1 //===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines several CodeGen-specific LLVM IR analysis utilities.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/Analysis.h"
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineModuleInfo.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetLowering.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetSubtargetInfo.h"
31 #include "llvm/Transforms/Utils/GlobalStatus.h"
32 
33 using namespace llvm;
34 
35 /// Compute the linearized index of a member in a nested aggregate/struct/array
36 /// by recursing and accumulating CurIndex as long as there are indices in the
37 /// index list.
ComputeLinearIndex(Type * Ty,const unsigned * Indices,const unsigned * IndicesEnd,unsigned CurIndex)38 unsigned llvm::ComputeLinearIndex(Type *Ty,
39                                   const unsigned *Indices,
40                                   const unsigned *IndicesEnd,
41                                   unsigned CurIndex) {
42   // Base case: We're done.
43   if (Indices && Indices == IndicesEnd)
44     return CurIndex;
45 
46   // Given a struct type, recursively traverse the elements.
47   if (StructType *STy = dyn_cast<StructType>(Ty)) {
48     for (StructType::element_iterator EB = STy->element_begin(),
49                                       EI = EB,
50                                       EE = STy->element_end();
51         EI != EE; ++EI) {
52       if (Indices && *Indices == unsigned(EI - EB))
53         return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
54       CurIndex = ComputeLinearIndex(*EI, nullptr, nullptr, CurIndex);
55     }
56     assert(!Indices && "Unexpected out of bound");
57     return CurIndex;
58   }
59   // Given an array type, recursively traverse the elements.
60   else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
61     Type *EltTy = ATy->getElementType();
62     unsigned NumElts = ATy->getNumElements();
63     // Compute the Linear offset when jumping one element of the array
64     unsigned EltLinearOffset = ComputeLinearIndex(EltTy, nullptr, nullptr, 0);
65     if (Indices) {
66       assert(*Indices < NumElts && "Unexpected out of bound");
67       // If the indice is inside the array, compute the index to the requested
68       // elt and recurse inside the element with the end of the indices list
69       CurIndex += EltLinearOffset* *Indices;
70       return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
71     }
72     CurIndex += EltLinearOffset*NumElts;
73     return CurIndex;
74   }
75   // We haven't found the type we're looking for, so keep searching.
76   return CurIndex + 1;
77 }
78 
79 /// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
80 /// EVTs that represent all the individual underlying
81 /// non-aggregate types that comprise it.
82 ///
83 /// If Offsets is non-null, it points to a vector to be filled in
84 /// with the in-memory offsets of each of the individual values.
85 ///
ComputeValueVTs(const TargetLowering & TLI,const DataLayout & DL,Type * Ty,SmallVectorImpl<EVT> & ValueVTs,SmallVectorImpl<uint64_t> * Offsets,uint64_t StartingOffset)86 void llvm::ComputeValueVTs(const TargetLowering &TLI, const DataLayout &DL,
87                            Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
88                            SmallVectorImpl<uint64_t> *Offsets,
89                            uint64_t StartingOffset) {
90   // Given a struct type, recursively traverse the elements.
91   if (StructType *STy = dyn_cast<StructType>(Ty)) {
92     const StructLayout *SL = DL.getStructLayout(STy);
93     for (StructType::element_iterator EB = STy->element_begin(),
94                                       EI = EB,
95                                       EE = STy->element_end();
96          EI != EE; ++EI)
97       ComputeValueVTs(TLI, DL, *EI, ValueVTs, Offsets,
98                       StartingOffset + SL->getElementOffset(EI - EB));
99     return;
100   }
101   // Given an array type, recursively traverse the elements.
102   if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
103     Type *EltTy = ATy->getElementType();
104     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
105     for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
106       ComputeValueVTs(TLI, DL, EltTy, ValueVTs, Offsets,
107                       StartingOffset + i * EltSize);
108     return;
109   }
110   // Interpret void as zero return values.
111   if (Ty->isVoidTy())
112     return;
113   // Base case: we can get an EVT for this LLVM IR type.
114   ValueVTs.push_back(TLI.getValueType(DL, Ty));
115   if (Offsets)
116     Offsets->push_back(StartingOffset);
117 }
118 
119 /// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
ExtractTypeInfo(Value * V)120 GlobalValue *llvm::ExtractTypeInfo(Value *V) {
121   V = V->stripPointerCasts();
122   GlobalValue *GV = dyn_cast<GlobalValue>(V);
123   GlobalVariable *Var = dyn_cast<GlobalVariable>(V);
124 
125   if (Var && Var->getName() == "llvm.eh.catch.all.value") {
126     assert(Var->hasInitializer() &&
127            "The EH catch-all value must have an initializer");
128     Value *Init = Var->getInitializer();
129     GV = dyn_cast<GlobalValue>(Init);
130     if (!GV) V = cast<ConstantPointerNull>(Init);
131   }
132 
133   assert((GV || isa<ConstantPointerNull>(V)) &&
134          "TypeInfo must be a global variable or NULL");
135   return GV;
136 }
137 
138 /// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
139 /// processed uses a memory 'm' constraint.
140 bool
hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector & CInfos,const TargetLowering & TLI)141 llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
142                                 const TargetLowering &TLI) {
143   for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
144     InlineAsm::ConstraintInfo &CI = CInfos[i];
145     for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
146       TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
147       if (CType == TargetLowering::C_Memory)
148         return true;
149     }
150 
151     // Indirect operand accesses access memory.
152     if (CI.isIndirect)
153       return true;
154   }
155 
156   return false;
157 }
158 
159 /// getFCmpCondCode - Return the ISD condition code corresponding to
160 /// the given LLVM IR floating-point condition code.  This includes
161 /// consideration of global floating-point math flags.
162 ///
getFCmpCondCode(FCmpInst::Predicate Pred)163 ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
164   switch (Pred) {
165   case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
166   case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
167   case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
168   case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
169   case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
170   case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
171   case FCmpInst::FCMP_ONE:   return ISD::SETONE;
172   case FCmpInst::FCMP_ORD:   return ISD::SETO;
173   case FCmpInst::FCMP_UNO:   return ISD::SETUO;
174   case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
175   case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
176   case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
177   case FCmpInst::FCMP_ULT:   return ISD::SETULT;
178   case FCmpInst::FCMP_ULE:   return ISD::SETULE;
179   case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
180   case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
181   default: llvm_unreachable("Invalid FCmp predicate opcode!");
182   }
183 }
184 
getFCmpCodeWithoutNaN(ISD::CondCode CC)185 ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
186   switch (CC) {
187     case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
188     case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
189     case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
190     case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
191     case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
192     case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
193     default: return CC;
194   }
195 }
196 
197 /// getICmpCondCode - Return the ISD condition code corresponding to
198 /// the given LLVM IR integer condition code.
199 ///
getICmpCondCode(ICmpInst::Predicate Pred)200 ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
201   switch (Pred) {
202   case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
203   case ICmpInst::ICMP_NE:  return ISD::SETNE;
204   case ICmpInst::ICMP_SLE: return ISD::SETLE;
205   case ICmpInst::ICMP_ULE: return ISD::SETULE;
206   case ICmpInst::ICMP_SGE: return ISD::SETGE;
207   case ICmpInst::ICMP_UGE: return ISD::SETUGE;
208   case ICmpInst::ICMP_SLT: return ISD::SETLT;
209   case ICmpInst::ICMP_ULT: return ISD::SETULT;
210   case ICmpInst::ICMP_SGT: return ISD::SETGT;
211   case ICmpInst::ICMP_UGT: return ISD::SETUGT;
212   default:
213     llvm_unreachable("Invalid ICmp predicate opcode!");
214   }
215 }
216 
isNoopBitcast(Type * T1,Type * T2,const TargetLoweringBase & TLI)217 static bool isNoopBitcast(Type *T1, Type *T2,
218                           const TargetLoweringBase& TLI) {
219   return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
220          (isa<VectorType>(T1) && isa<VectorType>(T2) &&
221           TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
222 }
223 
224 /// Look through operations that will be free to find the earliest source of
225 /// this value.
226 ///
227 /// @param ValLoc If V has aggegate type, we will be interested in a particular
228 /// scalar component. This records its address; the reverse of this list gives a
229 /// sequence of indices appropriate for an extractvalue to locate the important
230 /// value. This value is updated during the function and on exit will indicate
231 /// similar information for the Value returned.
232 ///
233 /// @param DataBits If this function looks through truncate instructions, this
234 /// will record the smallest size attained.
getNoopInput(const Value * V,SmallVectorImpl<unsigned> & ValLoc,unsigned & DataBits,const TargetLoweringBase & TLI,const DataLayout & DL)235 static const Value *getNoopInput(const Value *V,
236                                  SmallVectorImpl<unsigned> &ValLoc,
237                                  unsigned &DataBits,
238                                  const TargetLoweringBase &TLI,
239                                  const DataLayout &DL) {
240   while (true) {
241     // Try to look through V1; if V1 is not an instruction, it can't be looked
242     // through.
243     const Instruction *I = dyn_cast<Instruction>(V);
244     if (!I || I->getNumOperands() == 0) return V;
245     const Value *NoopInput = nullptr;
246 
247     Value *Op = I->getOperand(0);
248     if (isa<BitCastInst>(I)) {
249       // Look through truly no-op bitcasts.
250       if (isNoopBitcast(Op->getType(), I->getType(), TLI))
251         NoopInput = Op;
252     } else if (isa<GetElementPtrInst>(I)) {
253       // Look through getelementptr
254       if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
255         NoopInput = Op;
256     } else if (isa<IntToPtrInst>(I)) {
257       // Look through inttoptr.
258       // Make sure this isn't a truncating or extending cast.  We could
259       // support this eventually, but don't bother for now.
260       if (!isa<VectorType>(I->getType()) &&
261           DL.getPointerSizeInBits() ==
262               cast<IntegerType>(Op->getType())->getBitWidth())
263         NoopInput = Op;
264     } else if (isa<PtrToIntInst>(I)) {
265       // Look through ptrtoint.
266       // Make sure this isn't a truncating or extending cast.  We could
267       // support this eventually, but don't bother for now.
268       if (!isa<VectorType>(I->getType()) &&
269           DL.getPointerSizeInBits() ==
270               cast<IntegerType>(I->getType())->getBitWidth())
271         NoopInput = Op;
272     } else if (isa<TruncInst>(I) &&
273                TLI.allowTruncateForTailCall(Op->getType(), I->getType())) {
274       DataBits = std::min(DataBits, I->getType()->getPrimitiveSizeInBits());
275       NoopInput = Op;
276     } else if (isa<CallInst>(I)) {
277       // Look through call (skipping callee)
278       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 1;
279            i != e; ++i) {
280         unsigned attrInd = i - I->op_begin() + 1;
281         if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
282             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
283           NoopInput = *i;
284           break;
285         }
286       }
287     } else if (isa<InvokeInst>(I)) {
288       // Look through invoke (skipping BB, BB, Callee)
289       for (User::const_op_iterator i = I->op_begin(), e = I->op_end() - 3;
290            i != e; ++i) {
291         unsigned attrInd = i - I->op_begin() + 1;
292         if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
293             isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
294           NoopInput = *i;
295           break;
296         }
297       }
298     } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(V)) {
299       // Value may come from either the aggregate or the scalar
300       ArrayRef<unsigned> InsertLoc = IVI->getIndices();
301       if (ValLoc.size() >= InsertLoc.size() &&
302           std::equal(InsertLoc.begin(), InsertLoc.end(), ValLoc.rbegin())) {
303         // The type being inserted is a nested sub-type of the aggregate; we
304         // have to remove those initial indices to get the location we're
305         // interested in for the operand.
306         ValLoc.resize(ValLoc.size() - InsertLoc.size());
307         NoopInput = IVI->getInsertedValueOperand();
308       } else {
309         // The struct we're inserting into has the value we're interested in, no
310         // change of address.
311         NoopInput = Op;
312       }
313     } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(V)) {
314       // The part we're interested in will inevitably be some sub-section of the
315       // previous aggregate. Combine the two paths to obtain the true address of
316       // our element.
317       ArrayRef<unsigned> ExtractLoc = EVI->getIndices();
318       ValLoc.append(ExtractLoc.rbegin(), ExtractLoc.rend());
319       NoopInput = Op;
320     }
321     // Terminate if we couldn't find anything to look through.
322     if (!NoopInput)
323       return V;
324 
325     V = NoopInput;
326   }
327 }
328 
329 /// Return true if this scalar return value only has bits discarded on its path
330 /// from the "tail call" to the "ret". This includes the obvious noop
331 /// instructions handled by getNoopInput above as well as free truncations (or
332 /// extensions prior to the call).
slotOnlyDiscardsData(const Value * RetVal,const Value * CallVal,SmallVectorImpl<unsigned> & RetIndices,SmallVectorImpl<unsigned> & CallIndices,bool AllowDifferingSizes,const TargetLoweringBase & TLI,const DataLayout & DL)333 static bool slotOnlyDiscardsData(const Value *RetVal, const Value *CallVal,
334                                  SmallVectorImpl<unsigned> &RetIndices,
335                                  SmallVectorImpl<unsigned> &CallIndices,
336                                  bool AllowDifferingSizes,
337                                  const TargetLoweringBase &TLI,
338                                  const DataLayout &DL) {
339 
340   // Trace the sub-value needed by the return value as far back up the graph as
341   // possible, in the hope that it will intersect with the value produced by the
342   // call. In the simple case with no "returned" attribute, the hope is actually
343   // that we end up back at the tail call instruction itself.
344   unsigned BitsRequired = UINT_MAX;
345   RetVal = getNoopInput(RetVal, RetIndices, BitsRequired, TLI, DL);
346 
347   // If this slot in the value returned is undef, it doesn't matter what the
348   // call puts there, it'll be fine.
349   if (isa<UndefValue>(RetVal))
350     return true;
351 
352   // Now do a similar search up through the graph to find where the value
353   // actually returned by the "tail call" comes from. In the simple case without
354   // a "returned" attribute, the search will be blocked immediately and the loop
355   // a Noop.
356   unsigned BitsProvided = UINT_MAX;
357   CallVal = getNoopInput(CallVal, CallIndices, BitsProvided, TLI, DL);
358 
359   // There's no hope if we can't actually trace them to (the same part of!) the
360   // same value.
361   if (CallVal != RetVal || CallIndices != RetIndices)
362     return false;
363 
364   // However, intervening truncates may have made the call non-tail. Make sure
365   // all the bits that are needed by the "ret" have been provided by the "tail
366   // call". FIXME: with sufficiently cunning bit-tracking, we could look through
367   // extensions too.
368   if (BitsProvided < BitsRequired ||
369       (!AllowDifferingSizes && BitsProvided != BitsRequired))
370     return false;
371 
372   return true;
373 }
374 
375 /// For an aggregate type, determine whether a given index is within bounds or
376 /// not.
indexReallyValid(CompositeType * T,unsigned Idx)377 static bool indexReallyValid(CompositeType *T, unsigned Idx) {
378   if (ArrayType *AT = dyn_cast<ArrayType>(T))
379     return Idx < AT->getNumElements();
380 
381   return Idx < cast<StructType>(T)->getNumElements();
382 }
383 
384 /// Move the given iterators to the next leaf type in depth first traversal.
385 ///
386 /// Performs a depth-first traversal of the type as specified by its arguments,
387 /// stopping at the next leaf node (which may be a legitimate scalar type or an
388 /// empty struct or array).
389 ///
390 /// @param SubTypes List of the partial components making up the type from
391 /// outermost to innermost non-empty aggregate. The element currently
392 /// represented is SubTypes.back()->getTypeAtIndex(Path.back() - 1).
393 ///
394 /// @param Path Set of extractvalue indices leading from the outermost type
395 /// (SubTypes[0]) to the leaf node currently represented.
396 ///
397 /// @returns true if a new type was found, false otherwise. Calling this
398 /// function again on a finished iterator will repeatedly return
399 /// false. SubTypes.back()->getTypeAtIndex(Path.back()) is either an empty
400 /// aggregate or a non-aggregate
advanceToNextLeafType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)401 static bool advanceToNextLeafType(SmallVectorImpl<CompositeType *> &SubTypes,
402                                   SmallVectorImpl<unsigned> &Path) {
403   // First march back up the tree until we can successfully increment one of the
404   // coordinates in Path.
405   while (!Path.empty() && !indexReallyValid(SubTypes.back(), Path.back() + 1)) {
406     Path.pop_back();
407     SubTypes.pop_back();
408   }
409 
410   // If we reached the top, then the iterator is done.
411   if (Path.empty())
412     return false;
413 
414   // We know there's *some* valid leaf now, so march back down the tree picking
415   // out the left-most element at each node.
416   ++Path.back();
417   Type *DeeperType = SubTypes.back()->getTypeAtIndex(Path.back());
418   while (DeeperType->isAggregateType()) {
419     CompositeType *CT = cast<CompositeType>(DeeperType);
420     if (!indexReallyValid(CT, 0))
421       return true;
422 
423     SubTypes.push_back(CT);
424     Path.push_back(0);
425 
426     DeeperType = CT->getTypeAtIndex(0U);
427   }
428 
429   return true;
430 }
431 
432 /// Find the first non-empty, scalar-like type in Next and setup the iterator
433 /// components.
434 ///
435 /// Assuming Next is an aggregate of some kind, this function will traverse the
436 /// tree from left to right (i.e. depth-first) looking for the first
437 /// non-aggregate type which will play a role in function return.
438 ///
439 /// For example, if Next was {[0 x i64], {{}, i32, {}}, i32} then we would setup
440 /// Path as [1, 1] and SubTypes as [Next, {{}, i32, {}}] to represent the first
441 /// i32 in that type.
firstRealType(Type * Next,SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)442 static bool firstRealType(Type *Next,
443                           SmallVectorImpl<CompositeType *> &SubTypes,
444                           SmallVectorImpl<unsigned> &Path) {
445   // First initialise the iterator components to the first "leaf" node
446   // (i.e. node with no valid sub-type at any index, so {} does count as a leaf
447   // despite nominally being an aggregate).
448   while (Next->isAggregateType() &&
449          indexReallyValid(cast<CompositeType>(Next), 0)) {
450     SubTypes.push_back(cast<CompositeType>(Next));
451     Path.push_back(0);
452     Next = cast<CompositeType>(Next)->getTypeAtIndex(0U);
453   }
454 
455   // If there's no Path now, Next was originally scalar already (or empty
456   // leaf). We're done.
457   if (Path.empty())
458     return true;
459 
460   // Otherwise, use normal iteration to keep looking through the tree until we
461   // find a non-aggregate type.
462   while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType()) {
463     if (!advanceToNextLeafType(SubTypes, Path))
464       return false;
465   }
466 
467   return true;
468 }
469 
470 /// Set the iterator data-structures to the next non-empty, non-aggregate
471 /// subtype.
nextRealType(SmallVectorImpl<CompositeType * > & SubTypes,SmallVectorImpl<unsigned> & Path)472 static bool nextRealType(SmallVectorImpl<CompositeType *> &SubTypes,
473                          SmallVectorImpl<unsigned> &Path) {
474   do {
475     if (!advanceToNextLeafType(SubTypes, Path))
476       return false;
477 
478     assert(!Path.empty() && "found a leaf but didn't set the path?");
479   } while (SubTypes.back()->getTypeAtIndex(Path.back())->isAggregateType());
480 
481   return true;
482 }
483 
484 
485 /// Test if the given instruction is in a position to be optimized
486 /// with a tail-call. This roughly means that it's in a block with
487 /// a return and there's nothing that needs to be scheduled
488 /// between it and the return.
489 ///
490 /// This function only tests target-independent requirements.
isInTailCallPosition(ImmutableCallSite CS,const TargetMachine & TM)491 bool llvm::isInTailCallPosition(ImmutableCallSite CS, const TargetMachine &TM) {
492   const Instruction *I = CS.getInstruction();
493   const BasicBlock *ExitBB = I->getParent();
494   const TerminatorInst *Term = ExitBB->getTerminator();
495   const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
496 
497   // The block must end in a return statement or unreachable.
498   //
499   // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
500   // an unreachable, for now. The way tailcall optimization is currently
501   // implemented means it will add an epilogue followed by a jump. That is
502   // not profitable. Also, if the callee is a special function (e.g.
503   // longjmp on x86), it can end up causing miscompilation that has not
504   // been fully understood.
505   if (!Ret &&
506       (!TM.Options.GuaranteedTailCallOpt || !isa<UnreachableInst>(Term)))
507     return false;
508 
509   // If I will have a chain, make sure no other instruction that will have a
510   // chain interposes between I and the return.
511   if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
512       !isSafeToSpeculativelyExecute(I))
513     for (BasicBlock::const_iterator BBI = std::prev(ExitBB->end(), 2);; --BBI) {
514       if (&*BBI == I)
515         break;
516       // Debug info intrinsics do not get in the way of tail call optimization.
517       if (isa<DbgInfoIntrinsic>(BBI))
518         continue;
519       if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
520           !isSafeToSpeculativelyExecute(&*BBI))
521         return false;
522     }
523 
524   const Function *F = ExitBB->getParent();
525   return returnTypeIsEligibleForTailCall(
526       F, I, Ret, *TM.getSubtargetImpl(*F)->getTargetLowering());
527 }
528 
returnTypeIsEligibleForTailCall(const Function * F,const Instruction * I,const ReturnInst * Ret,const TargetLoweringBase & TLI)529 bool llvm::returnTypeIsEligibleForTailCall(const Function *F,
530                                            const Instruction *I,
531                                            const ReturnInst *Ret,
532                                            const TargetLoweringBase &TLI) {
533   // If the block ends with a void return or unreachable, it doesn't matter
534   // what the call's return type is.
535   if (!Ret || Ret->getNumOperands() == 0) return true;
536 
537   // If the return value is undef, it doesn't matter what the call's
538   // return type is.
539   if (isa<UndefValue>(Ret->getOperand(0))) return true;
540 
541   // Make sure the attributes attached to each return are compatible.
542   AttrBuilder CallerAttrs(F->getAttributes(),
543                           AttributeSet::ReturnIndex);
544   AttrBuilder CalleeAttrs(cast<CallInst>(I)->getAttributes(),
545                           AttributeSet::ReturnIndex);
546 
547   // Noalias is completely benign as far as calling convention goes, it
548   // shouldn't affect whether the call is a tail call.
549   CallerAttrs = CallerAttrs.removeAttribute(Attribute::NoAlias);
550   CalleeAttrs = CalleeAttrs.removeAttribute(Attribute::NoAlias);
551 
552   bool AllowDifferingSizes = true;
553   if (CallerAttrs.contains(Attribute::ZExt)) {
554     if (!CalleeAttrs.contains(Attribute::ZExt))
555       return false;
556 
557     AllowDifferingSizes = false;
558     CallerAttrs.removeAttribute(Attribute::ZExt);
559     CalleeAttrs.removeAttribute(Attribute::ZExt);
560   } else if (CallerAttrs.contains(Attribute::SExt)) {
561     if (!CalleeAttrs.contains(Attribute::SExt))
562       return false;
563 
564     AllowDifferingSizes = false;
565     CallerAttrs.removeAttribute(Attribute::SExt);
566     CalleeAttrs.removeAttribute(Attribute::SExt);
567   }
568 
569   // If they're still different, there's some facet we don't understand
570   // (currently only "inreg", but in future who knows). It may be OK but the
571   // only safe option is to reject the tail call.
572   if (CallerAttrs != CalleeAttrs)
573     return false;
574 
575   const Value *RetVal = Ret->getOperand(0), *CallVal = I;
576   SmallVector<unsigned, 4> RetPath, CallPath;
577   SmallVector<CompositeType *, 4> RetSubTypes, CallSubTypes;
578 
579   bool RetEmpty = !firstRealType(RetVal->getType(), RetSubTypes, RetPath);
580   bool CallEmpty = !firstRealType(CallVal->getType(), CallSubTypes, CallPath);
581 
582   // Nothing's actually returned, it doesn't matter what the callee put there
583   // it's a valid tail call.
584   if (RetEmpty)
585     return true;
586 
587   // Iterate pairwise through each of the value types making up the tail call
588   // and the corresponding return. For each one we want to know whether it's
589   // essentially going directly from the tail call to the ret, via operations
590   // that end up not generating any code.
591   //
592   // We allow a certain amount of covariance here. For example it's permitted
593   // for the tail call to define more bits than the ret actually cares about
594   // (e.g. via a truncate).
595   do {
596     if (CallEmpty) {
597       // We've exhausted the values produced by the tail call instruction, the
598       // rest are essentially undef. The type doesn't really matter, but we need
599       // *something*.
600       Type *SlotType = RetSubTypes.back()->getTypeAtIndex(RetPath.back());
601       CallVal = UndefValue::get(SlotType);
602     }
603 
604     // The manipulations performed when we're looking through an insertvalue or
605     // an extractvalue would happen at the front of the RetPath list, so since
606     // we have to copy it anyway it's more efficient to create a reversed copy.
607     SmallVector<unsigned, 4> TmpRetPath(RetPath.rbegin(), RetPath.rend());
608     SmallVector<unsigned, 4> TmpCallPath(CallPath.rbegin(), CallPath.rend());
609 
610     // Finally, we can check whether the value produced by the tail call at this
611     // index is compatible with the value we return.
612     if (!slotOnlyDiscardsData(RetVal, CallVal, TmpRetPath, TmpCallPath,
613                               AllowDifferingSizes, TLI,
614                               F->getParent()->getDataLayout()))
615       return false;
616 
617     CallEmpty  = !nextRealType(CallSubTypes, CallPath);
618   } while(nextRealType(RetSubTypes, RetPath));
619 
620   return true;
621 }
622 
canBeOmittedFromSymbolTable(const GlobalValue * GV)623 bool llvm::canBeOmittedFromSymbolTable(const GlobalValue *GV) {
624   if (!GV->hasLinkOnceODRLinkage())
625     return false;
626 
627   if (GV->hasUnnamedAddr())
628     return true;
629 
630   // If it is a non constant variable, it needs to be uniqued across shared
631   // objects.
632   if (const GlobalVariable *Var = dyn_cast<GlobalVariable>(GV)) {
633     if (!Var->isConstant())
634       return false;
635   }
636 
637   // An alias can point to a variable. We could try to resolve the alias to
638   // decide, but for now just don't hide them.
639   if (isa<GlobalAlias>(GV))
640     return false;
641 
642   GlobalStatus GS;
643   if (GlobalStatus::analyzeGlobal(GV, GS))
644     return false;
645 
646   return !GS.IsCompared;
647 }
648 
collectFuncletMembers(DenseMap<const MachineBasicBlock *,int> & FuncletMembership,int Funclet,const MachineBasicBlock * MBB)649 static void collectFuncletMembers(
650     DenseMap<const MachineBasicBlock *, int> &FuncletMembership, int Funclet,
651     const MachineBasicBlock *MBB) {
652   // Add this MBB to our funclet.
653   auto P = FuncletMembership.insert(std::make_pair(MBB, Funclet));
654 
655   // Don't revisit blocks.
656   if (!P.second) {
657     assert(P.first->second == Funclet && "MBB is part of two funclets!");
658     return;
659   }
660 
661   bool IsReturn = false;
662   int NumTerminators = 0;
663   for (const MachineInstr &MI : MBB->terminators()) {
664     IsReturn |= MI.isReturn();
665     ++NumTerminators;
666   }
667   assert((!IsReturn || NumTerminators == 1) &&
668          "Expected only one terminator when a return is present!");
669 
670   // Returns are boundaries where funclet transfer can occur, don't follow
671   // successors.
672   if (IsReturn)
673     return;
674 
675   for (const MachineBasicBlock *SMBB : MBB->successors())
676     if (!SMBB->isEHPad())
677       collectFuncletMembers(FuncletMembership, Funclet, SMBB);
678 }
679 
680 DenseMap<const MachineBasicBlock *, int>
getFuncletMembership(const MachineFunction & MF)681 llvm::getFuncletMembership(const MachineFunction &MF) {
682   DenseMap<const MachineBasicBlock *, int> FuncletMembership;
683 
684   // We don't have anything to do if there aren't any EH pads.
685   if (!MF.getMMI().hasEHFunclets())
686     return FuncletMembership;
687 
688   int EntryBBNumber = MF.front().getNumber();
689   bool IsSEH = isAsynchronousEHPersonality(
690       classifyEHPersonality(MF.getFunction()->getPersonalityFn()));
691 
692   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
693   SmallVector<const MachineBasicBlock *, 16> FuncletBlocks;
694   SmallVector<const MachineBasicBlock *, 16> UnreachableBlocks;
695   SmallVector<const MachineBasicBlock *, 16> SEHCatchPads;
696   SmallVector<std::pair<const MachineBasicBlock *, int>, 16> CatchRetSuccessors;
697   for (const MachineBasicBlock &MBB : MF) {
698     if (MBB.isEHFuncletEntry()) {
699       FuncletBlocks.push_back(&MBB);
700     } else if (IsSEH && MBB.isEHPad()) {
701       SEHCatchPads.push_back(&MBB);
702     } else if (MBB.pred_empty()) {
703       UnreachableBlocks.push_back(&MBB);
704     }
705 
706     MachineBasicBlock::const_iterator MBBI = MBB.getFirstTerminator();
707     // CatchPads are not funclets for SEH so do not consider CatchRet to
708     // transfer control to another funclet.
709     if (MBBI->getOpcode() != TII->getCatchReturnOpcode())
710       continue;
711 
712     // FIXME: SEH CatchPads are not necessarily in the parent function:
713     // they could be inside a finally block.
714     const MachineBasicBlock *Successor = MBBI->getOperand(0).getMBB();
715     const MachineBasicBlock *SuccessorColor = MBBI->getOperand(1).getMBB();
716     CatchRetSuccessors.push_back(
717         {Successor, IsSEH ? EntryBBNumber : SuccessorColor->getNumber()});
718   }
719 
720   // We don't have anything to do if there aren't any EH pads.
721   if (FuncletBlocks.empty())
722     return FuncletMembership;
723 
724   // Identify all the basic blocks reachable from the function entry.
725   collectFuncletMembers(FuncletMembership, EntryBBNumber, &MF.front());
726   // All blocks not part of a funclet are in the parent function.
727   for (const MachineBasicBlock *MBB : UnreachableBlocks)
728     collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
729   // Next, identify all the blocks inside the funclets.
730   for (const MachineBasicBlock *MBB : FuncletBlocks)
731     collectFuncletMembers(FuncletMembership, MBB->getNumber(), MBB);
732   // SEH CatchPads aren't really funclets, handle them separately.
733   for (const MachineBasicBlock *MBB : SEHCatchPads)
734     collectFuncletMembers(FuncletMembership, EntryBBNumber, MBB);
735   // Finally, identify all the targets of a catchret.
736   for (std::pair<const MachineBasicBlock *, int> CatchRetPair :
737        CatchRetSuccessors)
738     collectFuncletMembers(FuncletMembership, CatchRetPair.second,
739                           CatchRetPair.first);
740   return FuncletMembership;
741 }
742