1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/ast/scopes.h"
6 
7 #include "src/accessors.h"
8 #include "src/ast/scopeinfo.h"
9 #include "src/bootstrapper.h"
10 #include "src/messages.h"
11 #include "src/parsing/parser.h"  // for ParseInfo
12 
13 namespace v8 {
14 namespace internal {
15 
16 // ----------------------------------------------------------------------------
17 // Implementation of LocalsMap
18 //
19 // Note: We are storing the handle locations as key values in the hash map.
20 //       When inserting a new variable via Declare(), we rely on the fact that
21 //       the handle location remains alive for the duration of that variable
22 //       use. Because a Variable holding a handle with the same location exists
23 //       this is ensured.
24 
VariableMap(Zone * zone)25 VariableMap::VariableMap(Zone* zone)
26     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
27       zone_(zone) {}
~VariableMap()28 VariableMap::~VariableMap() {}
29 
30 
Declare(Scope * scope,const AstRawString * name,VariableMode mode,Variable::Kind kind,InitializationFlag initialization_flag,MaybeAssignedFlag maybe_assigned_flag,int declaration_group_start)31 Variable* VariableMap::Declare(Scope* scope, const AstRawString* name,
32                                VariableMode mode, Variable::Kind kind,
33                                InitializationFlag initialization_flag,
34                                MaybeAssignedFlag maybe_assigned_flag,
35                                int declaration_group_start) {
36   // AstRawStrings are unambiguous, i.e., the same string is always represented
37   // by the same AstRawString*.
38   // FIXME(marja): fix the type of Lookup.
39   Entry* p =
40       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
41                                   ZoneAllocationPolicy(zone()));
42   if (p->value == NULL) {
43     // The variable has not been declared yet -> insert it.
44     DCHECK(p->key == name);
45     if (kind == Variable::CLASS) {
46       p->value = new (zone())
47           ClassVariable(scope, name, mode, initialization_flag,
48                         maybe_assigned_flag, declaration_group_start);
49     } else {
50       p->value = new (zone()) Variable(
51           scope, name, mode, kind, initialization_flag, maybe_assigned_flag);
52     }
53   }
54   return reinterpret_cast<Variable*>(p->value);
55 }
56 
57 
Lookup(const AstRawString * name)58 Variable* VariableMap::Lookup(const AstRawString* name) {
59   Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->hash());
60   if (p != NULL) {
61     DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
62     DCHECK(p->value != NULL);
63     return reinterpret_cast<Variable*>(p->value);
64   }
65   return NULL;
66 }
67 
68 
SloppyBlockFunctionMap(Zone * zone)69 SloppyBlockFunctionMap::SloppyBlockFunctionMap(Zone* zone)
70     : ZoneHashMap(ZoneHashMap::PointersMatch, 8, ZoneAllocationPolicy(zone)),
71       zone_(zone) {}
~SloppyBlockFunctionMap()72 SloppyBlockFunctionMap::~SloppyBlockFunctionMap() {}
73 
74 
Declare(const AstRawString * name,SloppyBlockFunctionStatement * stmt)75 void SloppyBlockFunctionMap::Declare(const AstRawString* name,
76                                      SloppyBlockFunctionStatement* stmt) {
77   // AstRawStrings are unambiguous, i.e., the same string is always represented
78   // by the same AstRawString*.
79   Entry* p =
80       ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name), name->hash(),
81                                   ZoneAllocationPolicy(zone_));
82   if (p->value == nullptr) {
83     p->value = new (zone_->New(sizeof(Vector))) Vector(zone_);
84   }
85   Vector* delegates = static_cast<Vector*>(p->value);
86   delegates->push_back(stmt);
87 }
88 
89 
90 // ----------------------------------------------------------------------------
91 // Implementation of Scope
92 
Scope(Zone * zone,Scope * outer_scope,ScopeType scope_type,AstValueFactory * ast_value_factory,FunctionKind function_kind)93 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type,
94              AstValueFactory* ast_value_factory, FunctionKind function_kind)
95     : inner_scopes_(4, zone),
96       variables_(zone),
97       temps_(4, zone),
98       params_(4, zone),
99       unresolved_(16, zone),
100       decls_(4, zone),
101       module_descriptor_(
102           scope_type == MODULE_SCOPE ? ModuleDescriptor::New(zone) : NULL),
103       sloppy_block_function_map_(zone),
104       already_resolved_(false),
105       ast_value_factory_(ast_value_factory),
106       zone_(zone),
107       class_declaration_group_start_(-1) {
108   SetDefaults(scope_type, outer_scope, Handle<ScopeInfo>::null(),
109               function_kind);
110   // The outermost scope must be a script scope.
111   DCHECK(scope_type == SCRIPT_SCOPE || outer_scope != NULL);
112   DCHECK(!HasIllegalRedeclaration());
113 }
114 
115 
Scope(Zone * zone,Scope * inner_scope,ScopeType scope_type,Handle<ScopeInfo> scope_info,AstValueFactory * value_factory)116 Scope::Scope(Zone* zone, Scope* inner_scope, ScopeType scope_type,
117              Handle<ScopeInfo> scope_info, AstValueFactory* value_factory)
118     : inner_scopes_(4, zone),
119       variables_(zone),
120       temps_(4, zone),
121       params_(4, zone),
122       unresolved_(16, zone),
123       decls_(4, zone),
124       module_descriptor_(NULL),
125       sloppy_block_function_map_(zone),
126       already_resolved_(true),
127       ast_value_factory_(value_factory),
128       zone_(zone),
129       class_declaration_group_start_(-1) {
130   SetDefaults(scope_type, NULL, scope_info);
131   if (!scope_info.is_null()) {
132     num_heap_slots_ = scope_info_->ContextLength();
133   }
134   // Ensure at least MIN_CONTEXT_SLOTS to indicate a materialized context.
135   num_heap_slots_ = Max(num_heap_slots_,
136                         static_cast<int>(Context::MIN_CONTEXT_SLOTS));
137   AddInnerScope(inner_scope);
138 }
139 
140 
Scope(Zone * zone,Scope * inner_scope,const AstRawString * catch_variable_name,AstValueFactory * value_factory)141 Scope::Scope(Zone* zone, Scope* inner_scope,
142              const AstRawString* catch_variable_name,
143              AstValueFactory* value_factory)
144     : inner_scopes_(1, zone),
145       variables_(zone),
146       temps_(0, zone),
147       params_(0, zone),
148       unresolved_(0, zone),
149       decls_(0, zone),
150       module_descriptor_(NULL),
151       sloppy_block_function_map_(zone),
152       already_resolved_(true),
153       ast_value_factory_(value_factory),
154       zone_(zone),
155       class_declaration_group_start_(-1) {
156   SetDefaults(CATCH_SCOPE, NULL, Handle<ScopeInfo>::null());
157   AddInnerScope(inner_scope);
158   ++num_var_or_const_;
159   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
160   Variable* variable = variables_.Declare(this,
161                                           catch_variable_name,
162                                           VAR,
163                                           Variable::NORMAL,
164                                           kCreatedInitialized);
165   AllocateHeapSlot(variable);
166 }
167 
168 
SetDefaults(ScopeType scope_type,Scope * outer_scope,Handle<ScopeInfo> scope_info,FunctionKind function_kind)169 void Scope::SetDefaults(ScopeType scope_type, Scope* outer_scope,
170                         Handle<ScopeInfo> scope_info,
171                         FunctionKind function_kind) {
172   outer_scope_ = outer_scope;
173   scope_type_ = scope_type;
174   is_declaration_scope_ =
175       is_eval_scope() || is_function_scope() ||
176       is_module_scope() || is_script_scope();
177   function_kind_ = function_kind;
178   scope_name_ = ast_value_factory_->empty_string();
179   dynamics_ = nullptr;
180   receiver_ = nullptr;
181   new_target_ = nullptr;
182   function_ = nullptr;
183   arguments_ = nullptr;
184   this_function_ = nullptr;
185   illegal_redecl_ = nullptr;
186   scope_inside_with_ = false;
187   scope_contains_with_ = false;
188   scope_calls_eval_ = false;
189   scope_uses_arguments_ = false;
190   scope_uses_super_property_ = false;
191   asm_module_ = false;
192   asm_function_ = outer_scope != NULL && outer_scope->asm_module_;
193   // Inherit the language mode from the parent scope.
194   language_mode_ = outer_scope != NULL ? outer_scope->language_mode_ : SLOPPY;
195   outer_scope_calls_sloppy_eval_ = false;
196   inner_scope_calls_eval_ = false;
197   scope_nonlinear_ = false;
198   force_eager_compilation_ = false;
199   force_context_allocation_ = (outer_scope != NULL && !is_function_scope())
200       ? outer_scope->has_forced_context_allocation() : false;
201   num_var_or_const_ = 0;
202   num_stack_slots_ = 0;
203   num_heap_slots_ = 0;
204   num_global_slots_ = 0;
205   arity_ = 0;
206   has_simple_parameters_ = true;
207   rest_parameter_ = NULL;
208   rest_index_ = -1;
209   scope_info_ = scope_info;
210   start_position_ = RelocInfo::kNoPosition;
211   end_position_ = RelocInfo::kNoPosition;
212   if (!scope_info.is_null()) {
213     scope_calls_eval_ = scope_info->CallsEval();
214     language_mode_ = scope_info->language_mode();
215     is_declaration_scope_ = scope_info->is_declaration_scope();
216     function_kind_ = scope_info->function_kind();
217   }
218 }
219 
220 
DeserializeScopeChain(Isolate * isolate,Zone * zone,Context * context,Scope * script_scope)221 Scope* Scope::DeserializeScopeChain(Isolate* isolate, Zone* zone,
222                                     Context* context, Scope* script_scope) {
223   // Reconstruct the outer scope chain from a closure's context chain.
224   Scope* current_scope = NULL;
225   Scope* innermost_scope = NULL;
226   bool contains_with = false;
227   while (!context->IsNativeContext()) {
228     if (context->IsWithContext()) {
229       Scope* with_scope = new (zone)
230           Scope(zone, current_scope, WITH_SCOPE, Handle<ScopeInfo>::null(),
231                 script_scope->ast_value_factory_);
232       current_scope = with_scope;
233       // All the inner scopes are inside a with.
234       contains_with = true;
235       for (Scope* s = innermost_scope; s != NULL; s = s->outer_scope()) {
236         s->scope_inside_with_ = true;
237       }
238     } else if (context->IsScriptContext()) {
239       ScopeInfo* scope_info = context->scope_info();
240       current_scope = new (zone) Scope(zone, current_scope, SCRIPT_SCOPE,
241                                        Handle<ScopeInfo>(scope_info),
242                                        script_scope->ast_value_factory_);
243     } else if (context->IsModuleContext()) {
244       ScopeInfo* scope_info = context->module()->scope_info();
245       current_scope = new (zone) Scope(zone, current_scope, MODULE_SCOPE,
246                                        Handle<ScopeInfo>(scope_info),
247                                        script_scope->ast_value_factory_);
248     } else if (context->IsFunctionContext()) {
249       ScopeInfo* scope_info = context->closure()->shared()->scope_info();
250       current_scope = new (zone) Scope(zone, current_scope, FUNCTION_SCOPE,
251                                        Handle<ScopeInfo>(scope_info),
252                                        script_scope->ast_value_factory_);
253       if (scope_info->IsAsmFunction()) current_scope->asm_function_ = true;
254       if (scope_info->IsAsmModule()) current_scope->asm_module_ = true;
255     } else if (context->IsBlockContext()) {
256       ScopeInfo* scope_info = context->scope_info();
257       current_scope = new (zone)
258           Scope(zone, current_scope, BLOCK_SCOPE, Handle<ScopeInfo>(scope_info),
259                 script_scope->ast_value_factory_);
260     } else {
261       DCHECK(context->IsCatchContext());
262       String* name = context->catch_name();
263       current_scope = new (zone) Scope(
264           zone, current_scope,
265           script_scope->ast_value_factory_->GetString(Handle<String>(name)),
266           script_scope->ast_value_factory_);
267     }
268     if (contains_with) current_scope->RecordWithStatement();
269     if (innermost_scope == NULL) innermost_scope = current_scope;
270 
271     // Forget about a with when we move to a context for a different function.
272     if (context->previous()->closure() != context->closure()) {
273       contains_with = false;
274     }
275     context = context->previous();
276   }
277 
278   script_scope->AddInnerScope(current_scope);
279   script_scope->PropagateScopeInfo(false);
280   return (innermost_scope == NULL) ? script_scope : innermost_scope;
281 }
282 
283 
Analyze(ParseInfo * info)284 bool Scope::Analyze(ParseInfo* info) {
285   DCHECK(info->literal() != NULL);
286   DCHECK(info->scope() == NULL);
287   Scope* scope = info->literal()->scope();
288   Scope* top = scope;
289 
290   // Traverse the scope tree up to the first unresolved scope or the global
291   // scope and start scope resolution and variable allocation from that scope.
292   while (!top->is_script_scope() &&
293          !top->outer_scope()->already_resolved()) {
294     top = top->outer_scope();
295   }
296 
297   // Allocate the variables.
298   {
299     AstNodeFactory ast_node_factory(info->ast_value_factory());
300     if (!top->AllocateVariables(info, &ast_node_factory)) {
301       DCHECK(top->pending_error_handler_.has_pending_error());
302       top->pending_error_handler_.ThrowPendingError(info->isolate(),
303                                                     info->script());
304       return false;
305     }
306   }
307 
308 #ifdef DEBUG
309   if (info->script_is_native() ? FLAG_print_builtin_scopes
310                                : FLAG_print_scopes) {
311     scope->Print();
312   }
313 #endif
314 
315   info->set_scope(scope);
316   return true;
317 }
318 
319 
Initialize()320 void Scope::Initialize() {
321   DCHECK(!already_resolved());
322 
323   // Add this scope as a new inner scope of the outer scope.
324   if (outer_scope_ != NULL) {
325     outer_scope_->inner_scopes_.Add(this, zone());
326     scope_inside_with_ = outer_scope_->scope_inside_with_ || is_with_scope();
327   } else {
328     scope_inside_with_ = is_with_scope();
329   }
330 
331   // Declare convenience variables and the receiver.
332   if (is_declaration_scope() && has_this_declaration()) {
333     bool subclass_constructor = IsSubclassConstructor(function_kind_);
334     Variable* var = variables_.Declare(
335         this, ast_value_factory_->this_string(),
336         subclass_constructor ? CONST : VAR, Variable::THIS,
337         subclass_constructor ? kNeedsInitialization : kCreatedInitialized);
338     receiver_ = var;
339   }
340 
341   if (is_function_scope() && !is_arrow_scope()) {
342     // Declare 'arguments' variable which exists in all non arrow functions.
343     // Note that it might never be accessed, in which case it won't be
344     // allocated during variable allocation.
345     variables_.Declare(this, ast_value_factory_->arguments_string(), VAR,
346                        Variable::ARGUMENTS, kCreatedInitialized);
347 
348     variables_.Declare(this, ast_value_factory_->new_target_string(), CONST,
349                        Variable::NORMAL, kCreatedInitialized);
350 
351     if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
352         IsAccessorFunction(function_kind_)) {
353       variables_.Declare(this, ast_value_factory_->this_function_string(),
354                          CONST, Variable::NORMAL, kCreatedInitialized);
355     }
356   }
357 }
358 
359 
FinalizeBlockScope()360 Scope* Scope::FinalizeBlockScope() {
361   DCHECK(is_block_scope());
362   DCHECK(temps_.is_empty());
363   DCHECK(params_.is_empty());
364 
365   if (num_var_or_const() > 0 ||
366       (is_declaration_scope() && calls_sloppy_eval())) {
367     return this;
368   }
369 
370   // Remove this scope from outer scope.
371   outer_scope()->RemoveInnerScope(this);
372 
373   // Reparent inner scopes.
374   for (int i = 0; i < inner_scopes_.length(); i++) {
375     outer_scope()->AddInnerScope(inner_scopes_[i]);
376   }
377 
378   // Move unresolved variables
379   for (int i = 0; i < unresolved_.length(); i++) {
380     outer_scope()->unresolved_.Add(unresolved_[i], zone());
381   }
382 
383   PropagateUsageFlagsToScope(outer_scope_);
384 
385   return NULL;
386 }
387 
388 
ReplaceOuterScope(Scope * outer)389 void Scope::ReplaceOuterScope(Scope* outer) {
390   DCHECK_NOT_NULL(outer);
391   DCHECK_NOT_NULL(outer_scope_);
392   DCHECK(!already_resolved());
393   DCHECK(!outer->already_resolved());
394   DCHECK(!outer_scope_->already_resolved());
395   outer_scope_->RemoveInnerScope(this);
396   outer->AddInnerScope(this);
397   outer_scope_ = outer;
398 }
399 
400 
PropagateUsageFlagsToScope(Scope * other)401 void Scope::PropagateUsageFlagsToScope(Scope* other) {
402   DCHECK_NOT_NULL(other);
403   DCHECK(!already_resolved());
404   DCHECK(!other->already_resolved());
405   if (uses_arguments()) other->RecordArgumentsUsage();
406   if (uses_super_property()) other->RecordSuperPropertyUsage();
407   if (calls_eval()) other->RecordEvalCall();
408   if (scope_contains_with_) other->RecordWithStatement();
409 }
410 
411 
LookupLocal(const AstRawString * name)412 Variable* Scope::LookupLocal(const AstRawString* name) {
413   Variable* result = variables_.Lookup(name);
414   if (result != NULL || scope_info_.is_null()) {
415     return result;
416   }
417   Handle<String> name_handle = name->string();
418   // The Scope is backed up by ScopeInfo. This means it cannot operate in a
419   // heap-independent mode, and all strings must be internalized immediately. So
420   // it's ok to get the Handle<String> here.
421   // If we have a serialized scope info, we might find the variable there.
422   // There should be no local slot with the given name.
423   DCHECK(scope_info_->StackSlotIndex(*name_handle) < 0 || is_block_scope());
424 
425   // Check context slot lookup.
426   VariableMode mode;
427   VariableLocation location = VariableLocation::CONTEXT;
428   InitializationFlag init_flag;
429   MaybeAssignedFlag maybe_assigned_flag;
430   int index = ScopeInfo::ContextSlotIndex(scope_info_, name_handle, &mode,
431                                           &init_flag, &maybe_assigned_flag);
432   if (index < 0) {
433     location = VariableLocation::GLOBAL;
434     index = ScopeInfo::ContextGlobalSlotIndex(scope_info_, name_handle, &mode,
435                                               &init_flag, &maybe_assigned_flag);
436   }
437   if (index < 0) {
438     // Check parameters.
439     index = scope_info_->ParameterIndex(*name_handle);
440     if (index < 0) return NULL;
441 
442     mode = DYNAMIC;
443     location = VariableLocation::LOOKUP;
444     init_flag = kCreatedInitialized;
445     // Be conservative and flag parameters as maybe assigned. Better information
446     // would require ScopeInfo to serialize the maybe_assigned bit also for
447     // parameters.
448     maybe_assigned_flag = kMaybeAssigned;
449   } else {
450     DCHECK(location != VariableLocation::GLOBAL ||
451            (is_script_scope() && IsDeclaredVariableMode(mode) &&
452             !IsLexicalVariableMode(mode)));
453   }
454 
455   Variable::Kind kind = Variable::NORMAL;
456   if (location == VariableLocation::CONTEXT &&
457       index == scope_info_->ReceiverContextSlotIndex()) {
458     kind = Variable::THIS;
459   }
460   // TODO(marja, rossberg): Correctly declare FUNCTION, CLASS, NEW_TARGET, and
461   // ARGUMENTS bindings as their corresponding Variable::Kind.
462 
463   Variable* var = variables_.Declare(this, name, mode, kind, init_flag,
464                                      maybe_assigned_flag);
465   var->AllocateTo(location, index);
466   return var;
467 }
468 
469 
LookupFunctionVar(const AstRawString * name,AstNodeFactory * factory)470 Variable* Scope::LookupFunctionVar(const AstRawString* name,
471                                    AstNodeFactory* factory) {
472   if (function_ != NULL && function_->proxy()->raw_name() == name) {
473     return function_->proxy()->var();
474   } else if (!scope_info_.is_null()) {
475     // If we are backed by a scope info, try to lookup the variable there.
476     VariableMode mode;
477     int index = scope_info_->FunctionContextSlotIndex(*(name->string()), &mode);
478     if (index < 0) return NULL;
479     Variable* var = new (zone())
480         Variable(this, name, mode, Variable::NORMAL, kCreatedInitialized);
481     VariableProxy* proxy = factory->NewVariableProxy(var);
482     VariableDeclaration* declaration = factory->NewVariableDeclaration(
483         proxy, mode, this, RelocInfo::kNoPosition);
484     DeclareFunctionVar(declaration);
485     var->AllocateTo(VariableLocation::CONTEXT, index);
486     return var;
487   } else {
488     return NULL;
489   }
490 }
491 
492 
Lookup(const AstRawString * name)493 Variable* Scope::Lookup(const AstRawString* name) {
494   for (Scope* scope = this;
495        scope != NULL;
496        scope = scope->outer_scope()) {
497     Variable* var = scope->LookupLocal(name);
498     if (var != NULL) return var;
499   }
500   return NULL;
501 }
502 
503 
DeclareParameter(const AstRawString * name,VariableMode mode,bool is_optional,bool is_rest,bool * is_duplicate)504 Variable* Scope::DeclareParameter(
505     const AstRawString* name, VariableMode mode,
506     bool is_optional, bool is_rest, bool* is_duplicate) {
507   DCHECK(!already_resolved());
508   DCHECK(is_function_scope());
509   DCHECK(!is_optional || !is_rest);
510   Variable* var;
511   if (mode == TEMPORARY) {
512     var = NewTemporary(name);
513   } else {
514     var = variables_.Declare(this, name, mode, Variable::NORMAL,
515                              kCreatedInitialized);
516     // TODO(wingo): Avoid O(n^2) check.
517     *is_duplicate = IsDeclaredParameter(name);
518   }
519   if (!is_optional && !is_rest && arity_ == params_.length()) {
520     ++arity_;
521   }
522   if (is_rest) {
523     DCHECK_NULL(rest_parameter_);
524     rest_parameter_ = var;
525     rest_index_ = num_parameters();
526   }
527   params_.Add(var, zone());
528   return var;
529 }
530 
531 
DeclareLocal(const AstRawString * name,VariableMode mode,InitializationFlag init_flag,Variable::Kind kind,MaybeAssignedFlag maybe_assigned_flag,int declaration_group_start)532 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
533                               InitializationFlag init_flag, Variable::Kind kind,
534                               MaybeAssignedFlag maybe_assigned_flag,
535                               int declaration_group_start) {
536   DCHECK(!already_resolved());
537   // This function handles VAR, LET, and CONST modes.  DYNAMIC variables are
538   // introduces during variable allocation, and TEMPORARY variables are
539   // allocated via NewTemporary().
540   DCHECK(IsDeclaredVariableMode(mode));
541   ++num_var_or_const_;
542   return variables_.Declare(this, name, mode, kind, init_flag,
543                             maybe_assigned_flag, declaration_group_start);
544 }
545 
546 
DeclareDynamicGlobal(const AstRawString * name)547 Variable* Scope::DeclareDynamicGlobal(const AstRawString* name) {
548   DCHECK(is_script_scope());
549   return variables_.Declare(this,
550                             name,
551                             DYNAMIC_GLOBAL,
552                             Variable::NORMAL,
553                             kCreatedInitialized);
554 }
555 
556 
RemoveUnresolved(VariableProxy * var)557 bool Scope::RemoveUnresolved(VariableProxy* var) {
558   // Most likely (always?) any variable we want to remove
559   // was just added before, so we search backwards.
560   for (int i = unresolved_.length(); i-- > 0;) {
561     if (unresolved_[i] == var) {
562       unresolved_.Remove(i);
563       return true;
564     }
565   }
566   return false;
567 }
568 
569 
NewTemporary(const AstRawString * name)570 Variable* Scope::NewTemporary(const AstRawString* name) {
571   DCHECK(!already_resolved());
572   Scope* scope = this->ClosureScope();
573   Variable* var = new(zone()) Variable(scope,
574                                        name,
575                                        TEMPORARY,
576                                        Variable::NORMAL,
577                                        kCreatedInitialized);
578   scope->AddTemporary(var);
579   return var;
580 }
581 
582 
RemoveTemporary(Variable * var)583 bool Scope::RemoveTemporary(Variable* var) {
584   // Most likely (always?) any temporary variable we want to remove
585   // was just added before, so we search backwards.
586   for (int i = temps_.length(); i-- > 0;) {
587     if (temps_[i] == var) {
588       temps_.Remove(i);
589       return true;
590     }
591   }
592   return false;
593 }
594 
595 
AddDeclaration(Declaration * declaration)596 void Scope::AddDeclaration(Declaration* declaration) {
597   decls_.Add(declaration, zone());
598 }
599 
600 
SetIllegalRedeclaration(Expression * expression)601 void Scope::SetIllegalRedeclaration(Expression* expression) {
602   // Record only the first illegal redeclaration.
603   if (!HasIllegalRedeclaration()) {
604     illegal_redecl_ = expression;
605   }
606   DCHECK(HasIllegalRedeclaration());
607 }
608 
609 
GetIllegalRedeclaration()610 Expression* Scope::GetIllegalRedeclaration() {
611   DCHECK(HasIllegalRedeclaration());
612   return illegal_redecl_;
613 }
614 
615 
CheckConflictingVarDeclarations()616 Declaration* Scope::CheckConflictingVarDeclarations() {
617   int length = decls_.length();
618   for (int i = 0; i < length; i++) {
619     Declaration* decl = decls_[i];
620     // We don't create a separate scope to hold the function name of a function
621     // expression, so we have to make sure not to consider it when checking for
622     // conflicts (since it's conceptually "outside" the declaration scope).
623     if (is_function_scope() && decl == function()) continue;
624     if (IsLexicalVariableMode(decl->mode()) && !is_block_scope()) continue;
625     const AstRawString* name = decl->proxy()->raw_name();
626 
627     // Iterate through all scopes until and including the declaration scope.
628     Scope* previous = NULL;
629     Scope* current = decl->scope();
630     // Lexical vs lexical conflicts within the same scope have already been
631     // captured in Parser::Declare. The only conflicts we still need to check
632     // are lexical vs VAR, or any declarations within a declaration block scope
633     // vs lexical declarations in its surrounding (function) scope.
634     if (IsLexicalVariableMode(decl->mode())) current = current->outer_scope_;
635     do {
636       // There is a conflict if there exists a non-VAR binding.
637       Variable* other_var = current->variables_.Lookup(name);
638       if (other_var != NULL && IsLexicalVariableMode(other_var->mode())) {
639         return decl;
640       }
641       previous = current;
642       current = current->outer_scope_;
643     } while (!previous->is_declaration_scope());
644   }
645   return NULL;
646 }
647 
648 
649 class VarAndOrder {
650  public:
VarAndOrder(Variable * var,int order)651   VarAndOrder(Variable* var, int order) : var_(var), order_(order) { }
var() const652   Variable* var() const { return var_; }
order() const653   int order() const { return order_; }
Compare(const VarAndOrder * a,const VarAndOrder * b)654   static int Compare(const VarAndOrder* a, const VarAndOrder* b) {
655     return a->order_ - b->order_;
656   }
657 
658  private:
659   Variable* var_;
660   int order_;
661 };
662 
663 
CollectStackAndContextLocals(ZoneList<Variable * > * stack_locals,ZoneList<Variable * > * context_locals,ZoneList<Variable * > * context_globals,ZoneList<Variable * > * strong_mode_free_variables)664 void Scope::CollectStackAndContextLocals(
665     ZoneList<Variable*>* stack_locals, ZoneList<Variable*>* context_locals,
666     ZoneList<Variable*>* context_globals,
667     ZoneList<Variable*>* strong_mode_free_variables) {
668   DCHECK(stack_locals != NULL);
669   DCHECK(context_locals != NULL);
670   DCHECK(context_globals != NULL);
671 
672   // Collect temporaries which are always allocated on the stack, unless the
673   // context as a whole has forced context allocation.
674   for (int i = 0; i < temps_.length(); i++) {
675     Variable* var = temps_[i];
676     if (var->is_used()) {
677       if (var->IsContextSlot()) {
678         DCHECK(has_forced_context_allocation());
679         context_locals->Add(var, zone());
680       } else if (var->IsStackLocal()) {
681         stack_locals->Add(var, zone());
682       } else {
683         DCHECK(var->IsParameter());
684       }
685     }
686   }
687 
688   // Collect declared local variables.
689   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
690   for (VariableMap::Entry* p = variables_.Start();
691        p != NULL;
692        p = variables_.Next(p)) {
693     Variable* var = reinterpret_cast<Variable*>(p->value);
694     if (strong_mode_free_variables && var->has_strong_mode_reference() &&
695         var->mode() == DYNAMIC_GLOBAL) {
696       strong_mode_free_variables->Add(var, zone());
697     }
698 
699     if (var->is_used()) {
700       vars.Add(VarAndOrder(var, p->order), zone());
701     }
702   }
703   vars.Sort(VarAndOrder::Compare);
704   int var_count = vars.length();
705   for (int i = 0; i < var_count; i++) {
706     Variable* var = vars[i].var();
707     if (var->IsStackLocal()) {
708       stack_locals->Add(var, zone());
709     } else if (var->IsContextSlot()) {
710       context_locals->Add(var, zone());
711     } else if (var->IsGlobalSlot()) {
712       context_globals->Add(var, zone());
713     }
714   }
715 }
716 
717 
AllocateVariables(ParseInfo * info,AstNodeFactory * factory)718 bool Scope::AllocateVariables(ParseInfo* info, AstNodeFactory* factory) {
719   // 1) Propagate scope information.
720   bool outer_scope_calls_sloppy_eval = false;
721   if (outer_scope_ != NULL) {
722     outer_scope_calls_sloppy_eval =
723         outer_scope_->outer_scope_calls_sloppy_eval() |
724         outer_scope_->calls_sloppy_eval();
725   }
726   PropagateScopeInfo(outer_scope_calls_sloppy_eval);
727 
728   // 2) Resolve variables.
729   if (!ResolveVariablesRecursively(info, factory)) return false;
730 
731   // 3) Allocate variables.
732   AllocateVariablesRecursively(info->isolate());
733 
734   return true;
735 }
736 
737 
HasTrivialContext() const738 bool Scope::HasTrivialContext() const {
739   // A function scope has a trivial context if it always is the global
740   // context. We iteratively scan out the context chain to see if
741   // there is anything that makes this scope non-trivial; otherwise we
742   // return true.
743   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
744     if (scope->is_eval_scope()) return false;
745     if (scope->scope_inside_with_) return false;
746     if (scope->ContextLocalCount() > 0) return false;
747     if (scope->ContextGlobalCount() > 0) return false;
748   }
749   return true;
750 }
751 
752 
HasTrivialOuterContext() const753 bool Scope::HasTrivialOuterContext() const {
754   Scope* outer = outer_scope_;
755   if (outer == NULL) return true;
756   // Note that the outer context may be trivial in general, but the current
757   // scope may be inside a 'with' statement in which case the outer context
758   // for this scope is not trivial.
759   return !scope_inside_with_ && outer->HasTrivialContext();
760 }
761 
762 
AllowsLazyParsing() const763 bool Scope::AllowsLazyParsing() const {
764   // If we are inside a block scope, we must parse eagerly to find out how
765   // to allocate variables on the block scope. At this point, declarations may
766   // not have yet been parsed.
767   for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) {
768     if (scope->is_block_scope()) return false;
769   }
770   return AllowsLazyCompilation();
771 }
772 
773 
AllowsLazyCompilation() const774 bool Scope::AllowsLazyCompilation() const { return !force_eager_compilation_; }
775 
776 
AllowsLazyCompilationWithoutContext() const777 bool Scope::AllowsLazyCompilationWithoutContext() const {
778   return !force_eager_compilation_ && HasTrivialOuterContext();
779 }
780 
781 
ContextChainLength(Scope * scope)782 int Scope::ContextChainLength(Scope* scope) {
783   int n = 0;
784   for (Scope* s = this; s != scope; s = s->outer_scope_) {
785     DCHECK(s != NULL);  // scope must be in the scope chain
786     if (s->NeedsContext()) n++;
787   }
788   return n;
789 }
790 
791 
MaxNestedContextChainLength()792 int Scope::MaxNestedContextChainLength() {
793   int max_context_chain_length = 0;
794   for (int i = 0; i < inner_scopes_.length(); i++) {
795     Scope* scope = inner_scopes_[i];
796     max_context_chain_length = std::max(scope->MaxNestedContextChainLength(),
797                                         max_context_chain_length);
798   }
799   if (NeedsContext()) {
800     max_context_chain_length += 1;
801   }
802   return max_context_chain_length;
803 }
804 
805 
DeclarationScope()806 Scope* Scope::DeclarationScope() {
807   Scope* scope = this;
808   while (!scope->is_declaration_scope()) {
809     scope = scope->outer_scope();
810   }
811   return scope;
812 }
813 
814 
ClosureScope()815 Scope* Scope::ClosureScope() {
816   Scope* scope = this;
817   while (!scope->is_declaration_scope() || scope->is_block_scope()) {
818     scope = scope->outer_scope();
819   }
820   return scope;
821 }
822 
823 
ReceiverScope()824 Scope* Scope::ReceiverScope() {
825   Scope* scope = this;
826   while (!scope->is_script_scope() &&
827          (!scope->is_function_scope() || scope->is_arrow_scope())) {
828     scope = scope->outer_scope();
829   }
830   return scope;
831 }
832 
833 
834 
GetScopeInfo(Isolate * isolate)835 Handle<ScopeInfo> Scope::GetScopeInfo(Isolate* isolate) {
836   if (scope_info_.is_null()) {
837     scope_info_ = ScopeInfo::Create(isolate, zone(), this);
838   }
839   return scope_info_;
840 }
841 
842 
GetNestedScopeChain(Isolate * isolate,List<Handle<ScopeInfo>> * chain,int position)843 void Scope::GetNestedScopeChain(Isolate* isolate,
844                                 List<Handle<ScopeInfo> >* chain, int position) {
845   if (!is_eval_scope()) chain->Add(Handle<ScopeInfo>(GetScopeInfo(isolate)));
846 
847   for (int i = 0; i < inner_scopes_.length(); i++) {
848     Scope* scope = inner_scopes_[i];
849     int beg_pos = scope->start_position();
850     int end_pos = scope->end_position();
851     DCHECK(beg_pos >= 0 && end_pos >= 0);
852     if (beg_pos <= position && position < end_pos) {
853       scope->GetNestedScopeChain(isolate, chain, position);
854       return;
855     }
856   }
857 }
858 
859 
CollectNonLocals(HashMap * non_locals)860 void Scope::CollectNonLocals(HashMap* non_locals) {
861   // Collect non-local variables referenced in the scope.
862   // TODO(yangguo): store non-local variables explicitly if we can no longer
863   //                rely on unresolved_ to find them.
864   for (int i = 0; i < unresolved_.length(); i++) {
865     VariableProxy* proxy = unresolved_[i];
866     if (proxy->is_resolved() && proxy->var()->IsStackAllocated()) continue;
867     Handle<String> name = proxy->name();
868     void* key = reinterpret_cast<void*>(name.location());
869     HashMap::Entry* entry = non_locals->LookupOrInsert(key, name->Hash());
870     entry->value = key;
871   }
872   for (int i = 0; i < inner_scopes_.length(); i++) {
873     inner_scopes_[i]->CollectNonLocals(non_locals);
874   }
875 }
876 
877 
ReportMessage(int start_position,int end_position,MessageTemplate::Template message,const AstRawString * arg)878 void Scope::ReportMessage(int start_position, int end_position,
879                           MessageTemplate::Template message,
880                           const AstRawString* arg) {
881   // Propagate the error to the topmost scope targeted by this scope analysis
882   // phase.
883   Scope* top = this;
884   while (!top->is_script_scope() && !top->outer_scope()->already_resolved()) {
885     top = top->outer_scope();
886   }
887 
888   top->pending_error_handler_.ReportMessageAt(start_position, end_position,
889                                               message, arg, kReferenceError);
890 }
891 
892 
893 #ifdef DEBUG
Header(ScopeType scope_type,FunctionKind function_kind,bool is_declaration_scope)894 static const char* Header(ScopeType scope_type, FunctionKind function_kind,
895                           bool is_declaration_scope) {
896   switch (scope_type) {
897     case EVAL_SCOPE: return "eval";
898     // TODO(adamk): Should we print concise method scopes specially?
899     case FUNCTION_SCOPE:
900       return IsArrowFunction(function_kind) ? "arrow" : "function";
901     case MODULE_SCOPE: return "module";
902     case SCRIPT_SCOPE: return "global";
903     case CATCH_SCOPE: return "catch";
904     case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
905     case WITH_SCOPE: return "with";
906   }
907   UNREACHABLE();
908   return NULL;
909 }
910 
911 
Indent(int n,const char * str)912 static void Indent(int n, const char* str) {
913   PrintF("%*s%s", n, "", str);
914 }
915 
916 
PrintName(const AstRawString * name)917 static void PrintName(const AstRawString* name) {
918   PrintF("%.*s", name->length(), name->raw_data());
919 }
920 
921 
PrintLocation(Variable * var)922 static void PrintLocation(Variable* var) {
923   switch (var->location()) {
924     case VariableLocation::UNALLOCATED:
925       break;
926     case VariableLocation::PARAMETER:
927       PrintF("parameter[%d]", var->index());
928       break;
929     case VariableLocation::LOCAL:
930       PrintF("local[%d]", var->index());
931       break;
932     case VariableLocation::CONTEXT:
933       PrintF("context[%d]", var->index());
934       break;
935     case VariableLocation::GLOBAL:
936       PrintF("global[%d]", var->index());
937       break;
938     case VariableLocation::LOOKUP:
939       PrintF("lookup");
940       break;
941   }
942 }
943 
944 
PrintVar(int indent,Variable * var)945 static void PrintVar(int indent, Variable* var) {
946   if (var->is_used() || !var->IsUnallocated()) {
947     Indent(indent, Variable::Mode2String(var->mode()));
948     PrintF(" ");
949     if (var->raw_name()->IsEmpty())
950       PrintF(".%p", reinterpret_cast<void*>(var));
951     else
952       PrintName(var->raw_name());
953     PrintF(";  // ");
954     PrintLocation(var);
955     bool comma = !var->IsUnallocated();
956     if (var->has_forced_context_allocation()) {
957       if (comma) PrintF(", ");
958       PrintF("forced context allocation");
959       comma = true;
960     }
961     if (var->maybe_assigned() == kMaybeAssigned) {
962       if (comma) PrintF(", ");
963       PrintF("maybe assigned");
964     }
965     PrintF("\n");
966   }
967 }
968 
969 
PrintMap(int indent,VariableMap * map)970 static void PrintMap(int indent, VariableMap* map) {
971   for (VariableMap::Entry* p = map->Start(); p != NULL; p = map->Next(p)) {
972     Variable* var = reinterpret_cast<Variable*>(p->value);
973     if (var == NULL) {
974       Indent(indent, "<?>\n");
975     } else {
976       PrintVar(indent, var);
977     }
978   }
979 }
980 
981 
Print(int n)982 void Scope::Print(int n) {
983   int n0 = (n > 0 ? n : 0);
984   int n1 = n0 + 2;  // indentation
985 
986   // Print header.
987   Indent(n0, Header(scope_type_, function_kind_, is_declaration_scope()));
988   if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
989     PrintF(" ");
990     PrintName(scope_name_);
991   }
992 
993   // Print parameters, if any.
994   if (is_function_scope()) {
995     PrintF(" (");
996     for (int i = 0; i < params_.length(); i++) {
997       if (i > 0) PrintF(", ");
998       const AstRawString* name = params_[i]->raw_name();
999       if (name->IsEmpty())
1000         PrintF(".%p", reinterpret_cast<void*>(params_[i]));
1001       else
1002         PrintName(name);
1003     }
1004     PrintF(")");
1005   }
1006 
1007   PrintF(" { // (%d, %d)\n", start_position(), end_position());
1008 
1009   // Function name, if any (named function literals, only).
1010   if (function_ != NULL) {
1011     Indent(n1, "// (local) function name: ");
1012     PrintName(function_->proxy()->raw_name());
1013     PrintF("\n");
1014   }
1015 
1016   // Scope info.
1017   if (HasTrivialOuterContext()) {
1018     Indent(n1, "// scope has trivial outer context\n");
1019   }
1020   if (is_strong(language_mode())) {
1021     Indent(n1, "// strong mode scope\n");
1022   } else if (is_strict(language_mode())) {
1023     Indent(n1, "// strict mode scope\n");
1024   }
1025   if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n");
1026   if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n");
1027   if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n");
1028   if (scope_uses_arguments_) Indent(n1, "// scope uses 'arguments'\n");
1029   if (scope_uses_super_property_)
1030     Indent(n1, "// scope uses 'super' property\n");
1031   if (outer_scope_calls_sloppy_eval_) {
1032     Indent(n1, "// outer scope calls 'eval' in sloppy context\n");
1033   }
1034   if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
1035   if (num_stack_slots_ > 0) {
1036     Indent(n1, "// ");
1037     PrintF("%d stack slots\n", num_stack_slots_);
1038   }
1039   if (num_heap_slots_ > 0) {
1040     Indent(n1, "// ");
1041     PrintF("%d heap slots (including %d global slots)\n", num_heap_slots_,
1042            num_global_slots_);
1043   }
1044 
1045   // Print locals.
1046   if (function_ != NULL) {
1047     Indent(n1, "// function var:\n");
1048     PrintVar(n1, function_->proxy()->var());
1049   }
1050 
1051   if (temps_.length() > 0) {
1052     Indent(n1, "// temporary vars:\n");
1053     for (int i = 0; i < temps_.length(); i++) {
1054       PrintVar(n1, temps_[i]);
1055     }
1056   }
1057 
1058   if (variables_.Start() != NULL) {
1059     Indent(n1, "// local vars:\n");
1060     PrintMap(n1, &variables_);
1061   }
1062 
1063   if (dynamics_ != NULL) {
1064     Indent(n1, "// dynamic vars:\n");
1065     PrintMap(n1, dynamics_->GetMap(DYNAMIC));
1066     PrintMap(n1, dynamics_->GetMap(DYNAMIC_LOCAL));
1067     PrintMap(n1, dynamics_->GetMap(DYNAMIC_GLOBAL));
1068   }
1069 
1070   // Print inner scopes (disable by providing negative n).
1071   if (n >= 0) {
1072     for (int i = 0; i < inner_scopes_.length(); i++) {
1073       PrintF("\n");
1074       inner_scopes_[i]->Print(n1);
1075     }
1076   }
1077 
1078   Indent(n0, "}\n");
1079 }
1080 #endif  // DEBUG
1081 
1082 
NonLocal(const AstRawString * name,VariableMode mode)1083 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
1084   if (dynamics_ == NULL) dynamics_ = new (zone()) DynamicScopePart(zone());
1085   VariableMap* map = dynamics_->GetMap(mode);
1086   Variable* var = map->Lookup(name);
1087   if (var == NULL) {
1088     // Declare a new non-local.
1089     InitializationFlag init_flag = (mode == VAR)
1090         ? kCreatedInitialized : kNeedsInitialization;
1091     var = map->Declare(NULL,
1092                        name,
1093                        mode,
1094                        Variable::NORMAL,
1095                        init_flag);
1096     // Allocate it by giving it a dynamic lookup.
1097     var->AllocateTo(VariableLocation::LOOKUP, -1);
1098   }
1099   return var;
1100 }
1101 
1102 
LookupRecursive(VariableProxy * proxy,BindingKind * binding_kind,AstNodeFactory * factory)1103 Variable* Scope::LookupRecursive(VariableProxy* proxy,
1104                                  BindingKind* binding_kind,
1105                                  AstNodeFactory* factory) {
1106   DCHECK(binding_kind != NULL);
1107   if (already_resolved() && is_with_scope()) {
1108     // Short-cut: if the scope is deserialized from a scope info, variable
1109     // allocation is already fixed.  We can simply return with dynamic lookup.
1110     *binding_kind = DYNAMIC_LOOKUP;
1111     return NULL;
1112   }
1113 
1114   // Try to find the variable in this scope.
1115   Variable* var = LookupLocal(proxy->raw_name());
1116 
1117   // We found a variable and we are done. (Even if there is an 'eval' in
1118   // this scope which introduces the same variable again, the resulting
1119   // variable remains the same.)
1120   if (var != NULL) {
1121     *binding_kind = BOUND;
1122     return var;
1123   }
1124 
1125   // We did not find a variable locally. Check against the function variable,
1126   // if any. We can do this for all scopes, since the function variable is
1127   // only present - if at all - for function scopes.
1128   *binding_kind = UNBOUND;
1129   var = LookupFunctionVar(proxy->raw_name(), factory);
1130   if (var != NULL) {
1131     *binding_kind = BOUND;
1132   } else if (outer_scope_ != NULL) {
1133     var = outer_scope_->LookupRecursive(proxy, binding_kind, factory);
1134     if (*binding_kind == BOUND && (is_function_scope() || is_with_scope())) {
1135       var->ForceContextAllocation();
1136     }
1137   } else {
1138     DCHECK(is_script_scope());
1139   }
1140 
1141   // "this" can't be shadowed by "eval"-introduced bindings or by "with" scopes.
1142   // TODO(wingo): There are other variables in this category; add them.
1143   bool name_can_be_shadowed = var == nullptr || !var->is_this();
1144 
1145   if (is_with_scope() && name_can_be_shadowed) {
1146     DCHECK(!already_resolved());
1147     // The current scope is a with scope, so the variable binding can not be
1148     // statically resolved. However, note that it was necessary to do a lookup
1149     // in the outer scope anyway, because if a binding exists in an outer scope,
1150     // the associated variable has to be marked as potentially being accessed
1151     // from inside of an inner with scope (the property may not be in the 'with'
1152     // object).
1153     if (var != NULL && proxy->is_assigned()) var->set_maybe_assigned();
1154     *binding_kind = DYNAMIC_LOOKUP;
1155     return NULL;
1156   } else if (calls_sloppy_eval() && !is_script_scope() &&
1157              name_can_be_shadowed) {
1158     // A variable binding may have been found in an outer scope, but the current
1159     // scope makes a sloppy 'eval' call, so the found variable may not be
1160     // the correct one (the 'eval' may introduce a binding with the same name).
1161     // In that case, change the lookup result to reflect this situation.
1162     if (*binding_kind == BOUND) {
1163       *binding_kind = BOUND_EVAL_SHADOWED;
1164     } else if (*binding_kind == UNBOUND) {
1165       *binding_kind = UNBOUND_EVAL_SHADOWED;
1166     }
1167   }
1168   return var;
1169 }
1170 
1171 
ResolveVariable(ParseInfo * info,VariableProxy * proxy,AstNodeFactory * factory)1172 bool Scope::ResolveVariable(ParseInfo* info, VariableProxy* proxy,
1173                             AstNodeFactory* factory) {
1174   DCHECK(info->script_scope()->is_script_scope());
1175 
1176   // If the proxy is already resolved there's nothing to do
1177   // (functions and consts may be resolved by the parser).
1178   if (proxy->is_resolved()) return true;
1179 
1180   // Otherwise, try to resolve the variable.
1181   BindingKind binding_kind;
1182   Variable* var = LookupRecursive(proxy, &binding_kind, factory);
1183 
1184 #ifdef DEBUG
1185   if (info->script_is_native()) {
1186     // To avoid polluting the global object in native scripts
1187     //  - Variables must not be allocated to the global scope.
1188     CHECK_NOT_NULL(outer_scope());
1189     //  - Variables must be bound locally or unallocated.
1190     if (BOUND != binding_kind) {
1191       // The following variable name may be minified. If so, disable
1192       // minification in js2c.py for better output.
1193       Handle<String> name = proxy->raw_name()->string();
1194       V8_Fatal(__FILE__, __LINE__, "Unbound variable: '%s' in native script.",
1195                name->ToCString().get());
1196     }
1197     VariableLocation location = var->location();
1198     CHECK(location == VariableLocation::LOCAL ||
1199           location == VariableLocation::CONTEXT ||
1200           location == VariableLocation::PARAMETER ||
1201           location == VariableLocation::UNALLOCATED);
1202   }
1203 #endif
1204 
1205   switch (binding_kind) {
1206     case BOUND:
1207       // We found a variable binding.
1208       if (is_strong(language_mode())) {
1209         if (!CheckStrongModeDeclaration(proxy, var)) return false;
1210       }
1211       break;
1212 
1213     case BOUND_EVAL_SHADOWED:
1214       // We either found a variable binding that might be shadowed by eval  or
1215       // gave up on it (e.g. by encountering a local with the same in the outer
1216       // scope which was not promoted to a context, this can happen if we use
1217       // debugger to evaluate arbitrary expressions at a break point).
1218       if (var->IsGlobalObjectProperty()) {
1219         var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
1220       } else if (var->is_dynamic()) {
1221         var = NonLocal(proxy->raw_name(), DYNAMIC);
1222       } else {
1223         Variable* invalidated = var;
1224         var = NonLocal(proxy->raw_name(), DYNAMIC_LOCAL);
1225         var->set_local_if_not_shadowed(invalidated);
1226       }
1227       break;
1228 
1229     case UNBOUND:
1230       // No binding has been found. Declare a variable on the global object.
1231       var = info->script_scope()->DeclareDynamicGlobal(proxy->raw_name());
1232       break;
1233 
1234     case UNBOUND_EVAL_SHADOWED:
1235       // No binding has been found. But some scope makes a sloppy 'eval' call.
1236       var = NonLocal(proxy->raw_name(), DYNAMIC_GLOBAL);
1237       break;
1238 
1239     case DYNAMIC_LOOKUP:
1240       // The variable could not be resolved statically.
1241       var = NonLocal(proxy->raw_name(), DYNAMIC);
1242       break;
1243   }
1244 
1245   DCHECK(var != NULL);
1246   if (proxy->is_assigned()) var->set_maybe_assigned();
1247 
1248   if (is_strong(language_mode())) {
1249     // Record that the variable is referred to from strong mode. Also, record
1250     // the position.
1251     var->RecordStrongModeReference(proxy->position(), proxy->end_position());
1252   }
1253 
1254   proxy->BindTo(var);
1255 
1256   return true;
1257 }
1258 
1259 
CheckStrongModeDeclaration(VariableProxy * proxy,Variable * var)1260 bool Scope::CheckStrongModeDeclaration(VariableProxy* proxy, Variable* var) {
1261   // Check for declaration-after use (for variables) in strong mode. Note that
1262   // we can only do this in the case where we have seen the declaration. And we
1263   // always allow referencing functions (for now).
1264 
1265   // This might happen during lazy compilation; we don't keep track of
1266   // initializer positions for variables stored in ScopeInfo, so we cannot check
1267   // bindings against them. TODO(marja, rossberg): remove this hack.
1268   if (var->initializer_position() == RelocInfo::kNoPosition) return true;
1269 
1270   // Allow referencing the class name from methods of that class, even though
1271   // the initializer position for class names is only after the body.
1272   Scope* scope = this;
1273   while (scope) {
1274     if (scope->ClassVariableForMethod() == var) return true;
1275     scope = scope->outer_scope();
1276   }
1277 
1278   // Allow references from methods to classes declared later, if we detect no
1279   // problematic dependency cycles. Note that we can be inside multiple methods
1280   // at the same time, and it's enough if we find one where the reference is
1281   // allowed.
1282   if (var->is_class() &&
1283       var->AsClassVariable()->declaration_group_start() >= 0) {
1284     for (scope = this; scope && scope != var->scope();
1285          scope = scope->outer_scope()) {
1286       ClassVariable* class_var = scope->ClassVariableForMethod();
1287       // A method is referring to some other class, possibly declared
1288       // later. Referring to a class declared earlier is always OK and covered
1289       // by the code outside this if. Here we only need to allow special cases
1290       // for referring to a class which is declared later.
1291 
1292       // Referring to a class C declared later is OK under the following
1293       // circumstances:
1294 
1295       // 1. The class declarations are in a consecutive group with no other
1296       // declarations or statements in between, and
1297 
1298       // 2. There is no dependency cycle where the first edge is an
1299       // initialization time dependency (computed property name or extends
1300       // clause) from C to something that depends on this class directly or
1301       // transitively.
1302       if (class_var &&
1303           class_var->declaration_group_start() ==
1304               var->AsClassVariable()->declaration_group_start()) {
1305         return true;
1306       }
1307 
1308       // TODO(marja,rossberg): implement the dependency cycle detection. Here we
1309       // undershoot the target and allow referring to any class in the same
1310       // consectuive declaration group.
1311 
1312       // The cycle detection can work roughly like this: 1) detect init-time
1313       // references here (they are free variables which are inside the class
1314       // scope but not inside a method scope - no parser changes needed to
1315       // detect them) 2) if we encounter an init-time reference here, allow it,
1316       // but record it for a later dependency cycle check 3) also record
1317       // non-init-time references here 4) after scope analysis is done, analyse
1318       // the dependency cycles: an illegal cycle is one starting with an
1319       // init-time reference and leading back to the starting point with either
1320       // non-init-time and init-time references.
1321     }
1322   }
1323 
1324   // If both the use and the declaration are inside an eval scope (possibly
1325   // indirectly), or one of them is, we need to check whether they are inside
1326   // the same eval scope or different ones.
1327 
1328   // TODO(marja,rossberg): Detect errors across different evals (depends on the
1329   // future of eval in strong mode).
1330   const Scope* eval_for_use = NearestOuterEvalScope();
1331   const Scope* eval_for_declaration = var->scope()->NearestOuterEvalScope();
1332 
1333   if (proxy->position() != RelocInfo::kNoPosition &&
1334       proxy->position() < var->initializer_position() && !var->is_function() &&
1335       eval_for_use == eval_for_declaration) {
1336     DCHECK(proxy->end_position() != RelocInfo::kNoPosition);
1337     ReportMessage(proxy->position(), proxy->end_position(),
1338                   MessageTemplate::kStrongUseBeforeDeclaration,
1339                   proxy->raw_name());
1340     return false;
1341   }
1342   return true;
1343 }
1344 
1345 
ClassVariableForMethod() const1346 ClassVariable* Scope::ClassVariableForMethod() const {
1347   // TODO(marja, rossberg): This fails to find a class variable in the following
1348   // cases:
1349   // let A = class { ... }
1350   // It needs to be investigated whether this causes any practical problems.
1351   if (!is_function_scope()) return nullptr;
1352   if (IsInObjectLiteral(function_kind_)) return nullptr;
1353   if (!IsConciseMethod(function_kind_) && !IsClassConstructor(function_kind_) &&
1354       !IsAccessorFunction(function_kind_)) {
1355     return nullptr;
1356   }
1357   DCHECK_NOT_NULL(outer_scope_);
1358   // The class scope contains at most one variable, the class name.
1359   DCHECK(outer_scope_->variables_.occupancy() <= 1);
1360   if (outer_scope_->variables_.occupancy() == 0) return nullptr;
1361   VariableMap::Entry* p = outer_scope_->variables_.Start();
1362   Variable* var = reinterpret_cast<Variable*>(p->value);
1363   if (!var->is_class()) return nullptr;
1364   return var->AsClassVariable();
1365 }
1366 
1367 
ResolveVariablesRecursively(ParseInfo * info,AstNodeFactory * factory)1368 bool Scope::ResolveVariablesRecursively(ParseInfo* info,
1369                                         AstNodeFactory* factory) {
1370   DCHECK(info->script_scope()->is_script_scope());
1371 
1372   // Resolve unresolved variables for this scope.
1373   for (int i = 0; i < unresolved_.length(); i++) {
1374     if (!ResolveVariable(info, unresolved_[i], factory)) return false;
1375   }
1376 
1377   // Resolve unresolved variables for inner scopes.
1378   for (int i = 0; i < inner_scopes_.length(); i++) {
1379     if (!inner_scopes_[i]->ResolveVariablesRecursively(info, factory))
1380       return false;
1381   }
1382 
1383   return true;
1384 }
1385 
1386 
PropagateScopeInfo(bool outer_scope_calls_sloppy_eval)1387 void Scope::PropagateScopeInfo(bool outer_scope_calls_sloppy_eval ) {
1388   if (outer_scope_calls_sloppy_eval) {
1389     outer_scope_calls_sloppy_eval_ = true;
1390   }
1391 
1392   bool calls_sloppy_eval =
1393       this->calls_sloppy_eval() || outer_scope_calls_sloppy_eval_;
1394   for (int i = 0; i < inner_scopes_.length(); i++) {
1395     Scope* inner = inner_scopes_[i];
1396     inner->PropagateScopeInfo(calls_sloppy_eval);
1397     if (inner->scope_calls_eval_ || inner->inner_scope_calls_eval_) {
1398       inner_scope_calls_eval_ = true;
1399     }
1400     if (inner->force_eager_compilation_) {
1401       force_eager_compilation_ = true;
1402     }
1403     if (asm_module_ && inner->scope_type() == FUNCTION_SCOPE) {
1404       inner->asm_function_ = true;
1405     }
1406   }
1407 }
1408 
1409 
MustAllocate(Variable * var)1410 bool Scope::MustAllocate(Variable* var) {
1411   // Give var a read/write use if there is a chance it might be accessed
1412   // via an eval() call.  This is only possible if the variable has a
1413   // visible name.
1414   if ((var->is_this() || !var->raw_name()->IsEmpty()) &&
1415       (var->has_forced_context_allocation() || scope_calls_eval_ ||
1416        inner_scope_calls_eval_ || scope_contains_with_ || is_catch_scope() ||
1417        is_block_scope() || is_module_scope() || is_script_scope())) {
1418     var->set_is_used();
1419     if (scope_calls_eval_ || inner_scope_calls_eval_) var->set_maybe_assigned();
1420   }
1421   // Global variables do not need to be allocated.
1422   return !var->IsGlobalObjectProperty() && var->is_used();
1423 }
1424 
1425 
MustAllocateInContext(Variable * var)1426 bool Scope::MustAllocateInContext(Variable* var) {
1427   // If var is accessed from an inner scope, or if there is a possibility
1428   // that it might be accessed from the current or an inner scope (through
1429   // an eval() call or a runtime with lookup), it must be allocated in the
1430   // context.
1431   //
1432   // Exceptions: If the scope as a whole has forced context allocation, all
1433   // variables will have context allocation, even temporaries.  Otherwise
1434   // temporary variables are always stack-allocated.  Catch-bound variables are
1435   // always context-allocated.
1436   if (has_forced_context_allocation()) return true;
1437   if (var->mode() == TEMPORARY) return false;
1438   if (is_catch_scope() || is_module_scope()) return true;
1439   if (is_script_scope() && IsLexicalVariableMode(var->mode())) return true;
1440   return var->has_forced_context_allocation() ||
1441       scope_calls_eval_ ||
1442       inner_scope_calls_eval_ ||
1443       scope_contains_with_;
1444 }
1445 
1446 
HasArgumentsParameter(Isolate * isolate)1447 bool Scope::HasArgumentsParameter(Isolate* isolate) {
1448   for (int i = 0; i < params_.length(); i++) {
1449     if (params_[i]->name().is_identical_to(
1450             isolate->factory()->arguments_string())) {
1451       return true;
1452     }
1453   }
1454   return false;
1455 }
1456 
1457 
AllocateStackSlot(Variable * var)1458 void Scope::AllocateStackSlot(Variable* var) {
1459   if (is_block_scope()) {
1460     outer_scope()->DeclarationScope()->AllocateStackSlot(var);
1461   } else {
1462     var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
1463   }
1464 }
1465 
1466 
AllocateHeapSlot(Variable * var)1467 void Scope::AllocateHeapSlot(Variable* var) {
1468   var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
1469 }
1470 
1471 
AllocateParameterLocals(Isolate * isolate)1472 void Scope::AllocateParameterLocals(Isolate* isolate) {
1473   DCHECK(is_function_scope());
1474   Variable* arguments = LookupLocal(ast_value_factory_->arguments_string());
1475   // Functions have 'arguments' declared implicitly in all non arrow functions.
1476   DCHECK(arguments != nullptr || is_arrow_scope());
1477 
1478   bool uses_sloppy_arguments = false;
1479 
1480   if (arguments != nullptr && MustAllocate(arguments) &&
1481       !HasArgumentsParameter(isolate)) {
1482     // 'arguments' is used. Unless there is also a parameter called
1483     // 'arguments', we must be conservative and allocate all parameters to
1484     // the context assuming they will be captured by the arguments object.
1485     // If we have a parameter named 'arguments', a (new) value is always
1486     // assigned to it via the function invocation. Then 'arguments' denotes
1487     // that specific parameter value and cannot be used to access the
1488     // parameters, which is why we don't need to allocate an arguments
1489     // object in that case.
1490 
1491     // We are using 'arguments'. Tell the code generator that is needs to
1492     // allocate the arguments object by setting 'arguments_'.
1493     arguments_ = arguments;
1494 
1495     // In strict mode 'arguments' does not alias formal parameters.
1496     // Therefore in strict mode we allocate parameters as if 'arguments'
1497     // were not used.
1498     // If the parameter list is not simple, arguments isn't sloppy either.
1499     uses_sloppy_arguments =
1500         is_sloppy(language_mode()) && has_simple_parameters();
1501   }
1502 
1503   if (rest_parameter_ && !MustAllocate(rest_parameter_)) {
1504     rest_parameter_ = NULL;
1505   }
1506 
1507   // The same parameter may occur multiple times in the parameters_ list.
1508   // If it does, and if it is not copied into the context object, it must
1509   // receive the highest parameter index for that parameter; thus iteration
1510   // order is relevant!
1511   for (int i = params_.length() - 1; i >= 0; --i) {
1512     Variable* var = params_[i];
1513     if (var == rest_parameter_) continue;
1514 
1515     DCHECK(var->scope() == this);
1516     if (uses_sloppy_arguments || has_forced_context_allocation()) {
1517       // Force context allocation of the parameter.
1518       var->ForceContextAllocation();
1519     }
1520     AllocateParameter(var, i);
1521   }
1522 }
1523 
1524 
AllocateParameter(Variable * var,int index)1525 void Scope::AllocateParameter(Variable* var, int index) {
1526   if (MustAllocate(var)) {
1527     if (MustAllocateInContext(var)) {
1528       DCHECK(var->IsUnallocated() || var->IsContextSlot());
1529       if (var->IsUnallocated()) {
1530         AllocateHeapSlot(var);
1531       }
1532     } else {
1533       DCHECK(var->IsUnallocated() || var->IsParameter());
1534       if (var->IsUnallocated()) {
1535         var->AllocateTo(VariableLocation::PARAMETER, index);
1536       }
1537     }
1538   } else {
1539     DCHECK(!var->IsGlobalSlot());
1540   }
1541 }
1542 
1543 
AllocateReceiver()1544 void Scope::AllocateReceiver() {
1545   DCHECK_NOT_NULL(receiver());
1546   DCHECK_EQ(receiver()->scope(), this);
1547 
1548   if (has_forced_context_allocation()) {
1549     // Force context allocation of the receiver.
1550     receiver()->ForceContextAllocation();
1551   }
1552   AllocateParameter(receiver(), -1);
1553 }
1554 
1555 
AllocateNonParameterLocal(Isolate * isolate,Variable * var)1556 void Scope::AllocateNonParameterLocal(Isolate* isolate, Variable* var) {
1557   DCHECK(var->scope() == this);
1558   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
1559          !var->IsStackLocal());
1560   if (var->IsUnallocated() && MustAllocate(var)) {
1561     if (MustAllocateInContext(var)) {
1562       AllocateHeapSlot(var);
1563     } else {
1564       AllocateStackSlot(var);
1565     }
1566   }
1567 }
1568 
1569 
AllocateDeclaredGlobal(Isolate * isolate,Variable * var)1570 void Scope::AllocateDeclaredGlobal(Isolate* isolate, Variable* var) {
1571   DCHECK(var->scope() == this);
1572   DCHECK(!var->IsVariable(isolate->factory()->dot_result_string()) ||
1573          !var->IsStackLocal());
1574   if (var->IsUnallocated()) {
1575     if (var->IsStaticGlobalObjectProperty()) {
1576       DCHECK_EQ(-1, var->index());
1577       DCHECK(var->name()->IsString());
1578       var->AllocateTo(VariableLocation::GLOBAL, num_heap_slots_++);
1579       num_global_slots_++;
1580     } else {
1581       // There must be only DYNAMIC_GLOBAL in the script scope.
1582       DCHECK(!is_script_scope() || DYNAMIC_GLOBAL == var->mode());
1583     }
1584   }
1585 }
1586 
1587 
AllocateNonParameterLocalsAndDeclaredGlobals(Isolate * isolate)1588 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals(Isolate* isolate) {
1589   // All variables that have no rewrite yet are non-parameter locals.
1590   for (int i = 0; i < temps_.length(); i++) {
1591     AllocateNonParameterLocal(isolate, temps_[i]);
1592   }
1593 
1594   ZoneList<VarAndOrder> vars(variables_.occupancy(), zone());
1595   for (VariableMap::Entry* p = variables_.Start();
1596        p != NULL;
1597        p = variables_.Next(p)) {
1598     Variable* var = reinterpret_cast<Variable*>(p->value);
1599     vars.Add(VarAndOrder(var, p->order), zone());
1600   }
1601   vars.Sort(VarAndOrder::Compare);
1602   int var_count = vars.length();
1603   for (int i = 0; i < var_count; i++) {
1604     AllocateNonParameterLocal(isolate, vars[i].var());
1605   }
1606 
1607   if (FLAG_global_var_shortcuts) {
1608     for (int i = 0; i < var_count; i++) {
1609       AllocateDeclaredGlobal(isolate, vars[i].var());
1610     }
1611   }
1612 
1613   // For now, function_ must be allocated at the very end.  If it gets
1614   // allocated in the context, it must be the last slot in the context,
1615   // because of the current ScopeInfo implementation (see
1616   // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
1617   if (function_ != nullptr) {
1618     AllocateNonParameterLocal(isolate, function_->proxy()->var());
1619   }
1620 
1621   if (rest_parameter_ != nullptr) {
1622     AllocateNonParameterLocal(isolate, rest_parameter_);
1623   }
1624 
1625   Variable* new_target_var =
1626       LookupLocal(ast_value_factory_->new_target_string());
1627   if (new_target_var != nullptr && MustAllocate(new_target_var)) {
1628     new_target_ = new_target_var;
1629   }
1630 
1631   Variable* this_function_var =
1632       LookupLocal(ast_value_factory_->this_function_string());
1633   if (this_function_var != nullptr && MustAllocate(this_function_var)) {
1634     this_function_ = this_function_var;
1635   }
1636 }
1637 
1638 
AllocateVariablesRecursively(Isolate * isolate)1639 void Scope::AllocateVariablesRecursively(Isolate* isolate) {
1640   if (!already_resolved()) {
1641     num_stack_slots_ = 0;
1642   }
1643   // Allocate variables for inner scopes.
1644   for (int i = 0; i < inner_scopes_.length(); i++) {
1645     inner_scopes_[i]->AllocateVariablesRecursively(isolate);
1646   }
1647 
1648   // If scope is already resolved, we still need to allocate
1649   // variables in inner scopes which might not had been resolved yet.
1650   if (already_resolved()) return;
1651   // The number of slots required for variables.
1652   num_heap_slots_ = Context::MIN_CONTEXT_SLOTS;
1653 
1654   // Allocate variables for this scope.
1655   // Parameters must be allocated first, if any.
1656   if (is_function_scope()) AllocateParameterLocals(isolate);
1657   if (has_this_declaration()) AllocateReceiver();
1658   AllocateNonParameterLocalsAndDeclaredGlobals(isolate);
1659 
1660   // Force allocation of a context for this scope if necessary. For a 'with'
1661   // scope and for a function scope that makes an 'eval' call we need a context,
1662   // even if no local variables were statically allocated in the scope.
1663   // Likewise for modules.
1664   bool must_have_context =
1665       is_with_scope() || is_module_scope() ||
1666       (is_function_scope() && calls_sloppy_eval()) ||
1667       (is_block_scope() && is_declaration_scope() && calls_sloppy_eval());
1668 
1669   // If we didn't allocate any locals in the local context, then we only
1670   // need the minimal number of slots if we must have a context.
1671   if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && !must_have_context) {
1672     num_heap_slots_ = 0;
1673   }
1674 
1675   // Allocation done.
1676   DCHECK(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS);
1677 }
1678 
1679 
StackLocalCount() const1680 int Scope::StackLocalCount() const {
1681   return num_stack_slots() -
1682       (function_ != NULL && function_->proxy()->var()->IsStackLocal() ? 1 : 0);
1683 }
1684 
1685 
ContextLocalCount() const1686 int Scope::ContextLocalCount() const {
1687   if (num_heap_slots() == 0) return 0;
1688   bool is_function_var_in_context =
1689       function_ != NULL && function_->proxy()->var()->IsContextSlot();
1690   return num_heap_slots() - Context::MIN_CONTEXT_SLOTS - num_global_slots() -
1691          (is_function_var_in_context ? 1 : 0);
1692 }
1693 
1694 
ContextGlobalCount() const1695 int Scope::ContextGlobalCount() const { return num_global_slots(); }
1696 
1697 }  // namespace internal
1698 }  // namespace v8
1699