1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/arm/codegen-arm.h"
6
7 #if V8_TARGET_ARCH_ARM
8
9 #include "src/arm/simulator-arm.h"
10 #include "src/codegen.h"
11 #include "src/macro-assembler.h"
12
13 namespace v8 {
14 namespace internal {
15
16
17 #define __ masm.
18
19
20 #if defined(USE_SIMULATOR)
21 byte* fast_exp_arm_machine_code = nullptr;
fast_exp_simulator(double x,Isolate * isolate)22 double fast_exp_simulator(double x, Isolate* isolate) {
23 return Simulator::current(isolate)
24 ->CallFPReturnsDouble(fast_exp_arm_machine_code, x, 0);
25 }
26 #endif
27
28
CreateExpFunction(Isolate * isolate)29 UnaryMathFunctionWithIsolate CreateExpFunction(Isolate* isolate) {
30 size_t actual_size;
31 byte* buffer =
32 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
33 if (buffer == nullptr) return nullptr;
34 ExternalReference::InitializeMathExpData();
35
36 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
37 CodeObjectRequired::kNo);
38
39 {
40 DwVfpRegister input = d0;
41 DwVfpRegister result = d1;
42 DwVfpRegister double_scratch1 = d2;
43 DwVfpRegister double_scratch2 = d3;
44 Register temp1 = r4;
45 Register temp2 = r5;
46 Register temp3 = r6;
47
48 if (masm.use_eabi_hardfloat()) {
49 // Input value is in d0 anyway, nothing to do.
50 } else {
51 __ vmov(input, r0, r1);
52 }
53 __ Push(temp3, temp2, temp1);
54 MathExpGenerator::EmitMathExp(
55 &masm, input, result, double_scratch1, double_scratch2,
56 temp1, temp2, temp3);
57 __ Pop(temp3, temp2, temp1);
58 if (masm.use_eabi_hardfloat()) {
59 __ vmov(d0, result);
60 } else {
61 __ vmov(r0, r1, result);
62 }
63 __ Ret();
64 }
65
66 CodeDesc desc;
67 masm.GetCode(&desc);
68 DCHECK(!RelocInfo::RequiresRelocation(desc));
69
70 Assembler::FlushICache(isolate, buffer, actual_size);
71 base::OS::ProtectCode(buffer, actual_size);
72
73 #if !defined(USE_SIMULATOR)
74 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
75 #else
76 fast_exp_arm_machine_code = buffer;
77 return &fast_exp_simulator;
78 #endif
79 }
80
81 #if defined(V8_HOST_ARCH_ARM)
CreateMemCopyUint8Function(Isolate * isolate,MemCopyUint8Function stub)82 MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate,
83 MemCopyUint8Function stub) {
84 #if defined(USE_SIMULATOR)
85 return stub;
86 #else
87 if (!CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) return stub;
88 size_t actual_size;
89 byte* buffer =
90 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
91 if (buffer == nullptr) return stub;
92
93 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
94 CodeObjectRequired::kNo);
95
96 Register dest = r0;
97 Register src = r1;
98 Register chars = r2;
99 Register temp1 = r3;
100 Label less_4;
101
102 if (CpuFeatures::IsSupported(NEON)) {
103 Label loop, less_256, less_128, less_64, less_32, _16_or_less, _8_or_less;
104 Label size_less_than_8;
105 __ pld(MemOperand(src, 0));
106
107 __ cmp(chars, Operand(8));
108 __ b(lt, &size_less_than_8);
109 __ cmp(chars, Operand(32));
110 __ b(lt, &less_32);
111 if (CpuFeatures::cache_line_size() == 32) {
112 __ pld(MemOperand(src, 32));
113 }
114 __ cmp(chars, Operand(64));
115 __ b(lt, &less_64);
116 __ pld(MemOperand(src, 64));
117 if (CpuFeatures::cache_line_size() == 32) {
118 __ pld(MemOperand(src, 96));
119 }
120 __ cmp(chars, Operand(128));
121 __ b(lt, &less_128);
122 __ pld(MemOperand(src, 128));
123 if (CpuFeatures::cache_line_size() == 32) {
124 __ pld(MemOperand(src, 160));
125 }
126 __ pld(MemOperand(src, 192));
127 if (CpuFeatures::cache_line_size() == 32) {
128 __ pld(MemOperand(src, 224));
129 }
130 __ cmp(chars, Operand(256));
131 __ b(lt, &less_256);
132 __ sub(chars, chars, Operand(256));
133
134 __ bind(&loop);
135 __ pld(MemOperand(src, 256));
136 __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(src, PostIndex));
137 if (CpuFeatures::cache_line_size() == 32) {
138 __ pld(MemOperand(src, 256));
139 }
140 __ vld1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(src, PostIndex));
141 __ sub(chars, chars, Operand(64), SetCC);
142 __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(dest, PostIndex));
143 __ vst1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(dest, PostIndex));
144 __ b(ge, &loop);
145 __ add(chars, chars, Operand(256));
146
147 __ bind(&less_256);
148 __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(src, PostIndex));
149 __ vld1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(src, PostIndex));
150 __ sub(chars, chars, Operand(128));
151 __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(dest, PostIndex));
152 __ vst1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(dest, PostIndex));
153 __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(src, PostIndex));
154 __ vld1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(src, PostIndex));
155 __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(dest, PostIndex));
156 __ vst1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(dest, PostIndex));
157 __ cmp(chars, Operand(64));
158 __ b(lt, &less_64);
159
160 __ bind(&less_128);
161 __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(src, PostIndex));
162 __ vld1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(src, PostIndex));
163 __ sub(chars, chars, Operand(64));
164 __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(dest, PostIndex));
165 __ vst1(Neon8, NeonListOperand(d4, 4), NeonMemOperand(dest, PostIndex));
166
167 __ bind(&less_64);
168 __ cmp(chars, Operand(32));
169 __ b(lt, &less_32);
170 __ vld1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(src, PostIndex));
171 __ vst1(Neon8, NeonListOperand(d0, 4), NeonMemOperand(dest, PostIndex));
172 __ sub(chars, chars, Operand(32));
173
174 __ bind(&less_32);
175 __ cmp(chars, Operand(16));
176 __ b(le, &_16_or_less);
177 __ vld1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(src, PostIndex));
178 __ vst1(Neon8, NeonListOperand(d0, 2), NeonMemOperand(dest, PostIndex));
179 __ sub(chars, chars, Operand(16));
180
181 __ bind(&_16_or_less);
182 __ cmp(chars, Operand(8));
183 __ b(le, &_8_or_less);
184 __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(src, PostIndex));
185 __ vst1(Neon8, NeonListOperand(d0), NeonMemOperand(dest, PostIndex));
186 __ sub(chars, chars, Operand(8));
187
188 // Do a last copy which may overlap with the previous copy (up to 8 bytes).
189 __ bind(&_8_or_less);
190 __ rsb(chars, chars, Operand(8));
191 __ sub(src, src, Operand(chars));
192 __ sub(dest, dest, Operand(chars));
193 __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(src));
194 __ vst1(Neon8, NeonListOperand(d0), NeonMemOperand(dest));
195
196 __ Ret();
197
198 __ bind(&size_less_than_8);
199
200 __ bic(temp1, chars, Operand(0x3), SetCC);
201 __ b(&less_4, eq);
202 __ ldr(temp1, MemOperand(src, 4, PostIndex));
203 __ str(temp1, MemOperand(dest, 4, PostIndex));
204 } else {
205 Register temp2 = ip;
206 Label loop;
207
208 __ bic(temp2, chars, Operand(0x3), SetCC);
209 __ b(&less_4, eq);
210 __ add(temp2, dest, temp2);
211
212 __ bind(&loop);
213 __ ldr(temp1, MemOperand(src, 4, PostIndex));
214 __ str(temp1, MemOperand(dest, 4, PostIndex));
215 __ cmp(dest, temp2);
216 __ b(&loop, ne);
217 }
218
219 __ bind(&less_4);
220 __ mov(chars, Operand(chars, LSL, 31), SetCC);
221 // bit0 => Z (ne), bit1 => C (cs)
222 __ ldrh(temp1, MemOperand(src, 2, PostIndex), cs);
223 __ strh(temp1, MemOperand(dest, 2, PostIndex), cs);
224 __ ldrb(temp1, MemOperand(src), ne);
225 __ strb(temp1, MemOperand(dest), ne);
226 __ Ret();
227
228 CodeDesc desc;
229 masm.GetCode(&desc);
230 DCHECK(!RelocInfo::RequiresRelocation(desc));
231
232 Assembler::FlushICache(isolate, buffer, actual_size);
233 base::OS::ProtectCode(buffer, actual_size);
234 return FUNCTION_CAST<MemCopyUint8Function>(buffer);
235 #endif
236 }
237
238
239 // Convert 8 to 16. The number of character to copy must be at least 8.
CreateMemCopyUint16Uint8Function(Isolate * isolate,MemCopyUint16Uint8Function stub)240 MemCopyUint16Uint8Function CreateMemCopyUint16Uint8Function(
241 Isolate* isolate, MemCopyUint16Uint8Function stub) {
242 #if defined(USE_SIMULATOR)
243 return stub;
244 #else
245 if (!CpuFeatures::IsSupported(UNALIGNED_ACCESSES)) return stub;
246 size_t actual_size;
247 byte* buffer =
248 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
249 if (buffer == nullptr) return stub;
250
251 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
252 CodeObjectRequired::kNo);
253
254 Register dest = r0;
255 Register src = r1;
256 Register chars = r2;
257 if (CpuFeatures::IsSupported(NEON)) {
258 Register temp = r3;
259 Label loop;
260
261 __ bic(temp, chars, Operand(0x7));
262 __ sub(chars, chars, Operand(temp));
263 __ add(temp, dest, Operand(temp, LSL, 1));
264
265 __ bind(&loop);
266 __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(src, PostIndex));
267 __ vmovl(NeonU8, q0, d0);
268 __ vst1(Neon16, NeonListOperand(d0, 2), NeonMemOperand(dest, PostIndex));
269 __ cmp(dest, temp);
270 __ b(&loop, ne);
271
272 // Do a last copy which will overlap with the previous copy (1 to 8 bytes).
273 __ rsb(chars, chars, Operand(8));
274 __ sub(src, src, Operand(chars));
275 __ sub(dest, dest, Operand(chars, LSL, 1));
276 __ vld1(Neon8, NeonListOperand(d0), NeonMemOperand(src));
277 __ vmovl(NeonU8, q0, d0);
278 __ vst1(Neon16, NeonListOperand(d0, 2), NeonMemOperand(dest));
279 __ Ret();
280 } else {
281 Register temp1 = r3;
282 Register temp2 = ip;
283 Register temp3 = lr;
284 Register temp4 = r4;
285 Label loop;
286 Label not_two;
287
288 __ Push(lr, r4);
289 __ bic(temp2, chars, Operand(0x3));
290 __ add(temp2, dest, Operand(temp2, LSL, 1));
291
292 __ bind(&loop);
293 __ ldr(temp1, MemOperand(src, 4, PostIndex));
294 __ uxtb16(temp3, temp1);
295 __ uxtb16(temp4, temp1, 8);
296 __ pkhbt(temp1, temp3, Operand(temp4, LSL, 16));
297 __ str(temp1, MemOperand(dest));
298 __ pkhtb(temp1, temp4, Operand(temp3, ASR, 16));
299 __ str(temp1, MemOperand(dest, 4));
300 __ add(dest, dest, Operand(8));
301 __ cmp(dest, temp2);
302 __ b(&loop, ne);
303
304 __ mov(chars, Operand(chars, LSL, 31), SetCC); // bit0 => ne, bit1 => cs
305 __ b(¬_two, cc);
306 __ ldrh(temp1, MemOperand(src, 2, PostIndex));
307 __ uxtb(temp3, temp1, 8);
308 __ mov(temp3, Operand(temp3, LSL, 16));
309 __ uxtab(temp3, temp3, temp1);
310 __ str(temp3, MemOperand(dest, 4, PostIndex));
311 __ bind(¬_two);
312 __ ldrb(temp1, MemOperand(src), ne);
313 __ strh(temp1, MemOperand(dest), ne);
314 __ Pop(pc, r4);
315 }
316
317 CodeDesc desc;
318 masm.GetCode(&desc);
319
320 Assembler::FlushICache(isolate, buffer, actual_size);
321 base::OS::ProtectCode(buffer, actual_size);
322
323 return FUNCTION_CAST<MemCopyUint16Uint8Function>(buffer);
324 #endif
325 }
326 #endif
327
CreateSqrtFunction(Isolate * isolate)328 UnaryMathFunctionWithIsolate CreateSqrtFunction(Isolate* isolate) {
329 #if defined(USE_SIMULATOR)
330 return nullptr;
331 #else
332 size_t actual_size;
333 byte* buffer =
334 static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
335 if (buffer == nullptr) return nullptr;
336
337 MacroAssembler masm(isolate, buffer, static_cast<int>(actual_size),
338 CodeObjectRequired::kNo);
339
340 __ MovFromFloatParameter(d0);
341 __ vsqrt(d0, d0);
342 __ MovToFloatResult(d0);
343 __ Ret();
344
345 CodeDesc desc;
346 masm.GetCode(&desc);
347 DCHECK(!RelocInfo::RequiresRelocation(desc));
348
349 Assembler::FlushICache(isolate, buffer, actual_size);
350 base::OS::ProtectCode(buffer, actual_size);
351 return FUNCTION_CAST<UnaryMathFunctionWithIsolate>(buffer);
352 #endif
353 }
354
355 #undef __
356
357
358 // -------------------------------------------------------------------------
359 // Platform-specific RuntimeCallHelper functions.
360
BeforeCall(MacroAssembler * masm) const361 void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
362 masm->EnterFrame(StackFrame::INTERNAL);
363 DCHECK(!masm->has_frame());
364 masm->set_has_frame(true);
365 }
366
367
AfterCall(MacroAssembler * masm) const368 void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
369 masm->LeaveFrame(StackFrame::INTERNAL);
370 DCHECK(masm->has_frame());
371 masm->set_has_frame(false);
372 }
373
374
375 // -------------------------------------------------------------------------
376 // Code generators
377
378 #define __ ACCESS_MASM(masm)
379
GenerateMapChangeElementsTransition(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * allocation_memento_found)380 void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
381 MacroAssembler* masm,
382 Register receiver,
383 Register key,
384 Register value,
385 Register target_map,
386 AllocationSiteMode mode,
387 Label* allocation_memento_found) {
388 Register scratch_elements = r4;
389 DCHECK(!AreAliased(receiver, key, value, target_map,
390 scratch_elements));
391
392 if (mode == TRACK_ALLOCATION_SITE) {
393 DCHECK(allocation_memento_found != NULL);
394 __ JumpIfJSArrayHasAllocationMemento(
395 receiver, scratch_elements, allocation_memento_found);
396 }
397
398 // Set transitioned map.
399 __ str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
400 __ RecordWriteField(receiver,
401 HeapObject::kMapOffset,
402 target_map,
403 r9,
404 kLRHasNotBeenSaved,
405 kDontSaveFPRegs,
406 EMIT_REMEMBERED_SET,
407 OMIT_SMI_CHECK);
408 }
409
410
GenerateSmiToDouble(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)411 void ElementsTransitionGenerator::GenerateSmiToDouble(
412 MacroAssembler* masm,
413 Register receiver,
414 Register key,
415 Register value,
416 Register target_map,
417 AllocationSiteMode mode,
418 Label* fail) {
419 // Register lr contains the return address.
420 Label loop, entry, convert_hole, gc_required, only_change_map, done;
421 Register elements = r4;
422 Register length = r5;
423 Register array = r6;
424 Register array_end = array;
425
426 // target_map parameter can be clobbered.
427 Register scratch1 = target_map;
428 Register scratch2 = r9;
429
430 // Verify input registers don't conflict with locals.
431 DCHECK(!AreAliased(receiver, key, value, target_map,
432 elements, length, array, scratch2));
433
434 if (mode == TRACK_ALLOCATION_SITE) {
435 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
436 }
437
438 // Check for empty arrays, which only require a map transition and no changes
439 // to the backing store.
440 __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
441 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
442 __ b(eq, &only_change_map);
443
444 __ push(lr);
445 __ ldr(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
446 // length: number of elements (smi-tagged)
447
448 // Allocate new FixedDoubleArray.
449 // Use lr as a temporary register.
450 __ mov(lr, Operand(length, LSL, 2));
451 __ add(lr, lr, Operand(FixedDoubleArray::kHeaderSize));
452 __ Allocate(lr, array, elements, scratch2, &gc_required, DOUBLE_ALIGNMENT);
453 // array: destination FixedDoubleArray, not tagged as heap object.
454 __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
455 // r4: source FixedArray.
456
457 // Set destination FixedDoubleArray's length and map.
458 __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
459 __ str(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
460 // Update receiver's map.
461 __ str(scratch2, MemOperand(array, HeapObject::kMapOffset));
462
463 __ str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
464 __ RecordWriteField(receiver,
465 HeapObject::kMapOffset,
466 target_map,
467 scratch2,
468 kLRHasBeenSaved,
469 kDontSaveFPRegs,
470 OMIT_REMEMBERED_SET,
471 OMIT_SMI_CHECK);
472 // Replace receiver's backing store with newly created FixedDoubleArray.
473 __ add(scratch1, array, Operand(kHeapObjectTag));
474 __ str(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
475 __ RecordWriteField(receiver,
476 JSObject::kElementsOffset,
477 scratch1,
478 scratch2,
479 kLRHasBeenSaved,
480 kDontSaveFPRegs,
481 EMIT_REMEMBERED_SET,
482 OMIT_SMI_CHECK);
483
484 // Prepare for conversion loop.
485 __ add(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
486 __ add(scratch2, array, Operand(FixedDoubleArray::kHeaderSize));
487 __ add(array_end, scratch2, Operand(length, LSL, 2));
488
489 // Repurpose registers no longer in use.
490 Register hole_lower = elements;
491 Register hole_upper = length;
492
493 __ mov(hole_lower, Operand(kHoleNanLower32));
494 __ mov(hole_upper, Operand(kHoleNanUpper32));
495 // scratch1: begin of source FixedArray element fields, not tagged
496 // hole_lower: kHoleNanLower32
497 // hole_upper: kHoleNanUpper32
498 // array_end: end of destination FixedDoubleArray, not tagged
499 // scratch2: begin of FixedDoubleArray element fields, not tagged
500
501 __ b(&entry);
502
503 __ bind(&only_change_map);
504 __ str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
505 __ RecordWriteField(receiver,
506 HeapObject::kMapOffset,
507 target_map,
508 scratch2,
509 kLRHasNotBeenSaved,
510 kDontSaveFPRegs,
511 OMIT_REMEMBERED_SET,
512 OMIT_SMI_CHECK);
513 __ b(&done);
514
515 // Call into runtime if GC is required.
516 __ bind(&gc_required);
517 __ pop(lr);
518 __ b(fail);
519
520 // Convert and copy elements.
521 __ bind(&loop);
522 __ ldr(lr, MemOperand(scratch1, 4, PostIndex));
523 // lr: current element
524 __ UntagAndJumpIfNotSmi(lr, lr, &convert_hole);
525
526 // Normal smi, convert to double and store.
527 __ vmov(s0, lr);
528 __ vcvt_f64_s32(d0, s0);
529 __ vstr(d0, scratch2, 0);
530 __ add(scratch2, scratch2, Operand(8));
531 __ b(&entry);
532
533 // Hole found, store the-hole NaN.
534 __ bind(&convert_hole);
535 if (FLAG_debug_code) {
536 // Restore a "smi-untagged" heap object.
537 __ SmiTag(lr);
538 __ orr(lr, lr, Operand(1));
539 __ CompareRoot(lr, Heap::kTheHoleValueRootIndex);
540 __ Assert(eq, kObjectFoundInSmiOnlyArray);
541 }
542 __ Strd(hole_lower, hole_upper, MemOperand(scratch2, 8, PostIndex));
543
544 __ bind(&entry);
545 __ cmp(scratch2, array_end);
546 __ b(lt, &loop);
547
548 __ pop(lr);
549 __ bind(&done);
550 }
551
552
GenerateDoubleToObject(MacroAssembler * masm,Register receiver,Register key,Register value,Register target_map,AllocationSiteMode mode,Label * fail)553 void ElementsTransitionGenerator::GenerateDoubleToObject(
554 MacroAssembler* masm,
555 Register receiver,
556 Register key,
557 Register value,
558 Register target_map,
559 AllocationSiteMode mode,
560 Label* fail) {
561 // Register lr contains the return address.
562 Label entry, loop, convert_hole, gc_required, only_change_map;
563 Register elements = r4;
564 Register array = r6;
565 Register length = r5;
566 Register scratch = r9;
567
568 // Verify input registers don't conflict with locals.
569 DCHECK(!AreAliased(receiver, key, value, target_map,
570 elements, array, length, scratch));
571
572 if (mode == TRACK_ALLOCATION_SITE) {
573 __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
574 }
575
576 // Check for empty arrays, which only require a map transition and no changes
577 // to the backing store.
578 __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
579 __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
580 __ b(eq, &only_change_map);
581
582 __ push(lr);
583 __ Push(target_map, receiver, key, value);
584 __ ldr(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
585 // elements: source FixedDoubleArray
586 // length: number of elements (smi-tagged)
587
588 // Allocate new FixedArray.
589 // Re-use value and target_map registers, as they have been saved on the
590 // stack.
591 Register array_size = value;
592 Register allocate_scratch = target_map;
593 __ mov(array_size, Operand(FixedDoubleArray::kHeaderSize));
594 __ add(array_size, array_size, Operand(length, LSL, 1));
595 __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
596 NO_ALLOCATION_FLAGS);
597 // array: destination FixedArray, not tagged as heap object
598 // Set destination FixedDoubleArray's length and map.
599 __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
600 __ str(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
601 __ str(scratch, MemOperand(array, HeapObject::kMapOffset));
602
603 // Prepare for conversion loop.
604 Register src_elements = elements;
605 Register dst_elements = target_map;
606 Register dst_end = length;
607 Register heap_number_map = scratch;
608 __ add(src_elements, elements,
609 Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag + 4));
610 __ add(dst_elements, array, Operand(FixedArray::kHeaderSize));
611 __ add(dst_end, dst_elements, Operand(length, LSL, 1));
612
613 // Allocating heap numbers in the loop below can fail and cause a jump to
614 // gc_required. We can't leave a partly initialized FixedArray behind,
615 // so pessimistically fill it with holes now.
616 Label initialization_loop, initialization_loop_entry;
617 __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
618 __ b(&initialization_loop_entry);
619 __ bind(&initialization_loop);
620 __ str(scratch, MemOperand(dst_elements, kPointerSize, PostIndex));
621 __ bind(&initialization_loop_entry);
622 __ cmp(dst_elements, dst_end);
623 __ b(lt, &initialization_loop);
624
625 __ add(dst_elements, array, Operand(FixedArray::kHeaderSize));
626 __ add(array, array, Operand(kHeapObjectTag));
627 __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
628 // Using offsetted addresses in src_elements to fully take advantage of
629 // post-indexing.
630 // dst_elements: begin of destination FixedArray element fields, not tagged
631 // src_elements: begin of source FixedDoubleArray element fields,
632 // not tagged, +4
633 // dst_end: end of destination FixedArray, not tagged
634 // array: destination FixedArray
635 // heap_number_map: heap number map
636 __ b(&entry);
637
638 // Call into runtime if GC is required.
639 __ bind(&gc_required);
640 __ Pop(target_map, receiver, key, value);
641 __ pop(lr);
642 __ b(fail);
643
644 __ bind(&loop);
645 Register upper_bits = key;
646 __ ldr(upper_bits, MemOperand(src_elements, 8, PostIndex));
647 // upper_bits: current element's upper 32 bit
648 // src_elements: address of next element's upper 32 bit
649 __ cmp(upper_bits, Operand(kHoleNanUpper32));
650 __ b(eq, &convert_hole);
651
652 // Non-hole double, copy value into a heap number.
653 Register heap_number = receiver;
654 Register scratch2 = value;
655 __ AllocateHeapNumber(heap_number, scratch2, lr, heap_number_map,
656 &gc_required);
657 // heap_number: new heap number
658 __ ldr(scratch2, MemOperand(src_elements, 12, NegOffset));
659 __ Strd(scratch2, upper_bits,
660 FieldMemOperand(heap_number, HeapNumber::kValueOffset));
661 __ mov(scratch2, dst_elements);
662 __ str(heap_number, MemOperand(dst_elements, 4, PostIndex));
663 __ RecordWrite(array,
664 scratch2,
665 heap_number,
666 kLRHasBeenSaved,
667 kDontSaveFPRegs,
668 EMIT_REMEMBERED_SET,
669 OMIT_SMI_CHECK);
670 __ b(&entry);
671
672 // Replace the-hole NaN with the-hole pointer.
673 __ bind(&convert_hole);
674 __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex);
675 __ str(scratch2, MemOperand(dst_elements, 4, PostIndex));
676
677 __ bind(&entry);
678 __ cmp(dst_elements, dst_end);
679 __ b(lt, &loop);
680
681 __ Pop(target_map, receiver, key, value);
682 // Replace receiver's backing store with newly created and filled FixedArray.
683 __ str(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
684 __ RecordWriteField(receiver,
685 JSObject::kElementsOffset,
686 array,
687 scratch,
688 kLRHasBeenSaved,
689 kDontSaveFPRegs,
690 EMIT_REMEMBERED_SET,
691 OMIT_SMI_CHECK);
692 __ pop(lr);
693
694 __ bind(&only_change_map);
695 // Update receiver's map.
696 __ str(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
697 __ RecordWriteField(receiver,
698 HeapObject::kMapOffset,
699 target_map,
700 scratch,
701 kLRHasNotBeenSaved,
702 kDontSaveFPRegs,
703 OMIT_REMEMBERED_SET,
704 OMIT_SMI_CHECK);
705 }
706
707
Generate(MacroAssembler * masm,Register string,Register index,Register result,Label * call_runtime)708 void StringCharLoadGenerator::Generate(MacroAssembler* masm,
709 Register string,
710 Register index,
711 Register result,
712 Label* call_runtime) {
713 // Fetch the instance type of the receiver into result register.
714 __ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
715 __ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
716
717 // We need special handling for indirect strings.
718 Label check_sequential;
719 __ tst(result, Operand(kIsIndirectStringMask));
720 __ b(eq, &check_sequential);
721
722 // Dispatch on the indirect string shape: slice or cons.
723 Label cons_string;
724 __ tst(result, Operand(kSlicedNotConsMask));
725 __ b(eq, &cons_string);
726
727 // Handle slices.
728 Label indirect_string_loaded;
729 __ ldr(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
730 __ ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
731 __ add(index, index, Operand::SmiUntag(result));
732 __ jmp(&indirect_string_loaded);
733
734 // Handle cons strings.
735 // Check whether the right hand side is the empty string (i.e. if
736 // this is really a flat string in a cons string). If that is not
737 // the case we would rather go to the runtime system now to flatten
738 // the string.
739 __ bind(&cons_string);
740 __ ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
741 __ CompareRoot(result, Heap::kempty_stringRootIndex);
742 __ b(ne, call_runtime);
743 // Get the first of the two strings and load its instance type.
744 __ ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
745
746 __ bind(&indirect_string_loaded);
747 __ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
748 __ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
749
750 // Distinguish sequential and external strings. Only these two string
751 // representations can reach here (slices and flat cons strings have been
752 // reduced to the underlying sequential or external string).
753 Label external_string, check_encoding;
754 __ bind(&check_sequential);
755 STATIC_ASSERT(kSeqStringTag == 0);
756 __ tst(result, Operand(kStringRepresentationMask));
757 __ b(ne, &external_string);
758
759 // Prepare sequential strings
760 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
761 __ add(string,
762 string,
763 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
764 __ jmp(&check_encoding);
765
766 // Handle external strings.
767 __ bind(&external_string);
768 if (FLAG_debug_code) {
769 // Assert that we do not have a cons or slice (indirect strings) here.
770 // Sequential strings have already been ruled out.
771 __ tst(result, Operand(kIsIndirectStringMask));
772 __ Assert(eq, kExternalStringExpectedButNotFound);
773 }
774 // Rule out short external strings.
775 STATIC_ASSERT(kShortExternalStringTag != 0);
776 __ tst(result, Operand(kShortExternalStringMask));
777 __ b(ne, call_runtime);
778 __ ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
779
780 Label one_byte, done;
781 __ bind(&check_encoding);
782 STATIC_ASSERT(kTwoByteStringTag == 0);
783 __ tst(result, Operand(kStringEncodingMask));
784 __ b(ne, &one_byte);
785 // Two-byte string.
786 __ ldrh(result, MemOperand(string, index, LSL, 1));
787 __ jmp(&done);
788 __ bind(&one_byte);
789 // One-byte string.
790 __ ldrb(result, MemOperand(string, index));
791 __ bind(&done);
792 }
793
794
ExpConstant(int index,Register base)795 static MemOperand ExpConstant(int index, Register base) {
796 return MemOperand(base, index * kDoubleSize);
797 }
798
799
EmitMathExp(MacroAssembler * masm,DwVfpRegister input,DwVfpRegister result,DwVfpRegister double_scratch1,DwVfpRegister double_scratch2,Register temp1,Register temp2,Register temp3)800 void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
801 DwVfpRegister input,
802 DwVfpRegister result,
803 DwVfpRegister double_scratch1,
804 DwVfpRegister double_scratch2,
805 Register temp1,
806 Register temp2,
807 Register temp3) {
808 DCHECK(!input.is(result));
809 DCHECK(!input.is(double_scratch1));
810 DCHECK(!input.is(double_scratch2));
811 DCHECK(!result.is(double_scratch1));
812 DCHECK(!result.is(double_scratch2));
813 DCHECK(!double_scratch1.is(double_scratch2));
814 DCHECK(!temp1.is(temp2));
815 DCHECK(!temp1.is(temp3));
816 DCHECK(!temp2.is(temp3));
817 DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
818 DCHECK(!masm->serializer_enabled()); // External references not serializable.
819
820 Label zero, infinity, done;
821
822 __ mov(temp3, Operand(ExternalReference::math_exp_constants(0)));
823
824 __ vldr(double_scratch1, ExpConstant(0, temp3));
825 __ VFPCompareAndSetFlags(double_scratch1, input);
826 __ b(ge, &zero);
827
828 __ vldr(double_scratch2, ExpConstant(1, temp3));
829 __ VFPCompareAndSetFlags(input, double_scratch2);
830 __ b(ge, &infinity);
831
832 __ vldr(double_scratch1, ExpConstant(3, temp3));
833 __ vldr(result, ExpConstant(4, temp3));
834 __ vmul(double_scratch1, double_scratch1, input);
835 __ vadd(double_scratch1, double_scratch1, result);
836 __ VmovLow(temp2, double_scratch1);
837 __ vsub(double_scratch1, double_scratch1, result);
838 __ vldr(result, ExpConstant(6, temp3));
839 __ vldr(double_scratch2, ExpConstant(5, temp3));
840 __ vmul(double_scratch1, double_scratch1, double_scratch2);
841 __ vsub(double_scratch1, double_scratch1, input);
842 __ vsub(result, result, double_scratch1);
843 __ vmul(double_scratch2, double_scratch1, double_scratch1);
844 __ vmul(result, result, double_scratch2);
845 __ vldr(double_scratch2, ExpConstant(7, temp3));
846 __ vmul(result, result, double_scratch2);
847 __ vsub(result, result, double_scratch1);
848 // Mov 1 in double_scratch2 as math_exp_constants_array[8] == 1.
849 DCHECK(*reinterpret_cast<double*>
850 (ExternalReference::math_exp_constants(8).address()) == 1);
851 __ vmov(double_scratch2, 1);
852 __ vadd(result, result, double_scratch2);
853 __ mov(temp1, Operand(temp2, LSR, 11));
854 __ Ubfx(temp2, temp2, 0, 11);
855 __ add(temp1, temp1, Operand(0x3ff));
856
857 // Must not call ExpConstant() after overwriting temp3!
858 __ mov(temp3, Operand(ExternalReference::math_exp_log_table()));
859 __ add(temp3, temp3, Operand(temp2, LSL, 3));
860 __ ldm(ia, temp3, temp2.bit() | temp3.bit());
861 // The first word is loaded is the lower number register.
862 if (temp2.code() < temp3.code()) {
863 __ orr(temp1, temp3, Operand(temp1, LSL, 20));
864 __ vmov(double_scratch1, temp2, temp1);
865 } else {
866 __ orr(temp1, temp2, Operand(temp1, LSL, 20));
867 __ vmov(double_scratch1, temp3, temp1);
868 }
869 __ vmul(result, result, double_scratch1);
870 __ b(&done);
871
872 __ bind(&zero);
873 __ vmov(result, kDoubleRegZero);
874 __ b(&done);
875
876 __ bind(&infinity);
877 __ vldr(result, ExpConstant(2, temp3));
878
879 __ bind(&done);
880 }
881
882 #undef __
883
884 #ifdef DEBUG
885 // add(r0, pc, Operand(-8))
886 static const uint32_t kCodeAgePatchFirstInstruction = 0xe24f0008;
887 #endif
888
CodeAgingHelper(Isolate * isolate)889 CodeAgingHelper::CodeAgingHelper(Isolate* isolate) {
890 USE(isolate);
891 DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
892 // Since patcher is a large object, allocate it dynamically when needed,
893 // to avoid overloading the stack in stress conditions.
894 // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
895 // the process, before ARM simulator ICache is setup.
896 base::SmartPointer<CodePatcher> patcher(
897 new CodePatcher(isolate, young_sequence_.start(),
898 young_sequence_.length() / Assembler::kInstrSize,
899 CodePatcher::DONT_FLUSH));
900 PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
901 patcher->masm()->PushFixedFrame(r1);
902 patcher->masm()->nop(ip.code());
903 patcher->masm()->add(
904 fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp));
905 }
906
907
908 #ifdef DEBUG
IsOld(byte * candidate) const909 bool CodeAgingHelper::IsOld(byte* candidate) const {
910 return Memory::uint32_at(candidate) == kCodeAgePatchFirstInstruction;
911 }
912 #endif
913
914
IsYoungSequence(Isolate * isolate,byte * sequence)915 bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
916 bool result = isolate->code_aging_helper()->IsYoung(sequence);
917 DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
918 return result;
919 }
920
921
GetCodeAgeAndParity(Isolate * isolate,byte * sequence,Age * age,MarkingParity * parity)922 void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
923 MarkingParity* parity) {
924 if (IsYoungSequence(isolate, sequence)) {
925 *age = kNoAgeCodeAge;
926 *parity = NO_MARKING_PARITY;
927 } else {
928 Address target_address = Memory::Address_at(
929 sequence + (kNoCodeAgeSequenceLength - Assembler::kInstrSize));
930 Code* stub = GetCodeFromTargetAddress(target_address);
931 GetCodeAgeAndParity(stub, age, parity);
932 }
933 }
934
935
PatchPlatformCodeAge(Isolate * isolate,byte * sequence,Code::Age age,MarkingParity parity)936 void Code::PatchPlatformCodeAge(Isolate* isolate,
937 byte* sequence,
938 Code::Age age,
939 MarkingParity parity) {
940 uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
941 if (age == kNoAgeCodeAge) {
942 isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
943 Assembler::FlushICache(isolate, sequence, young_length);
944 } else {
945 Code* stub = GetCodeAgeStub(isolate, age, parity);
946 CodePatcher patcher(isolate, sequence,
947 young_length / Assembler::kInstrSize);
948 patcher.masm()->add(r0, pc, Operand(-8));
949 patcher.masm()->ldr(pc, MemOperand(pc, -4));
950 patcher.masm()->emit_code_stub_address(stub);
951 }
952 }
953
954
955 } // namespace internal
956 } // namespace v8
957
958 #endif // V8_TARGET_ARCH_ARM
959