1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines routines for folding instructions into constants.
11 //
12 // Also, to supplement the basic IR ConstantExpr simplifications,
13 // this file defines some additional folding routines that can make use of
14 // DataLayout information. These functions cannot go in IR due to library
15 // dependency issues.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/ConstantFolding.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Config/config.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/MathExtras.h"
37 #include <cerrno>
38 #include <cmath>
39 
40 #ifdef HAVE_FENV_H
41 #include <fenv.h>
42 #endif
43 
44 using namespace llvm;
45 
46 //===----------------------------------------------------------------------===//
47 // Constant Folding internal helper functions
48 //===----------------------------------------------------------------------===//
49 
50 /// Constant fold bitcast, symbolically evaluating it with DataLayout.
51 /// This always returns a non-null constant, but it may be a
52 /// ConstantExpr if unfoldable.
FoldBitCast(Constant * C,Type * DestTy,const DataLayout & DL)53 static Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) {
54   // Catch the obvious splat cases.
55   if (C->isNullValue() && !DestTy->isX86_MMXTy())
56     return Constant::getNullValue(DestTy);
57   if (C->isAllOnesValue() && !DestTy->isX86_MMXTy() &&
58       !DestTy->isPtrOrPtrVectorTy()) // Don't get ones for ptr types!
59     return Constant::getAllOnesValue(DestTy);
60 
61   // Handle a vector->integer cast.
62   if (IntegerType *IT = dyn_cast<IntegerType>(DestTy)) {
63     VectorType *VTy = dyn_cast<VectorType>(C->getType());
64     if (!VTy)
65       return ConstantExpr::getBitCast(C, DestTy);
66 
67     unsigned NumSrcElts = VTy->getNumElements();
68     Type *SrcEltTy = VTy->getElementType();
69 
70     // If the vector is a vector of floating point, convert it to vector of int
71     // to simplify things.
72     if (SrcEltTy->isFloatingPointTy()) {
73       unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
74       Type *SrcIVTy =
75         VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElts);
76       // Ask IR to do the conversion now that #elts line up.
77       C = ConstantExpr::getBitCast(C, SrcIVTy);
78     }
79 
80     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C);
81     if (!CDV)
82       return ConstantExpr::getBitCast(C, DestTy);
83 
84     // Now that we know that the input value is a vector of integers, just shift
85     // and insert them into our result.
86     unsigned BitShift = DL.getTypeAllocSizeInBits(SrcEltTy);
87     APInt Result(IT->getBitWidth(), 0);
88     for (unsigned i = 0; i != NumSrcElts; ++i) {
89       Result <<= BitShift;
90       if (DL.isLittleEndian())
91         Result |= CDV->getElementAsInteger(NumSrcElts-i-1);
92       else
93         Result |= CDV->getElementAsInteger(i);
94     }
95 
96     return ConstantInt::get(IT, Result);
97   }
98 
99   // The code below only handles casts to vectors currently.
100   VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
101   if (!DestVTy)
102     return ConstantExpr::getBitCast(C, DestTy);
103 
104   // If this is a scalar -> vector cast, convert the input into a <1 x scalar>
105   // vector so the code below can handle it uniformly.
106   if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
107     Constant *Ops = C; // don't take the address of C!
108     return FoldBitCast(ConstantVector::get(Ops), DestTy, DL);
109   }
110 
111   // If this is a bitcast from constant vector -> vector, fold it.
112   if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C))
113     return ConstantExpr::getBitCast(C, DestTy);
114 
115   // If the element types match, IR can fold it.
116   unsigned NumDstElt = DestVTy->getNumElements();
117   unsigned NumSrcElt = C->getType()->getVectorNumElements();
118   if (NumDstElt == NumSrcElt)
119     return ConstantExpr::getBitCast(C, DestTy);
120 
121   Type *SrcEltTy = C->getType()->getVectorElementType();
122   Type *DstEltTy = DestVTy->getElementType();
123 
124   // Otherwise, we're changing the number of elements in a vector, which
125   // requires endianness information to do the right thing.  For example,
126   //    bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
127   // folds to (little endian):
128   //    <4 x i32> <i32 0, i32 0, i32 1, i32 0>
129   // and to (big endian):
130   //    <4 x i32> <i32 0, i32 0, i32 0, i32 1>
131 
132   // First thing is first.  We only want to think about integer here, so if
133   // we have something in FP form, recast it as integer.
134   if (DstEltTy->isFloatingPointTy()) {
135     // Fold to an vector of integers with same size as our FP type.
136     unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
137     Type *DestIVTy =
138       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
139     // Recursively handle this integer conversion, if possible.
140     C = FoldBitCast(C, DestIVTy, DL);
141 
142     // Finally, IR can handle this now that #elts line up.
143     return ConstantExpr::getBitCast(C, DestTy);
144   }
145 
146   // Okay, we know the destination is integer, if the input is FP, convert
147   // it to integer first.
148   if (SrcEltTy->isFloatingPointTy()) {
149     unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
150     Type *SrcIVTy =
151       VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
152     // Ask IR to do the conversion now that #elts line up.
153     C = ConstantExpr::getBitCast(C, SrcIVTy);
154     // If IR wasn't able to fold it, bail out.
155     if (!isa<ConstantVector>(C) &&  // FIXME: Remove ConstantVector.
156         !isa<ConstantDataVector>(C))
157       return C;
158   }
159 
160   // Now we know that the input and output vectors are both integer vectors
161   // of the same size, and that their #elements is not the same.  Do the
162   // conversion here, which depends on whether the input or output has
163   // more elements.
164   bool isLittleEndian = DL.isLittleEndian();
165 
166   SmallVector<Constant*, 32> Result;
167   if (NumDstElt < NumSrcElt) {
168     // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
169     Constant *Zero = Constant::getNullValue(DstEltTy);
170     unsigned Ratio = NumSrcElt/NumDstElt;
171     unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
172     unsigned SrcElt = 0;
173     for (unsigned i = 0; i != NumDstElt; ++i) {
174       // Build each element of the result.
175       Constant *Elt = Zero;
176       unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
177       for (unsigned j = 0; j != Ratio; ++j) {
178         Constant *Src =dyn_cast<ConstantInt>(C->getAggregateElement(SrcElt++));
179         if (!Src)  // Reject constantexpr elements.
180           return ConstantExpr::getBitCast(C, DestTy);
181 
182         // Zero extend the element to the right size.
183         Src = ConstantExpr::getZExt(Src, Elt->getType());
184 
185         // Shift it to the right place, depending on endianness.
186         Src = ConstantExpr::getShl(Src,
187                                    ConstantInt::get(Src->getType(), ShiftAmt));
188         ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
189 
190         // Mix it in.
191         Elt = ConstantExpr::getOr(Elt, Src);
192       }
193       Result.push_back(Elt);
194     }
195     return ConstantVector::get(Result);
196   }
197 
198   // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
199   unsigned Ratio = NumDstElt/NumSrcElt;
200   unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy);
201 
202   // Loop over each source value, expanding into multiple results.
203   for (unsigned i = 0; i != NumSrcElt; ++i) {
204     Constant *Src = dyn_cast<ConstantInt>(C->getAggregateElement(i));
205     if (!Src)  // Reject constantexpr elements.
206       return ConstantExpr::getBitCast(C, DestTy);
207 
208     unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
209     for (unsigned j = 0; j != Ratio; ++j) {
210       // Shift the piece of the value into the right place, depending on
211       // endianness.
212       Constant *Elt = ConstantExpr::getLShr(Src,
213                                   ConstantInt::get(Src->getType(), ShiftAmt));
214       ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
215 
216       // Truncate the element to an integer with the same pointer size and
217       // convert the element back to a pointer using a inttoptr.
218       if (DstEltTy->isPointerTy()) {
219         IntegerType *DstIntTy = Type::getIntNTy(C->getContext(), DstBitSize);
220         Constant *CE = ConstantExpr::getTrunc(Elt, DstIntTy);
221         Result.push_back(ConstantExpr::getIntToPtr(CE, DstEltTy));
222         continue;
223       }
224 
225       // Truncate and remember this piece.
226       Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
227     }
228   }
229 
230   return ConstantVector::get(Result);
231 }
232 
233 
234 /// If this constant is a constant offset from a global, return the global and
235 /// the constant. Because of constantexprs, this function is recursive.
IsConstantOffsetFromGlobal(Constant * C,GlobalValue * & GV,APInt & Offset,const DataLayout & DL)236 static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
237                                        APInt &Offset, const DataLayout &DL) {
238   // Trivial case, constant is the global.
239   if ((GV = dyn_cast<GlobalValue>(C))) {
240     unsigned BitWidth = DL.getPointerTypeSizeInBits(GV->getType());
241     Offset = APInt(BitWidth, 0);
242     return true;
243   }
244 
245   // Otherwise, if this isn't a constant expr, bail out.
246   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
247   if (!CE) return false;
248 
249   // Look through ptr->int and ptr->ptr casts.
250   if (CE->getOpcode() == Instruction::PtrToInt ||
251       CE->getOpcode() == Instruction::BitCast)
252     return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL);
253 
254   // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
255   GEPOperator *GEP = dyn_cast<GEPOperator>(CE);
256   if (!GEP)
257     return false;
258 
259   unsigned BitWidth = DL.getPointerTypeSizeInBits(GEP->getType());
260   APInt TmpOffset(BitWidth, 0);
261 
262   // If the base isn't a global+constant, we aren't either.
263   if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL))
264     return false;
265 
266   // Otherwise, add any offset that our operands provide.
267   if (!GEP->accumulateConstantOffset(DL, TmpOffset))
268     return false;
269 
270   Offset = TmpOffset;
271   return true;
272 }
273 
274 /// Recursive helper to read bits out of global. C is the constant being copied
275 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy
276 /// results into and BytesLeft is the number of bytes left in
277 /// the CurPtr buffer. DL is the DataLayout.
ReadDataFromGlobal(Constant * C,uint64_t ByteOffset,unsigned char * CurPtr,unsigned BytesLeft,const DataLayout & DL)278 static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
279                                unsigned char *CurPtr, unsigned BytesLeft,
280                                const DataLayout &DL) {
281   assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) &&
282          "Out of range access");
283 
284   // If this element is zero or undefined, we can just return since *CurPtr is
285   // zero initialized.
286   if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
287     return true;
288 
289   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
290     if (CI->getBitWidth() > 64 ||
291         (CI->getBitWidth() & 7) != 0)
292       return false;
293 
294     uint64_t Val = CI->getZExtValue();
295     unsigned IntBytes = unsigned(CI->getBitWidth()/8);
296 
297     for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
298       int n = ByteOffset;
299       if (!DL.isLittleEndian())
300         n = IntBytes - n - 1;
301       CurPtr[i] = (unsigned char)(Val >> (n * 8));
302       ++ByteOffset;
303     }
304     return true;
305   }
306 
307   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
308     if (CFP->getType()->isDoubleTy()) {
309       C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL);
310       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
311     }
312     if (CFP->getType()->isFloatTy()){
313       C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL);
314       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
315     }
316     if (CFP->getType()->isHalfTy()){
317       C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL);
318       return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL);
319     }
320     return false;
321   }
322 
323   if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
324     const StructLayout *SL = DL.getStructLayout(CS->getType());
325     unsigned Index = SL->getElementContainingOffset(ByteOffset);
326     uint64_t CurEltOffset = SL->getElementOffset(Index);
327     ByteOffset -= CurEltOffset;
328 
329     while (1) {
330       // If the element access is to the element itself and not to tail padding,
331       // read the bytes from the element.
332       uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType());
333 
334       if (ByteOffset < EltSize &&
335           !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
336                               BytesLeft, DL))
337         return false;
338 
339       ++Index;
340 
341       // Check to see if we read from the last struct element, if so we're done.
342       if (Index == CS->getType()->getNumElements())
343         return true;
344 
345       // If we read all of the bytes we needed from this element we're done.
346       uint64_t NextEltOffset = SL->getElementOffset(Index);
347 
348       if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset)
349         return true;
350 
351       // Move to the next element of the struct.
352       CurPtr += NextEltOffset - CurEltOffset - ByteOffset;
353       BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset;
354       ByteOffset = 0;
355       CurEltOffset = NextEltOffset;
356     }
357     // not reached.
358   }
359 
360   if (isa<ConstantArray>(C) || isa<ConstantVector>(C) ||
361       isa<ConstantDataSequential>(C)) {
362     Type *EltTy = C->getType()->getSequentialElementType();
363     uint64_t EltSize = DL.getTypeAllocSize(EltTy);
364     uint64_t Index = ByteOffset / EltSize;
365     uint64_t Offset = ByteOffset - Index * EltSize;
366     uint64_t NumElts;
367     if (ArrayType *AT = dyn_cast<ArrayType>(C->getType()))
368       NumElts = AT->getNumElements();
369     else
370       NumElts = C->getType()->getVectorNumElements();
371 
372     for (; Index != NumElts; ++Index) {
373       if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr,
374                               BytesLeft, DL))
375         return false;
376 
377       uint64_t BytesWritten = EltSize - Offset;
378       assert(BytesWritten <= EltSize && "Not indexing into this element?");
379       if (BytesWritten >= BytesLeft)
380         return true;
381 
382       Offset = 0;
383       BytesLeft -= BytesWritten;
384       CurPtr += BytesWritten;
385     }
386     return true;
387   }
388 
389   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
390     if (CE->getOpcode() == Instruction::IntToPtr &&
391         CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) {
392       return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
393                                 BytesLeft, DL);
394     }
395   }
396 
397   // Otherwise, unknown initializer type.
398   return false;
399 }
400 
FoldReinterpretLoadFromConstPtr(Constant * C,const DataLayout & DL)401 static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
402                                                  const DataLayout &DL) {
403   PointerType *PTy = cast<PointerType>(C->getType());
404   Type *LoadTy = PTy->getElementType();
405   IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
406 
407   // If this isn't an integer load we can't fold it directly.
408   if (!IntType) {
409     unsigned AS = PTy->getAddressSpace();
410 
411     // If this is a float/double load, we can try folding it as an int32/64 load
412     // and then bitcast the result.  This can be useful for union cases.  Note
413     // that address spaces don't matter here since we're not going to result in
414     // an actual new load.
415     Type *MapTy;
416     if (LoadTy->isHalfTy())
417       MapTy = Type::getInt16PtrTy(C->getContext(), AS);
418     else if (LoadTy->isFloatTy())
419       MapTy = Type::getInt32PtrTy(C->getContext(), AS);
420     else if (LoadTy->isDoubleTy())
421       MapTy = Type::getInt64PtrTy(C->getContext(), AS);
422     else if (LoadTy->isVectorTy()) {
423       MapTy = PointerType::getIntNPtrTy(C->getContext(),
424                                         DL.getTypeAllocSizeInBits(LoadTy), AS);
425     } else
426       return nullptr;
427 
428     C = FoldBitCast(C, MapTy, DL);
429     if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, DL))
430       return FoldBitCast(Res, LoadTy, DL);
431     return nullptr;
432   }
433 
434   unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
435   if (BytesLoaded > 32 || BytesLoaded == 0)
436     return nullptr;
437 
438   GlobalValue *GVal;
439   APInt Offset;
440   if (!IsConstantOffsetFromGlobal(C, GVal, Offset, DL))
441     return nullptr;
442 
443   GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
444   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
445       !GV->getInitializer()->getType()->isSized())
446     return nullptr;
447 
448   // If we're loading off the beginning of the global, some bytes may be valid,
449   // but we don't try to handle this.
450   if (Offset.isNegative())
451     return nullptr;
452 
453   // If we're not accessing anything in this constant, the result is undefined.
454   if (Offset.getZExtValue() >=
455       DL.getTypeAllocSize(GV->getInitializer()->getType()))
456     return UndefValue::get(IntType);
457 
458   unsigned char RawBytes[32] = {0};
459   if (!ReadDataFromGlobal(GV->getInitializer(), Offset.getZExtValue(), RawBytes,
460                           BytesLoaded, DL))
461     return nullptr;
462 
463   APInt ResultVal = APInt(IntType->getBitWidth(), 0);
464   if (DL.isLittleEndian()) {
465     ResultVal = RawBytes[BytesLoaded - 1];
466     for (unsigned i = 1; i != BytesLoaded; ++i) {
467       ResultVal <<= 8;
468       ResultVal |= RawBytes[BytesLoaded - 1 - i];
469     }
470   } else {
471     ResultVal = RawBytes[0];
472     for (unsigned i = 1; i != BytesLoaded; ++i) {
473       ResultVal <<= 8;
474       ResultVal |= RawBytes[i];
475     }
476   }
477 
478   return ConstantInt::get(IntType->getContext(), ResultVal);
479 }
480 
ConstantFoldLoadThroughBitcast(ConstantExpr * CE,const DataLayout & DL)481 static Constant *ConstantFoldLoadThroughBitcast(ConstantExpr *CE,
482                                                 const DataLayout &DL) {
483   auto *DestPtrTy = dyn_cast<PointerType>(CE->getType());
484   if (!DestPtrTy)
485     return nullptr;
486   Type *DestTy = DestPtrTy->getElementType();
487 
488   Constant *C = ConstantFoldLoadFromConstPtr(CE->getOperand(0), DL);
489   if (!C)
490     return nullptr;
491 
492   do {
493     Type *SrcTy = C->getType();
494 
495     // If the type sizes are the same and a cast is legal, just directly
496     // cast the constant.
497     if (DL.getTypeSizeInBits(DestTy) == DL.getTypeSizeInBits(SrcTy)) {
498       Instruction::CastOps Cast = Instruction::BitCast;
499       // If we are going from a pointer to int or vice versa, we spell the cast
500       // differently.
501       if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
502         Cast = Instruction::IntToPtr;
503       else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
504         Cast = Instruction::PtrToInt;
505 
506       if (CastInst::castIsValid(Cast, C, DestTy))
507         return ConstantExpr::getCast(Cast, C, DestTy);
508     }
509 
510     // If this isn't an aggregate type, there is nothing we can do to drill down
511     // and find a bitcastable constant.
512     if (!SrcTy->isAggregateType())
513       return nullptr;
514 
515     // We're simulating a load through a pointer that was bitcast to point to
516     // a different type, so we can try to walk down through the initial
517     // elements of an aggregate to see if some part of th e aggregate is
518     // castable to implement the "load" semantic model.
519     C = C->getAggregateElement(0u);
520   } while (C);
521 
522   return nullptr;
523 }
524 
525 /// Return the value that a load from C would produce if it is constant and
526 /// determinable. If this is not determinable, return null.
ConstantFoldLoadFromConstPtr(Constant * C,const DataLayout & DL)527 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
528                                              const DataLayout &DL) {
529   // First, try the easy cases:
530   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
531     if (GV->isConstant() && GV->hasDefinitiveInitializer())
532       return GV->getInitializer();
533 
534   if (auto *GA = dyn_cast<GlobalAlias>(C))
535     if (GA->getAliasee() && !GA->mayBeOverridden())
536       return ConstantFoldLoadFromConstPtr(GA->getAliasee(), DL);
537 
538   // If the loaded value isn't a constant expr, we can't handle it.
539   ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
540   if (!CE)
541     return nullptr;
542 
543   if (CE->getOpcode() == Instruction::GetElementPtr) {
544     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0))) {
545       if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
546         if (Constant *V =
547              ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
548           return V;
549       }
550     }
551   }
552 
553   if (CE->getOpcode() == Instruction::BitCast)
554     if (Constant *LoadedC = ConstantFoldLoadThroughBitcast(CE, DL))
555       return LoadedC;
556 
557   // Instead of loading constant c string, use corresponding integer value
558   // directly if string length is small enough.
559   StringRef Str;
560   if (getConstantStringInfo(CE, Str) && !Str.empty()) {
561     unsigned StrLen = Str.size();
562     Type *Ty = cast<PointerType>(CE->getType())->getElementType();
563     unsigned NumBits = Ty->getPrimitiveSizeInBits();
564     // Replace load with immediate integer if the result is an integer or fp
565     // value.
566     if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
567         (isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
568       APInt StrVal(NumBits, 0);
569       APInt SingleChar(NumBits, 0);
570       if (DL.isLittleEndian()) {
571         for (signed i = StrLen-1; i >= 0; i--) {
572           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
573           StrVal = (StrVal << 8) | SingleChar;
574         }
575       } else {
576         for (unsigned i = 0; i < StrLen; i++) {
577           SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
578           StrVal = (StrVal << 8) | SingleChar;
579         }
580         // Append NULL at the end.
581         SingleChar = 0;
582         StrVal = (StrVal << 8) | SingleChar;
583       }
584 
585       Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
586       if (Ty->isFloatingPointTy())
587         Res = ConstantExpr::getBitCast(Res, Ty);
588       return Res;
589     }
590   }
591 
592   // If this load comes from anywhere in a constant global, and if the global
593   // is all undef or zero, we know what it loads.
594   if (GlobalVariable *GV =
595           dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, DL))) {
596     if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
597       Type *ResTy = cast<PointerType>(C->getType())->getElementType();
598       if (GV->getInitializer()->isNullValue())
599         return Constant::getNullValue(ResTy);
600       if (isa<UndefValue>(GV->getInitializer()))
601         return UndefValue::get(ResTy);
602     }
603   }
604 
605   // Try hard to fold loads from bitcasted strange and non-type-safe things.
606   return FoldReinterpretLoadFromConstPtr(CE, DL);
607 }
608 
ConstantFoldLoadInst(const LoadInst * LI,const DataLayout & DL)609 static Constant *ConstantFoldLoadInst(const LoadInst *LI,
610                                       const DataLayout &DL) {
611   if (LI->isVolatile()) return nullptr;
612 
613   if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
614     return ConstantFoldLoadFromConstPtr(C, DL);
615 
616   return nullptr;
617 }
618 
619 /// One of Op0/Op1 is a constant expression.
620 /// Attempt to symbolically evaluate the result of a binary operator merging
621 /// these together.  If target data info is available, it is provided as DL,
622 /// otherwise DL is null.
SymbolicallyEvaluateBinop(unsigned Opc,Constant * Op0,Constant * Op1,const DataLayout & DL)623 static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
624                                            Constant *Op1,
625                                            const DataLayout &DL) {
626   // SROA
627 
628   // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
629   // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
630   // bits.
631 
632   if (Opc == Instruction::And) {
633     unsigned BitWidth = DL.getTypeSizeInBits(Op0->getType()->getScalarType());
634     APInt KnownZero0(BitWidth, 0), KnownOne0(BitWidth, 0);
635     APInt KnownZero1(BitWidth, 0), KnownOne1(BitWidth, 0);
636     computeKnownBits(Op0, KnownZero0, KnownOne0, DL);
637     computeKnownBits(Op1, KnownZero1, KnownOne1, DL);
638     if ((KnownOne1 | KnownZero0).isAllOnesValue()) {
639       // All the bits of Op0 that the 'and' could be masking are already zero.
640       return Op0;
641     }
642     if ((KnownOne0 | KnownZero1).isAllOnesValue()) {
643       // All the bits of Op1 that the 'and' could be masking are already zero.
644       return Op1;
645     }
646 
647     APInt KnownZero = KnownZero0 | KnownZero1;
648     APInt KnownOne = KnownOne0 & KnownOne1;
649     if ((KnownZero | KnownOne).isAllOnesValue()) {
650       return ConstantInt::get(Op0->getType(), KnownOne);
651     }
652   }
653 
654   // If the constant expr is something like &A[123] - &A[4].f, fold this into a
655   // constant.  This happens frequently when iterating over a global array.
656   if (Opc == Instruction::Sub) {
657     GlobalValue *GV1, *GV2;
658     APInt Offs1, Offs2;
659 
660     if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL))
661       if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) {
662         unsigned OpSize = DL.getTypeSizeInBits(Op0->getType());
663 
664         // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
665         // PtrToInt may change the bitwidth so we have convert to the right size
666         // first.
667         return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) -
668                                                 Offs2.zextOrTrunc(OpSize));
669       }
670   }
671 
672   return nullptr;
673 }
674 
675 /// If array indices are not pointer-sized integers, explicitly cast them so
676 /// that they aren't implicitly casted by the getelementptr.
CastGEPIndices(Type * SrcTy,ArrayRef<Constant * > Ops,Type * ResultTy,const DataLayout & DL,const TargetLibraryInfo * TLI)677 static Constant *CastGEPIndices(Type *SrcTy, ArrayRef<Constant *> Ops,
678                                 Type *ResultTy, const DataLayout &DL,
679                                 const TargetLibraryInfo *TLI) {
680   Type *IntPtrTy = DL.getIntPtrType(ResultTy);
681 
682   bool Any = false;
683   SmallVector<Constant*, 32> NewIdxs;
684   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
685     if ((i == 1 ||
686          !isa<StructType>(GetElementPtrInst::getIndexedType(
687              cast<PointerType>(Ops[0]->getType()->getScalarType())
688                  ->getElementType(),
689              Ops.slice(1, i - 1)))) &&
690         Ops[i]->getType() != IntPtrTy) {
691       Any = true;
692       NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
693                                                                       true,
694                                                                       IntPtrTy,
695                                                                       true),
696                                               Ops[i], IntPtrTy));
697     } else
698       NewIdxs.push_back(Ops[i]);
699   }
700 
701   if (!Any)
702     return nullptr;
703 
704   Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ops[0], NewIdxs);
705   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
706     if (Constant *Folded = ConstantFoldConstantExpression(CE, DL, TLI))
707       C = Folded;
708   }
709 
710   return C;
711 }
712 
713 /// Strip the pointer casts, but preserve the address space information.
StripPtrCastKeepAS(Constant * Ptr)714 static Constant* StripPtrCastKeepAS(Constant* Ptr) {
715   assert(Ptr->getType()->isPointerTy() && "Not a pointer type");
716   PointerType *OldPtrTy = cast<PointerType>(Ptr->getType());
717   Ptr = Ptr->stripPointerCasts();
718   PointerType *NewPtrTy = cast<PointerType>(Ptr->getType());
719 
720   // Preserve the address space number of the pointer.
721   if (NewPtrTy->getAddressSpace() != OldPtrTy->getAddressSpace()) {
722     NewPtrTy = NewPtrTy->getElementType()->getPointerTo(
723       OldPtrTy->getAddressSpace());
724     Ptr = ConstantExpr::getPointerCast(Ptr, NewPtrTy);
725   }
726   return Ptr;
727 }
728 
729 /// If we can symbolically evaluate the GEP constant expression, do so.
SymbolicallyEvaluateGEP(Type * SrcTy,ArrayRef<Constant * > Ops,Type * ResultTy,const DataLayout & DL,const TargetLibraryInfo * TLI)730 static Constant *SymbolicallyEvaluateGEP(Type *SrcTy, ArrayRef<Constant *> Ops,
731                                          Type *ResultTy, const DataLayout &DL,
732                                          const TargetLibraryInfo *TLI) {
733   Constant *Ptr = Ops[0];
734   if (!Ptr->getType()->getPointerElementType()->isSized() ||
735       !Ptr->getType()->isPointerTy())
736     return nullptr;
737 
738   Type *IntPtrTy = DL.getIntPtrType(Ptr->getType());
739   Type *ResultElementTy = ResultTy->getPointerElementType();
740 
741   // If this is a constant expr gep that is effectively computing an
742   // "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
743   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
744     if (!isa<ConstantInt>(Ops[i])) {
745 
746       // If this is "gep i8* Ptr, (sub 0, V)", fold this as:
747       // "inttoptr (sub (ptrtoint Ptr), V)"
748       if (Ops.size() == 2 && ResultElementTy->isIntegerTy(8)) {
749         ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
750         assert((!CE || CE->getType() == IntPtrTy) &&
751                "CastGEPIndices didn't canonicalize index types!");
752         if (CE && CE->getOpcode() == Instruction::Sub &&
753             CE->getOperand(0)->isNullValue()) {
754           Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
755           Res = ConstantExpr::getSub(Res, CE->getOperand(1));
756           Res = ConstantExpr::getIntToPtr(Res, ResultTy);
757           if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
758             Res = ConstantFoldConstantExpression(ResCE, DL, TLI);
759           return Res;
760         }
761       }
762       return nullptr;
763     }
764 
765   unsigned BitWidth = DL.getTypeSizeInBits(IntPtrTy);
766   APInt Offset =
767       APInt(BitWidth,
768             DL.getIndexedOffset(
769                 Ptr->getType(),
770                 makeArrayRef((Value * const *)Ops.data() + 1, Ops.size() - 1)));
771   Ptr = StripPtrCastKeepAS(Ptr);
772 
773   // If this is a GEP of a GEP, fold it all into a single GEP.
774   while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
775     SmallVector<Value *, 4> NestedOps(GEP->op_begin() + 1, GEP->op_end());
776 
777     // Do not try the incorporate the sub-GEP if some index is not a number.
778     bool AllConstantInt = true;
779     for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
780       if (!isa<ConstantInt>(NestedOps[i])) {
781         AllConstantInt = false;
782         break;
783       }
784     if (!AllConstantInt)
785       break;
786 
787     Ptr = cast<Constant>(GEP->getOperand(0));
788     Offset += APInt(BitWidth, DL.getIndexedOffset(Ptr->getType(), NestedOps));
789     Ptr = StripPtrCastKeepAS(Ptr);
790   }
791 
792   // If the base value for this address is a literal integer value, fold the
793   // getelementptr to the resulting integer value casted to the pointer type.
794   APInt BasePtr(BitWidth, 0);
795   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
796     if (CE->getOpcode() == Instruction::IntToPtr) {
797       if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
798         BasePtr = Base->getValue().zextOrTrunc(BitWidth);
799     }
800   }
801 
802   if (Ptr->isNullValue() || BasePtr != 0) {
803     Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr);
804     return ConstantExpr::getIntToPtr(C, ResultTy);
805   }
806 
807   // Otherwise form a regular getelementptr. Recompute the indices so that
808   // we eliminate over-indexing of the notional static type array bounds.
809   // This makes it easy to determine if the getelementptr is "inbounds".
810   // Also, this helps GlobalOpt do SROA on GlobalVariables.
811   Type *Ty = Ptr->getType();
812   assert(Ty->isPointerTy() && "Forming regular GEP of non-pointer type");
813   SmallVector<Constant *, 32> NewIdxs;
814 
815   do {
816     if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
817       if (ATy->isPointerTy()) {
818         // The only pointer indexing we'll do is on the first index of the GEP.
819         if (!NewIdxs.empty())
820           break;
821 
822         // Only handle pointers to sized types, not pointers to functions.
823         if (!ATy->getElementType()->isSized())
824           return nullptr;
825       }
826 
827       // Determine which element of the array the offset points into.
828       APInt ElemSize(BitWidth, DL.getTypeAllocSize(ATy->getElementType()));
829       if (ElemSize == 0)
830         // The element size is 0. This may be [0 x Ty]*, so just use a zero
831         // index for this level and proceed to the next level to see if it can
832         // accommodate the offset.
833         NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
834       else {
835         // The element size is non-zero divide the offset by the element
836         // size (rounding down), to compute the index at this level.
837         APInt NewIdx = Offset.udiv(ElemSize);
838         Offset -= NewIdx * ElemSize;
839         NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
840       }
841       Ty = ATy->getElementType();
842     } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
843       // If we end up with an offset that isn't valid for this struct type, we
844       // can't re-form this GEP in a regular form, so bail out. The pointer
845       // operand likely went through casts that are necessary to make the GEP
846       // sensible.
847       const StructLayout &SL = *DL.getStructLayout(STy);
848       if (Offset.uge(SL.getSizeInBytes()))
849         break;
850 
851       // Determine which field of the struct the offset points into. The
852       // getZExtValue is fine as we've already ensured that the offset is
853       // within the range representable by the StructLayout API.
854       unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
855       NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
856                                          ElIdx));
857       Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
858       Ty = STy->getTypeAtIndex(ElIdx);
859     } else {
860       // We've reached some non-indexable type.
861       break;
862     }
863   } while (Ty != ResultElementTy);
864 
865   // If we haven't used up the entire offset by descending the static
866   // type, then the offset is pointing into the middle of an indivisible
867   // member, so we can't simplify it.
868   if (Offset != 0)
869     return nullptr;
870 
871   // Create a GEP.
872   Constant *C = ConstantExpr::getGetElementPtr(SrcTy, Ptr, NewIdxs);
873   assert(C->getType()->getPointerElementType() == Ty &&
874          "Computed GetElementPtr has unexpected type!");
875 
876   // If we ended up indexing a member with a type that doesn't match
877   // the type of what the original indices indexed, add a cast.
878   if (Ty != ResultElementTy)
879     C = FoldBitCast(C, ResultTy, DL);
880 
881   return C;
882 }
883 
884 
885 
886 //===----------------------------------------------------------------------===//
887 // Constant Folding public APIs
888 //===----------------------------------------------------------------------===//
889 
890 /// Try to constant fold the specified instruction.
891 /// If successful, the constant result is returned, if not, null is returned.
892 /// Note that this fails if not all of the operands are constant.  Otherwise,
893 /// this function can only fail when attempting to fold instructions like loads
894 /// and stores, which have no constant expression form.
ConstantFoldInstruction(Instruction * I,const DataLayout & DL,const TargetLibraryInfo * TLI)895 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL,
896                                         const TargetLibraryInfo *TLI) {
897   // Handle PHI nodes quickly here...
898   if (PHINode *PN = dyn_cast<PHINode>(I)) {
899     Constant *CommonValue = nullptr;
900 
901     for (Value *Incoming : PN->incoming_values()) {
902       // If the incoming value is undef then skip it.  Note that while we could
903       // skip the value if it is equal to the phi node itself we choose not to
904       // because that would break the rule that constant folding only applies if
905       // all operands are constants.
906       if (isa<UndefValue>(Incoming))
907         continue;
908       // If the incoming value is not a constant, then give up.
909       Constant *C = dyn_cast<Constant>(Incoming);
910       if (!C)
911         return nullptr;
912       // Fold the PHI's operands.
913       if (ConstantExpr *NewC = dyn_cast<ConstantExpr>(C))
914         C = ConstantFoldConstantExpression(NewC, DL, TLI);
915       // If the incoming value is a different constant to
916       // the one we saw previously, then give up.
917       if (CommonValue && C != CommonValue)
918         return nullptr;
919       CommonValue = C;
920     }
921 
922 
923     // If we reach here, all incoming values are the same constant or undef.
924     return CommonValue ? CommonValue : UndefValue::get(PN->getType());
925   }
926 
927   // Scan the operand list, checking to see if they are all constants, if so,
928   // hand off to ConstantFoldInstOperands.
929   SmallVector<Constant*, 8> Ops;
930   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
931     Constant *Op = dyn_cast<Constant>(*i);
932     if (!Op)
933       return nullptr;  // All operands not constant!
934 
935     // Fold the Instruction's operands.
936     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(Op))
937       Op = ConstantFoldConstantExpression(NewCE, DL, TLI);
938 
939     Ops.push_back(Op);
940   }
941 
942   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
943     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
944                                            DL, TLI);
945 
946   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
947     return ConstantFoldLoadInst(LI, DL);
948 
949   if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I)) {
950     return ConstantExpr::getInsertValue(
951                                 cast<Constant>(IVI->getAggregateOperand()),
952                                 cast<Constant>(IVI->getInsertedValueOperand()),
953                                 IVI->getIndices());
954   }
955 
956   if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I)) {
957     return ConstantExpr::getExtractValue(
958                                     cast<Constant>(EVI->getAggregateOperand()),
959                                     EVI->getIndices());
960   }
961 
962   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, DL, TLI);
963 }
964 
965 static Constant *
ConstantFoldConstantExpressionImpl(const ConstantExpr * CE,const DataLayout & DL,const TargetLibraryInfo * TLI,SmallPtrSetImpl<ConstantExpr * > & FoldedOps)966 ConstantFoldConstantExpressionImpl(const ConstantExpr *CE, const DataLayout &DL,
967                                    const TargetLibraryInfo *TLI,
968                                    SmallPtrSetImpl<ConstantExpr *> &FoldedOps) {
969   SmallVector<Constant *, 8> Ops;
970   for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end(); i != e;
971        ++i) {
972     Constant *NewC = cast<Constant>(*i);
973     // Recursively fold the ConstantExpr's operands. If we have already folded
974     // a ConstantExpr, we don't have to process it again.
975     if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC)) {
976       if (FoldedOps.insert(NewCE).second)
977         NewC = ConstantFoldConstantExpressionImpl(NewCE, DL, TLI, FoldedOps);
978     }
979     Ops.push_back(NewC);
980   }
981 
982   if (CE->isCompare())
983     return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
984                                            DL, TLI);
985   return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, DL, TLI);
986 }
987 
988 /// Attempt to fold the constant expression
989 /// using the specified DataLayout.  If successful, the constant result is
990 /// result is returned, if not, null is returned.
ConstantFoldConstantExpression(const ConstantExpr * CE,const DataLayout & DL,const TargetLibraryInfo * TLI)991 Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
992                                                const DataLayout &DL,
993                                                const TargetLibraryInfo *TLI) {
994   SmallPtrSet<ConstantExpr *, 4> FoldedOps;
995   return ConstantFoldConstantExpressionImpl(CE, DL, TLI, FoldedOps);
996 }
997 
998 /// Attempt to constant fold an instruction with the
999 /// specified opcode and operands.  If successful, the constant result is
1000 /// returned, if not, null is returned.  Note that this function can fail when
1001 /// attempting to fold instructions like loads and stores, which have no
1002 /// constant expression form.
1003 ///
1004 /// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
1005 /// information, due to only being passed an opcode and operands. Constant
1006 /// folding using this function strips this information.
1007 ///
ConstantFoldInstOperands(unsigned Opcode,Type * DestTy,ArrayRef<Constant * > Ops,const DataLayout & DL,const TargetLibraryInfo * TLI)1008 Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
1009                                          ArrayRef<Constant *> Ops,
1010                                          const DataLayout &DL,
1011                                          const TargetLibraryInfo *TLI) {
1012   // Handle easy binops first.
1013   if (Instruction::isBinaryOp(Opcode)) {
1014     if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1])) {
1015       if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], DL))
1016         return C;
1017     }
1018 
1019     return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
1020   }
1021 
1022   switch (Opcode) {
1023   default: return nullptr;
1024   case Instruction::ICmp:
1025   case Instruction::FCmp: llvm_unreachable("Invalid for compares");
1026   case Instruction::Call:
1027     if (Function *F = dyn_cast<Function>(Ops.back()))
1028       if (canConstantFoldCallTo(F))
1029         return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
1030     return nullptr;
1031   case Instruction::PtrToInt:
1032     // If the input is a inttoptr, eliminate the pair.  This requires knowing
1033     // the width of a pointer, so it can't be done in ConstantExpr::getCast.
1034     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1035       if (CE->getOpcode() == Instruction::IntToPtr) {
1036         Constant *Input = CE->getOperand(0);
1037         unsigned InWidth = Input->getType()->getScalarSizeInBits();
1038         unsigned PtrWidth = DL.getPointerTypeSizeInBits(CE->getType());
1039         if (PtrWidth < InWidth) {
1040           Constant *Mask =
1041             ConstantInt::get(CE->getContext(),
1042                              APInt::getLowBitsSet(InWidth, PtrWidth));
1043           Input = ConstantExpr::getAnd(Input, Mask);
1044         }
1045         // Do a zext or trunc to get to the dest size.
1046         return ConstantExpr::getIntegerCast(Input, DestTy, false);
1047       }
1048     }
1049     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1050   case Instruction::IntToPtr:
1051     // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
1052     // the int size is >= the ptr size and the address spaces are the same.
1053     // This requires knowing the width of a pointer, so it can't be done in
1054     // ConstantExpr::getCast.
1055     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
1056       if (CE->getOpcode() == Instruction::PtrToInt) {
1057         Constant *SrcPtr = CE->getOperand(0);
1058         unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType());
1059         unsigned MidIntSize = CE->getType()->getScalarSizeInBits();
1060 
1061         if (MidIntSize >= SrcPtrSize) {
1062           unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace();
1063           if (SrcAS == DestTy->getPointerAddressSpace())
1064             return FoldBitCast(CE->getOperand(0), DestTy, DL);
1065         }
1066       }
1067     }
1068 
1069     return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1070   case Instruction::Trunc:
1071   case Instruction::ZExt:
1072   case Instruction::SExt:
1073   case Instruction::FPTrunc:
1074   case Instruction::FPExt:
1075   case Instruction::UIToFP:
1076   case Instruction::SIToFP:
1077   case Instruction::FPToUI:
1078   case Instruction::FPToSI:
1079   case Instruction::AddrSpaceCast:
1080       return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
1081   case Instruction::BitCast:
1082     return FoldBitCast(Ops[0], DestTy, DL);
1083   case Instruction::Select:
1084     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1085   case Instruction::ExtractElement:
1086     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1087   case Instruction::InsertElement:
1088     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1089   case Instruction::ShuffleVector:
1090     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1091   case Instruction::GetElementPtr: {
1092     Type *SrcTy = nullptr;
1093     if (Constant *C = CastGEPIndices(SrcTy, Ops, DestTy, DL, TLI))
1094       return C;
1095     if (Constant *C = SymbolicallyEvaluateGEP(SrcTy, Ops, DestTy, DL, TLI))
1096       return C;
1097 
1098     return ConstantExpr::getGetElementPtr(SrcTy, Ops[0], Ops.slice(1));
1099   }
1100   }
1101 }
1102 
1103 /// Attempt to constant fold a compare
1104 /// instruction (icmp/fcmp) with the specified operands.  If it fails, it
1105 /// returns a constant expression of the specified operands.
ConstantFoldCompareInstOperands(unsigned Predicate,Constant * Ops0,Constant * Ops1,const DataLayout & DL,const TargetLibraryInfo * TLI)1106 Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
1107                                                 Constant *Ops0, Constant *Ops1,
1108                                                 const DataLayout &DL,
1109                                                 const TargetLibraryInfo *TLI) {
1110   // fold: icmp (inttoptr x), null         -> icmp x, 0
1111   // fold: icmp (ptrtoint x), 0            -> icmp x, null
1112   // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
1113   // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
1114   //
1115   // FIXME: The following comment is out of data and the DataLayout is here now.
1116   // ConstantExpr::getCompare cannot do this, because it doesn't have DL
1117   // around to know if bit truncation is happening.
1118   if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
1119     if (Ops1->isNullValue()) {
1120       if (CE0->getOpcode() == Instruction::IntToPtr) {
1121         Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1122         // Convert the integer value to the right size to ensure we get the
1123         // proper extension or truncation.
1124         Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1125                                                    IntPtrTy, false);
1126         Constant *Null = Constant::getNullValue(C->getType());
1127         return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1128       }
1129 
1130       // Only do this transformation if the int is intptrty in size, otherwise
1131       // there is a truncation or extension that we aren't modeling.
1132       if (CE0->getOpcode() == Instruction::PtrToInt) {
1133         Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1134         if (CE0->getType() == IntPtrTy) {
1135           Constant *C = CE0->getOperand(0);
1136           Constant *Null = Constant::getNullValue(C->getType());
1137           return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI);
1138         }
1139       }
1140     }
1141 
1142     if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
1143       if (CE0->getOpcode() == CE1->getOpcode()) {
1144         if (CE0->getOpcode() == Instruction::IntToPtr) {
1145           Type *IntPtrTy = DL.getIntPtrType(CE0->getType());
1146 
1147           // Convert the integer value to the right size to ensure we get the
1148           // proper extension or truncation.
1149           Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
1150                                                       IntPtrTy, false);
1151           Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
1152                                                       IntPtrTy, false);
1153           return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI);
1154         }
1155 
1156         // Only do this transformation if the int is intptrty in size, otherwise
1157         // there is a truncation or extension that we aren't modeling.
1158         if (CE0->getOpcode() == Instruction::PtrToInt) {
1159           Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType());
1160           if (CE0->getType() == IntPtrTy &&
1161               CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) {
1162             return ConstantFoldCompareInstOperands(
1163                 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI);
1164           }
1165         }
1166       }
1167     }
1168 
1169     // icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
1170     // icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
1171     if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
1172         CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
1173       Constant *LHS = ConstantFoldCompareInstOperands(
1174           Predicate, CE0->getOperand(0), Ops1, DL, TLI);
1175       Constant *RHS = ConstantFoldCompareInstOperands(
1176           Predicate, CE0->getOperand(1), Ops1, DL, TLI);
1177       unsigned OpC =
1178         Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1179       Constant *Ops[] = { LHS, RHS };
1180       return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, DL, TLI);
1181     }
1182   }
1183 
1184   return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
1185 }
1186 
1187 
1188 /// Given a constant and a getelementptr constantexpr, return the constant value
1189 /// being addressed by the constant expression, or null if something is funny
1190 /// and we can't decide.
ConstantFoldLoadThroughGEPConstantExpr(Constant * C,ConstantExpr * CE)1191 Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
1192                                                        ConstantExpr *CE) {
1193   if (!CE->getOperand(1)->isNullValue())
1194     return nullptr;  // Do not allow stepping over the value!
1195 
1196   // Loop over all of the operands, tracking down which value we are
1197   // addressing.
1198   for (unsigned i = 2, e = CE->getNumOperands(); i != e; ++i) {
1199     C = C->getAggregateElement(CE->getOperand(i));
1200     if (!C)
1201       return nullptr;
1202   }
1203   return C;
1204 }
1205 
1206 /// Given a constant and getelementptr indices (with an *implied* zero pointer
1207 /// index that is not in the list), return the constant value being addressed by
1208 /// a virtual load, or null if something is funny and we can't decide.
ConstantFoldLoadThroughGEPIndices(Constant * C,ArrayRef<Constant * > Indices)1209 Constant *llvm::ConstantFoldLoadThroughGEPIndices(Constant *C,
1210                                                   ArrayRef<Constant*> Indices) {
1211   // Loop over all of the operands, tracking down which value we are
1212   // addressing.
1213   for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
1214     C = C->getAggregateElement(Indices[i]);
1215     if (!C)
1216       return nullptr;
1217   }
1218   return C;
1219 }
1220 
1221 
1222 //===----------------------------------------------------------------------===//
1223 //  Constant Folding for Calls
1224 //
1225 
1226 /// Return true if it's even possible to fold a call to the specified function.
canConstantFoldCallTo(const Function * F)1227 bool llvm::canConstantFoldCallTo(const Function *F) {
1228   switch (F->getIntrinsicID()) {
1229   case Intrinsic::fabs:
1230   case Intrinsic::minnum:
1231   case Intrinsic::maxnum:
1232   case Intrinsic::log:
1233   case Intrinsic::log2:
1234   case Intrinsic::log10:
1235   case Intrinsic::exp:
1236   case Intrinsic::exp2:
1237   case Intrinsic::floor:
1238   case Intrinsic::ceil:
1239   case Intrinsic::sqrt:
1240   case Intrinsic::sin:
1241   case Intrinsic::cos:
1242   case Intrinsic::trunc:
1243   case Intrinsic::rint:
1244   case Intrinsic::nearbyint:
1245   case Intrinsic::pow:
1246   case Intrinsic::powi:
1247   case Intrinsic::bswap:
1248   case Intrinsic::ctpop:
1249   case Intrinsic::ctlz:
1250   case Intrinsic::cttz:
1251   case Intrinsic::fma:
1252   case Intrinsic::fmuladd:
1253   case Intrinsic::copysign:
1254   case Intrinsic::round:
1255   case Intrinsic::sadd_with_overflow:
1256   case Intrinsic::uadd_with_overflow:
1257   case Intrinsic::ssub_with_overflow:
1258   case Intrinsic::usub_with_overflow:
1259   case Intrinsic::smul_with_overflow:
1260   case Intrinsic::umul_with_overflow:
1261   case Intrinsic::convert_from_fp16:
1262   case Intrinsic::convert_to_fp16:
1263   case Intrinsic::x86_sse_cvtss2si:
1264   case Intrinsic::x86_sse_cvtss2si64:
1265   case Intrinsic::x86_sse_cvttss2si:
1266   case Intrinsic::x86_sse_cvttss2si64:
1267   case Intrinsic::x86_sse2_cvtsd2si:
1268   case Intrinsic::x86_sse2_cvtsd2si64:
1269   case Intrinsic::x86_sse2_cvttsd2si:
1270   case Intrinsic::x86_sse2_cvttsd2si64:
1271     return true;
1272   default:
1273     return false;
1274   case 0: break;
1275   }
1276 
1277   if (!F->hasName())
1278     return false;
1279   StringRef Name = F->getName();
1280 
1281   // In these cases, the check of the length is required.  We don't want to
1282   // return true for a name like "cos\0blah" which strcmp would return equal to
1283   // "cos", but has length 8.
1284   switch (Name[0]) {
1285   default:
1286     return false;
1287   case 'a':
1288     return Name == "acos" || Name == "asin" || Name == "atan" ||
1289            Name == "atan2" || Name == "acosf" || Name == "asinf" ||
1290            Name == "atanf" || Name == "atan2f";
1291   case 'c':
1292     return Name == "ceil" || Name == "cos" || Name == "cosh" ||
1293            Name == "ceilf" || Name == "cosf" || Name == "coshf";
1294   case 'e':
1295     return Name == "exp" || Name == "exp2" || Name == "expf" || Name == "exp2f";
1296   case 'f':
1297     return Name == "fabs" || Name == "floor" || Name == "fmod" ||
1298            Name == "fabsf" || Name == "floorf" || Name == "fmodf";
1299   case 'l':
1300     return Name == "log" || Name == "log10" || Name == "logf" ||
1301            Name == "log10f";
1302   case 'p':
1303     return Name == "pow" || Name == "powf";
1304   case 's':
1305     return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
1306            Name == "sinf" || Name == "sinhf" || Name == "sqrtf";
1307   case 't':
1308     return Name == "tan" || Name == "tanh" || Name == "tanf" || Name == "tanhf";
1309   }
1310 }
1311 
GetConstantFoldFPValue(double V,Type * Ty)1312 static Constant *GetConstantFoldFPValue(double V, Type *Ty) {
1313   if (Ty->isHalfTy()) {
1314     APFloat APF(V);
1315     bool unused;
1316     APF.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &unused);
1317     return ConstantFP::get(Ty->getContext(), APF);
1318   }
1319   if (Ty->isFloatTy())
1320     return ConstantFP::get(Ty->getContext(), APFloat((float)V));
1321   if (Ty->isDoubleTy())
1322     return ConstantFP::get(Ty->getContext(), APFloat(V));
1323   llvm_unreachable("Can only constant fold half/float/double");
1324 
1325 }
1326 
1327 namespace {
1328 /// Clear the floating-point exception state.
llvm_fenv_clearexcept()1329 static inline void llvm_fenv_clearexcept() {
1330 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT
1331   feclearexcept(FE_ALL_EXCEPT);
1332 #endif
1333   errno = 0;
1334 }
1335 
1336 /// Test if a floating-point exception was raised.
llvm_fenv_testexcept()1337 static inline bool llvm_fenv_testexcept() {
1338   int errno_val = errno;
1339   if (errno_val == ERANGE || errno_val == EDOM)
1340     return true;
1341 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT
1342   if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT))
1343     return true;
1344 #endif
1345   return false;
1346 }
1347 } // End namespace
1348 
ConstantFoldFP(double (* NativeFP)(double),double V,Type * Ty)1349 static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
1350                                 Type *Ty) {
1351   llvm_fenv_clearexcept();
1352   V = NativeFP(V);
1353   if (llvm_fenv_testexcept()) {
1354     llvm_fenv_clearexcept();
1355     return nullptr;
1356   }
1357 
1358   return GetConstantFoldFPValue(V, Ty);
1359 }
1360 
ConstantFoldBinaryFP(double (* NativeFP)(double,double),double V,double W,Type * Ty)1361 static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
1362                                       double V, double W, Type *Ty) {
1363   llvm_fenv_clearexcept();
1364   V = NativeFP(V, W);
1365   if (llvm_fenv_testexcept()) {
1366     llvm_fenv_clearexcept();
1367     return nullptr;
1368   }
1369 
1370   return GetConstantFoldFPValue(V, Ty);
1371 }
1372 
1373 /// Attempt to fold an SSE floating point to integer conversion of a constant
1374 /// floating point. If roundTowardZero is false, the default IEEE rounding is
1375 /// used (toward nearest, ties to even). This matches the behavior of the
1376 /// non-truncating SSE instructions in the default rounding mode. The desired
1377 /// integer type Ty is used to select how many bits are available for the
1378 /// result. Returns null if the conversion cannot be performed, otherwise
1379 /// returns the Constant value resulting from the conversion.
ConstantFoldConvertToInt(const APFloat & Val,bool roundTowardZero,Type * Ty)1380 static Constant *ConstantFoldConvertToInt(const APFloat &Val,
1381                                           bool roundTowardZero, Type *Ty) {
1382   // All of these conversion intrinsics form an integer of at most 64bits.
1383   unsigned ResultWidth = Ty->getIntegerBitWidth();
1384   assert(ResultWidth <= 64 &&
1385          "Can only constant fold conversions to 64 and 32 bit ints");
1386 
1387   uint64_t UIntVal;
1388   bool isExact = false;
1389   APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
1390                                               : APFloat::rmNearestTiesToEven;
1391   APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
1392                                                   /*isSigned=*/true, mode,
1393                                                   &isExact);
1394   if (status != APFloat::opOK && status != APFloat::opInexact)
1395     return nullptr;
1396   return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
1397 }
1398 
getValueAsDouble(ConstantFP * Op)1399 static double getValueAsDouble(ConstantFP *Op) {
1400   Type *Ty = Op->getType();
1401 
1402   if (Ty->isFloatTy())
1403     return Op->getValueAPF().convertToFloat();
1404 
1405   if (Ty->isDoubleTy())
1406     return Op->getValueAPF().convertToDouble();
1407 
1408   bool unused;
1409   APFloat APF = Op->getValueAPF();
1410   APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &unused);
1411   return APF.convertToDouble();
1412 }
1413 
ConstantFoldScalarCall(StringRef Name,unsigned IntrinsicID,Type * Ty,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1414 static Constant *ConstantFoldScalarCall(StringRef Name, unsigned IntrinsicID,
1415                                         Type *Ty, ArrayRef<Constant *> Operands,
1416                                         const TargetLibraryInfo *TLI) {
1417   if (Operands.size() == 1) {
1418     if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
1419       if (IntrinsicID == Intrinsic::convert_to_fp16) {
1420         APFloat Val(Op->getValueAPF());
1421 
1422         bool lost = false;
1423         Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
1424 
1425         return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt());
1426       }
1427 
1428       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1429         return nullptr;
1430 
1431       if (IntrinsicID == Intrinsic::round) {
1432         APFloat V = Op->getValueAPF();
1433         V.roundToIntegral(APFloat::rmNearestTiesToAway);
1434         return ConstantFP::get(Ty->getContext(), V);
1435       }
1436 
1437       if (IntrinsicID == Intrinsic::floor) {
1438         APFloat V = Op->getValueAPF();
1439         V.roundToIntegral(APFloat::rmTowardNegative);
1440         return ConstantFP::get(Ty->getContext(), V);
1441       }
1442 
1443       if (IntrinsicID == Intrinsic::ceil) {
1444         APFloat V = Op->getValueAPF();
1445         V.roundToIntegral(APFloat::rmTowardPositive);
1446         return ConstantFP::get(Ty->getContext(), V);
1447       }
1448 
1449       if (IntrinsicID == Intrinsic::trunc) {
1450         APFloat V = Op->getValueAPF();
1451         V.roundToIntegral(APFloat::rmTowardZero);
1452         return ConstantFP::get(Ty->getContext(), V);
1453       }
1454 
1455       if (IntrinsicID == Intrinsic::rint) {
1456         APFloat V = Op->getValueAPF();
1457         V.roundToIntegral(APFloat::rmNearestTiesToEven);
1458         return ConstantFP::get(Ty->getContext(), V);
1459       }
1460 
1461       if (IntrinsicID == Intrinsic::nearbyint) {
1462         APFloat V = Op->getValueAPF();
1463         V.roundToIntegral(APFloat::rmNearestTiesToEven);
1464         return ConstantFP::get(Ty->getContext(), V);
1465       }
1466 
1467       /// We only fold functions with finite arguments. Folding NaN and inf is
1468       /// likely to be aborted with an exception anyway, and some host libms
1469       /// have known errors raising exceptions.
1470       if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
1471         return nullptr;
1472 
1473       /// Currently APFloat versions of these functions do not exist, so we use
1474       /// the host native double versions.  Float versions are not called
1475       /// directly but for all these it is true (float)(f((double)arg)) ==
1476       /// f(arg).  Long double not supported yet.
1477       double V = getValueAsDouble(Op);
1478 
1479       switch (IntrinsicID) {
1480         default: break;
1481         case Intrinsic::fabs:
1482           return ConstantFoldFP(fabs, V, Ty);
1483         case Intrinsic::log2:
1484           return ConstantFoldFP(Log2, V, Ty);
1485         case Intrinsic::log:
1486           return ConstantFoldFP(log, V, Ty);
1487         case Intrinsic::log10:
1488           return ConstantFoldFP(log10, V, Ty);
1489         case Intrinsic::exp:
1490           return ConstantFoldFP(exp, V, Ty);
1491         case Intrinsic::exp2:
1492           return ConstantFoldFP(exp2, V, Ty);
1493         case Intrinsic::sin:
1494           return ConstantFoldFP(sin, V, Ty);
1495         case Intrinsic::cos:
1496           return ConstantFoldFP(cos, V, Ty);
1497       }
1498 
1499       if (!TLI)
1500         return nullptr;
1501 
1502       switch (Name[0]) {
1503       case 'a':
1504         if ((Name == "acos" && TLI->has(LibFunc::acos)) ||
1505             (Name == "acosf" && TLI->has(LibFunc::acosf)))
1506           return ConstantFoldFP(acos, V, Ty);
1507         else if ((Name == "asin" && TLI->has(LibFunc::asin)) ||
1508                  (Name == "asinf" && TLI->has(LibFunc::asinf)))
1509           return ConstantFoldFP(asin, V, Ty);
1510         else if ((Name == "atan" && TLI->has(LibFunc::atan)) ||
1511                  (Name == "atanf" && TLI->has(LibFunc::atanf)))
1512           return ConstantFoldFP(atan, V, Ty);
1513         break;
1514       case 'c':
1515         if ((Name == "ceil" && TLI->has(LibFunc::ceil)) ||
1516             (Name == "ceilf" && TLI->has(LibFunc::ceilf)))
1517           return ConstantFoldFP(ceil, V, Ty);
1518         else if ((Name == "cos" && TLI->has(LibFunc::cos)) ||
1519                  (Name == "cosf" && TLI->has(LibFunc::cosf)))
1520           return ConstantFoldFP(cos, V, Ty);
1521         else if ((Name == "cosh" && TLI->has(LibFunc::cosh)) ||
1522                  (Name == "coshf" && TLI->has(LibFunc::coshf)))
1523           return ConstantFoldFP(cosh, V, Ty);
1524         break;
1525       case 'e':
1526         if ((Name == "exp" && TLI->has(LibFunc::exp)) ||
1527             (Name == "expf" && TLI->has(LibFunc::expf)))
1528           return ConstantFoldFP(exp, V, Ty);
1529         if ((Name == "exp2" && TLI->has(LibFunc::exp2)) ||
1530             (Name == "exp2f" && TLI->has(LibFunc::exp2f)))
1531           // Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
1532           // C99 library.
1533           return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
1534         break;
1535       case 'f':
1536         if ((Name == "fabs" && TLI->has(LibFunc::fabs)) ||
1537             (Name == "fabsf" && TLI->has(LibFunc::fabsf)))
1538           return ConstantFoldFP(fabs, V, Ty);
1539         else if ((Name == "floor" && TLI->has(LibFunc::floor)) ||
1540                  (Name == "floorf" && TLI->has(LibFunc::floorf)))
1541           return ConstantFoldFP(floor, V, Ty);
1542         break;
1543       case 'l':
1544         if ((Name == "log" && V > 0 && TLI->has(LibFunc::log)) ||
1545             (Name == "logf" && V > 0 && TLI->has(LibFunc::logf)))
1546           return ConstantFoldFP(log, V, Ty);
1547         else if ((Name == "log10" && V > 0 && TLI->has(LibFunc::log10)) ||
1548                  (Name == "log10f" && V > 0 && TLI->has(LibFunc::log10f)))
1549           return ConstantFoldFP(log10, V, Ty);
1550         else if (IntrinsicID == Intrinsic::sqrt &&
1551                  (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy())) {
1552           if (V >= -0.0)
1553             return ConstantFoldFP(sqrt, V, Ty);
1554           else {
1555             // Unlike the sqrt definitions in C/C++, POSIX, and IEEE-754 - which
1556             // all guarantee or favor returning NaN - the square root of a
1557             // negative number is not defined for the LLVM sqrt intrinsic.
1558             // This is because the intrinsic should only be emitted in place of
1559             // libm's sqrt function when using "no-nans-fp-math".
1560             return UndefValue::get(Ty);
1561           }
1562         }
1563         break;
1564       case 's':
1565         if ((Name == "sin" && TLI->has(LibFunc::sin)) ||
1566             (Name == "sinf" && TLI->has(LibFunc::sinf)))
1567           return ConstantFoldFP(sin, V, Ty);
1568         else if ((Name == "sinh" && TLI->has(LibFunc::sinh)) ||
1569                  (Name == "sinhf" && TLI->has(LibFunc::sinhf)))
1570           return ConstantFoldFP(sinh, V, Ty);
1571         else if ((Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt)) ||
1572                  (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf)))
1573           return ConstantFoldFP(sqrt, V, Ty);
1574         break;
1575       case 't':
1576         if ((Name == "tan" && TLI->has(LibFunc::tan)) ||
1577             (Name == "tanf" && TLI->has(LibFunc::tanf)))
1578           return ConstantFoldFP(tan, V, Ty);
1579         else if ((Name == "tanh" && TLI->has(LibFunc::tanh)) ||
1580                  (Name == "tanhf" && TLI->has(LibFunc::tanhf)))
1581           return ConstantFoldFP(tanh, V, Ty);
1582         break;
1583       default:
1584         break;
1585       }
1586       return nullptr;
1587     }
1588 
1589     if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
1590       switch (IntrinsicID) {
1591       case Intrinsic::bswap:
1592         return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap());
1593       case Intrinsic::ctpop:
1594         return ConstantInt::get(Ty, Op->getValue().countPopulation());
1595       case Intrinsic::convert_from_fp16: {
1596         APFloat Val(APFloat::IEEEhalf, Op->getValue());
1597 
1598         bool lost = false;
1599         APFloat::opStatus status = Val.convert(
1600             Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost);
1601 
1602         // Conversion is always precise.
1603         (void)status;
1604         assert(status == APFloat::opOK && !lost &&
1605                "Precision lost during fp16 constfolding");
1606 
1607         return ConstantFP::get(Ty->getContext(), Val);
1608       }
1609       default:
1610         return nullptr;
1611       }
1612     }
1613 
1614     // Support ConstantVector in case we have an Undef in the top.
1615     if (isa<ConstantVector>(Operands[0]) ||
1616         isa<ConstantDataVector>(Operands[0])) {
1617       Constant *Op = cast<Constant>(Operands[0]);
1618       switch (IntrinsicID) {
1619       default: break;
1620       case Intrinsic::x86_sse_cvtss2si:
1621       case Intrinsic::x86_sse_cvtss2si64:
1622       case Intrinsic::x86_sse2_cvtsd2si:
1623       case Intrinsic::x86_sse2_cvtsd2si64:
1624         if (ConstantFP *FPOp =
1625               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1626           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1627                                           /*roundTowardZero=*/false, Ty);
1628       case Intrinsic::x86_sse_cvttss2si:
1629       case Intrinsic::x86_sse_cvttss2si64:
1630       case Intrinsic::x86_sse2_cvttsd2si:
1631       case Intrinsic::x86_sse2_cvttsd2si64:
1632         if (ConstantFP *FPOp =
1633               dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U)))
1634           return ConstantFoldConvertToInt(FPOp->getValueAPF(),
1635                                           /*roundTowardZero=*/true, Ty);
1636       }
1637     }
1638 
1639     if (isa<UndefValue>(Operands[0])) {
1640       if (IntrinsicID == Intrinsic::bswap)
1641         return Operands[0];
1642       return nullptr;
1643     }
1644 
1645     return nullptr;
1646   }
1647 
1648   if (Operands.size() == 2) {
1649     if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1650       if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy())
1651         return nullptr;
1652       double Op1V = getValueAsDouble(Op1);
1653 
1654       if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1655         if (Op2->getType() != Op1->getType())
1656           return nullptr;
1657 
1658         double Op2V = getValueAsDouble(Op2);
1659         if (IntrinsicID == Intrinsic::pow) {
1660           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1661         }
1662         if (IntrinsicID == Intrinsic::copysign) {
1663           APFloat V1 = Op1->getValueAPF();
1664           APFloat V2 = Op2->getValueAPF();
1665           V1.copySign(V2);
1666           return ConstantFP::get(Ty->getContext(), V1);
1667         }
1668 
1669         if (IntrinsicID == Intrinsic::minnum) {
1670           const APFloat &C1 = Op1->getValueAPF();
1671           const APFloat &C2 = Op2->getValueAPF();
1672           return ConstantFP::get(Ty->getContext(), minnum(C1, C2));
1673         }
1674 
1675         if (IntrinsicID == Intrinsic::maxnum) {
1676           const APFloat &C1 = Op1->getValueAPF();
1677           const APFloat &C2 = Op2->getValueAPF();
1678           return ConstantFP::get(Ty->getContext(), maxnum(C1, C2));
1679         }
1680 
1681         if (!TLI)
1682           return nullptr;
1683         if ((Name == "pow" && TLI->has(LibFunc::pow)) ||
1684             (Name == "powf" && TLI->has(LibFunc::powf)))
1685           return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
1686         if ((Name == "fmod" && TLI->has(LibFunc::fmod)) ||
1687             (Name == "fmodf" && TLI->has(LibFunc::fmodf)))
1688           return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
1689         if ((Name == "atan2" && TLI->has(LibFunc::atan2)) ||
1690             (Name == "atan2f" && TLI->has(LibFunc::atan2f)))
1691           return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
1692       } else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
1693         if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy())
1694           return ConstantFP::get(Ty->getContext(),
1695                                  APFloat((float)std::pow((float)Op1V,
1696                                                  (int)Op2C->getZExtValue())));
1697         if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy())
1698           return ConstantFP::get(Ty->getContext(),
1699                                  APFloat((float)std::pow((float)Op1V,
1700                                                  (int)Op2C->getZExtValue())));
1701         if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy())
1702           return ConstantFP::get(Ty->getContext(),
1703                                  APFloat((double)std::pow((double)Op1V,
1704                                                    (int)Op2C->getZExtValue())));
1705       }
1706       return nullptr;
1707     }
1708 
1709     if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
1710       if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
1711         switch (IntrinsicID) {
1712         default: break;
1713         case Intrinsic::sadd_with_overflow:
1714         case Intrinsic::uadd_with_overflow:
1715         case Intrinsic::ssub_with_overflow:
1716         case Intrinsic::usub_with_overflow:
1717         case Intrinsic::smul_with_overflow:
1718         case Intrinsic::umul_with_overflow: {
1719           APInt Res;
1720           bool Overflow;
1721           switch (IntrinsicID) {
1722           default: llvm_unreachable("Invalid case");
1723           case Intrinsic::sadd_with_overflow:
1724             Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
1725             break;
1726           case Intrinsic::uadd_with_overflow:
1727             Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
1728             break;
1729           case Intrinsic::ssub_with_overflow:
1730             Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
1731             break;
1732           case Intrinsic::usub_with_overflow:
1733             Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
1734             break;
1735           case Intrinsic::smul_with_overflow:
1736             Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
1737             break;
1738           case Intrinsic::umul_with_overflow:
1739             Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
1740             break;
1741           }
1742           Constant *Ops[] = {
1743             ConstantInt::get(Ty->getContext(), Res),
1744             ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow)
1745           };
1746           return ConstantStruct::get(cast<StructType>(Ty), Ops);
1747         }
1748         case Intrinsic::cttz:
1749           if (Op2->isOne() && Op1->isZero()) // cttz(0, 1) is undef.
1750             return UndefValue::get(Ty);
1751           return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
1752         case Intrinsic::ctlz:
1753           if (Op2->isOne() && Op1->isZero()) // ctlz(0, 1) is undef.
1754             return UndefValue::get(Ty);
1755           return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
1756         }
1757       }
1758 
1759       return nullptr;
1760     }
1761     return nullptr;
1762   }
1763 
1764   if (Operands.size() != 3)
1765     return nullptr;
1766 
1767   if (const ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
1768     if (const ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
1769       if (const ConstantFP *Op3 = dyn_cast<ConstantFP>(Operands[2])) {
1770         switch (IntrinsicID) {
1771         default: break;
1772         case Intrinsic::fma:
1773         case Intrinsic::fmuladd: {
1774           APFloat V = Op1->getValueAPF();
1775           APFloat::opStatus s = V.fusedMultiplyAdd(Op2->getValueAPF(),
1776                                                    Op3->getValueAPF(),
1777                                                    APFloat::rmNearestTiesToEven);
1778           if (s != APFloat::opInvalidOp)
1779             return ConstantFP::get(Ty->getContext(), V);
1780 
1781           return nullptr;
1782         }
1783         }
1784       }
1785     }
1786   }
1787 
1788   return nullptr;
1789 }
1790 
ConstantFoldVectorCall(StringRef Name,unsigned IntrinsicID,VectorType * VTy,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1791 static Constant *ConstantFoldVectorCall(StringRef Name, unsigned IntrinsicID,
1792                                         VectorType *VTy,
1793                                         ArrayRef<Constant *> Operands,
1794                                         const TargetLibraryInfo *TLI) {
1795   SmallVector<Constant *, 4> Result(VTy->getNumElements());
1796   SmallVector<Constant *, 4> Lane(Operands.size());
1797   Type *Ty = VTy->getElementType();
1798 
1799   for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
1800     // Gather a column of constants.
1801     for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) {
1802       Constant *Agg = Operands[J]->getAggregateElement(I);
1803       if (!Agg)
1804         return nullptr;
1805 
1806       Lane[J] = Agg;
1807     }
1808 
1809     // Use the regular scalar folding to simplify this column.
1810     Constant *Folded = ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI);
1811     if (!Folded)
1812       return nullptr;
1813     Result[I] = Folded;
1814   }
1815 
1816   return ConstantVector::get(Result);
1817 }
1818 
1819 /// Attempt to constant fold a call to the specified function
1820 /// with the specified arguments, returning null if unsuccessful.
1821 Constant *
ConstantFoldCall(Function * F,ArrayRef<Constant * > Operands,const TargetLibraryInfo * TLI)1822 llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
1823                        const TargetLibraryInfo *TLI) {
1824   if (!F->hasName())
1825     return nullptr;
1826   StringRef Name = F->getName();
1827 
1828   Type *Ty = F->getReturnType();
1829 
1830   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1831     return ConstantFoldVectorCall(Name, F->getIntrinsicID(), VTy, Operands, TLI);
1832 
1833   return ConstantFoldScalarCall(Name, F->getIntrinsicID(), Ty, Operands, TLI);
1834 }
1835