1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements folding of constants for LLVM. This implements the
11 // (internal) ConstantFold.h interface, which is used by the
12 // ConstantExpr::get* methods to automatically fold constants when possible.
13 //
14 // The current constant folding implementation is implemented in two pieces: the
15 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
16 // a dependence in IR on Target.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "ConstantFold.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/PatternMatch.h"
31 #include "llvm/Support/Compiler.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include <limits>
36 using namespace llvm;
37 using namespace llvm::PatternMatch;
38
39 //===----------------------------------------------------------------------===//
40 // ConstantFold*Instruction Implementations
41 //===----------------------------------------------------------------------===//
42
43 /// BitCastConstantVector - Convert the specified vector Constant node to the
44 /// specified vector type. At this point, we know that the elements of the
45 /// input vector constant are all simple integer or FP values.
BitCastConstantVector(Constant * CV,VectorType * DstTy)46 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
47
48 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
49 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
50
51 // If this cast changes element count then we can't handle it here:
52 // doing so requires endianness information. This should be handled by
53 // Analysis/ConstantFolding.cpp
54 unsigned NumElts = DstTy->getNumElements();
55 if (NumElts != CV->getType()->getVectorNumElements())
56 return nullptr;
57
58 Type *DstEltTy = DstTy->getElementType();
59
60 SmallVector<Constant*, 16> Result;
61 Type *Ty = IntegerType::get(CV->getContext(), 32);
62 for (unsigned i = 0; i != NumElts; ++i) {
63 Constant *C =
64 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
65 C = ConstantExpr::getBitCast(C, DstEltTy);
66 Result.push_back(C);
67 }
68
69 return ConstantVector::get(Result);
70 }
71
72 /// This function determines which opcode to use to fold two constant cast
73 /// expressions together. It uses CastInst::isEliminableCastPair to determine
74 /// the opcode. Consequently its just a wrapper around that function.
75 /// @brief Determine if it is valid to fold a cast of a cast
76 static unsigned
foldConstantCastPair(unsigned opc,ConstantExpr * Op,Type * DstTy)77 foldConstantCastPair(
78 unsigned opc, ///< opcode of the second cast constant expression
79 ConstantExpr *Op, ///< the first cast constant expression
80 Type *DstTy ///< destination type of the first cast
81 ) {
82 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
83 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
84 assert(CastInst::isCast(opc) && "Invalid cast opcode");
85
86 // The types and opcodes for the two Cast constant expressions
87 Type *SrcTy = Op->getOperand(0)->getType();
88 Type *MidTy = Op->getType();
89 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
90 Instruction::CastOps secondOp = Instruction::CastOps(opc);
91
92 // Assume that pointers are never more than 64 bits wide, and only use this
93 // for the middle type. Otherwise we could end up folding away illegal
94 // bitcasts between address spaces with different sizes.
95 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
96
97 // Let CastInst::isEliminableCastPair do the heavy lifting.
98 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
99 nullptr, FakeIntPtrTy, nullptr);
100 }
101
FoldBitCast(Constant * V,Type * DestTy)102 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
103 Type *SrcTy = V->getType();
104 if (SrcTy == DestTy)
105 return V; // no-op cast
106
107 // Check to see if we are casting a pointer to an aggregate to a pointer to
108 // the first element. If so, return the appropriate GEP instruction.
109 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
110 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
111 if (PTy->getAddressSpace() == DPTy->getAddressSpace()
112 && PTy->getElementType()->isSized()) {
113 SmallVector<Value*, 8> IdxList;
114 Value *Zero =
115 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
116 IdxList.push_back(Zero);
117 Type *ElTy = PTy->getElementType();
118 while (ElTy != DPTy->getElementType()) {
119 if (StructType *STy = dyn_cast<StructType>(ElTy)) {
120 if (STy->getNumElements() == 0) break;
121 ElTy = STy->getElementType(0);
122 IdxList.push_back(Zero);
123 } else if (SequentialType *STy =
124 dyn_cast<SequentialType>(ElTy)) {
125 if (ElTy->isPointerTy()) break; // Can't index into pointers!
126 ElTy = STy->getElementType();
127 IdxList.push_back(Zero);
128 } else {
129 break;
130 }
131 }
132
133 if (ElTy == DPTy->getElementType())
134 // This GEP is inbounds because all indices are zero.
135 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
136 V, IdxList);
137 }
138
139 // Handle casts from one vector constant to another. We know that the src
140 // and dest type have the same size (otherwise its an illegal cast).
141 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
142 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
143 assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() &&
144 "Not cast between same sized vectors!");
145 SrcTy = nullptr;
146 // First, check for null. Undef is already handled.
147 if (isa<ConstantAggregateZero>(V))
148 return Constant::getNullValue(DestTy);
149
150 // Handle ConstantVector and ConstantAggregateVector.
151 return BitCastConstantVector(V, DestPTy);
152 }
153
154 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
155 // This allows for other simplifications (although some of them
156 // can only be handled by Analysis/ConstantFolding.cpp).
157 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
158 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
159 }
160
161 // Finally, implement bitcast folding now. The code below doesn't handle
162 // bitcast right.
163 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
164 return ConstantPointerNull::get(cast<PointerType>(DestTy));
165
166 // Handle integral constant input.
167 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
168 if (DestTy->isIntegerTy())
169 // Integral -> Integral. This is a no-op because the bit widths must
170 // be the same. Consequently, we just fold to V.
171 return V;
172
173 // See note below regarding the PPC_FP128 restriction.
174 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
175 return ConstantFP::get(DestTy->getContext(),
176 APFloat(DestTy->getFltSemantics(),
177 CI->getValue()));
178
179 // Otherwise, can't fold this (vector?)
180 return nullptr;
181 }
182
183 // Handle ConstantFP input: FP -> Integral.
184 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
185 // PPC_FP128 is really the sum of two consecutive doubles, where the first
186 // double is always stored first in memory, regardless of the target
187 // endianness. The memory layout of i128, however, depends on the target
188 // endianness, and so we can't fold this without target endianness
189 // information. This should instead be handled by
190 // Analysis/ConstantFolding.cpp
191 if (FP->getType()->isPPC_FP128Ty())
192 return nullptr;
193
194 return ConstantInt::get(FP->getContext(),
195 FP->getValueAPF().bitcastToAPInt());
196 }
197
198 return nullptr;
199 }
200
201
202 /// ExtractConstantBytes - V is an integer constant which only has a subset of
203 /// its bytes used. The bytes used are indicated by ByteStart (which is the
204 /// first byte used, counting from the least significant byte) and ByteSize,
205 /// which is the number of bytes used.
206 ///
207 /// This function analyzes the specified constant to see if the specified byte
208 /// range can be returned as a simplified constant. If so, the constant is
209 /// returned, otherwise null is returned.
210 ///
ExtractConstantBytes(Constant * C,unsigned ByteStart,unsigned ByteSize)211 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
212 unsigned ByteSize) {
213 assert(C->getType()->isIntegerTy() &&
214 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
215 "Non-byte sized integer input");
216 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
217 assert(ByteSize && "Must be accessing some piece");
218 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
219 assert(ByteSize != CSize && "Should not extract everything");
220
221 // Constant Integers are simple.
222 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
223 APInt V = CI->getValue();
224 if (ByteStart)
225 V = V.lshr(ByteStart*8);
226 V = V.trunc(ByteSize*8);
227 return ConstantInt::get(CI->getContext(), V);
228 }
229
230 // In the input is a constant expr, we might be able to recursively simplify.
231 // If not, we definitely can't do anything.
232 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
233 if (!CE) return nullptr;
234
235 switch (CE->getOpcode()) {
236 default: return nullptr;
237 case Instruction::Or: {
238 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
239 if (!RHS)
240 return nullptr;
241
242 // X | -1 -> -1.
243 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
244 if (RHSC->isAllOnesValue())
245 return RHSC;
246
247 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
248 if (!LHS)
249 return nullptr;
250 return ConstantExpr::getOr(LHS, RHS);
251 }
252 case Instruction::And: {
253 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
254 if (!RHS)
255 return nullptr;
256
257 // X & 0 -> 0.
258 if (RHS->isNullValue())
259 return RHS;
260
261 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
262 if (!LHS)
263 return nullptr;
264 return ConstantExpr::getAnd(LHS, RHS);
265 }
266 case Instruction::LShr: {
267 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
268 if (!Amt)
269 return nullptr;
270 unsigned ShAmt = Amt->getZExtValue();
271 // Cannot analyze non-byte shifts.
272 if ((ShAmt & 7) != 0)
273 return nullptr;
274 ShAmt >>= 3;
275
276 // If the extract is known to be all zeros, return zero.
277 if (ByteStart >= CSize-ShAmt)
278 return Constant::getNullValue(IntegerType::get(CE->getContext(),
279 ByteSize*8));
280 // If the extract is known to be fully in the input, extract it.
281 if (ByteStart+ByteSize+ShAmt <= CSize)
282 return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize);
283
284 // TODO: Handle the 'partially zero' case.
285 return nullptr;
286 }
287
288 case Instruction::Shl: {
289 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
290 if (!Amt)
291 return nullptr;
292 unsigned ShAmt = Amt->getZExtValue();
293 // Cannot analyze non-byte shifts.
294 if ((ShAmt & 7) != 0)
295 return nullptr;
296 ShAmt >>= 3;
297
298 // If the extract is known to be all zeros, return zero.
299 if (ByteStart+ByteSize <= ShAmt)
300 return Constant::getNullValue(IntegerType::get(CE->getContext(),
301 ByteSize*8));
302 // If the extract is known to be fully in the input, extract it.
303 if (ByteStart >= ShAmt)
304 return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize);
305
306 // TODO: Handle the 'partially zero' case.
307 return nullptr;
308 }
309
310 case Instruction::ZExt: {
311 unsigned SrcBitSize =
312 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
313
314 // If extracting something that is completely zero, return 0.
315 if (ByteStart*8 >= SrcBitSize)
316 return Constant::getNullValue(IntegerType::get(CE->getContext(),
317 ByteSize*8));
318
319 // If exactly extracting the input, return it.
320 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
321 return CE->getOperand(0);
322
323 // If extracting something completely in the input, if if the input is a
324 // multiple of 8 bits, recurse.
325 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
326 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
327
328 // Otherwise, if extracting a subset of the input, which is not multiple of
329 // 8 bits, do a shift and trunc to get the bits.
330 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
331 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
332 Constant *Res = CE->getOperand(0);
333 if (ByteStart)
334 Res = ConstantExpr::getLShr(Res,
335 ConstantInt::get(Res->getType(), ByteStart*8));
336 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
337 ByteSize*8));
338 }
339
340 // TODO: Handle the 'partially zero' case.
341 return nullptr;
342 }
343 }
344 }
345
346 /// getFoldedSizeOf - Return a ConstantExpr with type DestTy for sizeof
347 /// on Ty, with any known factors factored out. If Folded is false,
348 /// return null if no factoring was possible, to avoid endlessly
349 /// bouncing an unfoldable expression back into the top-level folder.
350 ///
getFoldedSizeOf(Type * Ty,Type * DestTy,bool Folded)351 static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy,
352 bool Folded) {
353 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
354 Constant *N = ConstantInt::get(DestTy, ATy->getNumElements());
355 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
356 return ConstantExpr::getNUWMul(E, N);
357 }
358
359 if (StructType *STy = dyn_cast<StructType>(Ty))
360 if (!STy->isPacked()) {
361 unsigned NumElems = STy->getNumElements();
362 // An empty struct has size zero.
363 if (NumElems == 0)
364 return ConstantExpr::getNullValue(DestTy);
365 // Check for a struct with all members having the same size.
366 Constant *MemberSize =
367 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
368 bool AllSame = true;
369 for (unsigned i = 1; i != NumElems; ++i)
370 if (MemberSize !=
371 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
372 AllSame = false;
373 break;
374 }
375 if (AllSame) {
376 Constant *N = ConstantInt::get(DestTy, NumElems);
377 return ConstantExpr::getNUWMul(MemberSize, N);
378 }
379 }
380
381 // Pointer size doesn't depend on the pointee type, so canonicalize them
382 // to an arbitrary pointee.
383 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
384 if (!PTy->getElementType()->isIntegerTy(1))
385 return
386 getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1),
387 PTy->getAddressSpace()),
388 DestTy, true);
389
390 // If there's no interesting folding happening, bail so that we don't create
391 // a constant that looks like it needs folding but really doesn't.
392 if (!Folded)
393 return nullptr;
394
395 // Base case: Get a regular sizeof expression.
396 Constant *C = ConstantExpr::getSizeOf(Ty);
397 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
398 DestTy, false),
399 C, DestTy);
400 return C;
401 }
402
403 /// getFoldedAlignOf - Return a ConstantExpr with type DestTy for alignof
404 /// on Ty, with any known factors factored out. If Folded is false,
405 /// return null if no factoring was possible, to avoid endlessly
406 /// bouncing an unfoldable expression back into the top-level folder.
407 ///
getFoldedAlignOf(Type * Ty,Type * DestTy,bool Folded)408 static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy,
409 bool Folded) {
410 // The alignment of an array is equal to the alignment of the
411 // array element. Note that this is not always true for vectors.
412 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
413 Constant *C = ConstantExpr::getAlignOf(ATy->getElementType());
414 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
415 DestTy,
416 false),
417 C, DestTy);
418 return C;
419 }
420
421 if (StructType *STy = dyn_cast<StructType>(Ty)) {
422 // Packed structs always have an alignment of 1.
423 if (STy->isPacked())
424 return ConstantInt::get(DestTy, 1);
425
426 // Otherwise, struct alignment is the maximum alignment of any member.
427 // Without target data, we can't compare much, but we can check to see
428 // if all the members have the same alignment.
429 unsigned NumElems = STy->getNumElements();
430 // An empty struct has minimal alignment.
431 if (NumElems == 0)
432 return ConstantInt::get(DestTy, 1);
433 // Check for a struct with all members having the same alignment.
434 Constant *MemberAlign =
435 getFoldedAlignOf(STy->getElementType(0), DestTy, true);
436 bool AllSame = true;
437 for (unsigned i = 1; i != NumElems; ++i)
438 if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) {
439 AllSame = false;
440 break;
441 }
442 if (AllSame)
443 return MemberAlign;
444 }
445
446 // Pointer alignment doesn't depend on the pointee type, so canonicalize them
447 // to an arbitrary pointee.
448 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
449 if (!PTy->getElementType()->isIntegerTy(1))
450 return
451 getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(),
452 1),
453 PTy->getAddressSpace()),
454 DestTy, true);
455
456 // If there's no interesting folding happening, bail so that we don't create
457 // a constant that looks like it needs folding but really doesn't.
458 if (!Folded)
459 return nullptr;
460
461 // Base case: Get a regular alignof expression.
462 Constant *C = ConstantExpr::getAlignOf(Ty);
463 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
464 DestTy, false),
465 C, DestTy);
466 return C;
467 }
468
469 /// getFoldedOffsetOf - Return a ConstantExpr with type DestTy for offsetof
470 /// on Ty and FieldNo, with any known factors factored out. If Folded is false,
471 /// return null if no factoring was possible, to avoid endlessly
472 /// bouncing an unfoldable expression back into the top-level folder.
473 ///
getFoldedOffsetOf(Type * Ty,Constant * FieldNo,Type * DestTy,bool Folded)474 static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo,
475 Type *DestTy,
476 bool Folded) {
477 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
478 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false,
479 DestTy, false),
480 FieldNo, DestTy);
481 Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true);
482 return ConstantExpr::getNUWMul(E, N);
483 }
484
485 if (StructType *STy = dyn_cast<StructType>(Ty))
486 if (!STy->isPacked()) {
487 unsigned NumElems = STy->getNumElements();
488 // An empty struct has no members.
489 if (NumElems == 0)
490 return nullptr;
491 // Check for a struct with all members having the same size.
492 Constant *MemberSize =
493 getFoldedSizeOf(STy->getElementType(0), DestTy, true);
494 bool AllSame = true;
495 for (unsigned i = 1; i != NumElems; ++i)
496 if (MemberSize !=
497 getFoldedSizeOf(STy->getElementType(i), DestTy, true)) {
498 AllSame = false;
499 break;
500 }
501 if (AllSame) {
502 Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo,
503 false,
504 DestTy,
505 false),
506 FieldNo, DestTy);
507 return ConstantExpr::getNUWMul(MemberSize, N);
508 }
509 }
510
511 // If there's no interesting folding happening, bail so that we don't create
512 // a constant that looks like it needs folding but really doesn't.
513 if (!Folded)
514 return nullptr;
515
516 // Base case: Get a regular offsetof expression.
517 Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo);
518 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
519 DestTy, false),
520 C, DestTy);
521 return C;
522 }
523
ConstantFoldCastInstruction(unsigned opc,Constant * V,Type * DestTy)524 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
525 Type *DestTy) {
526 if (isa<UndefValue>(V)) {
527 // zext(undef) = 0, because the top bits will be zero.
528 // sext(undef) = 0, because the top bits will all be the same.
529 // [us]itofp(undef) = 0, because the result value is bounded.
530 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
531 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
532 return Constant::getNullValue(DestTy);
533 return UndefValue::get(DestTy);
534 }
535
536 if (V->isNullValue() && !DestTy->isX86_MMXTy())
537 return Constant::getNullValue(DestTy);
538
539 // If the cast operand is a constant expression, there's a few things we can
540 // do to try to simplify it.
541 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
542 if (CE->isCast()) {
543 // Try hard to fold cast of cast because they are often eliminable.
544 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
545 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
546 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
547 // Do not fold addrspacecast (gep 0, .., 0). It might make the
548 // addrspacecast uncanonicalized.
549 opc != Instruction::AddrSpaceCast) {
550 // If all of the indexes in the GEP are null values, there is no pointer
551 // adjustment going on. We might as well cast the source pointer.
552 bool isAllNull = true;
553 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
554 if (!CE->getOperand(i)->isNullValue()) {
555 isAllNull = false;
556 break;
557 }
558 if (isAllNull)
559 // This is casting one pointer type to another, always BitCast
560 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
561 }
562 }
563
564 // If the cast operand is a constant vector, perform the cast by
565 // operating on each element. In the cast of bitcasts, the element
566 // count may be mismatched; don't attempt to handle that here.
567 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
568 DestTy->isVectorTy() &&
569 DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) {
570 SmallVector<Constant*, 16> res;
571 VectorType *DestVecTy = cast<VectorType>(DestTy);
572 Type *DstEltTy = DestVecTy->getElementType();
573 Type *Ty = IntegerType::get(V->getContext(), 32);
574 for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) {
575 Constant *C =
576 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
577 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
578 }
579 return ConstantVector::get(res);
580 }
581
582 // We actually have to do a cast now. Perform the cast according to the
583 // opcode specified.
584 switch (opc) {
585 default:
586 llvm_unreachable("Failed to cast constant expression");
587 case Instruction::FPTrunc:
588 case Instruction::FPExt:
589 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
590 bool ignored;
591 APFloat Val = FPC->getValueAPF();
592 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf :
593 DestTy->isFloatTy() ? APFloat::IEEEsingle :
594 DestTy->isDoubleTy() ? APFloat::IEEEdouble :
595 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended :
596 DestTy->isFP128Ty() ? APFloat::IEEEquad :
597 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble :
598 APFloat::Bogus,
599 APFloat::rmNearestTiesToEven, &ignored);
600 return ConstantFP::get(V->getContext(), Val);
601 }
602 return nullptr; // Can't fold.
603 case Instruction::FPToUI:
604 case Instruction::FPToSI:
605 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
606 const APFloat &V = FPC->getValueAPF();
607 bool ignored;
608 uint64_t x[2];
609 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
610 if (APFloat::opInvalidOp ==
611 V.convertToInteger(x, DestBitWidth, opc==Instruction::FPToSI,
612 APFloat::rmTowardZero, &ignored)) {
613 // Undefined behavior invoked - the destination type can't represent
614 // the input constant.
615 return UndefValue::get(DestTy);
616 }
617 APInt Val(DestBitWidth, x);
618 return ConstantInt::get(FPC->getContext(), Val);
619 }
620 return nullptr; // Can't fold.
621 case Instruction::IntToPtr: //always treated as unsigned
622 if (V->isNullValue()) // Is it an integral null value?
623 return ConstantPointerNull::get(cast<PointerType>(DestTy));
624 return nullptr; // Other pointer types cannot be casted
625 case Instruction::PtrToInt: // always treated as unsigned
626 // Is it a null pointer value?
627 if (V->isNullValue())
628 return ConstantInt::get(DestTy, 0);
629 // If this is a sizeof-like expression, pull out multiplications by
630 // known factors to expose them to subsequent folding. If it's an
631 // alignof-like expression, factor out known factors.
632 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
633 if (CE->getOpcode() == Instruction::GetElementPtr &&
634 CE->getOperand(0)->isNullValue()) {
635 GEPOperator *GEPO = cast<GEPOperator>(CE);
636 Type *Ty = GEPO->getSourceElementType();
637 if (CE->getNumOperands() == 2) {
638 // Handle a sizeof-like expression.
639 Constant *Idx = CE->getOperand(1);
640 bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne();
641 if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) {
642 Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true,
643 DestTy, false),
644 Idx, DestTy);
645 return ConstantExpr::getMul(C, Idx);
646 }
647 } else if (CE->getNumOperands() == 3 &&
648 CE->getOperand(1)->isNullValue()) {
649 // Handle an alignof-like expression.
650 if (StructType *STy = dyn_cast<StructType>(Ty))
651 if (!STy->isPacked()) {
652 ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2));
653 if (CI->isOne() &&
654 STy->getNumElements() == 2 &&
655 STy->getElementType(0)->isIntegerTy(1)) {
656 return getFoldedAlignOf(STy->getElementType(1), DestTy, false);
657 }
658 }
659 // Handle an offsetof-like expression.
660 if (Ty->isStructTy() || Ty->isArrayTy()) {
661 if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2),
662 DestTy, false))
663 return C;
664 }
665 }
666 }
667 // Other pointer types cannot be casted
668 return nullptr;
669 case Instruction::UIToFP:
670 case Instruction::SIToFP:
671 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
672 APInt api = CI->getValue();
673 APFloat apf(DestTy->getFltSemantics(),
674 APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
675 if (APFloat::opOverflow &
676 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
677 APFloat::rmNearestTiesToEven)) {
678 // Undefined behavior invoked - the destination type can't represent
679 // the input constant.
680 return UndefValue::get(DestTy);
681 }
682 return ConstantFP::get(V->getContext(), apf);
683 }
684 return nullptr;
685 case Instruction::ZExt:
686 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
687 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
688 return ConstantInt::get(V->getContext(),
689 CI->getValue().zext(BitWidth));
690 }
691 return nullptr;
692 case Instruction::SExt:
693 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
694 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
695 return ConstantInt::get(V->getContext(),
696 CI->getValue().sext(BitWidth));
697 }
698 return nullptr;
699 case Instruction::Trunc: {
700 if (V->getType()->isVectorTy())
701 return nullptr;
702
703 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
704 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
705 return ConstantInt::get(V->getContext(),
706 CI->getValue().trunc(DestBitWidth));
707 }
708
709 // The input must be a constantexpr. See if we can simplify this based on
710 // the bytes we are demanding. Only do this if the source and dest are an
711 // even multiple of a byte.
712 if ((DestBitWidth & 7) == 0 &&
713 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
714 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
715 return Res;
716
717 return nullptr;
718 }
719 case Instruction::BitCast:
720 return FoldBitCast(V, DestTy);
721 case Instruction::AddrSpaceCast:
722 return nullptr;
723 }
724 }
725
ConstantFoldSelectInstruction(Constant * Cond,Constant * V1,Constant * V2)726 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
727 Constant *V1, Constant *V2) {
728 // Check for i1 and vector true/false conditions.
729 if (Cond->isNullValue()) return V2;
730 if (Cond->isAllOnesValue()) return V1;
731
732 // If the condition is a vector constant, fold the result elementwise.
733 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
734 SmallVector<Constant*, 16> Result;
735 Type *Ty = IntegerType::get(CondV->getContext(), 32);
736 for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){
737 Constant *V;
738 Constant *V1Element = ConstantExpr::getExtractElement(V1,
739 ConstantInt::get(Ty, i));
740 Constant *V2Element = ConstantExpr::getExtractElement(V2,
741 ConstantInt::get(Ty, i));
742 Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i));
743 if (V1Element == V2Element) {
744 V = V1Element;
745 } else if (isa<UndefValue>(Cond)) {
746 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
747 } else {
748 if (!isa<ConstantInt>(Cond)) break;
749 V = Cond->isNullValue() ? V2Element : V1Element;
750 }
751 Result.push_back(V);
752 }
753
754 // If we were able to build the vector, return it.
755 if (Result.size() == V1->getType()->getVectorNumElements())
756 return ConstantVector::get(Result);
757 }
758
759 if (isa<UndefValue>(Cond)) {
760 if (isa<UndefValue>(V1)) return V1;
761 return V2;
762 }
763 if (isa<UndefValue>(V1)) return V2;
764 if (isa<UndefValue>(V2)) return V1;
765 if (V1 == V2) return V1;
766
767 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
768 if (TrueVal->getOpcode() == Instruction::Select)
769 if (TrueVal->getOperand(0) == Cond)
770 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
771 }
772 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
773 if (FalseVal->getOpcode() == Instruction::Select)
774 if (FalseVal->getOperand(0) == Cond)
775 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
776 }
777
778 return nullptr;
779 }
780
ConstantFoldExtractElementInstruction(Constant * Val,Constant * Idx)781 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
782 Constant *Idx) {
783 if (isa<UndefValue>(Val)) // ee(undef, x) -> undef
784 return UndefValue::get(Val->getType()->getVectorElementType());
785 if (Val->isNullValue()) // ee(zero, x) -> zero
786 return Constant::getNullValue(Val->getType()->getVectorElementType());
787 // ee({w,x,y,z}, undef) -> undef
788 if (isa<UndefValue>(Idx))
789 return UndefValue::get(Val->getType()->getVectorElementType());
790
791 if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) {
792 // ee({w,x,y,z}, wrong_value) -> undef
793 if (CIdx->uge(Val->getType()->getVectorNumElements()))
794 return UndefValue::get(Val->getType()->getVectorElementType());
795 return Val->getAggregateElement(CIdx->getZExtValue());
796 }
797 return nullptr;
798 }
799
ConstantFoldInsertElementInstruction(Constant * Val,Constant * Elt,Constant * Idx)800 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
801 Constant *Elt,
802 Constant *Idx) {
803 if (isa<UndefValue>(Idx))
804 return UndefValue::get(Val->getType());
805
806 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
807 if (!CIdx) return nullptr;
808
809 unsigned NumElts = Val->getType()->getVectorNumElements();
810 if (CIdx->uge(NumElts))
811 return UndefValue::get(Val->getType());
812
813 SmallVector<Constant*, 16> Result;
814 Result.reserve(NumElts);
815 auto *Ty = Type::getInt32Ty(Val->getContext());
816 uint64_t IdxVal = CIdx->getZExtValue();
817 for (unsigned i = 0; i != NumElts; ++i) {
818 if (i == IdxVal) {
819 Result.push_back(Elt);
820 continue;
821 }
822
823 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
824 Result.push_back(C);
825 }
826
827 return ConstantVector::get(Result);
828 }
829
ConstantFoldShuffleVectorInstruction(Constant * V1,Constant * V2,Constant * Mask)830 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1,
831 Constant *V2,
832 Constant *Mask) {
833 unsigned MaskNumElts = Mask->getType()->getVectorNumElements();
834 Type *EltTy = V1->getType()->getVectorElementType();
835
836 // Undefined shuffle mask -> undefined value.
837 if (isa<UndefValue>(Mask))
838 return UndefValue::get(VectorType::get(EltTy, MaskNumElts));
839
840 // Don't break the bitcode reader hack.
841 if (isa<ConstantExpr>(Mask)) return nullptr;
842
843 unsigned SrcNumElts = V1->getType()->getVectorNumElements();
844
845 // Loop over the shuffle mask, evaluating each element.
846 SmallVector<Constant*, 32> Result;
847 for (unsigned i = 0; i != MaskNumElts; ++i) {
848 int Elt = ShuffleVectorInst::getMaskValue(Mask, i);
849 if (Elt == -1) {
850 Result.push_back(UndefValue::get(EltTy));
851 continue;
852 }
853 Constant *InElt;
854 if (unsigned(Elt) >= SrcNumElts*2)
855 InElt = UndefValue::get(EltTy);
856 else if (unsigned(Elt) >= SrcNumElts) {
857 Type *Ty = IntegerType::get(V2->getContext(), 32);
858 InElt =
859 ConstantExpr::getExtractElement(V2,
860 ConstantInt::get(Ty, Elt - SrcNumElts));
861 } else {
862 Type *Ty = IntegerType::get(V1->getContext(), 32);
863 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
864 }
865 Result.push_back(InElt);
866 }
867
868 return ConstantVector::get(Result);
869 }
870
ConstantFoldExtractValueInstruction(Constant * Agg,ArrayRef<unsigned> Idxs)871 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
872 ArrayRef<unsigned> Idxs) {
873 // Base case: no indices, so return the entire value.
874 if (Idxs.empty())
875 return Agg;
876
877 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
878 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
879
880 return nullptr;
881 }
882
ConstantFoldInsertValueInstruction(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)883 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
884 Constant *Val,
885 ArrayRef<unsigned> Idxs) {
886 // Base case: no indices, so replace the entire value.
887 if (Idxs.empty())
888 return Val;
889
890 unsigned NumElts;
891 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
892 NumElts = ST->getNumElements();
893 else if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
894 NumElts = AT->getNumElements();
895 else
896 NumElts = Agg->getType()->getVectorNumElements();
897
898 SmallVector<Constant*, 32> Result;
899 for (unsigned i = 0; i != NumElts; ++i) {
900 Constant *C = Agg->getAggregateElement(i);
901 if (!C) return nullptr;
902
903 if (Idxs[0] == i)
904 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
905
906 Result.push_back(C);
907 }
908
909 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
910 return ConstantStruct::get(ST, Result);
911 if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType()))
912 return ConstantArray::get(AT, Result);
913 return ConstantVector::get(Result);
914 }
915
916
ConstantFoldBinaryInstruction(unsigned Opcode,Constant * C1,Constant * C2)917 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
918 Constant *C1, Constant *C2) {
919 // Handle UndefValue up front.
920 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
921 switch (Opcode) {
922 case Instruction::Xor:
923 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
924 // Handle undef ^ undef -> 0 special case. This is a common
925 // idiom (misuse).
926 return Constant::getNullValue(C1->getType());
927 // Fallthrough
928 case Instruction::Add:
929 case Instruction::Sub:
930 return UndefValue::get(C1->getType());
931 case Instruction::And:
932 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
933 return C1;
934 return Constant::getNullValue(C1->getType()); // undef & X -> 0
935 case Instruction::Mul: {
936 // undef * undef -> undef
937 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
938 return C1;
939 const APInt *CV;
940 // X * undef -> undef if X is odd
941 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
942 if ((*CV)[0])
943 return UndefValue::get(C1->getType());
944
945 // X * undef -> 0 otherwise
946 return Constant::getNullValue(C1->getType());
947 }
948 case Instruction::SDiv:
949 case Instruction::UDiv:
950 // X / undef -> undef
951 if (match(C1, m_Zero()))
952 return C2;
953 // undef / 0 -> undef
954 // undef / 1 -> undef
955 if (match(C2, m_Zero()) || match(C2, m_One()))
956 return C1;
957 // undef / X -> 0 otherwise
958 return Constant::getNullValue(C1->getType());
959 case Instruction::URem:
960 case Instruction::SRem:
961 // X % undef -> undef
962 if (match(C2, m_Undef()))
963 return C2;
964 // undef % 0 -> undef
965 if (match(C2, m_Zero()))
966 return C1;
967 // undef % X -> 0 otherwise
968 return Constant::getNullValue(C1->getType());
969 case Instruction::Or: // X | undef -> -1
970 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
971 return C1;
972 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
973 case Instruction::LShr:
974 // X >>l undef -> undef
975 if (isa<UndefValue>(C2))
976 return C2;
977 // undef >>l 0 -> undef
978 if (match(C2, m_Zero()))
979 return C1;
980 // undef >>l X -> 0
981 return Constant::getNullValue(C1->getType());
982 case Instruction::AShr:
983 // X >>a undef -> undef
984 if (isa<UndefValue>(C2))
985 return C2;
986 // undef >>a 0 -> undef
987 if (match(C2, m_Zero()))
988 return C1;
989 // TODO: undef >>a X -> undef if the shift is exact
990 // undef >>a X -> 0
991 return Constant::getNullValue(C1->getType());
992 case Instruction::Shl:
993 // X << undef -> undef
994 if (isa<UndefValue>(C2))
995 return C2;
996 // undef << 0 -> undef
997 if (match(C2, m_Zero()))
998 return C1;
999 // undef << X -> 0
1000 return Constant::getNullValue(C1->getType());
1001 }
1002 }
1003
1004 // Handle simplifications when the RHS is a constant int.
1005 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1006 switch (Opcode) {
1007 case Instruction::Add:
1008 if (CI2->equalsInt(0)) return C1; // X + 0 == X
1009 break;
1010 case Instruction::Sub:
1011 if (CI2->equalsInt(0)) return C1; // X - 0 == X
1012 break;
1013 case Instruction::Mul:
1014 if (CI2->equalsInt(0)) return C2; // X * 0 == 0
1015 if (CI2->equalsInt(1))
1016 return C1; // X * 1 == X
1017 break;
1018 case Instruction::UDiv:
1019 case Instruction::SDiv:
1020 if (CI2->equalsInt(1))
1021 return C1; // X / 1 == X
1022 if (CI2->equalsInt(0))
1023 return UndefValue::get(CI2->getType()); // X / 0 == undef
1024 break;
1025 case Instruction::URem:
1026 case Instruction::SRem:
1027 if (CI2->equalsInt(1))
1028 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1029 if (CI2->equalsInt(0))
1030 return UndefValue::get(CI2->getType()); // X % 0 == undef
1031 break;
1032 case Instruction::And:
1033 if (CI2->isZero()) return C2; // X & 0 == 0
1034 if (CI2->isAllOnesValue())
1035 return C1; // X & -1 == X
1036
1037 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1038 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1039 if (CE1->getOpcode() == Instruction::ZExt) {
1040 unsigned DstWidth = CI2->getType()->getBitWidth();
1041 unsigned SrcWidth =
1042 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1043 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1044 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1045 return C1;
1046 }
1047
1048 // If and'ing the address of a global with a constant, fold it.
1049 if (CE1->getOpcode() == Instruction::PtrToInt &&
1050 isa<GlobalValue>(CE1->getOperand(0))) {
1051 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1052
1053 // Functions are at least 4-byte aligned.
1054 unsigned GVAlign = GV->getAlignment();
1055 if (isa<Function>(GV))
1056 GVAlign = std::max(GVAlign, 4U);
1057
1058 if (GVAlign > 1) {
1059 unsigned DstWidth = CI2->getType()->getBitWidth();
1060 unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign));
1061 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1062
1063 // If checking bits we know are clear, return zero.
1064 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1065 return Constant::getNullValue(CI2->getType());
1066 }
1067 }
1068 }
1069 break;
1070 case Instruction::Or:
1071 if (CI2->equalsInt(0)) return C1; // X | 0 == X
1072 if (CI2->isAllOnesValue())
1073 return C2; // X | -1 == -1
1074 break;
1075 case Instruction::Xor:
1076 if (CI2->equalsInt(0)) return C1; // X ^ 0 == X
1077
1078 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1079 switch (CE1->getOpcode()) {
1080 default: break;
1081 case Instruction::ICmp:
1082 case Instruction::FCmp:
1083 // cmp pred ^ true -> cmp !pred
1084 assert(CI2->equalsInt(1));
1085 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1086 pred = CmpInst::getInversePredicate(pred);
1087 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1088 CE1->getOperand(1));
1089 }
1090 }
1091 break;
1092 case Instruction::AShr:
1093 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1094 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1095 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1096 return ConstantExpr::getLShr(C1, C2);
1097 break;
1098 }
1099 } else if (isa<ConstantInt>(C1)) {
1100 // If C1 is a ConstantInt and C2 is not, swap the operands.
1101 if (Instruction::isCommutative(Opcode))
1102 return ConstantExpr::get(Opcode, C2, C1);
1103 }
1104
1105 // At this point we know neither constant is an UndefValue.
1106 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1107 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1108 const APInt &C1V = CI1->getValue();
1109 const APInt &C2V = CI2->getValue();
1110 switch (Opcode) {
1111 default:
1112 break;
1113 case Instruction::Add:
1114 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1115 case Instruction::Sub:
1116 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1117 case Instruction::Mul:
1118 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1119 case Instruction::UDiv:
1120 assert(!CI2->isNullValue() && "Div by zero handled above");
1121 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1122 case Instruction::SDiv:
1123 assert(!CI2->isNullValue() && "Div by zero handled above");
1124 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1125 return UndefValue::get(CI1->getType()); // MIN_INT / -1 -> undef
1126 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1127 case Instruction::URem:
1128 assert(!CI2->isNullValue() && "Div by zero handled above");
1129 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1130 case Instruction::SRem:
1131 assert(!CI2->isNullValue() && "Div by zero handled above");
1132 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1133 return UndefValue::get(CI1->getType()); // MIN_INT % -1 -> undef
1134 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1135 case Instruction::And:
1136 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1137 case Instruction::Or:
1138 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1139 case Instruction::Xor:
1140 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1141 case Instruction::Shl:
1142 if (C2V.ult(C1V.getBitWidth()))
1143 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1144 return UndefValue::get(C1->getType()); // too big shift is undef
1145 case Instruction::LShr:
1146 if (C2V.ult(C1V.getBitWidth()))
1147 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1148 return UndefValue::get(C1->getType()); // too big shift is undef
1149 case Instruction::AShr:
1150 if (C2V.ult(C1V.getBitWidth()))
1151 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1152 return UndefValue::get(C1->getType()); // too big shift is undef
1153 }
1154 }
1155
1156 switch (Opcode) {
1157 case Instruction::SDiv:
1158 case Instruction::UDiv:
1159 case Instruction::URem:
1160 case Instruction::SRem:
1161 case Instruction::LShr:
1162 case Instruction::AShr:
1163 case Instruction::Shl:
1164 if (CI1->equalsInt(0)) return C1;
1165 break;
1166 default:
1167 break;
1168 }
1169 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1170 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1171 APFloat C1V = CFP1->getValueAPF();
1172 APFloat C2V = CFP2->getValueAPF();
1173 APFloat C3V = C1V; // copy for modification
1174 switch (Opcode) {
1175 default:
1176 break;
1177 case Instruction::FAdd:
1178 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1179 return ConstantFP::get(C1->getContext(), C3V);
1180 case Instruction::FSub:
1181 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1182 return ConstantFP::get(C1->getContext(), C3V);
1183 case Instruction::FMul:
1184 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1185 return ConstantFP::get(C1->getContext(), C3V);
1186 case Instruction::FDiv:
1187 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1188 return ConstantFP::get(C1->getContext(), C3V);
1189 case Instruction::FRem:
1190 (void)C3V.mod(C2V);
1191 return ConstantFP::get(C1->getContext(), C3V);
1192 }
1193 }
1194 } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) {
1195 // Perform elementwise folding.
1196 SmallVector<Constant*, 16> Result;
1197 Type *Ty = IntegerType::get(VTy->getContext(), 32);
1198 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
1199 Constant *LHS =
1200 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1201 Constant *RHS =
1202 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1203
1204 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1205 }
1206
1207 return ConstantVector::get(Result);
1208 }
1209
1210 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1211 // There are many possible foldings we could do here. We should probably
1212 // at least fold add of a pointer with an integer into the appropriate
1213 // getelementptr. This will improve alias analysis a bit.
1214
1215 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1216 // (a + (b + c)).
1217 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1218 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1219 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1220 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1221 }
1222 } else if (isa<ConstantExpr>(C2)) {
1223 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1224 // other way if possible.
1225 if (Instruction::isCommutative(Opcode))
1226 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1227 }
1228
1229 // i1 can be simplified in many cases.
1230 if (C1->getType()->isIntegerTy(1)) {
1231 switch (Opcode) {
1232 case Instruction::Add:
1233 case Instruction::Sub:
1234 return ConstantExpr::getXor(C1, C2);
1235 case Instruction::Mul:
1236 return ConstantExpr::getAnd(C1, C2);
1237 case Instruction::Shl:
1238 case Instruction::LShr:
1239 case Instruction::AShr:
1240 // We can assume that C2 == 0. If it were one the result would be
1241 // undefined because the shift value is as large as the bitwidth.
1242 return C1;
1243 case Instruction::SDiv:
1244 case Instruction::UDiv:
1245 // We can assume that C2 == 1. If it were zero the result would be
1246 // undefined through division by zero.
1247 return C1;
1248 case Instruction::URem:
1249 case Instruction::SRem:
1250 // We can assume that C2 == 1. If it were zero the result would be
1251 // undefined through division by zero.
1252 return ConstantInt::getFalse(C1->getContext());
1253 default:
1254 break;
1255 }
1256 }
1257
1258 // We don't know how to fold this.
1259 return nullptr;
1260 }
1261
1262 /// isZeroSizedType - This type is zero sized if its an array or structure of
1263 /// zero sized types. The only leaf zero sized type is an empty structure.
isMaybeZeroSizedType(Type * Ty)1264 static bool isMaybeZeroSizedType(Type *Ty) {
1265 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1266 if (STy->isOpaque()) return true; // Can't say.
1267
1268 // If all of elements have zero size, this does too.
1269 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1270 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1271 return true;
1272
1273 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1274 return isMaybeZeroSizedType(ATy->getElementType());
1275 }
1276 return false;
1277 }
1278
1279 /// IdxCompare - Compare the two constants as though they were getelementptr
1280 /// indices. This allows coercion of the types to be the same thing.
1281 ///
1282 /// If the two constants are the "same" (after coercion), return 0. If the
1283 /// first is less than the second, return -1, if the second is less than the
1284 /// first, return 1. If the constants are not integral, return -2.
1285 ///
IdxCompare(Constant * C1,Constant * C2,Type * ElTy)1286 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1287 if (C1 == C2) return 0;
1288
1289 // Ok, we found a different index. If they are not ConstantInt, we can't do
1290 // anything with them.
1291 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1292 return -2; // don't know!
1293
1294 // We cannot compare the indices if they don't fit in an int64_t.
1295 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1296 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1297 return -2; // don't know!
1298
1299 // Ok, we have two differing integer indices. Sign extend them to be the same
1300 // type.
1301 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1302 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1303
1304 if (C1Val == C2Val) return 0; // They are equal
1305
1306 // If the type being indexed over is really just a zero sized type, there is
1307 // no pointer difference being made here.
1308 if (isMaybeZeroSizedType(ElTy))
1309 return -2; // dunno.
1310
1311 // If they are really different, now that they are the same type, then we
1312 // found a difference!
1313 if (C1Val < C2Val)
1314 return -1;
1315 else
1316 return 1;
1317 }
1318
1319 /// evaluateFCmpRelation - This function determines if there is anything we can
1320 /// decide about the two constants provided. This doesn't need to handle simple
1321 /// things like ConstantFP comparisons, but should instead handle ConstantExprs.
1322 /// If we can determine that the two constants have a particular relation to
1323 /// each other, we should return the corresponding FCmpInst predicate,
1324 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1325 /// ConstantFoldCompareInstruction.
1326 ///
1327 /// To simplify this code we canonicalize the relation so that the first
1328 /// operand is always the most "complex" of the two. We consider ConstantFP
1329 /// to be the simplest, and ConstantExprs to be the most complex.
evaluateFCmpRelation(Constant * V1,Constant * V2)1330 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1331 assert(V1->getType() == V2->getType() &&
1332 "Cannot compare values of different types!");
1333
1334 // Handle degenerate case quickly
1335 if (V1 == V2) return FCmpInst::FCMP_OEQ;
1336
1337 if (!isa<ConstantExpr>(V1)) {
1338 if (!isa<ConstantExpr>(V2)) {
1339 // Simple case, use the standard constant folder.
1340 ConstantInt *R = nullptr;
1341 R = dyn_cast<ConstantInt>(
1342 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1343 if (R && !R->isZero())
1344 return FCmpInst::FCMP_OEQ;
1345 R = dyn_cast<ConstantInt>(
1346 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1347 if (R && !R->isZero())
1348 return FCmpInst::FCMP_OLT;
1349 R = dyn_cast<ConstantInt>(
1350 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1351 if (R && !R->isZero())
1352 return FCmpInst::FCMP_OGT;
1353
1354 // Nothing more we can do
1355 return FCmpInst::BAD_FCMP_PREDICATE;
1356 }
1357
1358 // If the first operand is simple and second is ConstantExpr, swap operands.
1359 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1360 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1361 return FCmpInst::getSwappedPredicate(SwappedRelation);
1362 } else {
1363 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1364 // constantexpr or a simple constant.
1365 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1366 switch (CE1->getOpcode()) {
1367 case Instruction::FPTrunc:
1368 case Instruction::FPExt:
1369 case Instruction::UIToFP:
1370 case Instruction::SIToFP:
1371 // We might be able to do something with these but we don't right now.
1372 break;
1373 default:
1374 break;
1375 }
1376 }
1377 // There are MANY other foldings that we could perform here. They will
1378 // probably be added on demand, as they seem needed.
1379 return FCmpInst::BAD_FCMP_PREDICATE;
1380 }
1381
areGlobalsPotentiallyEqual(const GlobalValue * GV1,const GlobalValue * GV2)1382 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1383 const GlobalValue *GV2) {
1384 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1385 if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage())
1386 return true;
1387 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1388 Type *Ty = GVar->getValueType();
1389 // A global with opaque type might end up being zero sized.
1390 if (!Ty->isSized())
1391 return true;
1392 // A global with an empty type might lie at the address of any other
1393 // global.
1394 if (Ty->isEmptyTy())
1395 return true;
1396 }
1397 return false;
1398 };
1399 // Don't try to decide equality of aliases.
1400 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1401 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1402 return ICmpInst::ICMP_NE;
1403 return ICmpInst::BAD_ICMP_PREDICATE;
1404 }
1405
1406 /// evaluateICmpRelation - This function determines if there is anything we can
1407 /// decide about the two constants provided. This doesn't need to handle simple
1408 /// things like integer comparisons, but should instead handle ConstantExprs
1409 /// and GlobalValues. If we can determine that the two constants have a
1410 /// particular relation to each other, we should return the corresponding ICmp
1411 /// predicate, otherwise return ICmpInst::BAD_ICMP_PREDICATE.
1412 ///
1413 /// To simplify this code we canonicalize the relation so that the first
1414 /// operand is always the most "complex" of the two. We consider simple
1415 /// constants (like ConstantInt) to be the simplest, followed by
1416 /// GlobalValues, followed by ConstantExpr's (the most complex).
1417 ///
evaluateICmpRelation(Constant * V1,Constant * V2,bool isSigned)1418 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1419 bool isSigned) {
1420 assert(V1->getType() == V2->getType() &&
1421 "Cannot compare different types of values!");
1422 if (V1 == V2) return ICmpInst::ICMP_EQ;
1423
1424 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1425 !isa<BlockAddress>(V1)) {
1426 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1427 !isa<BlockAddress>(V2)) {
1428 // We distilled this down to a simple case, use the standard constant
1429 // folder.
1430 ConstantInt *R = nullptr;
1431 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1432 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1433 if (R && !R->isZero())
1434 return pred;
1435 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1436 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1437 if (R && !R->isZero())
1438 return pred;
1439 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1440 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1441 if (R && !R->isZero())
1442 return pred;
1443
1444 // If we couldn't figure it out, bail.
1445 return ICmpInst::BAD_ICMP_PREDICATE;
1446 }
1447
1448 // If the first operand is simple, swap operands.
1449 ICmpInst::Predicate SwappedRelation =
1450 evaluateICmpRelation(V2, V1, isSigned);
1451 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1452 return ICmpInst::getSwappedPredicate(SwappedRelation);
1453
1454 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1455 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1456 ICmpInst::Predicate SwappedRelation =
1457 evaluateICmpRelation(V2, V1, isSigned);
1458 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1459 return ICmpInst::getSwappedPredicate(SwappedRelation);
1460 return ICmpInst::BAD_ICMP_PREDICATE;
1461 }
1462
1463 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1464 // constant (which, since the types must match, means that it's a
1465 // ConstantPointerNull).
1466 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1467 return areGlobalsPotentiallyEqual(GV, GV2);
1468 } else if (isa<BlockAddress>(V2)) {
1469 return ICmpInst::ICMP_NE; // Globals never equal labels.
1470 } else {
1471 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1472 // GlobalVals can never be null unless they have external weak linkage.
1473 // We don't try to evaluate aliases here.
1474 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV))
1475 return ICmpInst::ICMP_NE;
1476 }
1477 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1478 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1479 ICmpInst::Predicate SwappedRelation =
1480 evaluateICmpRelation(V2, V1, isSigned);
1481 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1482 return ICmpInst::getSwappedPredicate(SwappedRelation);
1483 return ICmpInst::BAD_ICMP_PREDICATE;
1484 }
1485
1486 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1487 // constant (which, since the types must match, means that it is a
1488 // ConstantPointerNull).
1489 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1490 // Block address in another function can't equal this one, but block
1491 // addresses in the current function might be the same if blocks are
1492 // empty.
1493 if (BA2->getFunction() != BA->getFunction())
1494 return ICmpInst::ICMP_NE;
1495 } else {
1496 // Block addresses aren't null, don't equal the address of globals.
1497 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1498 "Canonicalization guarantee!");
1499 return ICmpInst::ICMP_NE;
1500 }
1501 } else {
1502 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1503 // constantexpr, a global, block address, or a simple constant.
1504 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1505 Constant *CE1Op0 = CE1->getOperand(0);
1506
1507 switch (CE1->getOpcode()) {
1508 case Instruction::Trunc:
1509 case Instruction::FPTrunc:
1510 case Instruction::FPExt:
1511 case Instruction::FPToUI:
1512 case Instruction::FPToSI:
1513 break; // We can't evaluate floating point casts or truncations.
1514
1515 case Instruction::UIToFP:
1516 case Instruction::SIToFP:
1517 case Instruction::BitCast:
1518 case Instruction::ZExt:
1519 case Instruction::SExt:
1520 // If the cast is not actually changing bits, and the second operand is a
1521 // null pointer, do the comparison with the pre-casted value.
1522 if (V2->isNullValue() &&
1523 (CE1->getType()->isPointerTy() || CE1->getType()->isIntegerTy())) {
1524 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1525 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1526 return evaluateICmpRelation(CE1Op0,
1527 Constant::getNullValue(CE1Op0->getType()),
1528 isSigned);
1529 }
1530 break;
1531
1532 case Instruction::GetElementPtr: {
1533 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1534 // Ok, since this is a getelementptr, we know that the constant has a
1535 // pointer type. Check the various cases.
1536 if (isa<ConstantPointerNull>(V2)) {
1537 // If we are comparing a GEP to a null pointer, check to see if the base
1538 // of the GEP equals the null pointer.
1539 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1540 if (GV->hasExternalWeakLinkage())
1541 // Weak linkage GVals could be zero or not. We're comparing that
1542 // to null pointer so its greater-or-equal
1543 return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
1544 else
1545 // If its not weak linkage, the GVal must have a non-zero address
1546 // so the result is greater-than
1547 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1548 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1549 // If we are indexing from a null pointer, check to see if we have any
1550 // non-zero indices.
1551 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1552 if (!CE1->getOperand(i)->isNullValue())
1553 // Offsetting from null, must not be equal.
1554 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1555 // Only zero indexes from null, must still be zero.
1556 return ICmpInst::ICMP_EQ;
1557 }
1558 // Otherwise, we can't really say if the first operand is null or not.
1559 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1560 if (isa<ConstantPointerNull>(CE1Op0)) {
1561 if (GV2->hasExternalWeakLinkage())
1562 // Weak linkage GVals could be zero or not. We're comparing it to
1563 // a null pointer, so its less-or-equal
1564 return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
1565 else
1566 // If its not weak linkage, the GVal must have a non-zero address
1567 // so the result is less-than
1568 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1569 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1570 if (GV == GV2) {
1571 // If this is a getelementptr of the same global, then it must be
1572 // different. Because the types must match, the getelementptr could
1573 // only have at most one index, and because we fold getelementptr's
1574 // with a single zero index, it must be nonzero.
1575 assert(CE1->getNumOperands() == 2 &&
1576 !CE1->getOperand(1)->isNullValue() &&
1577 "Surprising getelementptr!");
1578 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1579 } else {
1580 if (CE1GEP->hasAllZeroIndices())
1581 return areGlobalsPotentiallyEqual(GV, GV2);
1582 return ICmpInst::BAD_ICMP_PREDICATE;
1583 }
1584 }
1585 } else {
1586 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1587 Constant *CE2Op0 = CE2->getOperand(0);
1588
1589 // There are MANY other foldings that we could perform here. They will
1590 // probably be added on demand, as they seem needed.
1591 switch (CE2->getOpcode()) {
1592 default: break;
1593 case Instruction::GetElementPtr:
1594 // By far the most common case to handle is when the base pointers are
1595 // obviously to the same global.
1596 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1597 // Don't know relative ordering, but check for inequality.
1598 if (CE1Op0 != CE2Op0) {
1599 GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1600 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1601 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1602 cast<GlobalValue>(CE2Op0));
1603 return ICmpInst::BAD_ICMP_PREDICATE;
1604 }
1605 // Ok, we know that both getelementptr instructions are based on the
1606 // same global. From this, we can precisely determine the relative
1607 // ordering of the resultant pointers.
1608 unsigned i = 1;
1609
1610 // The logic below assumes that the result of the comparison
1611 // can be determined by finding the first index that differs.
1612 // This doesn't work if there is over-indexing in any
1613 // subsequent indices, so check for that case first.
1614 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1615 !CE2->isGEPWithNoNotionalOverIndexing())
1616 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1617
1618 // Compare all of the operands the GEP's have in common.
1619 gep_type_iterator GTI = gep_type_begin(CE1);
1620 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1621 ++i, ++GTI)
1622 switch (IdxCompare(CE1->getOperand(i),
1623 CE2->getOperand(i), GTI.getIndexedType())) {
1624 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1625 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1626 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1627 }
1628
1629 // Ok, we ran out of things they have in common. If any leftovers
1630 // are non-zero then we have a difference, otherwise we are equal.
1631 for (; i < CE1->getNumOperands(); ++i)
1632 if (!CE1->getOperand(i)->isNullValue()) {
1633 if (isa<ConstantInt>(CE1->getOperand(i)))
1634 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1635 else
1636 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1637 }
1638
1639 for (; i < CE2->getNumOperands(); ++i)
1640 if (!CE2->getOperand(i)->isNullValue()) {
1641 if (isa<ConstantInt>(CE2->getOperand(i)))
1642 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1643 else
1644 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1645 }
1646 return ICmpInst::ICMP_EQ;
1647 }
1648 }
1649 }
1650 }
1651 default:
1652 break;
1653 }
1654 }
1655
1656 return ICmpInst::BAD_ICMP_PREDICATE;
1657 }
1658
ConstantFoldCompareInstruction(unsigned short pred,Constant * C1,Constant * C2)1659 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1660 Constant *C1, Constant *C2) {
1661 Type *ResultTy;
1662 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1663 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1664 VT->getNumElements());
1665 else
1666 ResultTy = Type::getInt1Ty(C1->getContext());
1667
1668 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1669 if (pred == FCmpInst::FCMP_FALSE)
1670 return Constant::getNullValue(ResultTy);
1671
1672 if (pred == FCmpInst::FCMP_TRUE)
1673 return Constant::getAllOnesValue(ResultTy);
1674
1675 // Handle some degenerate cases first
1676 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1677 CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1678 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1679 // For EQ and NE, we can always pick a value for the undef to make the
1680 // predicate pass or fail, so we can return undef.
1681 // Also, if both operands are undef, we can return undef for int comparison.
1682 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1683 return UndefValue::get(ResultTy);
1684
1685 // Otherwise, for integer compare, pick the same value as the non-undef
1686 // operand, and fold it to true or false.
1687 if (isIntegerPredicate)
1688 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1689
1690 // Choosing NaN for the undef will always make unordered comparison succeed
1691 // and ordered comparison fails.
1692 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1693 }
1694
1695 // icmp eq/ne(null,GV) -> false/true
1696 if (C1->isNullValue()) {
1697 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1698 // Don't try to evaluate aliases. External weak GV can be null.
1699 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1700 if (pred == ICmpInst::ICMP_EQ)
1701 return ConstantInt::getFalse(C1->getContext());
1702 else if (pred == ICmpInst::ICMP_NE)
1703 return ConstantInt::getTrue(C1->getContext());
1704 }
1705 // icmp eq/ne(GV,null) -> false/true
1706 } else if (C2->isNullValue()) {
1707 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1))
1708 // Don't try to evaluate aliases. External weak GV can be null.
1709 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage()) {
1710 if (pred == ICmpInst::ICMP_EQ)
1711 return ConstantInt::getFalse(C1->getContext());
1712 else if (pred == ICmpInst::ICMP_NE)
1713 return ConstantInt::getTrue(C1->getContext());
1714 }
1715 }
1716
1717 // If the comparison is a comparison between two i1's, simplify it.
1718 if (C1->getType()->isIntegerTy(1)) {
1719 switch(pred) {
1720 case ICmpInst::ICMP_EQ:
1721 if (isa<ConstantInt>(C2))
1722 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1723 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1724 case ICmpInst::ICMP_NE:
1725 return ConstantExpr::getXor(C1, C2);
1726 default:
1727 break;
1728 }
1729 }
1730
1731 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1732 APInt V1 = cast<ConstantInt>(C1)->getValue();
1733 APInt V2 = cast<ConstantInt>(C2)->getValue();
1734 switch (pred) {
1735 default: llvm_unreachable("Invalid ICmp Predicate");
1736 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1737 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1738 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1739 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1740 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1741 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1742 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1743 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1744 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1745 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1746 }
1747 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1748 APFloat C1V = cast<ConstantFP>(C1)->getValueAPF();
1749 APFloat C2V = cast<ConstantFP>(C2)->getValueAPF();
1750 APFloat::cmpResult R = C1V.compare(C2V);
1751 switch (pred) {
1752 default: llvm_unreachable("Invalid FCmp Predicate");
1753 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1754 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1755 case FCmpInst::FCMP_UNO:
1756 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1757 case FCmpInst::FCMP_ORD:
1758 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1759 case FCmpInst::FCMP_UEQ:
1760 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1761 R==APFloat::cmpEqual);
1762 case FCmpInst::FCMP_OEQ:
1763 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1764 case FCmpInst::FCMP_UNE:
1765 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1766 case FCmpInst::FCMP_ONE:
1767 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1768 R==APFloat::cmpGreaterThan);
1769 case FCmpInst::FCMP_ULT:
1770 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1771 R==APFloat::cmpLessThan);
1772 case FCmpInst::FCMP_OLT:
1773 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1774 case FCmpInst::FCMP_UGT:
1775 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1776 R==APFloat::cmpGreaterThan);
1777 case FCmpInst::FCMP_OGT:
1778 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1779 case FCmpInst::FCMP_ULE:
1780 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1781 case FCmpInst::FCMP_OLE:
1782 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1783 R==APFloat::cmpEqual);
1784 case FCmpInst::FCMP_UGE:
1785 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1786 case FCmpInst::FCMP_OGE:
1787 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1788 R==APFloat::cmpEqual);
1789 }
1790 } else if (C1->getType()->isVectorTy()) {
1791 // If we can constant fold the comparison of each element, constant fold
1792 // the whole vector comparison.
1793 SmallVector<Constant*, 4> ResElts;
1794 Type *Ty = IntegerType::get(C1->getContext(), 32);
1795 // Compare the elements, producing an i1 result or constant expr.
1796 for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){
1797 Constant *C1E =
1798 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i));
1799 Constant *C2E =
1800 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i));
1801
1802 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1803 }
1804
1805 return ConstantVector::get(ResElts);
1806 }
1807
1808 if (C1->getType()->isFloatingPointTy() &&
1809 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1810 // infinite recursive loop
1811 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1812 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1813 switch (evaluateFCmpRelation(C1, C2)) {
1814 default: llvm_unreachable("Unknown relation!");
1815 case FCmpInst::FCMP_UNO:
1816 case FCmpInst::FCMP_ORD:
1817 case FCmpInst::FCMP_UEQ:
1818 case FCmpInst::FCMP_UNE:
1819 case FCmpInst::FCMP_ULT:
1820 case FCmpInst::FCMP_UGT:
1821 case FCmpInst::FCMP_ULE:
1822 case FCmpInst::FCMP_UGE:
1823 case FCmpInst::FCMP_TRUE:
1824 case FCmpInst::FCMP_FALSE:
1825 case FCmpInst::BAD_FCMP_PREDICATE:
1826 break; // Couldn't determine anything about these constants.
1827 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1828 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1829 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1830 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1831 break;
1832 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1833 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1834 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1835 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1836 break;
1837 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1838 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1839 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1840 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1841 break;
1842 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1843 // We can only partially decide this relation.
1844 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1845 Result = 0;
1846 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1847 Result = 1;
1848 break;
1849 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1850 // We can only partially decide this relation.
1851 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1852 Result = 0;
1853 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1854 Result = 1;
1855 break;
1856 case FCmpInst::FCMP_ONE: // We know that C1 != C2
1857 // We can only partially decide this relation.
1858 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1859 Result = 0;
1860 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1861 Result = 1;
1862 break;
1863 }
1864
1865 // If we evaluated the result, return it now.
1866 if (Result != -1)
1867 return ConstantInt::get(ResultTy, Result);
1868
1869 } else {
1870 // Evaluate the relation between the two constants, per the predicate.
1871 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1872 switch (evaluateICmpRelation(C1, C2,
1873 CmpInst::isSigned((CmpInst::Predicate)pred))) {
1874 default: llvm_unreachable("Unknown relational!");
1875 case ICmpInst::BAD_ICMP_PREDICATE:
1876 break; // Couldn't determine anything about these constants.
1877 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1878 // If we know the constants are equal, we can decide the result of this
1879 // computation precisely.
1880 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1881 break;
1882 case ICmpInst::ICMP_ULT:
1883 switch (pred) {
1884 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1885 Result = 1; break;
1886 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1887 Result = 0; break;
1888 }
1889 break;
1890 case ICmpInst::ICMP_SLT:
1891 switch (pred) {
1892 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1893 Result = 1; break;
1894 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1895 Result = 0; break;
1896 }
1897 break;
1898 case ICmpInst::ICMP_UGT:
1899 switch (pred) {
1900 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1901 Result = 1; break;
1902 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1903 Result = 0; break;
1904 }
1905 break;
1906 case ICmpInst::ICMP_SGT:
1907 switch (pred) {
1908 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1909 Result = 1; break;
1910 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1911 Result = 0; break;
1912 }
1913 break;
1914 case ICmpInst::ICMP_ULE:
1915 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1916 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1917 break;
1918 case ICmpInst::ICMP_SLE:
1919 if (pred == ICmpInst::ICMP_SGT) Result = 0;
1920 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
1921 break;
1922 case ICmpInst::ICMP_UGE:
1923 if (pred == ICmpInst::ICMP_ULT) Result = 0;
1924 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
1925 break;
1926 case ICmpInst::ICMP_SGE:
1927 if (pred == ICmpInst::ICMP_SLT) Result = 0;
1928 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
1929 break;
1930 case ICmpInst::ICMP_NE:
1931 if (pred == ICmpInst::ICMP_EQ) Result = 0;
1932 if (pred == ICmpInst::ICMP_NE) Result = 1;
1933 break;
1934 }
1935
1936 // If we evaluated the result, return it now.
1937 if (Result != -1)
1938 return ConstantInt::get(ResultTy, Result);
1939
1940 // If the right hand side is a bitcast, try using its inverse to simplify
1941 // it by moving it to the left hand side. We can't do this if it would turn
1942 // a vector compare into a scalar compare or visa versa.
1943 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1944 Constant *CE2Op0 = CE2->getOperand(0);
1945 if (CE2->getOpcode() == Instruction::BitCast &&
1946 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy()) {
1947 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1948 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
1949 }
1950 }
1951
1952 // If the left hand side is an extension, try eliminating it.
1953 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1954 if ((CE1->getOpcode() == Instruction::SExt &&
1955 ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
1956 (CE1->getOpcode() == Instruction::ZExt &&
1957 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
1958 Constant *CE1Op0 = CE1->getOperand(0);
1959 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1960 if (CE1Inverse == CE1Op0) {
1961 // Check whether we can safely truncate the right hand side.
1962 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1963 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1964 C2->getType()) == C2)
1965 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
1966 }
1967 }
1968 }
1969
1970 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1971 (C1->isNullValue() && !C2->isNullValue())) {
1972 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1973 // other way if possible.
1974 // Also, if C1 is null and C2 isn't, flip them around.
1975 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
1976 return ConstantExpr::getICmp(pred, C2, C1);
1977 }
1978 }
1979 return nullptr;
1980 }
1981
1982 /// isInBoundsIndices - Test whether the given sequence of *normalized* indices
1983 /// is "inbounds".
1984 template<typename IndexTy>
isInBoundsIndices(ArrayRef<IndexTy> Idxs)1985 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1986 // No indices means nothing that could be out of bounds.
1987 if (Idxs.empty()) return true;
1988
1989 // If the first index is zero, it's in bounds.
1990 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1991
1992 // If the first index is one and all the rest are zero, it's in bounds,
1993 // by the one-past-the-end rule.
1994 if (!cast<ConstantInt>(Idxs[0])->isOne())
1995 return false;
1996 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1997 if (!cast<Constant>(Idxs[i])->isNullValue())
1998 return false;
1999 return true;
2000 }
2001
2002 /// \brief Test whether a given ConstantInt is in-range for a SequentialType.
isIndexInRangeOfSequentialType(SequentialType * STy,const ConstantInt * CI)2003 static bool isIndexInRangeOfSequentialType(SequentialType *STy,
2004 const ConstantInt *CI) {
2005 // And indices are valid when indexing along a pointer
2006 if (isa<PointerType>(STy))
2007 return true;
2008
2009 uint64_t NumElements = 0;
2010 // Determine the number of elements in our sequential type.
2011 if (auto *ATy = dyn_cast<ArrayType>(STy))
2012 NumElements = ATy->getNumElements();
2013 else if (auto *VTy = dyn_cast<VectorType>(STy))
2014 NumElements = VTy->getNumElements();
2015
2016 assert((isa<ArrayType>(STy) || NumElements > 0) &&
2017 "didn't expect non-array type to have zero elements!");
2018
2019 // We cannot bounds check the index if it doesn't fit in an int64_t.
2020 if (CI->getValue().getActiveBits() > 64)
2021 return false;
2022
2023 // A negative index or an index past the end of our sequential type is
2024 // considered out-of-range.
2025 int64_t IndexVal = CI->getSExtValue();
2026 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2027 return false;
2028
2029 // Otherwise, it is in-range.
2030 return true;
2031 }
2032
2033 template<typename IndexTy>
ConstantFoldGetElementPtrImpl(Type * PointeeTy,Constant * C,bool inBounds,ArrayRef<IndexTy> Idxs)2034 static Constant *ConstantFoldGetElementPtrImpl(Type *PointeeTy, Constant *C,
2035 bool inBounds,
2036 ArrayRef<IndexTy> Idxs) {
2037 if (Idxs.empty()) return C;
2038 Constant *Idx0 = cast<Constant>(Idxs[0]);
2039 if ((Idxs.size() == 1 && Idx0->isNullValue()))
2040 return C;
2041
2042 if (isa<UndefValue>(C)) {
2043 PointerType *Ptr = cast<PointerType>(C->getType());
2044 Type *Ty = GetElementPtrInst::getIndexedType(
2045 cast<PointerType>(Ptr->getScalarType())->getElementType(), Idxs);
2046 assert(Ty && "Invalid indices for GEP!");
2047 return UndefValue::get(PointerType::get(Ty, Ptr->getAddressSpace()));
2048 }
2049
2050 if (C->isNullValue()) {
2051 bool isNull = true;
2052 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2053 if (!cast<Constant>(Idxs[i])->isNullValue()) {
2054 isNull = false;
2055 break;
2056 }
2057 if (isNull) {
2058 PointerType *Ptr = cast<PointerType>(C->getType());
2059 Type *Ty = GetElementPtrInst::getIndexedType(
2060 cast<PointerType>(Ptr->getScalarType())->getElementType(), Idxs);
2061 assert(Ty && "Invalid indices for GEP!");
2062 return ConstantPointerNull::get(PointerType::get(Ty,
2063 Ptr->getAddressSpace()));
2064 }
2065 }
2066
2067 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2068 // Combine Indices - If the source pointer to this getelementptr instruction
2069 // is a getelementptr instruction, combine the indices of the two
2070 // getelementptr instructions into a single instruction.
2071 //
2072 if (CE->getOpcode() == Instruction::GetElementPtr) {
2073 Type *LastTy = nullptr;
2074 for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
2075 I != E; ++I)
2076 LastTy = *I;
2077
2078 // We cannot combine indices if doing so would take us outside of an
2079 // array or vector. Doing otherwise could trick us if we evaluated such a
2080 // GEP as part of a load.
2081 //
2082 // e.g. Consider if the original GEP was:
2083 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2084 // i32 0, i32 0, i64 0)
2085 //
2086 // If we then tried to offset it by '8' to get to the third element,
2087 // an i8, we should *not* get:
2088 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2089 // i32 0, i32 0, i64 8)
2090 //
2091 // This GEP tries to index array element '8 which runs out-of-bounds.
2092 // Subsequent evaluation would get confused and produce erroneous results.
2093 //
2094 // The following prohibits such a GEP from being formed by checking to see
2095 // if the index is in-range with respect to an array or vector.
2096 bool PerformFold = false;
2097 if (Idx0->isNullValue())
2098 PerformFold = true;
2099 else if (SequentialType *STy = dyn_cast_or_null<SequentialType>(LastTy))
2100 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0))
2101 PerformFold = isIndexInRangeOfSequentialType(STy, CI);
2102
2103 if (PerformFold) {
2104 SmallVector<Value*, 16> NewIndices;
2105 NewIndices.reserve(Idxs.size() + CE->getNumOperands());
2106 NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1);
2107
2108 // Add the last index of the source with the first index of the new GEP.
2109 // Make sure to handle the case when they are actually different types.
2110 Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
2111 // Otherwise it must be an array.
2112 if (!Idx0->isNullValue()) {
2113 Type *IdxTy = Combined->getType();
2114 if (IdxTy != Idx0->getType()) {
2115 unsigned CommonExtendedWidth =
2116 std::max(IdxTy->getIntegerBitWidth(),
2117 Idx0->getType()->getIntegerBitWidth());
2118 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2119
2120 Type *CommonTy =
2121 Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth);
2122 Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2123 Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy);
2124 Combined = ConstantExpr::get(Instruction::Add, C1, C2);
2125 } else {
2126 Combined =
2127 ConstantExpr::get(Instruction::Add, Idx0, Combined);
2128 }
2129 }
2130
2131 NewIndices.push_back(Combined);
2132 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2133 return ConstantExpr::getGetElementPtr(
2134 cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0),
2135 NewIndices, inBounds && cast<GEPOperator>(CE)->isInBounds());
2136 }
2137 }
2138
2139 // Attempt to fold casts to the same type away. For example, folding:
2140 //
2141 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2142 // i64 0, i64 0)
2143 // into:
2144 //
2145 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2146 //
2147 // Don't fold if the cast is changing address spaces.
2148 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2149 PointerType *SrcPtrTy =
2150 dyn_cast<PointerType>(CE->getOperand(0)->getType());
2151 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2152 if (SrcPtrTy && DstPtrTy) {
2153 ArrayType *SrcArrayTy =
2154 dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2155 ArrayType *DstArrayTy =
2156 dyn_cast<ArrayType>(DstPtrTy->getElementType());
2157 if (SrcArrayTy && DstArrayTy
2158 && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2159 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2160 return ConstantExpr::getGetElementPtr(
2161 SrcArrayTy, (Constant *)CE->getOperand(0), Idxs, inBounds);
2162 }
2163 }
2164 }
2165
2166 // Check to see if any array indices are not within the corresponding
2167 // notional array or vector bounds. If so, try to determine if they can be
2168 // factored out into preceding dimensions.
2169 SmallVector<Constant *, 8> NewIdxs;
2170 Type *Ty = PointeeTy;
2171 Type *Prev = C->getType();
2172 bool Unknown = !isa<ConstantInt>(Idxs[0]);
2173 for (unsigned i = 1, e = Idxs.size(); i != e;
2174 Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) {
2175 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2176 if (isa<ArrayType>(Ty) || isa<VectorType>(Ty))
2177 if (CI->getSExtValue() > 0 &&
2178 !isIndexInRangeOfSequentialType(cast<SequentialType>(Ty), CI)) {
2179 if (isa<SequentialType>(Prev)) {
2180 // It's out of range, but we can factor it into the prior
2181 // dimension.
2182 NewIdxs.resize(Idxs.size());
2183 uint64_t NumElements = 0;
2184 if (auto *ATy = dyn_cast<ArrayType>(Ty))
2185 NumElements = ATy->getNumElements();
2186 else
2187 NumElements = cast<VectorType>(Ty)->getNumElements();
2188
2189 ConstantInt *Factor = ConstantInt::get(CI->getType(), NumElements);
2190 NewIdxs[i] = ConstantExpr::getSRem(CI, Factor);
2191
2192 Constant *PrevIdx = cast<Constant>(Idxs[i-1]);
2193 Constant *Div = ConstantExpr::getSDiv(CI, Factor);
2194
2195 unsigned CommonExtendedWidth =
2196 std::max(PrevIdx->getType()->getIntegerBitWidth(),
2197 Div->getType()->getIntegerBitWidth());
2198 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2199
2200 // Before adding, extend both operands to i64 to avoid
2201 // overflow trouble.
2202 if (!PrevIdx->getType()->isIntegerTy(CommonExtendedWidth))
2203 PrevIdx = ConstantExpr::getSExt(
2204 PrevIdx,
2205 Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
2206 if (!Div->getType()->isIntegerTy(CommonExtendedWidth))
2207 Div = ConstantExpr::getSExt(
2208 Div, Type::getIntNTy(Div->getContext(), CommonExtendedWidth));
2209
2210 NewIdxs[i-1] = ConstantExpr::getAdd(PrevIdx, Div);
2211 } else {
2212 // It's out of range, but the prior dimension is a struct
2213 // so we can't do anything about it.
2214 Unknown = true;
2215 }
2216 }
2217 } else {
2218 // We don't know if it's in range or not.
2219 Unknown = true;
2220 }
2221 }
2222
2223 // If we did any factoring, start over with the adjusted indices.
2224 if (!NewIdxs.empty()) {
2225 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2226 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2227 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, inBounds);
2228 }
2229
2230 // If all indices are known integers and normalized, we can do a simple
2231 // check for the "inbounds" property.
2232 if (!Unknown && !inBounds)
2233 if (auto *GV = dyn_cast<GlobalVariable>(C))
2234 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2235 return ConstantExpr::getInBoundsGetElementPtr(PointeeTy, C, Idxs);
2236
2237 return nullptr;
2238 }
2239
ConstantFoldGetElementPtr(Constant * C,bool inBounds,ArrayRef<Constant * > Idxs)2240 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2241 bool inBounds,
2242 ArrayRef<Constant *> Idxs) {
2243 return ConstantFoldGetElementPtrImpl(
2244 cast<PointerType>(C->getType()->getScalarType())->getElementType(), C,
2245 inBounds, Idxs);
2246 }
2247
ConstantFoldGetElementPtr(Constant * C,bool inBounds,ArrayRef<Value * > Idxs)2248 Constant *llvm::ConstantFoldGetElementPtr(Constant *C,
2249 bool inBounds,
2250 ArrayRef<Value *> Idxs) {
2251 return ConstantFoldGetElementPtrImpl(
2252 cast<PointerType>(C->getType()->getScalarType())->getElementType(), C,
2253 inBounds, Idxs);
2254 }
2255
ConstantFoldGetElementPtr(Type * Ty,Constant * C,bool inBounds,ArrayRef<Constant * > Idxs)2256 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
2257 bool inBounds,
2258 ArrayRef<Constant *> Idxs) {
2259 return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
2260 }
2261
ConstantFoldGetElementPtr(Type * Ty,Constant * C,bool inBounds,ArrayRef<Value * > Idxs)2262 Constant *llvm::ConstantFoldGetElementPtr(Type *Ty, Constant *C,
2263 bool inBounds,
2264 ArrayRef<Value *> Idxs) {
2265 return ConstantFoldGetElementPtrImpl(Ty, C, inBounds, Idxs);
2266 }
2267