MinPossibleEditDistance < 1)
3411 return;
3412 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3413 if (EditDistance > MaxEditDistance)
3414 return;
3415 if (EditDistance == BestEditDistance)
3416 BestMethod.push_back(Method);
3417 else if (EditDistance < BestEditDistance) {
3418 BestMethod.clear();
3419 BestMethod.push_back(Method);
3420 }
3421 }
3422
HelperIsMethodInObjCType(Sema & S,Selector Sel,QualType ObjectType)3423 static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3424 QualType ObjectType) {
3425 if (ObjectType.isNull())
3426 return true;
3427 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3428 return true;
3429 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3430 nullptr;
3431 }
3432
3433 const ObjCMethodDecl *
SelectorsForTypoCorrection(Selector Sel,QualType ObjectType)3434 Sema::SelectorsForTypoCorrection(Selector Sel,
3435 QualType ObjectType) {
3436 unsigned NumArgs = Sel.getNumArgs();
3437 SmallVector<const ObjCMethodDecl *, 8> Methods;
3438 bool ObjectIsId = true, ObjectIsClass = true;
3439 if (ObjectType.isNull())
3440 ObjectIsId = ObjectIsClass = false;
3441 else if (!ObjectType->isObjCObjectPointerType())
3442 return nullptr;
3443 else if (const ObjCObjectPointerType *ObjCPtr =
3444 ObjectType->getAsObjCInterfacePointerType()) {
3445 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3446 ObjectIsId = ObjectIsClass = false;
3447 }
3448 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3449 ObjectIsClass = false;
3450 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3451 ObjectIsId = false;
3452 else
3453 return nullptr;
3454
3455 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3456 e = MethodPool.end(); b != e; b++) {
3457 // instance methods
3458 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3459 if (M->getMethod() &&
3460 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3461 (M->getMethod()->getSelector() != Sel)) {
3462 if (ObjectIsId)
3463 Methods.push_back(M->getMethod());
3464 else if (!ObjectIsClass &&
3465 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3466 ObjectType))
3467 Methods.push_back(M->getMethod());
3468 }
3469 // class methods
3470 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3471 if (M->getMethod() &&
3472 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3473 (M->getMethod()->getSelector() != Sel)) {
3474 if (ObjectIsClass)
3475 Methods.push_back(M->getMethod());
3476 else if (!ObjectIsId &&
3477 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3478 ObjectType))
3479 Methods.push_back(M->getMethod());
3480 }
3481 }
3482
3483 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3484 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3485 HelperSelectorsForTypoCorrection(SelectedMethods,
3486 Sel.getAsString(), Methods[i]);
3487 }
3488 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3489 }
3490
3491 /// DiagnoseDuplicateIvars -
3492 /// Check for duplicate ivars in the entire class at the start of
3493 /// \@implementation. This becomes necesssary because class extension can
3494 /// add ivars to a class in random order which will not be known until
3495 /// class's \@implementation is seen.
DiagnoseDuplicateIvars(ObjCInterfaceDecl * ID,ObjCInterfaceDecl * SID)3496 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3497 ObjCInterfaceDecl *SID) {
3498 for (auto *Ivar : ID->ivars()) {
3499 if (Ivar->isInvalidDecl())
3500 continue;
3501 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3502 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3503 if (prevIvar) {
3504 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3505 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3506 Ivar->setInvalidDecl();
3507 }
3508 }
3509 }
3510 }
3511
3512 /// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
DiagnoseWeakIvars(Sema & S,ObjCImplementationDecl * ID)3513 static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3514 if (S.getLangOpts().ObjCWeak) return;
3515
3516 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3517 ivar; ivar = ivar->getNextIvar()) {
3518 if (ivar->isInvalidDecl()) continue;
3519 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3520 if (S.getLangOpts().ObjCWeakRuntime) {
3521 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3522 } else {
3523 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3524 }
3525 }
3526 }
3527 }
3528
getObjCContainerKind() const3529 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3530 switch (CurContext->getDeclKind()) {
3531 case Decl::ObjCInterface:
3532 return Sema::OCK_Interface;
3533 case Decl::ObjCProtocol:
3534 return Sema::OCK_Protocol;
3535 case Decl::ObjCCategory:
3536 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3537 return Sema::OCK_ClassExtension;
3538 return Sema::OCK_Category;
3539 case Decl::ObjCImplementation:
3540 return Sema::OCK_Implementation;
3541 case Decl::ObjCCategoryImpl:
3542 return Sema::OCK_CategoryImplementation;
3543
3544 default:
3545 return Sema::OCK_None;
3546 }
3547 }
3548
3549 // Note: For class/category implementations, allMethods is always null.
ActOnAtEnd(Scope * S,SourceRange AtEnd,ArrayRef<Decl * > allMethods,ArrayRef<DeclGroupPtrTy> allTUVars)3550 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3551 ArrayRef<DeclGroupPtrTy> allTUVars) {
3552 if (getObjCContainerKind() == Sema::OCK_None)
3553 return nullptr;
3554
3555 assert(AtEnd.isValid() && "Invalid location for '@end'");
3556
3557 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3558 Decl *ClassDecl = cast<Decl>(OCD);
3559
3560 bool isInterfaceDeclKind =
3561 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3562 || isa<ObjCProtocolDecl>(ClassDecl);
3563 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3564
3565 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3566 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3567 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3568
3569 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3570 ObjCMethodDecl *Method =
3571 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3572
3573 if (!Method) continue; // Already issued a diagnostic.
3574 if (Method->isInstanceMethod()) {
3575 /// Check for instance method of the same name with incompatible types
3576 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3577 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3578 : false;
3579 if ((isInterfaceDeclKind && PrevMethod && !match)
3580 || (checkIdenticalMethods && match)) {
3581 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3582 << Method->getDeclName();
3583 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3584 Method->setInvalidDecl();
3585 } else {
3586 if (PrevMethod) {
3587 Method->setAsRedeclaration(PrevMethod);
3588 if (!Context.getSourceManager().isInSystemHeader(
3589 Method->getLocation()))
3590 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3591 << Method->getDeclName();
3592 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3593 }
3594 InsMap[Method->getSelector()] = Method;
3595 /// The following allows us to typecheck messages to "id".
3596 AddInstanceMethodToGlobalPool(Method);
3597 }
3598 } else {
3599 /// Check for class method of the same name with incompatible types
3600 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3601 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3602 : false;
3603 if ((isInterfaceDeclKind && PrevMethod && !match)
3604 || (checkIdenticalMethods && match)) {
3605 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3606 << Method->getDeclName();
3607 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3608 Method->setInvalidDecl();
3609 } else {
3610 if (PrevMethod) {
3611 Method->setAsRedeclaration(PrevMethod);
3612 if (!Context.getSourceManager().isInSystemHeader(
3613 Method->getLocation()))
3614 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3615 << Method->getDeclName();
3616 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3617 }
3618 ClsMap[Method->getSelector()] = Method;
3619 AddFactoryMethodToGlobalPool(Method);
3620 }
3621 }
3622 }
3623 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3624 // Nothing to do here.
3625 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3626 // Categories are used to extend the class by declaring new methods.
3627 // By the same token, they are also used to add new properties. No
3628 // need to compare the added property to those in the class.
3629
3630 if (C->IsClassExtension()) {
3631 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3632 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3633 }
3634 }
3635 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3636 if (CDecl->getIdentifier())
3637 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3638 // user-defined setter/getter. It also synthesizes setter/getter methods
3639 // and adds them to the DeclContext and global method pools.
3640 for (auto *I : CDecl->properties())
3641 ProcessPropertyDecl(I);
3642 CDecl->setAtEndRange(AtEnd);
3643 }
3644 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3645 IC->setAtEndRange(AtEnd);
3646 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3647 // Any property declared in a class extension might have user
3648 // declared setter or getter in current class extension or one
3649 // of the other class extensions. Mark them as synthesized as
3650 // property will be synthesized when property with same name is
3651 // seen in the @implementation.
3652 for (const auto *Ext : IDecl->visible_extensions()) {
3653 for (const auto *Property : Ext->properties()) {
3654 // Skip over properties declared @dynamic
3655 if (const ObjCPropertyImplDecl *PIDecl
3656 = IC->FindPropertyImplDecl(Property->getIdentifier()))
3657 if (PIDecl->getPropertyImplementation()
3658 == ObjCPropertyImplDecl::Dynamic)
3659 continue;
3660
3661 for (const auto *Ext : IDecl->visible_extensions()) {
3662 if (ObjCMethodDecl *GetterMethod
3663 = Ext->getInstanceMethod(Property->getGetterName()))
3664 GetterMethod->setPropertyAccessor(true);
3665 if (!Property->isReadOnly())
3666 if (ObjCMethodDecl *SetterMethod
3667 = Ext->getInstanceMethod(Property->getSetterName()))
3668 SetterMethod->setPropertyAccessor(true);
3669 }
3670 }
3671 }
3672 ImplMethodsVsClassMethods(S, IC, IDecl);
3673 AtomicPropertySetterGetterRules(IC, IDecl);
3674 DiagnoseOwningPropertyGetterSynthesis(IC);
3675 DiagnoseUnusedBackingIvarInAccessor(S, IC);
3676 if (IDecl->hasDesignatedInitializers())
3677 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
3678 DiagnoseWeakIvars(*this, IC);
3679
3680 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3681 if (IDecl->getSuperClass() == nullptr) {
3682 // This class has no superclass, so check that it has been marked with
3683 // __attribute((objc_root_class)).
3684 if (!HasRootClassAttr) {
3685 SourceLocation DeclLoc(IDecl->getLocation());
3686 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3687 Diag(DeclLoc, diag::warn_objc_root_class_missing)
3688 << IDecl->getIdentifier();
3689 // See if NSObject is in the current scope, and if it is, suggest
3690 // adding " : NSObject " to the class declaration.
3691 NamedDecl *IF = LookupSingleName(TUScope,
3692 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
3693 DeclLoc, LookupOrdinaryName);
3694 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
3695 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
3696 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
3697 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
3698 } else {
3699 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
3700 }
3701 }
3702 } else if (HasRootClassAttr) {
3703 // Complain that only root classes may have this attribute.
3704 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
3705 }
3706
3707 if (LangOpts.ObjCRuntime.isNonFragile()) {
3708 while (IDecl->getSuperClass()) {
3709 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
3710 IDecl = IDecl->getSuperClass();
3711 }
3712 }
3713 }
3714 SetIvarInitializers(IC);
3715 } else if (ObjCCategoryImplDecl* CatImplClass =
3716 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
3717 CatImplClass->setAtEndRange(AtEnd);
3718
3719 // Find category interface decl and then check that all methods declared
3720 // in this interface are implemented in the category @implementation.
3721 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
3722 if (ObjCCategoryDecl *Cat
3723 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
3724 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
3725 }
3726 }
3727 }
3728 if (isInterfaceDeclKind) {
3729 // Reject invalid vardecls.
3730 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3731 DeclGroupRef DG = allTUVars[i].get();
3732 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3733 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
3734 if (!VDecl->hasExternalStorage())
3735 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
3736 }
3737 }
3738 }
3739 ActOnObjCContainerFinishDefinition();
3740
3741 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
3742 DeclGroupRef DG = allTUVars[i].get();
3743 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
3744 (*I)->setTopLevelDeclInObjCContainer();
3745 Consumer.HandleTopLevelDeclInObjCContainer(DG);
3746 }
3747
3748 ActOnDocumentableDecl(ClassDecl);
3749 return ClassDecl;
3750 }
3751
3752 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
3753 /// objective-c's type qualifier from the parser version of the same info.
3754 static Decl::ObjCDeclQualifier
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal)3755 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
3756 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
3757 }
3758
3759 /// \brief Check whether the declared result type of the given Objective-C
3760 /// method declaration is compatible with the method's class.
3761 ///
3762 static Sema::ResultTypeCompatibilityKind
CheckRelatedResultTypeCompatibility(Sema & S,ObjCMethodDecl * Method,ObjCInterfaceDecl * CurrentClass)3763 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
3764 ObjCInterfaceDecl *CurrentClass) {
3765 QualType ResultType = Method->getReturnType();
3766
3767 // If an Objective-C method inherits its related result type, then its
3768 // declared result type must be compatible with its own class type. The
3769 // declared result type is compatible if:
3770 if (const ObjCObjectPointerType *ResultObjectType
3771 = ResultType->getAs<ObjCObjectPointerType>()) {
3772 // - it is id or qualified id, or
3773 if (ResultObjectType->isObjCIdType() ||
3774 ResultObjectType->isObjCQualifiedIdType())
3775 return Sema::RTC_Compatible;
3776
3777 if (CurrentClass) {
3778 if (ObjCInterfaceDecl *ResultClass
3779 = ResultObjectType->getInterfaceDecl()) {
3780 // - it is the same as the method's class type, or
3781 if (declaresSameEntity(CurrentClass, ResultClass))
3782 return Sema::RTC_Compatible;
3783
3784 // - it is a superclass of the method's class type
3785 if (ResultClass->isSuperClassOf(CurrentClass))
3786 return Sema::RTC_Compatible;
3787 }
3788 } else {
3789 // Any Objective-C pointer type might be acceptable for a protocol
3790 // method; we just don't know.
3791 return Sema::RTC_Unknown;
3792 }
3793 }
3794
3795 return Sema::RTC_Incompatible;
3796 }
3797
3798 namespace {
3799 /// A helper class for searching for methods which a particular method
3800 /// overrides.
3801 class OverrideSearch {
3802 public:
3803 Sema &S;
3804 ObjCMethodDecl *Method;
3805 llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
3806 bool Recursive;
3807
3808 public:
OverrideSearch(Sema & S,ObjCMethodDecl * method)3809 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
3810 Selector selector = method->getSelector();
3811
3812 // Bypass this search if we've never seen an instance/class method
3813 // with this selector before.
3814 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
3815 if (it == S.MethodPool.end()) {
3816 if (!S.getExternalSource()) return;
3817 S.ReadMethodPool(selector);
3818
3819 it = S.MethodPool.find(selector);
3820 if (it == S.MethodPool.end())
3821 return;
3822 }
3823 ObjCMethodList &list =
3824 method->isInstanceMethod() ? it->second.first : it->second.second;
3825 if (!list.getMethod()) return;
3826
3827 ObjCContainerDecl *container
3828 = cast<ObjCContainerDecl>(method->getDeclContext());
3829
3830 // Prevent the search from reaching this container again. This is
3831 // important with categories, which override methods from the
3832 // interface and each other.
3833 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
3834 searchFromContainer(container);
3835 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
3836 searchFromContainer(Interface);
3837 } else {
3838 searchFromContainer(container);
3839 }
3840 }
3841
3842 typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
begin() const3843 iterator begin() const { return Overridden.begin(); }
end() const3844 iterator end() const { return Overridden.end(); }
3845
3846 private:
searchFromContainer(ObjCContainerDecl * container)3847 void searchFromContainer(ObjCContainerDecl *container) {
3848 if (container->isInvalidDecl()) return;
3849
3850 switch (container->getDeclKind()) {
3851 #define OBJCCONTAINER(type, base) \
3852 case Decl::type: \
3853 searchFrom(cast<type##Decl>(container)); \
3854 break;
3855 #define ABSTRACT_DECL(expansion)
3856 #define DECL(type, base) \
3857 case Decl::type:
3858 #include "clang/AST/DeclNodes.inc"
3859 llvm_unreachable("not an ObjC container!");
3860 }
3861 }
3862
searchFrom(ObjCProtocolDecl * protocol)3863 void searchFrom(ObjCProtocolDecl *protocol) {
3864 if (!protocol->hasDefinition())
3865 return;
3866
3867 // A method in a protocol declaration overrides declarations from
3868 // referenced ("parent") protocols.
3869 search(protocol->getReferencedProtocols());
3870 }
3871
searchFrom(ObjCCategoryDecl * category)3872 void searchFrom(ObjCCategoryDecl *category) {
3873 // A method in a category declaration overrides declarations from
3874 // the main class and from protocols the category references.
3875 // The main class is handled in the constructor.
3876 search(category->getReferencedProtocols());
3877 }
3878
searchFrom(ObjCCategoryImplDecl * impl)3879 void searchFrom(ObjCCategoryImplDecl *impl) {
3880 // A method in a category definition that has a category
3881 // declaration overrides declarations from the category
3882 // declaration.
3883 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
3884 search(category);
3885 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
3886 search(Interface);
3887
3888 // Otherwise it overrides declarations from the class.
3889 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
3890 search(Interface);
3891 }
3892 }
3893
searchFrom(ObjCInterfaceDecl * iface)3894 void searchFrom(ObjCInterfaceDecl *iface) {
3895 // A method in a class declaration overrides declarations from
3896 if (!iface->hasDefinition())
3897 return;
3898
3899 // - categories,
3900 for (auto *Cat : iface->known_categories())
3901 search(Cat);
3902
3903 // - the super class, and
3904 if (ObjCInterfaceDecl *super = iface->getSuperClass())
3905 search(super);
3906
3907 // - any referenced protocols.
3908 search(iface->getReferencedProtocols());
3909 }
3910
searchFrom(ObjCImplementationDecl * impl)3911 void searchFrom(ObjCImplementationDecl *impl) {
3912 // A method in a class implementation overrides declarations from
3913 // the class interface.
3914 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
3915 search(Interface);
3916 }
3917
search(const ObjCProtocolList & protocols)3918 void search(const ObjCProtocolList &protocols) {
3919 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
3920 i != e; ++i)
3921 search(*i);
3922 }
3923
search(ObjCContainerDecl * container)3924 void search(ObjCContainerDecl *container) {
3925 // Check for a method in this container which matches this selector.
3926 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
3927 Method->isInstanceMethod(),
3928 /*AllowHidden=*/true);
3929
3930 // If we find one, record it and bail out.
3931 if (meth) {
3932 Overridden.insert(meth);
3933 return;
3934 }
3935
3936 // Otherwise, search for methods that a hypothetical method here
3937 // would have overridden.
3938
3939 // Note that we're now in a recursive case.
3940 Recursive = true;
3941
3942 searchFromContainer(container);
3943 }
3944 };
3945 } // end anonymous namespace
3946
CheckObjCMethodOverrides(ObjCMethodDecl * ObjCMethod,ObjCInterfaceDecl * CurrentClass,ResultTypeCompatibilityKind RTC)3947 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
3948 ObjCInterfaceDecl *CurrentClass,
3949 ResultTypeCompatibilityKind RTC) {
3950 // Search for overridden methods and merge information down from them.
3951 OverrideSearch overrides(*this, ObjCMethod);
3952 // Keep track if the method overrides any method in the class's base classes,
3953 // its protocols, or its categories' protocols; we will keep that info
3954 // in the ObjCMethodDecl.
3955 // For this info, a method in an implementation is not considered as
3956 // overriding the same method in the interface or its categories.
3957 bool hasOverriddenMethodsInBaseOrProtocol = false;
3958 for (OverrideSearch::iterator
3959 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
3960 ObjCMethodDecl *overridden = *i;
3961
3962 if (!hasOverriddenMethodsInBaseOrProtocol) {
3963 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
3964 CurrentClass != overridden->getClassInterface() ||
3965 overridden->isOverriding()) {
3966 hasOverriddenMethodsInBaseOrProtocol = true;
3967
3968 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
3969 // OverrideSearch will return as "overridden" the same method in the
3970 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
3971 // check whether a category of a base class introduced a method with the
3972 // same selector, after the interface method declaration.
3973 // To avoid unnecessary lookups in the majority of cases, we use the
3974 // extra info bits in GlobalMethodPool to check whether there were any
3975 // category methods with this selector.
3976 GlobalMethodPool::iterator It =
3977 MethodPool.find(ObjCMethod->getSelector());
3978 if (It != MethodPool.end()) {
3979 ObjCMethodList &List =
3980 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
3981 unsigned CategCount = List.getBits();
3982 if (CategCount > 0) {
3983 // If the method is in a category we'll do lookup if there were at
3984 // least 2 category methods recorded, otherwise only one will do.
3985 if (CategCount > 1 ||
3986 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
3987 OverrideSearch overrides(*this, overridden);
3988 for (OverrideSearch::iterator
3989 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
3990 ObjCMethodDecl *SuperOverridden = *OI;
3991 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
3992 CurrentClass != SuperOverridden->getClassInterface()) {
3993 hasOverriddenMethodsInBaseOrProtocol = true;
3994 overridden->setOverriding(true);
3995 break;
3996 }
3997 }
3998 }
3999 }
4000 }
4001 }
4002 }
4003
4004 // Propagate down the 'related result type' bit from overridden methods.
4005 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4006 ObjCMethod->SetRelatedResultType();
4007
4008 // Then merge the declarations.
4009 mergeObjCMethodDecls(ObjCMethod, overridden);
4010
4011 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4012 continue; // Conflicting properties are detected elsewhere.
4013
4014 // Check for overriding methods
4015 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4016 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4017 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4018 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4019
4020 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4021 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4022 !overridden->isImplicit() /* not meant for properties */) {
4023 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4024 E = ObjCMethod->param_end();
4025 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4026 PrevE = overridden->param_end();
4027 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4028 assert(PrevI != overridden->param_end() && "Param mismatch");
4029 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4030 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4031 // If type of argument of method in this class does not match its
4032 // respective argument type in the super class method, issue warning;
4033 if (!Context.typesAreCompatible(T1, T2)) {
4034 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4035 << T1 << T2;
4036 Diag(overridden->getLocation(), diag::note_previous_declaration);
4037 break;
4038 }
4039 }
4040 }
4041 }
4042
4043 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4044 }
4045
4046 /// Merge type nullability from for a redeclaration of the same entity,
4047 /// producing the updated type of the redeclared entity.
mergeTypeNullabilityForRedecl(Sema & S,SourceLocation loc,QualType type,bool usesCSKeyword,SourceLocation prevLoc,QualType prevType,bool prevUsesCSKeyword)4048 static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4049 QualType type,
4050 bool usesCSKeyword,
4051 SourceLocation prevLoc,
4052 QualType prevType,
4053 bool prevUsesCSKeyword) {
4054 // Determine the nullability of both types.
4055 auto nullability = type->getNullability(S.Context);
4056 auto prevNullability = prevType->getNullability(S.Context);
4057
4058 // Easy case: both have nullability.
4059 if (nullability.hasValue() == prevNullability.hasValue()) {
4060 // Neither has nullability; continue.
4061 if (!nullability)
4062 return type;
4063
4064 // The nullabilities are equivalent; do nothing.
4065 if (*nullability == *prevNullability)
4066 return type;
4067
4068 // Complain about mismatched nullability.
4069 S.Diag(loc, diag::err_nullability_conflicting)
4070 << DiagNullabilityKind(*nullability, usesCSKeyword)
4071 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4072 return type;
4073 }
4074
4075 // If it's the redeclaration that has nullability, don't change anything.
4076 if (nullability)
4077 return type;
4078
4079 // Otherwise, provide the result with the same nullability.
4080 return S.Context.getAttributedType(
4081 AttributedType::getNullabilityAttrKind(*prevNullability),
4082 type, type);
4083 }
4084
4085 /// Merge information from the declaration of a method in the \@interface
4086 /// (or a category/extension) into the corresponding method in the
4087 /// @implementation (for a class or category).
mergeInterfaceMethodToImpl(Sema & S,ObjCMethodDecl * method,ObjCMethodDecl * prevMethod)4088 static void mergeInterfaceMethodToImpl(Sema &S,
4089 ObjCMethodDecl *method,
4090 ObjCMethodDecl *prevMethod) {
4091 // Merge the objc_requires_super attribute.
4092 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4093 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4094 // merge the attribute into implementation.
4095 method->addAttr(
4096 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4097 method->getLocation()));
4098 }
4099
4100 // Merge nullability of the result type.
4101 QualType newReturnType
4102 = mergeTypeNullabilityForRedecl(
4103 S, method->getReturnTypeSourceRange().getBegin(),
4104 method->getReturnType(),
4105 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4106 prevMethod->getReturnTypeSourceRange().getBegin(),
4107 prevMethod->getReturnType(),
4108 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4109 method->setReturnType(newReturnType);
4110
4111 // Handle each of the parameters.
4112 unsigned numParams = method->param_size();
4113 unsigned numPrevParams = prevMethod->param_size();
4114 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4115 ParmVarDecl *param = method->param_begin()[i];
4116 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4117
4118 // Merge nullability.
4119 QualType newParamType
4120 = mergeTypeNullabilityForRedecl(
4121 S, param->getLocation(), param->getType(),
4122 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4123 prevParam->getLocation(), prevParam->getType(),
4124 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4125 param->setType(newParamType);
4126 }
4127 }
4128
ActOnMethodDeclaration(Scope * S,SourceLocation MethodLoc,SourceLocation EndLoc,tok::TokenKind MethodType,ObjCDeclSpec & ReturnQT,ParsedType ReturnType,ArrayRef<SourceLocation> SelectorLocs,Selector Sel,ObjCArgInfo * ArgInfo,DeclaratorChunk::ParamInfo * CParamInfo,unsigned CNumArgs,AttributeList * AttrList,tok::ObjCKeywordKind MethodDeclKind,bool isVariadic,bool MethodDefinition)4129 Decl *Sema::ActOnMethodDeclaration(
4130 Scope *S,
4131 SourceLocation MethodLoc, SourceLocation EndLoc,
4132 tok::TokenKind MethodType,
4133 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4134 ArrayRef<SourceLocation> SelectorLocs,
4135 Selector Sel,
4136 // optional arguments. The number of types/arguments is obtained
4137 // from the Sel.getNumArgs().
4138 ObjCArgInfo *ArgInfo,
4139 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4140 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4141 bool isVariadic, bool MethodDefinition) {
4142 // Make sure we can establish a context for the method.
4143 if (!CurContext->isObjCContainer()) {
4144 Diag(MethodLoc, diag::error_missing_method_context);
4145 return nullptr;
4146 }
4147 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
4148 Decl *ClassDecl = cast<Decl>(OCD);
4149 QualType resultDeclType;
4150
4151 bool HasRelatedResultType = false;
4152 TypeSourceInfo *ReturnTInfo = nullptr;
4153 if (ReturnType) {
4154 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4155
4156 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4157 return nullptr;
4158
4159 QualType bareResultType = resultDeclType;
4160 (void)AttributedType::stripOuterNullability(bareResultType);
4161 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4162 } else { // get the type for "id".
4163 resultDeclType = Context.getObjCIdType();
4164 Diag(MethodLoc, diag::warn_missing_method_return_type)
4165 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4166 }
4167
4168 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4169 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4170 MethodType == tok::minus, isVariadic,
4171 /*isPropertyAccessor=*/false,
4172 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4173 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4174 : ObjCMethodDecl::Required,
4175 HasRelatedResultType);
4176
4177 SmallVector<ParmVarDecl*, 16> Params;
4178
4179 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4180 QualType ArgType;
4181 TypeSourceInfo *DI;
4182
4183 if (!ArgInfo[i].Type) {
4184 ArgType = Context.getObjCIdType();
4185 DI = nullptr;
4186 } else {
4187 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4188 }
4189
4190 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4191 LookupOrdinaryName, ForRedeclaration);
4192 LookupName(R, S);
4193 if (R.isSingleResult()) {
4194 NamedDecl *PrevDecl = R.getFoundDecl();
4195 if (S->isDeclScope(PrevDecl)) {
4196 Diag(ArgInfo[i].NameLoc,
4197 (MethodDefinition ? diag::warn_method_param_redefinition
4198 : diag::warn_method_param_declaration))
4199 << ArgInfo[i].Name;
4200 Diag(PrevDecl->getLocation(),
4201 diag::note_previous_declaration);
4202 }
4203 }
4204
4205 SourceLocation StartLoc = DI
4206 ? DI->getTypeLoc().getBeginLoc()
4207 : ArgInfo[i].NameLoc;
4208
4209 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4210 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4211 ArgType, DI, SC_None);
4212
4213 Param->setObjCMethodScopeInfo(i);
4214
4215 Param->setObjCDeclQualifier(
4216 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4217
4218 // Apply the attributes to the parameter.
4219 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4220
4221 if (Param->hasAttr<BlocksAttr>()) {
4222 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4223 Param->setInvalidDecl();
4224 }
4225 S->AddDecl(Param);
4226 IdResolver.AddDecl(Param);
4227
4228 Params.push_back(Param);
4229 }
4230
4231 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4232 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4233 QualType ArgType = Param->getType();
4234 if (ArgType.isNull())
4235 ArgType = Context.getObjCIdType();
4236 else
4237 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4238 ArgType = Context.getAdjustedParameterType(ArgType);
4239
4240 Param->setDeclContext(ObjCMethod);
4241 Params.push_back(Param);
4242 }
4243
4244 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4245 ObjCMethod->setObjCDeclQualifier(
4246 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4247
4248 if (AttrList)
4249 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4250
4251 // Add the method now.
4252 const ObjCMethodDecl *PrevMethod = nullptr;
4253 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4254 if (MethodType == tok::minus) {
4255 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4256 ImpDecl->addInstanceMethod(ObjCMethod);
4257 } else {
4258 PrevMethod = ImpDecl->getClassMethod(Sel);
4259 ImpDecl->addClassMethod(ObjCMethod);
4260 }
4261
4262 // Merge information from the @interface declaration into the
4263 // @implementation.
4264 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4265 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4266 ObjCMethod->isInstanceMethod())) {
4267 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4268
4269 // Warn about defining -dealloc in a category.
4270 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4271 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4272 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4273 << ObjCMethod->getDeclName();
4274 }
4275 }
4276 }
4277 } else {
4278 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4279 }
4280
4281 if (PrevMethod) {
4282 // You can never have two method definitions with the same name.
4283 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4284 << ObjCMethod->getDeclName();
4285 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4286 ObjCMethod->setInvalidDecl();
4287 return ObjCMethod;
4288 }
4289
4290 // If this Objective-C method does not have a related result type, but we
4291 // are allowed to infer related result types, try to do so based on the
4292 // method family.
4293 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4294 if (!CurrentClass) {
4295 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
4296 CurrentClass = Cat->getClassInterface();
4297 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
4298 CurrentClass = Impl->getClassInterface();
4299 else if (ObjCCategoryImplDecl *CatImpl
4300 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4301 CurrentClass = CatImpl->getClassInterface();
4302 }
4303
4304 ResultTypeCompatibilityKind RTC
4305 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4306
4307 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4308
4309 bool ARCError = false;
4310 if (getLangOpts().ObjCAutoRefCount)
4311 ARCError = CheckARCMethodDecl(ObjCMethod);
4312
4313 // Infer the related result type when possible.
4314 if (!ARCError && RTC == Sema::RTC_Compatible &&
4315 !ObjCMethod->hasRelatedResultType() &&
4316 LangOpts.ObjCInferRelatedResultType) {
4317 bool InferRelatedResultType = false;
4318 switch (ObjCMethod->getMethodFamily()) {
4319 case OMF_None:
4320 case OMF_copy:
4321 case OMF_dealloc:
4322 case OMF_finalize:
4323 case OMF_mutableCopy:
4324 case OMF_release:
4325 case OMF_retainCount:
4326 case OMF_initialize:
4327 case OMF_performSelector:
4328 break;
4329
4330 case OMF_alloc:
4331 case OMF_new:
4332 InferRelatedResultType = ObjCMethod->isClassMethod();
4333 break;
4334
4335 case OMF_init:
4336 case OMF_autorelease:
4337 case OMF_retain:
4338 case OMF_self:
4339 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4340 break;
4341 }
4342
4343 if (InferRelatedResultType &&
4344 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4345 ObjCMethod->SetRelatedResultType();
4346 }
4347
4348 ActOnDocumentableDecl(ObjCMethod);
4349
4350 return ObjCMethod;
4351 }
4352
CheckObjCDeclScope(Decl * D)4353 bool Sema::CheckObjCDeclScope(Decl *D) {
4354 // Following is also an error. But it is caused by a missing @end
4355 // and diagnostic is issued elsewhere.
4356 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4357 return false;
4358
4359 // If we switched context to translation unit while we are still lexically in
4360 // an objc container, it means the parser missed emitting an error.
4361 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4362 return false;
4363
4364 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4365 D->setInvalidDecl();
4366
4367 return true;
4368 }
4369
4370 /// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4371 /// instance variables of ClassName into Decls.
ActOnDefs(Scope * S,Decl * TagD,SourceLocation DeclStart,IdentifierInfo * ClassName,SmallVectorImpl<Decl * > & Decls)4372 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4373 IdentifierInfo *ClassName,
4374 SmallVectorImpl<Decl*> &Decls) {
4375 // Check that ClassName is a valid class
4376 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4377 if (!Class) {
4378 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4379 return;
4380 }
4381 if (LangOpts.ObjCRuntime.isNonFragile()) {
4382 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4383 return;
4384 }
4385
4386 // Collect the instance variables
4387 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4388 Context.DeepCollectObjCIvars(Class, true, Ivars);
4389 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4390 for (unsigned i = 0; i < Ivars.size(); i++) {
4391 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4392 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4393 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4394 /*FIXME: StartL=*/ID->getLocation(),
4395 ID->getLocation(),
4396 ID->getIdentifier(), ID->getType(),
4397 ID->getBitWidth());
4398 Decls.push_back(FD);
4399 }
4400
4401 // Introduce all of these fields into the appropriate scope.
4402 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4403 D != Decls.end(); ++D) {
4404 FieldDecl *FD = cast<FieldDecl>(*D);
4405 if (getLangOpts().CPlusPlus)
4406 PushOnScopeChains(cast<FieldDecl>(FD), S);
4407 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4408 Record->addDecl(FD);
4409 }
4410 }
4411
4412 /// \brief Build a type-check a new Objective-C exception variable declaration.
BuildObjCExceptionDecl(TypeSourceInfo * TInfo,QualType T,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,bool Invalid)4413 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4414 SourceLocation StartLoc,
4415 SourceLocation IdLoc,
4416 IdentifierInfo *Id,
4417 bool Invalid) {
4418 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4419 // duration shall not be qualified by an address-space qualifier."
4420 // Since all parameters have automatic store duration, they can not have
4421 // an address space.
4422 if (T.getAddressSpace() != 0) {
4423 Diag(IdLoc, diag::err_arg_with_address_space);
4424 Invalid = true;
4425 }
4426
4427 // An @catch parameter must be an unqualified object pointer type;
4428 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4429 if (Invalid) {
4430 // Don't do any further checking.
4431 } else if (T->isDependentType()) {
4432 // Okay: we don't know what this type will instantiate to.
4433 } else if (!T->isObjCObjectPointerType()) {
4434 Invalid = true;
4435 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4436 } else if (T->isObjCQualifiedIdType()) {
4437 Invalid = true;
4438 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4439 }
4440
4441 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4442 T, TInfo, SC_None);
4443 New->setExceptionVariable(true);
4444
4445 // In ARC, infer 'retaining' for variables of retainable type.
4446 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4447 Invalid = true;
4448
4449 if (Invalid)
4450 New->setInvalidDecl();
4451 return New;
4452 }
4453
ActOnObjCExceptionDecl(Scope * S,Declarator & D)4454 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4455 const DeclSpec &DS = D.getDeclSpec();
4456
4457 // We allow the "register" storage class on exception variables because
4458 // GCC did, but we drop it completely. Any other storage class is an error.
4459 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4460 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4461 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4462 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4463 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4464 << DeclSpec::getSpecifierName(SCS);
4465 }
4466 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4467 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4468 diag::err_invalid_thread)
4469 << DeclSpec::getSpecifierName(TSCS);
4470 D.getMutableDeclSpec().ClearStorageClassSpecs();
4471
4472 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4473
4474 // Check that there are no default arguments inside the type of this
4475 // exception object (C++ only).
4476 if (getLangOpts().CPlusPlus)
4477 CheckExtraCXXDefaultArguments(D);
4478
4479 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4480 QualType ExceptionType = TInfo->getType();
4481
4482 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4483 D.getSourceRange().getBegin(),
4484 D.getIdentifierLoc(),
4485 D.getIdentifier(),
4486 D.isInvalidType());
4487
4488 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4489 if (D.getCXXScopeSpec().isSet()) {
4490 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4491 << D.getCXXScopeSpec().getRange();
4492 New->setInvalidDecl();
4493 }
4494
4495 // Add the parameter declaration into this scope.
4496 S->AddDecl(New);
4497 if (D.getIdentifier())
4498 IdResolver.AddDecl(New);
4499
4500 ProcessDeclAttributes(S, New, D);
4501
4502 if (New->hasAttr<BlocksAttr>())
4503 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4504 return New;
4505 }
4506
4507 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4508 /// initialization.
CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl * OI,SmallVectorImpl<ObjCIvarDecl * > & Ivars)4509 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4510 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4511 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4512 Iv= Iv->getNextIvar()) {
4513 QualType QT = Context.getBaseElementType(Iv->getType());
4514 if (QT->isRecordType())
4515 Ivars.push_back(Iv);
4516 }
4517 }
4518
DiagnoseUseOfUnimplementedSelectors()4519 void Sema::DiagnoseUseOfUnimplementedSelectors() {
4520 // Load referenced selectors from the external source.
4521 if (ExternalSource) {
4522 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4523 ExternalSource->ReadReferencedSelectors(Sels);
4524 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4525 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4526 }
4527
4528 // Warning will be issued only when selector table is
4529 // generated (which means there is at lease one implementation
4530 // in the TU). This is to match gcc's behavior.
4531 if (ReferencedSelectors.empty() ||
4532 !Context.AnyObjCImplementation())
4533 return;
4534 for (auto &SelectorAndLocation : ReferencedSelectors) {
4535 Selector Sel = SelectorAndLocation.first;
4536 SourceLocation Loc = SelectorAndLocation.second;
4537 if (!LookupImplementedMethodInGlobalPool(Sel))
4538 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4539 }
4540 }
4541
4542 ObjCIvarDecl *
GetIvarBackingPropertyAccessor(const ObjCMethodDecl * Method,const ObjCPropertyDecl * & PDecl) const4543 Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4544 const ObjCPropertyDecl *&PDecl) const {
4545 if (Method->isClassMethod())
4546 return nullptr;
4547 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4548 if (!IDecl)
4549 return nullptr;
4550 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4551 /*shallowCategoryLookup=*/false,
4552 /*followSuper=*/false);
4553 if (!Method || !Method->isPropertyAccessor())
4554 return nullptr;
4555 if ((PDecl = Method->findPropertyDecl()))
4556 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4557 // property backing ivar must belong to property's class
4558 // or be a private ivar in class's implementation.
4559 // FIXME. fix the const-ness issue.
4560 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4561 IV->getIdentifier());
4562 return IV;
4563 }
4564 return nullptr;
4565 }
4566
4567 namespace {
4568 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4569 /// accessor references the backing ivar.
4570 class UnusedBackingIvarChecker :
4571 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4572 public:
4573 Sema &S;
4574 const ObjCMethodDecl *Method;
4575 const ObjCIvarDecl *IvarD;
4576 bool AccessedIvar;
4577 bool InvokedSelfMethod;
4578
UnusedBackingIvarChecker(Sema & S,const ObjCMethodDecl * Method,const ObjCIvarDecl * IvarD)4579 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4580 const ObjCIvarDecl *IvarD)
4581 : S(S), Method(Method), IvarD(IvarD),
4582 AccessedIvar(false), InvokedSelfMethod(false) {
4583 assert(IvarD);
4584 }
4585
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)4586 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4587 if (E->getDecl() == IvarD) {
4588 AccessedIvar = true;
4589 return false;
4590 }
4591 return true;
4592 }
4593
VisitObjCMessageExpr(ObjCMessageExpr * E)4594 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4595 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
4596 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4597 InvokedSelfMethod = true;
4598 }
4599 return true;
4600 }
4601 };
4602 } // end anonymous namespace
4603
DiagnoseUnusedBackingIvarInAccessor(Scope * S,const ObjCImplementationDecl * ImplD)4604 void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4605 const ObjCImplementationDecl *ImplD) {
4606 if (S->hasUnrecoverableErrorOccurred())
4607 return;
4608
4609 for (const auto *CurMethod : ImplD->instance_methods()) {
4610 unsigned DIAG = diag::warn_unused_property_backing_ivar;
4611 SourceLocation Loc = CurMethod->getLocation();
4612 if (Diags.isIgnored(DIAG, Loc))
4613 continue;
4614
4615 const ObjCPropertyDecl *PDecl;
4616 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
4617 if (!IV)
4618 continue;
4619
4620 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
4621 Checker.TraverseStmt(CurMethod->getBody());
4622 if (Checker.AccessedIvar)
4623 continue;
4624
4625 // Do not issue this warning if backing ivar is used somewhere and accessor
4626 // implementation makes a self call. This is to prevent false positive in
4627 // cases where the ivar is accessed by another method that the accessor
4628 // delegates to.
4629 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
4630 Diag(Loc, DIAG) << IV;
4631 Diag(PDecl->getLocation(), diag::note_property_declare);
4632 }
4633 }
4634 }
4635