1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reg_type_cache-inl.h"
18
19 #include "base/arena_bit_vector.h"
20 #include "base/bit_vector-inl.h"
21 #include "base/casts.h"
22 #include "base/scoped_arena_allocator.h"
23 #include "base/stl_util.h"
24 #include "class_linker-inl.h"
25 #include "dex_file-inl.h"
26 #include "mirror/class-inl.h"
27 #include "mirror/object-inl.h"
28 #include "reg_type-inl.h"
29
30 namespace art {
31 namespace verifier {
32
33 bool RegTypeCache::primitive_initialized_ = false;
34 uint16_t RegTypeCache::primitive_count_ = 0;
35 const PreciseConstType* RegTypeCache::small_precise_constants_[kMaxSmallConstant -
36 kMinSmallConstant + 1];
37
MatchingPrecisionForClass(const RegType * entry,bool precise)38 ALWAYS_INLINE static inline bool MatchingPrecisionForClass(const RegType* entry, bool precise)
39 SHARED_REQUIRES(Locks::mutator_lock_) {
40 if (entry->IsPreciseReference() == precise) {
41 // We were or weren't looking for a precise reference and we found what we need.
42 return true;
43 } else {
44 if (!precise && entry->GetClass()->CannotBeAssignedFromOtherTypes()) {
45 // We weren't looking for a precise reference, as we're looking up based on a descriptor, but
46 // we found a matching entry based on the descriptor. Return the precise entry in that case.
47 return true;
48 }
49 return false;
50 }
51 }
52
FillPrimitiveAndSmallConstantTypes()53 void RegTypeCache::FillPrimitiveAndSmallConstantTypes() {
54 entries_.push_back(UndefinedType::GetInstance());
55 entries_.push_back(ConflictType::GetInstance());
56 entries_.push_back(BooleanType::GetInstance());
57 entries_.push_back(ByteType::GetInstance());
58 entries_.push_back(ShortType::GetInstance());
59 entries_.push_back(CharType::GetInstance());
60 entries_.push_back(IntegerType::GetInstance());
61 entries_.push_back(LongLoType::GetInstance());
62 entries_.push_back(LongHiType::GetInstance());
63 entries_.push_back(FloatType::GetInstance());
64 entries_.push_back(DoubleLoType::GetInstance());
65 entries_.push_back(DoubleHiType::GetInstance());
66 for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
67 int32_t i = value - kMinSmallConstant;
68 DCHECK_EQ(entries_.size(), small_precise_constants_[i]->GetId());
69 entries_.push_back(small_precise_constants_[i]);
70 }
71 DCHECK_EQ(entries_.size(), primitive_count_);
72 }
73
FromDescriptor(mirror::ClassLoader * loader,const char * descriptor,bool precise)74 const RegType& RegTypeCache::FromDescriptor(mirror::ClassLoader* loader,
75 const char* descriptor,
76 bool precise) {
77 DCHECK(RegTypeCache::primitive_initialized_);
78 if (descriptor[1] == '\0') {
79 switch (descriptor[0]) {
80 case 'Z':
81 return Boolean();
82 case 'B':
83 return Byte();
84 case 'S':
85 return Short();
86 case 'C':
87 return Char();
88 case 'I':
89 return Integer();
90 case 'J':
91 return LongLo();
92 case 'F':
93 return Float();
94 case 'D':
95 return DoubleLo();
96 case 'V': // For void types, conflict types.
97 default:
98 return Conflict();
99 }
100 } else if (descriptor[0] == 'L' || descriptor[0] == '[') {
101 return From(loader, descriptor, precise);
102 } else {
103 return Conflict();
104 }
105 }
106
RegTypeFromPrimitiveType(Primitive::Type prim_type) const107 const RegType& RegTypeCache::RegTypeFromPrimitiveType(Primitive::Type prim_type) const {
108 DCHECK(RegTypeCache::primitive_initialized_);
109 switch (prim_type) {
110 case Primitive::kPrimBoolean:
111 return *BooleanType::GetInstance();
112 case Primitive::kPrimByte:
113 return *ByteType::GetInstance();
114 case Primitive::kPrimShort:
115 return *ShortType::GetInstance();
116 case Primitive::kPrimChar:
117 return *CharType::GetInstance();
118 case Primitive::kPrimInt:
119 return *IntegerType::GetInstance();
120 case Primitive::kPrimLong:
121 return *LongLoType::GetInstance();
122 case Primitive::kPrimFloat:
123 return *FloatType::GetInstance();
124 case Primitive::kPrimDouble:
125 return *DoubleLoType::GetInstance();
126 case Primitive::kPrimVoid:
127 default:
128 return *ConflictType::GetInstance();
129 }
130 }
131
MatchDescriptor(size_t idx,const StringPiece & descriptor,bool precise)132 bool RegTypeCache::MatchDescriptor(size_t idx, const StringPiece& descriptor, bool precise) {
133 const RegType* entry = entries_[idx];
134 if (descriptor != entry->descriptor_) {
135 return false;
136 }
137 if (entry->HasClass()) {
138 return MatchingPrecisionForClass(entry, precise);
139 }
140 // There is no notion of precise unresolved references, the precise information is just dropped
141 // on the floor.
142 DCHECK(entry->IsUnresolvedReference());
143 return true;
144 }
145
ResolveClass(const char * descriptor,mirror::ClassLoader * loader)146 mirror::Class* RegTypeCache::ResolveClass(const char* descriptor, mirror::ClassLoader* loader) {
147 // Class was not found, must create new type.
148 // Try resolving class
149 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
150 Thread* self = Thread::Current();
151 StackHandleScope<1> hs(self);
152 Handle<mirror::ClassLoader> class_loader(hs.NewHandle(loader));
153 mirror::Class* klass = nullptr;
154 if (can_load_classes_) {
155 klass = class_linker->FindClass(self, descriptor, class_loader);
156 } else {
157 klass = class_linker->LookupClass(self, descriptor, ComputeModifiedUtf8Hash(descriptor),
158 loader);
159 if (klass != nullptr && !klass->IsResolved()) {
160 // We found the class but without it being loaded its not safe for use.
161 klass = nullptr;
162 }
163 }
164 return klass;
165 }
166
AddString(const StringPiece & string_piece)167 StringPiece RegTypeCache::AddString(const StringPiece& string_piece) {
168 char* ptr = arena_.AllocArray<char>(string_piece.length());
169 memcpy(ptr, string_piece.data(), string_piece.length());
170 return StringPiece(ptr, string_piece.length());
171 }
172
From(mirror::ClassLoader * loader,const char * descriptor,bool precise)173 const RegType& RegTypeCache::From(mirror::ClassLoader* loader,
174 const char* descriptor,
175 bool precise) {
176 StringPiece sp_descriptor(descriptor);
177 // Try looking up the class in the cache first. We use a StringPiece to avoid continual strlen
178 // operations on the descriptor.
179 for (size_t i = primitive_count_; i < entries_.size(); i++) {
180 if (MatchDescriptor(i, sp_descriptor, precise)) {
181 return *(entries_[i]);
182 }
183 }
184 // Class not found in the cache, will create a new type for that.
185 // Try resolving class.
186 mirror::Class* klass = ResolveClass(descriptor, loader);
187 if (klass != nullptr) {
188 // Class resolved, first look for the class in the list of entries
189 // Class was not found, must create new type.
190 // To pass the verification, the type should be imprecise,
191 // instantiable or an interface with the precise type set to false.
192 DCHECK(!precise || klass->IsInstantiable());
193 // Create a precise type if:
194 // 1- Class is final and NOT an interface. a precise interface is meaningless !!
195 // 2- Precise Flag passed as true.
196 RegType* entry;
197 // Create an imprecise type if we can't tell for a fact that it is precise.
198 if (klass->CannotBeAssignedFromOtherTypes() || precise) {
199 DCHECK(!(klass->IsAbstract()) || klass->IsArrayClass());
200 DCHECK(!klass->IsInterface());
201 entry = new (&arena_) PreciseReferenceType(klass, AddString(sp_descriptor), entries_.size());
202 } else {
203 entry = new (&arena_) ReferenceType(klass, AddString(sp_descriptor), entries_.size());
204 }
205 return AddEntry(entry);
206 } else { // Class not resolved.
207 // We tried loading the class and failed, this might get an exception raised
208 // so we want to clear it before we go on.
209 if (can_load_classes_) {
210 DCHECK(Thread::Current()->IsExceptionPending());
211 Thread::Current()->ClearException();
212 } else {
213 DCHECK(!Thread::Current()->IsExceptionPending());
214 }
215 if (IsValidDescriptor(descriptor)) {
216 return AddEntry(
217 new (&arena_) UnresolvedReferenceType(AddString(sp_descriptor), entries_.size()));
218 } else {
219 // The descriptor is broken return the unknown type as there's nothing sensible that
220 // could be done at runtime
221 return Conflict();
222 }
223 }
224 }
225
FindClass(mirror::Class * klass,bool precise) const226 const RegType* RegTypeCache::FindClass(mirror::Class* klass, bool precise) const {
227 DCHECK(klass != nullptr);
228 if (klass->IsPrimitive()) {
229 // Note: precise isn't used for primitive classes. A char is assignable to an int. All
230 // primitive classes are final.
231 return &RegTypeFromPrimitiveType(klass->GetPrimitiveType());
232 }
233 for (auto& pair : klass_entries_) {
234 mirror::Class* const reg_klass = pair.first.Read();
235 if (reg_klass == klass) {
236 const RegType* reg_type = pair.second;
237 if (MatchingPrecisionForClass(reg_type, precise)) {
238 return reg_type;
239 }
240 }
241 }
242 return nullptr;
243 }
244
InsertClass(const StringPiece & descriptor,mirror::Class * klass,bool precise)245 const RegType* RegTypeCache::InsertClass(const StringPiece& descriptor,
246 mirror::Class* klass,
247 bool precise) {
248 // No reference to the class was found, create new reference.
249 DCHECK(FindClass(klass, precise) == nullptr);
250 RegType* const reg_type = precise
251 ? static_cast<RegType*>(
252 new (&arena_) PreciseReferenceType(klass, descriptor, entries_.size()))
253 : new (&arena_) ReferenceType(klass, descriptor, entries_.size());
254 return &AddEntry(reg_type);
255 }
256
FromClass(const char * descriptor,mirror::Class * klass,bool precise)257 const RegType& RegTypeCache::FromClass(const char* descriptor, mirror::Class* klass, bool precise) {
258 DCHECK(klass != nullptr);
259 const RegType* reg_type = FindClass(klass, precise);
260 if (reg_type == nullptr) {
261 reg_type = InsertClass(AddString(StringPiece(descriptor)), klass, precise);
262 }
263 return *reg_type;
264 }
265
RegTypeCache(bool can_load_classes,ScopedArenaAllocator & arena)266 RegTypeCache::RegTypeCache(bool can_load_classes, ScopedArenaAllocator& arena)
267 : entries_(arena.Adapter(kArenaAllocVerifier)),
268 klass_entries_(arena.Adapter(kArenaAllocVerifier)),
269 can_load_classes_(can_load_classes),
270 arena_(arena) {
271 if (kIsDebugBuild) {
272 Thread::Current()->AssertThreadSuspensionIsAllowable(gAborting == 0);
273 }
274 // The klass_entries_ array does not have primitives or small constants.
275 static constexpr size_t kNumReserveEntries = 32;
276 klass_entries_.reserve(kNumReserveEntries);
277 // We want to have room for additional entries after inserting primitives and small
278 // constants.
279 entries_.reserve(kNumReserveEntries + kNumPrimitivesAndSmallConstants);
280 FillPrimitiveAndSmallConstantTypes();
281 }
282
~RegTypeCache()283 RegTypeCache::~RegTypeCache() {
284 DCHECK_LE(primitive_count_, entries_.size());
285 }
286
ShutDown()287 void RegTypeCache::ShutDown() {
288 if (RegTypeCache::primitive_initialized_) {
289 UndefinedType::Destroy();
290 ConflictType::Destroy();
291 BooleanType::Destroy();
292 ByteType::Destroy();
293 ShortType::Destroy();
294 CharType::Destroy();
295 IntegerType::Destroy();
296 LongLoType::Destroy();
297 LongHiType::Destroy();
298 FloatType::Destroy();
299 DoubleLoType::Destroy();
300 DoubleHiType::Destroy();
301 for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
302 const PreciseConstType* type = small_precise_constants_[value - kMinSmallConstant];
303 delete type;
304 small_precise_constants_[value - kMinSmallConstant] = nullptr;
305 }
306 RegTypeCache::primitive_initialized_ = false;
307 RegTypeCache::primitive_count_ = 0;
308 }
309 }
310
311 template <class Type>
CreatePrimitiveTypeInstance(const std::string & descriptor)312 const Type* RegTypeCache::CreatePrimitiveTypeInstance(const std::string& descriptor) {
313 mirror::Class* klass = nullptr;
314 // Try loading the class from linker.
315 if (!descriptor.empty()) {
316 klass = art::Runtime::Current()->GetClassLinker()->FindSystemClass(Thread::Current(),
317 descriptor.c_str());
318 DCHECK(klass != nullptr);
319 }
320 const Type* entry = Type::CreateInstance(klass, descriptor, RegTypeCache::primitive_count_);
321 RegTypeCache::primitive_count_++;
322 return entry;
323 }
324
CreatePrimitiveAndSmallConstantTypes()325 void RegTypeCache::CreatePrimitiveAndSmallConstantTypes() {
326 CreatePrimitiveTypeInstance<UndefinedType>("");
327 CreatePrimitiveTypeInstance<ConflictType>("");
328 CreatePrimitiveTypeInstance<BooleanType>("Z");
329 CreatePrimitiveTypeInstance<ByteType>("B");
330 CreatePrimitiveTypeInstance<ShortType>("S");
331 CreatePrimitiveTypeInstance<CharType>("C");
332 CreatePrimitiveTypeInstance<IntegerType>("I");
333 CreatePrimitiveTypeInstance<LongLoType>("J");
334 CreatePrimitiveTypeInstance<LongHiType>("J");
335 CreatePrimitiveTypeInstance<FloatType>("F");
336 CreatePrimitiveTypeInstance<DoubleLoType>("D");
337 CreatePrimitiveTypeInstance<DoubleHiType>("D");
338 for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
339 PreciseConstType* type = new PreciseConstType(value, primitive_count_);
340 small_precise_constants_[value - kMinSmallConstant] = type;
341 primitive_count_++;
342 }
343 }
344
FromUnresolvedMerge(const RegType & left,const RegType & right)345 const RegType& RegTypeCache::FromUnresolvedMerge(const RegType& left, const RegType& right) {
346 ArenaBitVector types(&arena_,
347 kDefaultArenaBitVectorBytes * kBitsPerByte, // Allocate at least 8 bytes.
348 true); // Is expandable.
349 const RegType* left_resolved;
350 bool left_unresolved_is_array;
351 if (left.IsUnresolvedMergedReference()) {
352 const UnresolvedMergedType& left_merge = *down_cast<const UnresolvedMergedType*>(&left);
353
354 types.Copy(&left_merge.GetUnresolvedTypes());
355 left_resolved = &left_merge.GetResolvedPart();
356 left_unresolved_is_array = left.IsArrayTypes();
357 } else if (left.IsUnresolvedTypes()) {
358 types.ClearAllBits();
359 types.SetBit(left.GetId());
360 left_resolved = &Zero();
361 left_unresolved_is_array = left.IsArrayTypes();
362 } else {
363 types.ClearAllBits();
364 left_resolved = &left;
365 left_unresolved_is_array = false;
366 }
367
368 const RegType* right_resolved;
369 bool right_unresolved_is_array;
370 if (right.IsUnresolvedMergedReference()) {
371 const UnresolvedMergedType& right_merge = *down_cast<const UnresolvedMergedType*>(&right);
372
373 types.Union(&right_merge.GetUnresolvedTypes());
374 right_resolved = &right_merge.GetResolvedPart();
375 right_unresolved_is_array = right.IsArrayTypes();
376 } else if (right.IsUnresolvedTypes()) {
377 types.SetBit(right.GetId());
378 right_resolved = &Zero();
379 right_unresolved_is_array = right.IsArrayTypes();
380 } else {
381 right_resolved = &right;
382 right_unresolved_is_array = false;
383 }
384
385 // Merge the resolved parts. Left and right might be equal, so use SafeMerge.
386 const RegType& resolved_parts_merged = left_resolved->SafeMerge(*right_resolved, this);
387 // If we get a conflict here, the merge result is a conflict, not an unresolved merge type.
388 if (resolved_parts_merged.IsConflict()) {
389 return Conflict();
390 }
391
392 bool resolved_merged_is_array = resolved_parts_merged.IsArrayTypes();
393 if (left_unresolved_is_array || right_unresolved_is_array || resolved_merged_is_array) {
394 // Arrays involved, see if we need to merge to Object.
395
396 // Is the resolved part a primitive array?
397 if (resolved_merged_is_array && !resolved_parts_merged.IsObjectArrayTypes()) {
398 return JavaLangObject(false /* precise */);
399 }
400
401 // Is any part not an array (but exists)?
402 if ((!left_unresolved_is_array && left_resolved != &left) ||
403 (!right_unresolved_is_array && right_resolved != &right) ||
404 !resolved_merged_is_array) {
405 return JavaLangObject(false /* precise */);
406 }
407 }
408
409 // Check if entry already exists.
410 for (size_t i = primitive_count_; i < entries_.size(); i++) {
411 const RegType* cur_entry = entries_[i];
412 if (cur_entry->IsUnresolvedMergedReference()) {
413 const UnresolvedMergedType* cmp_type = down_cast<const UnresolvedMergedType*>(cur_entry);
414 const RegType& resolved_part = cmp_type->GetResolvedPart();
415 const BitVector& unresolved_part = cmp_type->GetUnresolvedTypes();
416 // Use SameBitsSet. "types" is expandable to allow merging in the components, but the
417 // BitVector in the final RegType will be made non-expandable.
418 if (&resolved_part == &resolved_parts_merged && types.SameBitsSet(&unresolved_part)) {
419 return *cur_entry;
420 }
421 }
422 }
423 return AddEntry(new (&arena_) UnresolvedMergedType(resolved_parts_merged,
424 types,
425 this,
426 entries_.size()));
427 }
428
FromUnresolvedSuperClass(const RegType & child)429 const RegType& RegTypeCache::FromUnresolvedSuperClass(const RegType& child) {
430 // Check if entry already exists.
431 for (size_t i = primitive_count_; i < entries_.size(); i++) {
432 const RegType* cur_entry = entries_[i];
433 if (cur_entry->IsUnresolvedSuperClass()) {
434 const UnresolvedSuperClass* tmp_entry =
435 down_cast<const UnresolvedSuperClass*>(cur_entry);
436 uint16_t unresolved_super_child_id =
437 tmp_entry->GetUnresolvedSuperClassChildId();
438 if (unresolved_super_child_id == child.GetId()) {
439 return *cur_entry;
440 }
441 }
442 }
443 return AddEntry(new (&arena_) UnresolvedSuperClass(child.GetId(), this, entries_.size()));
444 }
445
Uninitialized(const RegType & type,uint32_t allocation_pc)446 const UninitializedType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) {
447 UninitializedType* entry = nullptr;
448 const StringPiece& descriptor(type.GetDescriptor());
449 if (type.IsUnresolvedTypes()) {
450 for (size_t i = primitive_count_; i < entries_.size(); i++) {
451 const RegType* cur_entry = entries_[i];
452 if (cur_entry->IsUnresolvedAndUninitializedReference() &&
453 down_cast<const UnresolvedUninitializedRefType*>(cur_entry)->GetAllocationPc()
454 == allocation_pc &&
455 (cur_entry->GetDescriptor() == descriptor)) {
456 return *down_cast<const UnresolvedUninitializedRefType*>(cur_entry);
457 }
458 }
459 entry = new (&arena_) UnresolvedUninitializedRefType(descriptor,
460 allocation_pc,
461 entries_.size());
462 } else {
463 mirror::Class* klass = type.GetClass();
464 for (size_t i = primitive_count_; i < entries_.size(); i++) {
465 const RegType* cur_entry = entries_[i];
466 if (cur_entry->IsUninitializedReference() &&
467 down_cast<const UninitializedReferenceType*>(cur_entry)
468 ->GetAllocationPc() == allocation_pc &&
469 cur_entry->GetClass() == klass) {
470 return *down_cast<const UninitializedReferenceType*>(cur_entry);
471 }
472 }
473 entry = new (&arena_) UninitializedReferenceType(klass,
474 descriptor,
475 allocation_pc,
476 entries_.size());
477 }
478 return AddEntry(entry);
479 }
480
FromUninitialized(const RegType & uninit_type)481 const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) {
482 RegType* entry;
483
484 if (uninit_type.IsUnresolvedTypes()) {
485 const StringPiece& descriptor(uninit_type.GetDescriptor());
486 for (size_t i = primitive_count_; i < entries_.size(); i++) {
487 const RegType* cur_entry = entries_[i];
488 if (cur_entry->IsUnresolvedReference() &&
489 cur_entry->GetDescriptor() == descriptor) {
490 return *cur_entry;
491 }
492 }
493 entry = new (&arena_) UnresolvedReferenceType(descriptor, entries_.size());
494 } else {
495 mirror::Class* klass = uninit_type.GetClass();
496 if (uninit_type.IsUninitializedThisReference() && !klass->IsFinal()) {
497 // For uninitialized "this reference" look for reference types that are not precise.
498 for (size_t i = primitive_count_; i < entries_.size(); i++) {
499 const RegType* cur_entry = entries_[i];
500 if (cur_entry->IsReference() && cur_entry->GetClass() == klass) {
501 return *cur_entry;
502 }
503 }
504 entry = new (&arena_) ReferenceType(klass, "", entries_.size());
505 } else if (!klass->IsPrimitive()) {
506 // We're uninitialized because of allocation, look or create a precise type as allocations
507 // may only create objects of that type.
508 // Note: we do not check whether the given klass is actually instantiable (besides being
509 // primitive), that is, we allow interfaces and abstract classes here. The reasoning is
510 // twofold:
511 // 1) The "new-instance" instruction to generate the uninitialized type will already
512 // queue an instantiation error. This is a soft error that must be thrown at runtime,
513 // and could potentially change if the class is resolved differently at runtime.
514 // 2) Checking whether the klass is instantiable and using conflict may produce a hard
515 // error when the value is used, which leads to a VerifyError, which is not the
516 // correct semantics.
517 for (size_t i = primitive_count_; i < entries_.size(); i++) {
518 const RegType* cur_entry = entries_[i];
519 if (cur_entry->IsPreciseReference() && cur_entry->GetClass() == klass) {
520 return *cur_entry;
521 }
522 }
523 entry = new (&arena_) PreciseReferenceType(klass,
524 uninit_type.GetDescriptor(),
525 entries_.size());
526 } else {
527 return Conflict();
528 }
529 }
530 return AddEntry(entry);
531 }
532
UninitializedThisArgument(const RegType & type)533 const UninitializedType& RegTypeCache::UninitializedThisArgument(const RegType& type) {
534 UninitializedType* entry;
535 const StringPiece& descriptor(type.GetDescriptor());
536 if (type.IsUnresolvedTypes()) {
537 for (size_t i = primitive_count_; i < entries_.size(); i++) {
538 const RegType* cur_entry = entries_[i];
539 if (cur_entry->IsUnresolvedAndUninitializedThisReference() &&
540 cur_entry->GetDescriptor() == descriptor) {
541 return *down_cast<const UninitializedType*>(cur_entry);
542 }
543 }
544 entry = new (&arena_) UnresolvedUninitializedThisRefType(descriptor, entries_.size());
545 } else {
546 mirror::Class* klass = type.GetClass();
547 for (size_t i = primitive_count_; i < entries_.size(); i++) {
548 const RegType* cur_entry = entries_[i];
549 if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) {
550 return *down_cast<const UninitializedType*>(cur_entry);
551 }
552 }
553 entry = new (&arena_) UninitializedThisReferenceType(klass, descriptor, entries_.size());
554 }
555 return AddEntry(entry);
556 }
557
FromCat1NonSmallConstant(int32_t value,bool precise)558 const ConstantType& RegTypeCache::FromCat1NonSmallConstant(int32_t value, bool precise) {
559 for (size_t i = primitive_count_; i < entries_.size(); i++) {
560 const RegType* cur_entry = entries_[i];
561 if (cur_entry->klass_.IsNull() && cur_entry->IsConstant() &&
562 cur_entry->IsPreciseConstant() == precise &&
563 (down_cast<const ConstantType*>(cur_entry))->ConstantValue() == value) {
564 return *down_cast<const ConstantType*>(cur_entry);
565 }
566 }
567 ConstantType* entry;
568 if (precise) {
569 entry = new (&arena_) PreciseConstType(value, entries_.size());
570 } else {
571 entry = new (&arena_) ImpreciseConstType(value, entries_.size());
572 }
573 return AddEntry(entry);
574 }
575
FromCat2ConstLo(int32_t value,bool precise)576 const ConstantType& RegTypeCache::FromCat2ConstLo(int32_t value, bool precise) {
577 for (size_t i = primitive_count_; i < entries_.size(); i++) {
578 const RegType* cur_entry = entries_[i];
579 if (cur_entry->IsConstantLo() && (cur_entry->IsPrecise() == precise) &&
580 (down_cast<const ConstantType*>(cur_entry))->ConstantValueLo() == value) {
581 return *down_cast<const ConstantType*>(cur_entry);
582 }
583 }
584 ConstantType* entry;
585 if (precise) {
586 entry = new (&arena_) PreciseConstLoType(value, entries_.size());
587 } else {
588 entry = new (&arena_) ImpreciseConstLoType(value, entries_.size());
589 }
590 return AddEntry(entry);
591 }
592
FromCat2ConstHi(int32_t value,bool precise)593 const ConstantType& RegTypeCache::FromCat2ConstHi(int32_t value, bool precise) {
594 for (size_t i = primitive_count_; i < entries_.size(); i++) {
595 const RegType* cur_entry = entries_[i];
596 if (cur_entry->IsConstantHi() && (cur_entry->IsPrecise() == precise) &&
597 (down_cast<const ConstantType*>(cur_entry))->ConstantValueHi() == value) {
598 return *down_cast<const ConstantType*>(cur_entry);
599 }
600 }
601 ConstantType* entry;
602 if (precise) {
603 entry = new (&arena_) PreciseConstHiType(value, entries_.size());
604 } else {
605 entry = new (&arena_) ImpreciseConstHiType(value, entries_.size());
606 }
607 return AddEntry(entry);
608 }
609
GetComponentType(const RegType & array,mirror::ClassLoader * loader)610 const RegType& RegTypeCache::GetComponentType(const RegType& array, mirror::ClassLoader* loader) {
611 if (!array.IsArrayTypes()) {
612 return Conflict();
613 } else if (array.IsUnresolvedTypes()) {
614 DCHECK(!array.IsUnresolvedMergedReference()); // Caller must make sure not to ask for this.
615 const std::string descriptor(array.GetDescriptor().as_string());
616 return FromDescriptor(loader, descriptor.c_str() + 1, false);
617 } else {
618 mirror::Class* klass = array.GetClass()->GetComponentType();
619 std::string temp;
620 const char* descriptor = klass->GetDescriptor(&temp);
621 if (klass->IsErroneous()) {
622 // Arrays may have erroneous component types, use unresolved in that case.
623 // We assume that the primitive classes are not erroneous, so we know it is a
624 // reference type.
625 return FromDescriptor(loader, descriptor, false);
626 } else {
627 return FromClass(descriptor, klass, klass->CannotBeAssignedFromOtherTypes());
628 }
629 }
630 }
631
Dump(std::ostream & os)632 void RegTypeCache::Dump(std::ostream& os) {
633 for (size_t i = 0; i < entries_.size(); i++) {
634 const RegType* cur_entry = entries_[i];
635 if (cur_entry != nullptr) {
636 os << i << ": " << cur_entry->Dump() << "\n";
637 }
638 }
639 }
640
VisitStaticRoots(RootVisitor * visitor)641 void RegTypeCache::VisitStaticRoots(RootVisitor* visitor) {
642 // Visit the primitive types, this is required since if there are no active verifiers they wont
643 // be in the entries array, and therefore not visited as roots.
644 if (primitive_initialized_) {
645 RootInfo ri(kRootUnknown);
646 UndefinedType::GetInstance()->VisitRoots(visitor, ri);
647 ConflictType::GetInstance()->VisitRoots(visitor, ri);
648 BooleanType::GetInstance()->VisitRoots(visitor, ri);
649 ByteType::GetInstance()->VisitRoots(visitor, ri);
650 ShortType::GetInstance()->VisitRoots(visitor, ri);
651 CharType::GetInstance()->VisitRoots(visitor, ri);
652 IntegerType::GetInstance()->VisitRoots(visitor, ri);
653 LongLoType::GetInstance()->VisitRoots(visitor, ri);
654 LongHiType::GetInstance()->VisitRoots(visitor, ri);
655 FloatType::GetInstance()->VisitRoots(visitor, ri);
656 DoubleLoType::GetInstance()->VisitRoots(visitor, ri);
657 DoubleHiType::GetInstance()->VisitRoots(visitor, ri);
658 for (int32_t value = kMinSmallConstant; value <= kMaxSmallConstant; ++value) {
659 small_precise_constants_[value - kMinSmallConstant]->VisitRoots(visitor, ri);
660 }
661 }
662 }
663
VisitRoots(RootVisitor * visitor,const RootInfo & root_info)664 void RegTypeCache::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
665 // Exclude the static roots that are visited by VisitStaticRoots().
666 for (size_t i = primitive_count_; i < entries_.size(); ++i) {
667 entries_[i]->VisitRoots(visitor, root_info);
668 }
669 for (auto& pair : klass_entries_) {
670 GcRoot<mirror::Class>& root = pair.first;
671 root.VisitRoot(visitor, root_info);
672 }
673 }
674
675 } // namespace verifier
676 } // namespace art
677