1 // This file was extracted from the TCG Published
2 // Trusted Platform Module Library
3 // Part 4: Supporting Routines
4 // Family "2.0"
5 // Level 00 Revision 01.16
6 // October 30, 2014
7 
8 #include        "TPM_Types.h"
9 #include        "CryptoEngine.h"        // types shared by CryptUtil and CryptoEngine.
10                                        // Includes the function prototypes for the
11                                        // CryptoEngine functions.
12 #include        "Global.h"
13 #include        "InternalRoutines.h"
14 #include        "MemoryLib_fp.h"
15 //#include        "CryptSelfTest_fp.h"
16 //
17 //
18 //     10.2.2     TranslateCryptErrors()
19 //
20 //     This function converts errors from the cryptographic library into TPM_RC_VALUES.
21 //
22 //     Error Returns                     Meaning
23 //
24 //     TPM_RC_VALUE                      CRYPT_FAIL
25 //     TPM_RC_NO_RESULT                  CRYPT_NO_RESULT
26 //     TPM_RC_SCHEME                     CRYPT_SCHEME
27 //     TPM_RC_VALUE                      CRYPT_PARAMETER
28 //     TPM_RC_SIZE                       CRYPT_UNDERFLOW
29 //     TPM_RC_ECC_POINT                  CRYPT_POINT
30 //     TPM_RC_CANCELLED                  CRYPT_CANCEL
31 //
32 static TPM_RC
TranslateCryptErrors(CRYPT_RESULT retVal)33 TranslateCryptErrors (
34       CRYPT_RESULT            retVal                 // IN: crypt error to evaluate
35 )
36 {
37       switch (retVal)
38       {
39       case CRYPT_SUCCESS:
40           return TPM_RC_SUCCESS;
41       case CRYPT_FAIL:
42           return TPM_RC_VALUE;
43       case CRYPT_NO_RESULT:
44           return TPM_RC_NO_RESULT;
45       case CRYPT_SCHEME:
46           return TPM_RC_SCHEME;
47       case CRYPT_PARAMETER:
48           return TPM_RC_VALUE;
49       case CRYPT_UNDERFLOW:
50           return TPM_RC_SIZE;
51       case CRYPT_POINT:
52           return TPM_RC_ECC_POINT;
53       case CRYPT_CANCEL:
54        return TPM_RC_CANCELED;
55    default: // Other unknown warnings
56        return TPM_RC_FAILURE;
57    }
58 }
59 //
60 //
61 //     10.2.3     Random Number Generation Functions
62 //
63 #ifdef TPM_ALG_NULL //%
64 #ifdef _DRBG_STATE_SAVE //%
65 //
66 //
67 //     10.2.3.1    CryptDrbgGetPutState()
68 //
69 //     Read or write the current state from the DRBG in the cryptoEngine.
70 //
71 void
CryptDrbgGetPutState(GET_PUT direction)72 CryptDrbgGetPutState(
73    GET_PUT              direction         // IN: Get from or put to DRBG
74    )
75 {
76    _cpri__DrbgGetPutState(direction,
77                           sizeof(go.drbgState),
78                           (BYTE *)&go.drbgState);
79 }
80 #else   //% 00
81 //%#define CryptDrbgGetPutState(ignored)            // If not doing state save, turn this
82 //%                                                  // into a null macro
83 #endif //%
84 //
85 //
86 //     10.2.3.2    CryptStirRandom()
87 //
88 //     Stir random entropy
89 //
90 void
CryptStirRandom(UINT32 entropySize,BYTE * buffer)91 CryptStirRandom(
92    UINT32               entropySize,      // IN: size of entropy buffer
93    BYTE                *buffer            // IN: entropy buffer
94    )
95 {
96    // RNG self testing code may be inserted here
97    // Call crypto engine random number stirring function
98    _cpri__StirRandom(entropySize, buffer);
99    return;
100 }
101 //
102 //
103 //     10.2.3.3    CryptGenerateRandom()
104 //
105 //     This is the interface to _cpri__GenerateRandom().
106 //
107 UINT16
CryptGenerateRandom(UINT16 randomSize,BYTE * buffer)108 CryptGenerateRandom(
109    UINT16               randomSize,       // IN: size of random number
110    BYTE                *buffer            // OUT: buffer of random number
111    )
112 {
113    UINT16               result;
114    pAssert(randomSize <= MAX_RSA_KEY_BYTES || randomSize <= PRIMARY_SEED_SIZE);
115    if(randomSize == 0)
116           return 0;
117     // Call crypto engine random number generation
118     result = _cpri__GenerateRandom(randomSize, buffer);
119     if(result != randomSize)
120         FAIL(FATAL_ERROR_INTERNAL);
121    return result;
122 }
123 #endif //TPM_ALG_NULL //%
124 //
125 //
126 //      10.2.4     Hash/HMAC Functions
127 //
128 //      10.2.4.1    CryptGetContextAlg()
129 //
130 //      This function returns the hash algorithm associated with a hash context.
131 //
132 #ifdef TPM_ALG_KEYEDHASH                 //% 1
133 TPM_ALG_ID
CryptGetContextAlg(void * state)134 CryptGetContextAlg(
135     void                *state                // IN: the context to check
136     )
137 {
138     HASH_STATE *context = (HASH_STATE *)state;
139     return _cpri__GetContextAlg(&context->state);
140 }
141 //
142 //
143 //      10.2.4.2    CryptStartHash()
144 //
145 //      This function starts a hash and return the size, in bytes, of the digest.
146 //
147 //      Return Value                      Meaning
148 //
149 //      >0                                the digest size of the algorithm
150 //      =0                                the hashAlg was TPM_ALG_NULL
151 //
152 UINT16
CryptStartHash(TPMI_ALG_HASH hashAlg,HASH_STATE * hashState)153 CryptStartHash(
154     TPMI_ALG_HASH        hashAlg,             // IN: hash algorithm
155     HASH_STATE          *hashState            // OUT: the state of hash stack. It will be used
156                                               //     in hash update and completion
157     )
158 {
159     CRYPT_RESULT            retVal = 0;
160     pAssert(hashState != NULL);
161     TEST_HASH(hashAlg);
162     hashState->type = HASH_STATE_EMPTY;
163     // Call crypto engine start hash function
164     if((retVal = _cpri__StartHash(hashAlg, FALSE, &hashState->state)) > 0)
165         hashState->type = HASH_STATE_HASH;
166     return retVal;
167 }
168 //
169 //
170 //
171 //      10.2.4.3    CryptStartHashSequence()
172 //
173 //      Start a hash stack for a sequence object and return the size, in bytes, of the digest. This call uses the
174 //      form of the hash state that requires context save and restored.
175 //
176 //      Return Value                    Meaning
177 //
178 //      >0                              the digest size of the algorithm
179 //      =0                              the hashAlg was TPM_ALG_NULL
180 //
181 UINT16
CryptStartHashSequence(TPMI_ALG_HASH hashAlg,HASH_STATE * hashState)182 CryptStartHashSequence(
183     TPMI_ALG_HASH       hashAlg,            // IN: hash algorithm
184     HASH_STATE         *hashState           // OUT: the state of hash stack. It will be used
185                                             //     in hash update and completion
186     )
187 {
188     CRYPT_RESULT      retVal = 0;
189     pAssert(hashState != NULL);
190     TEST_HASH(hashAlg);
191     hashState->type = HASH_STATE_EMPTY;
192     // Call crypto engine start hash function
193     if((retVal = _cpri__StartHash(hashAlg, TRUE, &hashState->state)) > 0)
194         hashState->type = HASH_STATE_HASH;
195     return retVal;
196 }
197 //
198 //
199 //      10.2.4.4    CryptStartHMAC()
200 //
201 //      This function starts an HMAC sequence and returns the size of the digest that will be produced.
202 //      The caller must provide a block of memory in which the hash sequence state is kept. The caller should
203 //      not alter the contents of this buffer until the hash sequence is completed or abandoned.
204 //
205 //      Return Value                    Meaning
206 //
207 //      >0                              the digest size of the algorithm
208 //      =0                              the hashAlg was TPM_ALG_NULL
209 //
210 UINT16
CryptStartHMAC(TPMI_ALG_HASH hashAlg,UINT16 keySize,BYTE * key,HMAC_STATE * hmacState)211 CryptStartHMAC(
212     TPMI_ALG_HASH       hashAlg,            //   IN: hash algorithm
213     UINT16              keySize,            //   IN: the size of HMAC key in byte
214     BYTE               *key,                //   IN: HMAC key
215     HMAC_STATE         *hmacState           //   OUT: the state of HMAC stack. It will be used
216                                             //       in HMAC update and completion
217     )
218 {
219     HASH_STATE         *hashState = (HASH_STATE *)hmacState;
220     CRYPT_RESULT       retVal;
221     // This has to come before the pAssert in case we             all calling this function
222     // during testing. If so, the first instance will             have no arguments but the
223     // hash algorithm. The call from the test routine             will have arguments. When
224     // the second call is done, then we return to the             test dispatcher.
225     TEST_HASH(hashAlg);
226     pAssert(hashState != NULL);
227     hashState->type = HASH_STATE_EMPTY;
228     if((retVal =    _cpri__StartHMAC(hashAlg, FALSE, &hashState->state, keySize, key,
229                                      &hmacState->hmacKey.b)) > 0)
230           hashState->type = HASH_STATE_HMAC;
231     return retVal;
232 }
233 //
234 //
235 //      10.2.4.5    CryptStartHMACSequence()
236 //
237 //      This function starts an HMAC sequence and returns the size of the digest that will be produced.
238 //      The caller must provide a block of memory in which the hash sequence state is kept. The caller should
239 //      not alter the contents of this buffer until the hash sequence is completed or abandoned.
240 //      This call is used to start a sequence HMAC that spans multiple TPM commands.
241 //
242 //      Return Value                      Meaning
243 //
244 //      >0                                the digest size of the algorithm
245 //      =0                                the hashAlg was TPM_ALG_NULL
246 //
247 UINT16
CryptStartHMACSequence(TPMI_ALG_HASH hashAlg,UINT16 keySize,BYTE * key,HMAC_STATE * hmacState)248 CryptStartHMACSequence(
249     TPMI_ALG_HASH       hashAlg,              //   IN: hash algorithm
250     UINT16              keySize,              //   IN: the size of HMAC key in byte
251     BYTE               *key,                  //   IN: HMAC key
252     HMAC_STATE         *hmacState             //   OUT: the state of HMAC stack. It will be used
253                                               //       in HMAC update and completion
254     )
255 {
256     HASH_STATE         *hashState = (HASH_STATE *)hmacState;
257     CRYPT_RESULT       retVal;
258     TEST_HASH(hashAlg);
259     hashState->type = HASH_STATE_EMPTY;
260     if((retVal =    _cpri__StartHMAC(hashAlg, TRUE, &hashState->state,
261                                      keySize, key, &hmacState->hmacKey.b)) > 0)
262           hashState->type = HASH_STATE_HMAC;
263     return retVal;
264 }
265 //
266 //
267 //      10.2.4.6    CryptStartHMAC2B()
268 //
269 //      This function starts an HMAC and returns the size of the digest that will be produced.
270 //      This function is provided to support the most common use of starting an HMAC with a TPM2B key.
271 //      The caller must provide a block of memory in which the hash sequence state is kept. The caller should
272 //      not alter the contents of this buffer until the hash sequence is completed or abandoned.
273 //
274 //
275 //
276 //
277 //      Return Value                    Meaning
278 //
279 //      >0                              the digest size of the algorithm
280 //      =0                              the hashAlg was TPM_ALG_NULL
281 //
282 LIB_EXPORT UINT16
CryptStartHMAC2B(TPMI_ALG_HASH hashAlg,TPM2B * key,HMAC_STATE * hmacState)283 CryptStartHMAC2B(
284     TPMI_ALG_HASH       hashAlg,            // IN: hash algorithm
285     TPM2B              *key,                // IN: HMAC key
286     HMAC_STATE         *hmacState           // OUT: the state of HMAC stack. It will be used
287                                             //     in HMAC update and completion
288     )
289 {
290     return CryptStartHMAC(hashAlg, key->size, key->buffer, hmacState);
291 }
292 //
293 //
294 //      10.2.4.7    CryptStartHMACSequence2B()
295 //
296 //      This function starts an HMAC sequence and returns the size of the digest that will be produced.
297 //      This function is provided to support the most common use of starting an HMAC with a TPM2B key.
298 //      The caller must provide a block of memory in which the hash sequence state is kept. The caller should
299 //      not alter the contents of this buffer until the hash sequence is completed or abandoned.
300 //
301 //      Return Value                    Meaning
302 //
303 //      >0                              the digest size of the algorithm
304 //      =0                              the hashAlg was TPM_ALG_NULL
305 //
306 UINT16
CryptStartHMACSequence2B(TPMI_ALG_HASH hashAlg,TPM2B * key,HMAC_STATE * hmacState)307 CryptStartHMACSequence2B(
308     TPMI_ALG_HASH       hashAlg,            // IN: hash algorithm
309     TPM2B              *key,                // IN: HMAC key
310     HMAC_STATE         *hmacState           // OUT: the state of HMAC stack. It will be used
311                                             //     in HMAC update and completion
312     )
313 {
314     return CryptStartHMACSequence(hashAlg, key->size, key->buffer, hmacState);
315 }
316 //
317 //
318 //      10.2.4.8    CryptUpdateDigest()
319 //
320 //      This function updates a digest (hash or HMAC) with an array of octets.
321 //      This function can be used for both HMAC and hash functions so the digestState is void so that either
322 //      state type can be passed.
323 //
324 LIB_EXPORT void
CryptUpdateDigest(void * digestState,UINT32 dataSize,BYTE * data)325 CryptUpdateDigest(
326     void               *digestState,        // IN: the state of hash stack
327     UINT32              dataSize,           // IN: the size of data
328     BYTE               *data                // IN: data to be hashed
329     )
330 {
331     HASH_STATE         *hashState = (HASH_STATE *)digestState;
332     pAssert(digestState != NULL);
333     if(hashState->type != HASH_STATE_EMPTY && data != NULL && dataSize != 0)
334     {
335           // Call crypto engine update hash function
336           _cpri__UpdateHash(&hashState->state, dataSize, data);
337     }
338     return;
339 }
340 //
341 //
342 //      10.2.4.9     CryptUpdateDigest2B()
343 //
344 //      This function updates a digest (hash or HMAC) with a TPM2B.
345 //      This function can be used for both HMAC and hash functions so the digestState is void so that either
346 //      state type can be passed.
347 //
348 LIB_EXPORT void
CryptUpdateDigest2B(void * digestState,TPM2B * bIn)349 CryptUpdateDigest2B(
350     void                *digestState,       // IN: the digest state
351     TPM2B               *bIn                // IN: 2B containing the data
352     )
353 {
354     // Only compute the digest if a pointer to the 2B is provided.
355     // In CryptUpdateDigest(), if size is zero or buffer is NULL, then no change
356     // to the digest occurs. This function should not provide a buffer if bIn is
357     // not provided.
358     if(bIn != NULL)
359         CryptUpdateDigest(digestState, bIn->size, bIn->buffer);
360     return;
361 }
362 //
363 //
364 //      10.2.4.10 CryptUpdateDigestInt()
365 //
366 //      This function is used to include an integer value to a hash stack. The function marshals the integer into its
367 //      canonical form before calling CryptUpdateHash().
368 //
369 LIB_EXPORT void
CryptUpdateDigestInt(void * state,UINT32 intSize,void * intValue)370 CryptUpdateDigestInt(
371     void                *state,             // IN: the state of hash stack
372     UINT32               intSize,           // IN: the size of 'intValue' in byte
373     void                *intValue           // IN: integer value to be hashed
374     )
375 {
376 #if BIG_ENDIAN_TPM == YES
377    pAssert(    intValue != NULL && (intSize == 1 || intSize == 2
378            || intSize == 4 || intSize == 8));
379    CryptUpdateHash(state, inSize, (BYTE *)intValue);
380 #else
381     BYTE        marshalBuffer[8];
382     // Point to the big end of an little-endian value
383     BYTE        *p = &((BYTE *)intValue)[intSize - 1];
384     // Point to the big end of an big-endian value
385     BYTE        *q = marshalBuffer;
386     pAssert(intValue != NULL);
387     switch (intSize)
388     {
389     case 8:
390         *q++ = *p--;
391         *q++ = *p--;
392         *q++ = *p--;
393         *q++ = *p--;
394     case 4:
395         *q++ = *p--;
396          *q++ = *p--;
397      case 2:
398          *q++ = *p--;
399      case 1:
400          *q = *p;
401          // Call update the hash
402          CryptUpdateDigest(state, intSize, marshalBuffer);
403          break;
404      default:
405          FAIL(0);
406      }
407 #endif
408    return;
409 }
410 //
411 //
412 //      10.2.4.11 CryptCompleteHash()
413 //
414 //      This function completes a hash sequence and returns the digest.
415 //      This function can be called to complete either an HMAC or hash sequence. The state type determines if
416 //      the context type is a hash or HMAC. If an HMAC, then the call is forwarded to CryptCompleteHash().
417 //      If digestSize is smaller than the digest size of hash/HMAC algorithm, the most significant bytes of
418 //      required size will be returned
419 //
420 //      Return Value                     Meaning
421 //
422 //      >=0                              the number of bytes placed in digest
423 //
424 LIB_EXPORT UINT16
CryptCompleteHash(void * state,UINT16 digestSize,BYTE * digest)425 CryptCompleteHash(
426      void               *state,             // IN: the state of hash stack
427      UINT16              digestSize,        // IN: size of digest buffer
428      BYTE               *digest             // OUT: hash digest
429      )
430 {
431      HASH_STATE         *hashState = (HASH_STATE *)state;              // local value
432      // If the session type is HMAC, then could forward this to
433      // the HMAC processing and not cause an error. However, if no
434      // function calls this routine to forward it, then we can't get
435      // test coverage. The decision is to assert if this is called with
436      // the type == HMAC and fix anything that makes the wrong call.
437      pAssert(hashState->type == HASH_STATE_HASH);
438      // Set the state to empty so that it doesn't get used again
439      hashState->type = HASH_STATE_EMPTY;
440      // Call crypto engine complete hash function
441      return     _cpri__CompleteHash(&hashState->state, digestSize, digest);
442 }
443 //
444 //
445 //      10.2.4.12 CryptCompleteHash2B()
446 //
447 //      This function is the same as CypteCompleteHash() but the digest is placed in a TPM2B. This is the most
448 //      common use and this is provided for specification clarity. 'digest.size' should be set to indicate the number
449 //      of bytes to place in the buffer
450 //
451 //
452 //
453 //
454 //      Return Value                      Meaning
455 //
456 //      >=0                               the number of bytes placed in 'digest.buffer'
457 //
458 LIB_EXPORT UINT16
CryptCompleteHash2B(void * state,TPM2B * digest)459 CryptCompleteHash2B(
460      void               *state,               // IN: the state of hash stack
461      TPM2B              *digest               // IN: the size of the buffer Out: requested
462                                               //     number of byte
463      )
464 {
465      UINT16                  retVal = 0;
466      if(digest != NULL)
467          retVal = CryptCompleteHash(state, digest->size, digest->buffer);
468      return retVal;
469 }
470 //
471 //
472 //      10.2.4.13 CryptHashBlock()
473 //
474 //      Hash a block of data and return the results. If the digest is larger than retSize, it is truncated and with the
475 //      least significant octets dropped.
476 //
477 //      Return Value                      Meaning
478 //
479 //      >=0                               the number of bytes placed in ret
480 //
481 LIB_EXPORT UINT16
CryptHashBlock(TPM_ALG_ID algId,UINT16 blockSize,BYTE * block,UINT16 retSize,BYTE * ret)482 CryptHashBlock(
483      TPM_ALG_ID          algId,               //   IN: the hash algorithm to use
484      UINT16              blockSize,           //   IN: size of the data block
485      BYTE               *block,               //   IN: address of the block to hash
486      UINT16              retSize,             //   IN: size of the return buffer
487      BYTE               *ret                  //   OUT: address of the buffer
488      )
489 {
490      TEST_HASH(algId);
491      return _cpri__HashBlock(algId, blockSize, block, retSize, ret);
492 }
493 //
494 //
495 //      10.2.4.14 CryptCompleteHMAC()
496 //
497 //      This function completes a HMAC sequence and returns the digest. If digestSize is smaller than the digest
498 //      size of the HMAC algorithm, the most significant bytes of required size will be returned.
499 //
500 //      Return Value                      Meaning
501 //
502 //      >=0                               the number of bytes placed in digest
503 //
504 LIB_EXPORT UINT16
CryptCompleteHMAC(HMAC_STATE * hmacState,UINT32 digestSize,BYTE * digest)505 CryptCompleteHMAC(
506      HMAC_STATE         *hmacState,           // IN: the state of HMAC stack
507      UINT32              digestSize,          // IN: size of digest buffer
508      BYTE               *digest               // OUT: HMAC digest
509      )
510 {
511      HASH_STATE         *hashState;
512      pAssert(hmacState != NULL);
513      hashState = &hmacState->hashState;
514      pAssert(hashState->type == HASH_STATE_HMAC);
515      hashState->type = HASH_STATE_EMPTY;
516      return _cpri__CompleteHMAC(&hashState->state, &hmacState->hmacKey.b,
517                                 digestSize, digest);
518 }
519 //
520 //
521 //      10.2.4.15 CryptCompleteHMAC2B()
522 //
523 //      This function is the same as CryptCompleteHMAC() but the HMAC result is returned in a TPM2B which is
524 //      the most common use.
525 //
526 //      Return Value                     Meaning
527 //
528 //      >=0                              the number of bytes placed in digest
529 //
530 LIB_EXPORT UINT16
CryptCompleteHMAC2B(HMAC_STATE * hmacState,TPM2B * digest)531 CryptCompleteHMAC2B(
532      HMAC_STATE         *hmacState,           // IN: the state of HMAC stack
533      TPM2B              *digest               // OUT: HMAC
534      )
535 {
536      UINT16               retVal = 0;
537      if(digest != NULL)
538          retVal = CryptCompleteHMAC(hmacState, digest->size, digest->buffer);
539      return retVal;
540 }
541 //
542 //
543 //      10.2.4.16 CryptHashStateImportExport()
544 //
545 //      This function is used to prepare a hash state context for LIB_EXPORT or to import it into the internal
546 //      format. It is used by TPM2_ContextSave() and TPM2_ContextLoad() via SequenceDataImportExport().
547 //      This is just a pass-through function to the crypto library.
548 //
549 void
CryptHashStateImportExport(HASH_STATE * internalFmt,HASH_STATE * externalFmt,IMPORT_EXPORT direction)550 CryptHashStateImportExport(
551      HASH_STATE         *internalFmt,         // IN: state to LIB_EXPORT
552      HASH_STATE         *externalFmt,         // OUT: exported state
553      IMPORT_EXPORT       direction
554      )
555 {
556      _cpri__ImportExportHashState(&internalFmt->state,
557                                   (EXPORT_HASH_STATE *)&externalFmt->state,
558                                   direction);
559 }
560 //
561 //
562 //      10.2.4.17 CryptGetHashDigestSize()
563 //
564 //      This function returns the digest size in bytes for a hash algorithm.
565 //
566 //      Return Value                     Meaning
567 //
568 //      0                                digest size for TPM_ALG_NULL
569 //      >0                               digest size
570 //
571 LIB_EXPORT UINT16
CryptGetHashDigestSize(TPM_ALG_ID hashAlg)572 CryptGetHashDigestSize(
573     TPM_ALG_ID           hashAlg              // IN: hash algorithm
574     )
575 {
576     return _cpri__GetDigestSize(hashAlg);
577 }
578 //
579 //
580 //      10.2.4.18 CryptGetHashBlockSize()
581 //
582 //      Get the digest size in byte of a hash algorithm.
583 //
584 //      Return Value                      Meaning
585 //
586 //      0                                 block size for TPM_ALG_NULL
587 //      >0                                block size
588 //
589 LIB_EXPORT UINT16
CryptGetHashBlockSize(TPM_ALG_ID hash)590 CryptGetHashBlockSize(
591     TPM_ALG_ID           hash                 // IN: hash algorithm to look up
592     )
593 {
594     return _cpri__GetHashBlockSize(hash);
595 }
596 //
597 //
598 //      10.2.4.19 CryptGetHashAlgByIndex()
599 //
600 //      This function is used to iterate through the hashes. TPM_ALG_NULL is returned for all indexes that are
601 //      not valid hashes. If the TPM implements 3 hashes, then an index value of 0 will return the first
602 //      implemented hash and an index value of 2 will return the last implemented hash. All other index values
603 //      will return TPM_ALG_NULL.
604 //
605 //      Return Value                      Meaning
606 //
607 //      TPM_ALG_xxx()                     a hash algorithm
608 //      TPM_ALG_NULL                      this can be used as a stop value
609 //
610 LIB_EXPORT TPM_ALG_ID
CryptGetHashAlgByIndex(UINT32 index)611 CryptGetHashAlgByIndex(
612     UINT32               index                // IN: the index
613     )
614 {
615     return _cpri__GetHashAlgByIndex(index);
616 }
617 //
618 //
619 //      10.2.4.20 CryptSignHMAC()
620 //
621 //      Sign a digest using an HMAC key. This an HMAC of a digest, not an HMAC of a message.
622 //
623 //      Error Returns                     Meaning
624 //
625 static TPM_RC
CryptSignHMAC(OBJECT * signKey,TPMT_SIG_SCHEME * scheme,TPM2B_DIGEST * hashData,TPMT_SIGNATURE * signature)626 CryptSignHMAC(
627     OBJECT                   *signKey,              //   IN: HMAC key sign the hash
628     TPMT_SIG_SCHEME          *scheme,               //   IN: signing scheme
629     TPM2B_DIGEST             *hashData,             //   IN: hash to be signed
630     TPMT_SIGNATURE           *signature             //   OUT: signature
631     )
632 {
633 //
634    HMAC_STATE           hmacState;
635    UINT32               digestSize;
636    // HMAC algorithm self testing code may be inserted here
637    digestSize = CryptStartHMAC2B(scheme->details.hmac.hashAlg,
638                                  &signKey->sensitive.sensitive.bits.b,
639                                  &hmacState);
640    // The hash algorithm must be a valid one.
641    pAssert(digestSize > 0);
642    CryptUpdateDigest2B(&hmacState, &hashData->b);
643    CryptCompleteHMAC(&hmacState, digestSize,
644                      (BYTE *) &signature->signature.hmac.digest);
645    // Set HMAC algorithm
646    signature->signature.hmac.hashAlg = scheme->details.hmac.hashAlg;
647    return TPM_RC_SUCCESS;
648 }
649 //
650 //
651 //      10.2.4.21 CryptHMACVerifySignature()
652 //
653 //      This function will verify a signature signed by a HMAC key.
654 //
655 //      Error Returns                   Meaning
656 //
657 //      TPM_RC_SIGNATURE                if invalid input or signature is not genuine
658 //
659 static TPM_RC
CryptHMACVerifySignature(OBJECT * signKey,TPM2B_DIGEST * hashData,TPMT_SIGNATURE * signature)660 CryptHMACVerifySignature(
661    OBJECT              *signKey,            // IN: HMAC key signed the hash
662    TPM2B_DIGEST        *hashData,           // IN: digest being verified
663    TPMT_SIGNATURE      *signature           // IN: signature to be verified
664    )
665 {
666    HMAC_STATE                hmacState;
667    TPM2B_DIGEST              digestToCompare;
668    digestToCompare.t.size = CryptStartHMAC2B(signature->signature.hmac.hashAlg,
669                             &signKey->sensitive.sensitive.bits.b, &hmacState);
670    CryptUpdateDigest2B(&hmacState, &hashData->b);
671    CryptCompleteHMAC2B(&hmacState, &digestToCompare.b);
672    // Compare digest
673    if(MemoryEqual(digestToCompare.t.buffer,
674                   (BYTE *) &signature->signature.hmac.digest,
675                   digestToCompare.t.size))
676        return TPM_RC_SUCCESS;
677    else
678        return TPM_RC_SIGNATURE;
679 }
680 //
681 //
682 //      10.2.4.22 CryptGenerateKeyedHash()
683 //
684 //      This function creates a keyedHash object.
685 //
686 //
687 //
688 //      Error Returns                     Meaning
689 //
690 //      TPM_RC_SIZE                       sensitive data size is larger than allowed for the scheme
691 //
692 static TPM_RC
CryptGenerateKeyedHash(TPMT_PUBLIC * publicArea,TPMS_SENSITIVE_CREATE * sensitiveCreate,TPMT_SENSITIVE * sensitive,TPM_ALG_ID kdfHashAlg,TPM2B_SEED * seed,TPM2B_NAME * name)693 CryptGenerateKeyedHash(
694    TPMT_PUBLIC                    *publicArea,                //   IN/OUT: the public area template
695                                                               //       for the new key.
696    TPMS_SENSITIVE_CREATE          *sensitiveCreate,           //   IN: sensitive creation data
697    TPMT_SENSITIVE                 *sensitive,                 //   OUT: sensitive area
698    TPM_ALG_ID                      kdfHashAlg,                //   IN: algorithm for the KDF
699    TPM2B_SEED                     *seed,                      //   IN: the seed
700    TPM2B_NAME                     *name                       //   IN: name of the object
701    )
702 {
703    TPMT_KEYEDHASH_SCHEME          *scheme;
704    TPM_ALG_ID                      hashAlg;
705    UINT16                          hashBlockSize;
706    scheme = &publicArea->parameters.keyedHashDetail.scheme;
707    pAssert(publicArea->type == TPM_ALG_KEYEDHASH);
708    // Pick the limiting hash algorithm
709    if(scheme->scheme == TPM_ALG_NULL)
710        hashAlg = publicArea->nameAlg;
711    else if(scheme->scheme == TPM_ALG_XOR)
712        hashAlg = scheme->details.xor_.hashAlg;
713    else
714        hashAlg = scheme->details.hmac.hashAlg;
715    hashBlockSize = CryptGetHashBlockSize(hashAlg);
716    // if this is a signing or a decryption key, then then the limit
717    // for the data size is the block size of the hash. This limit
718    // is set because larger values have lower entropy because of the
719    // HMAC function.
720    if(publicArea->objectAttributes.sensitiveDataOrigin == CLEAR)
721    {
722        if(    (    publicArea->objectAttributes.decrypt
723                 || publicArea->objectAttributes.sign)
724            && sensitiveCreate->data.t.size > hashBlockSize)
725            return TPM_RC_SIZE;
726    }
727    else
728    {
729        // If the TPM is going to generate the data, then set the size to be the
730        // size of the digest of the algorithm
731        sensitive->sensitive.sym.t.size = CryptGetHashDigestSize(hashAlg);
732        sensitiveCreate->data.t.size = 0;
733    }
734    // Fill in the sensitive area
735    CryptGenerateNewSymmetric(sensitiveCreate, sensitive, kdfHashAlg,
736                              seed, name);
737    // Create unique area in public
738    CryptComputeSymmetricUnique(publicArea->nameAlg,
739                                sensitive, &publicArea->unique.sym);
740    return TPM_RC_SUCCESS;
741 }
742 //
743 //
744 //      10.2.4.25 KDFa()
745 //
746 //      This function is used by functions outside of CryptUtil() to access _cpri_KDFa().
747 //
748 void
KDFa(TPM_ALG_ID hash,TPM2B * key,const char * label,TPM2B * contextU,TPM2B * contextV,UINT32 sizeInBits,BYTE * keyStream,UINT32 * counterInOut)749 KDFa(
750    TPM_ALG_ID           hash,              //   IN: hash algorithm used in HMAC
751    TPM2B               *key,               //   IN: HMAC key
752    const char          *label,             //   IN: a null-terminated label for KDF
753    TPM2B               *contextU,          //   IN: context U
754    TPM2B               *contextV,          //   IN: context V
755    UINT32               sizeInBits,        //   IN: size of generated key in bit
756    BYTE                *keyStream,         //   OUT: key buffer
757    UINT32              *counterInOut       //   IN/OUT: caller may provide the iteration
758                                            //       counter for incremental operations to
759                                            //       avoid large intermediate buffers.
760    )
761 {
762    CryptKDFa(hash, key, label, contextU, contextV, sizeInBits,
763              keyStream, counterInOut);
764 }
765 #endif //TPM_ALG_KEYEDHASH     //% 1
766 //
767 //
768 //      10.2.5     RSA Functions
769 //
770 //      10.2.5.1    BuildRSA()
771 //
772 //      Function to set the cryptographic elements of an RSA key into a structure to simplify the interface to
773 //      _cpri__ RSA function. This can/should be eliminated by building this structure into the object structure.
774 //
775 #ifdef TPM_ALG_RSA                 //% 2
776 static void
BuildRSA(OBJECT * rsaKey,RSA_KEY * key)777 BuildRSA(
778    OBJECT              *rsaKey,
779    RSA_KEY             *key
780    )
781 {
782    key->exponent = rsaKey->publicArea.parameters.rsaDetail.exponent;
783    if(key->exponent == 0)
784        key->exponent = RSA_DEFAULT_PUBLIC_EXPONENT;
785    key->publicKey = &rsaKey->publicArea.unique.rsa.b;
786    if(rsaKey->attributes.publicOnly || rsaKey->privateExponent.t.size == 0)
787        key->privateKey = NULL;
788    else
789        key->privateKey = &(rsaKey->privateExponent.b);
790 }
791 //
792 //
793 //      10.2.5.2    CryptTestKeyRSA()
794 //
795 //      This function provides the interface to _cpri__TestKeyRSA(). If both p and q are provided, n will be set to
796 //      p*q.
797 //      If only p is provided, q is computed by q = n/p. If n mod p != 0, TPM_RC_BINDING is returned.
798 //      The key is validated by checking that a d can be found such that e d mod ((p-1)*(q-1)) = 1. If d is found
799 //      that satisfies this requirement, it will be placed in d.
800 //      Page 286                                     TCG Published                                   Family "2.0"
801 //      October 30, 2014                     Copyright © TCG 2006-2014                  Level 00 Revision 01.16
802 //      Part 4: Supporting Routines                                                    Trusted Platform Module Library
803 //
804 //
805 //      Error Returns                   Meaning
806 //
807 //      TPM_RC_BINDING                  the public and private portions of the key are not matched
808 //
809 TPM_RC
CryptTestKeyRSA(TPM2B * d,UINT32 e,TPM2B * n,TPM2B * p,TPM2B * q)810 CryptTestKeyRSA(
811    TPM2B              *d,                   //   OUT: receives the private exponent
812    UINT32              e,                   //   IN: public exponent
813    TPM2B              *n,                   //   IN/OUT: public modulu
814    TPM2B              *p,                   //   IN: a first prime
815    TPM2B              *q                    //   IN: an optional second prime
816    )
817 {
818    CRYPT_RESULT       retVal;
819    TEST(ALG_NULL_VALUE);
820    pAssert(d != NULL && n != NULL && p != NULL);
821    // Set the exponent
822    if(e == 0)
823        e = RSA_DEFAULT_PUBLIC_EXPONENT;
824    // CRYPT_PARAMETER
825    retVal =_cpri__TestKeyRSA(d, e, n, p, q);
826    if(retVal == CRYPT_SUCCESS)
827        return TPM_RC_SUCCESS;
828    else
829        return TPM_RC_BINDING; // convert CRYPT_PARAMETER
830 }
831 //
832 //
833 //      10.2.5.3   CryptGenerateKeyRSA()
834 //
835 //      This function is called to generate an RSA key from a provided seed. It calls _cpri__GenerateKeyRSA()
836 //      to perform the computations. The implementation is vendor specific.
837 //
838 //      Error Returns                   Meaning
839 //
840 //      TPM_RC_RANGE                    the exponent value is not supported
841 //      TPM_RC_CANCELLED                key generation has been canceled
842 //      TPM_RC_VALUE                    exponent is not prime or is less than 3; or could not find a prime using
843 //                                      the provided parameters
844 //
845 static TPM_RC
CryptGenerateKeyRSA(TPMT_PUBLIC * publicArea,TPMT_SENSITIVE * sensitive,TPM_ALG_ID hashAlg,TPM2B_SEED * seed,TPM2B_NAME * name,UINT32 * counter)846 CryptGenerateKeyRSA(
847    TPMT_PUBLIC               *publicArea,              //   IN/OUT: The public area template for
848                                                        //        the new key. The public key
849                                                        //        area will be replaced by the
850                                                        //        product of two primes found by
851                                                        //        this function
852    TPMT_SENSITIVE            *sensitive,               //   OUT: the sensitive area will be
853                                                        //        updated to contain the first
854                                                        //        prime and the symmetric
855                                                        //        encryption key
856    TPM_ALG_ID                 hashAlg,                 //   IN: the hash algorithm for the KDF
857    TPM2B_SEED                *seed,                    //   IN: Seed for the creation
858    TPM2B_NAME                *name,                    //   IN: Object name
859    UINT32                    *counter                  //   OUT: last iteration of the counter
860 )
861 {
862    CRYPT_RESULT       retVal;
863    UINT32             exponent = publicArea->parameters.rsaDetail.exponent;
864    TEST_HASH(hashAlg);
865    TEST(ALG_NULL_VALUE);
866    // In this implementation, only the default exponent is allowed
867    if(exponent != 0 && exponent != RSA_DEFAULT_PUBLIC_EXPONENT)
868        return TPM_RC_RANGE;
869    exponent = RSA_DEFAULT_PUBLIC_EXPONENT;
870    *counter = 0;
871    // _cpri_GenerateKeyRSA can return CRYPT_CANCEL or CRYPT_FAIL
872    retVal = _cpri__GenerateKeyRSA(&publicArea->unique.rsa.b,
873                                   &sensitive->sensitive.rsa.b,
874                                   publicArea->parameters.rsaDetail.keyBits,
875                                   exponent,
876                                   hashAlg,
877                                   &seed->b,
878                                   "RSA key by vendor",
879                                   &name->b,
880                                   counter);
881    // CRYPT_CANCEL -> TPM_RC_CANCELLED; CRYPT_FAIL -> TPM_RC_VALUE
882    return TranslateCryptErrors(retVal);
883 }
884 //
885 //
886 //      10.2.5.4    CryptLoadPrivateRSA()
887 //
888 //      This function is called to generate the private exponent of an RSA key. It uses CryptTestKeyRSA().
889 //
890 //      Error Returns                     Meaning
891 //
892 //      TPM_RC_BINDING                    public and private parts of rsaKey are not matched
893 //
894 TPM_RC
CryptLoadPrivateRSA(OBJECT * rsaKey)895 CryptLoadPrivateRSA(
896    OBJECT              *rsaKey               // IN: the RSA key object
897    )
898 {
899    TPM_RC               result;
900    TPMT_PUBLIC         *publicArea = &rsaKey->publicArea;
901    TPMT_SENSITIVE      *sensitive = &rsaKey->sensitive;
902    // Load key by computing the private exponent
903    // TPM_RC_BINDING
904    result = CryptTestKeyRSA(&(rsaKey->privateExponent.b),
905                             publicArea->parameters.rsaDetail.exponent,
906                             &(publicArea->unique.rsa.b),
907                             &(sensitive->sensitive.rsa.b),
908                             NULL);
909    if(result == TPM_RC_SUCCESS)
910        rsaKey->attributes.privateExp = SET;
911    return result;
912 }
913 //
914 //
915 //      10.2.5.5    CryptSelectRSAScheme()
916 //
917 //      This function is used by TPM2_RSA_Decrypt() and TPM2_RSA_Encrypt(). It sets up the rules to select a
918 //      scheme between input and object default. This function assume the RSA object is loaded. If a default
919 //      scheme is defined in object, the default scheme should be chosen, otherwise, the input scheme should
920 //      be chosen. In the case that both the object and scheme are not TPM_ALG_NULL, then if the schemes
921 //
922 //
923 //      are the same, the input scheme will be chosen. if the scheme are not compatible, a NULL pointer will be
924 //      returned.
925 //      The return pointer may point to a TPM_ALG_NULL scheme.
926 //
927 TPMT_RSA_DECRYPT*
CryptSelectRSAScheme(TPMI_DH_OBJECT rsaHandle,TPMT_RSA_DECRYPT * scheme)928 CryptSelectRSAScheme(
929    TPMI_DH_OBJECT             rsaHandle,         // IN: handle of sign key
930    TPMT_RSA_DECRYPT          *scheme             // IN: a sign or decrypt scheme
931    )
932 {
933    OBJECT                    *rsaObject;
934    TPMT_ASYM_SCHEME          *keyScheme;
935    TPMT_RSA_DECRYPT          *retVal = NULL;
936    // Get sign object pointer
937    rsaObject = ObjectGet(rsaHandle);
938    keyScheme = &rsaObject->publicArea.parameters.asymDetail.scheme;
939    // if the default scheme of the object is TPM_ALG_NULL, then select the
940    // input scheme
941    if(keyScheme->scheme == TPM_ALG_NULL)
942    {
943        retVal = scheme;
944    }
945    // if the object scheme is not TPM_ALG_NULL and the input scheme is
946    // TPM_ALG_NULL, then select the default scheme of the object.
947    else if(scheme->scheme == TPM_ALG_NULL)
948    {
949        // if input scheme is NULL
950        retVal = (TPMT_RSA_DECRYPT *)keyScheme;
951    }
952    // get here if both the object scheme and the input scheme are
953    // not TPM_ALG_NULL. Need to insure that they are the same.
954    // The hash algorithm match has to be verified for OAEP.
955    // IMPLEMENTATION NOTE: This could cause problems if future versions have
956    // schemes that have more values than just a hash algorithm. A new function
957    // (IsSchemeSame()) might be needed then.
958    else if (keyScheme->scheme == scheme->scheme
959             && ((keyScheme->scheme != TPM_ALG_OAEP) ||
960                 (keyScheme->details.anySig.hashAlg == scheme->details.anySig.hashAlg)))
961    {
962        retVal = scheme;
963    }
964    // two different, incompatible schemes specified will return NULL
965    return retVal;
966 }
967 //
968 //
969 //      10.2.5.6    CryptDecryptRSA()
970 //
971 //      This function is the interface to _cpri__DecryptRSA(). It handles the return codes from that function and
972 //      converts them from CRYPT_RESULT to TPM_RC values. The rsaKey parameter must reference an RSA
973 //      decryption key
974 //
975 //      Error Returns                   Meaning
976 //
977 //      TPM_RC_BINDING                  Public and private parts of the key are not cryptographically bound.
978 //      TPM_RC_SIZE                     Size of data to decrypt is not the same as the key size.
979 //      TPM_RC_VALUE                    Numeric value of the encrypted data is greater than the public
980 //                                      exponent, or output buffer is too small for the decrypted message.
981 //
982 TPM_RC
CryptDecryptRSA(UINT16 * dataOutSize,BYTE * dataOut,OBJECT * rsaKey,TPMT_RSA_DECRYPT * scheme,UINT16 cipherInSize,BYTE * cipherIn,const char * label)983 CryptDecryptRSA(
984    UINT16                    *dataOutSize,       // OUT: size of plain text in byte
985    BYTE                    *dataOut,        //   OUT: plain text
986    OBJECT                  *rsaKey,         //   IN: internal RSA key
987    TPMT_RSA_DECRYPT        *scheme,         //   IN: selects the padding scheme
988    UINT16                   cipherInSize,   //   IN: size of cipher text in byte
989    BYTE                    *cipherIn,       //   IN: cipher text
990    const char              *label           //   IN: a label, when needed
991    )
992 {
993    RSA_KEY            key;
994    CRYPT_RESULT       retVal = CRYPT_SUCCESS;
995    UINT32             dSize;                   //   Place to put temporary value for the
996                                                //   returned data size
997    TPMI_ALG_HASH      hashAlg = TPM_ALG_NULL; //    hash algorithm in the selected
998                                                //   padding scheme
999    TPM_RC             result = TPM_RC_SUCCESS;
1000    // pointer checks
1001    pAssert(    (dataOutSize != NULL) && (dataOut != NULL)
1002            && (rsaKey != NULL) && (cipherIn != NULL));
1003    // The public type is a RSA decrypt key
1004    pAssert(    (rsaKey->publicArea.type == TPM_ALG_RSA
1005            && rsaKey->publicArea.objectAttributes.decrypt == SET));
1006    // Must have the private portion loaded. This check is made before this
1007    // function is called.
1008    pAssert(rsaKey->attributes.publicOnly == CLEAR);
1009    // decryption requires that the private modulus be present
1010    if(rsaKey->attributes.privateExp == CLEAR)
1011    {
1012         // Load key by computing the private exponent
1013         // CryptLoadPrivateRSA may return TPM_RC_BINDING
1014         result = CryptLoadPrivateRSA(rsaKey);
1015    }
1016    // the input buffer must be the size of the key
1017    if(result == TPM_RC_SUCCESS)
1018    {
1019        if(cipherInSize != rsaKey->publicArea.unique.rsa.t.size)
1020             result = TPM_RC_SIZE;
1021        else
1022        {
1023             BuildRSA(rsaKey, &key);
1024              // Initialize the dOutSize parameter
1025              dSize = *dataOutSize;
1026              // For OAEP scheme, initialize the hash algorithm for padding
1027              if(scheme->scheme == TPM_ALG_OAEP)
1028              {
1029                  hashAlg = scheme->details.oaep.hashAlg;
1030                  TEST_HASH(hashAlg);
1031              }
1032              // See if the padding mode needs to be tested
1033              TEST(scheme->scheme);
1034              // _cpri__DecryptRSA may return CRYPT_PARAMETER CRYPT_FAIL CRYPT_SCHEME
1035              retVal = _cpri__DecryptRSA(&dSize, dataOut, &key, scheme->scheme,
1036                                         cipherInSize, cipherIn, hashAlg, label);
1037              // Scheme must have been validated when the key was loaded/imported
1038              pAssert(retVal != CRYPT_SCHEME);
1039              // Set the return size
1040                pAssert(dSize <= UINT16_MAX);
1041                *dataOutSize = (UINT16)dSize;
1042                // CRYPT_PARAMETER -> TPM_RC_VALUE, CRYPT_FAIL -> TPM_RC_VALUE
1043                result = TranslateCryptErrors(retVal);
1044        }
1045    }
1046    return result;
1047 }
1048 //
1049 //
1050 //      10.2.5.7   CryptEncryptRSA()
1051 //
1052 //      This function provides the interface to _cpri__EncryptRSA(). The object referenced by rsaKey is required
1053 //      to be an RSA decryption key.
1054 //
1055 //      Error Returns                   Meaning
1056 //
1057 //      TPM_RC_SCHEME                   scheme is not supported
1058 //      TPM_RC_VALUE                    numeric value of dataIn is greater than the key modulus
1059 //
1060 TPM_RC
CryptEncryptRSA(UINT16 * cipherOutSize,BYTE * cipherOut,OBJECT * rsaKey,TPMT_RSA_DECRYPT * scheme,UINT16 dataInSize,BYTE * dataIn,const char * label)1061 CryptEncryptRSA(
1062    UINT16                    *cipherOutSize,    //   OUT: size of cipher text in byte
1063    BYTE                      *cipherOut,        //   OUT: cipher text
1064    OBJECT                    *rsaKey,           //   IN: internal RSA key
1065    TPMT_RSA_DECRYPT          *scheme,           //   IN: selects the padding scheme
1066    UINT16                     dataInSize,       //   IN: size of plain text in byte
1067    BYTE                      *dataIn,           //   IN: plain text
1068    const char                *label             //   IN: an optional label
1069    )
1070 {
1071    RSA_KEY                    key;
1072    CRYPT_RESULT               retVal;
1073    UINT32                     cOutSize;                         // Conversion variable
1074    TPMI_ALG_HASH              hashAlg = TPM_ALG_NULL;           // hash algorithm in selected
1075                                                                 // padding scheme
1076    // must have a pointer to a key and some data to encrypt
1077    pAssert(rsaKey != NULL && dataIn != NULL);
1078    // The public type is a RSA decryption key
1079    pAssert(   rsaKey->publicArea.type == TPM_ALG_RSA
1080            && rsaKey->publicArea.objectAttributes.decrypt == SET);
1081    // If the cipher buffer must be provided and it must be large enough
1082    // for the result
1083    pAssert(   cipherOut != NULL
1084            && cipherOutSize != NULL
1085            && *cipherOutSize >= rsaKey->publicArea.unique.rsa.t.size);
1086    // Only need the public key and exponent for encryption
1087    BuildRSA(rsaKey, &key);
1088    // Copy the size to the conversion buffer
1089    cOutSize = *cipherOutSize;
1090    // For OAEP scheme, initialize the hash algorithm for padding
1091    if(scheme->scheme == TPM_ALG_OAEP)
1092    {
1093        hashAlg = scheme->details.oaep.hashAlg;
1094        TEST_HASH(hashAlg);
1095    }
1096    // This is a public key operation and does not require that the private key
1097    // be loaded. To verify this, need to do the full algorithm
1098    TEST(scheme->scheme);
1099    // Encrypt the data with the public exponent
1100    // _cpri__EncryptRSA may return CRYPT_PARAMETER or CRYPT_SCHEME
1101    retVal = _cpri__EncryptRSA(&cOutSize,cipherOut, &key, scheme->scheme,
1102                               dataInSize, dataIn, hashAlg, label);
1103    pAssert (cOutSize <= UINT16_MAX);
1104    *cipherOutSize = (UINT16)cOutSize;
1105    // CRYPT_PARAMETER -> TPM_RC_VALUE, CRYPT_SCHEME -> TPM_RC_SCHEME
1106    return TranslateCryptErrors(retVal);
1107 }
1108 //
1109 //
1110 //      10.2.5.8     CryptSignRSA()
1111 //
1112 //      This function is used to sign a digest with an RSA signing key.
1113 //
1114 //      Error Returns                     Meaning
1115 //
1116 //      TPM_RC_BINDING                    public and private part of signKey are not properly bound
1117 //      TPM_RC_SCHEME                     scheme is not supported
1118 //      TPM_RC_VALUE                      hashData is larger than the modulus of signKey, or the size of
1119 //                                        hashData does not match hash algorithm in scheme
1120 //
1121 static TPM_RC
CryptSignRSA(OBJECT * signKey,TPMT_SIG_SCHEME * scheme,TPM2B_DIGEST * hashData,TPMT_SIGNATURE * sig)1122 CryptSignRSA(
1123    OBJECT                   *signKey,              //   IN: RSA key signs the hash
1124    TPMT_SIG_SCHEME          *scheme,               //   IN: sign scheme
1125    TPM2B_DIGEST             *hashData,             //   IN: hash to be signed
1126    TPMT_SIGNATURE           *sig                   //   OUT: signature
1127    )
1128 {
1129    UINT32                     signSize;
1130    RSA_KEY                    key;
1131    CRYPT_RESULT               retVal;
1132    TPM_RC                     result = TPM_RC_SUCCESS;
1133    pAssert(       (signKey != NULL) && (scheme != NULL)
1134                   && (hashData != NULL) && (sig != NULL));
1135    // assume that the key has private part loaded and that it is a signing key.
1136    pAssert(   (signKey->attributes.publicOnly == CLEAR)
1137            && (signKey->publicArea.objectAttributes.sign == SET));
1138    // check if the private exponent has been computed
1139    if(signKey->attributes.privateExp == CLEAR)
1140        // May return TPM_RC_BINDING
1141        result = CryptLoadPrivateRSA(signKey);
1142    if(result == TPM_RC_SUCCESS)
1143    {
1144        BuildRSA(signKey, &key);
1145           // Make sure that the hash is tested
1146           TEST_HASH(sig->signature.any.hashAlg);
1147           // Run a test of the RSA sign
1148           TEST(scheme->scheme);
1149           // _crypi__SignRSA can return CRYPT_SCHEME and CRYPT_PARAMETER
1150           retVal = _cpri__SignRSA(&signSize,
1151                                   sig->signature.rsassa.sig.t.buffer,
1152                                   &key,
1153                                   sig->sigAlg,
1154                                   sig->signature.any.hashAlg,
1155                                   hashData->t.size, hashData->t.buffer);
1156           pAssert(signSize <= UINT16_MAX);
1157           sig->signature.rsassa.sig.t.size = (UINT16)signSize;
1158           // CRYPT_SCHEME -> TPM_RC_SCHEME; CRYPT_PARAMTER -> TPM_RC_VALUE
1159           result = TranslateCryptErrors(retVal);
1160    }
1161    return result;
1162 }
1163 //
1164 //
1165 //      10.2.5.9    CryptRSAVerifySignature()
1166 //
1167 //      This function is used to verify signature signed by a RSA key.
1168 //
1169 //      Error Returns                   Meaning
1170 //
1171 //      TPM_RC_SIGNATURE                if signature is not genuine
1172 //      TPM_RC_SCHEME                   signature scheme not supported
1173 //
1174 static TPM_RC
CryptRSAVerifySignature(OBJECT * signKey,TPM2B_DIGEST * digestData,TPMT_SIGNATURE * sig)1175 CryptRSAVerifySignature(
1176    OBJECT              *signKey,            // IN: RSA key signed the hash
1177    TPM2B_DIGEST        *digestData,         // IN: digest being signed
1178    TPMT_SIGNATURE      *sig                 // IN: signature to be verified
1179    )
1180 {
1181    RSA_KEY                   key;
1182    CRYPT_RESULT              retVal;
1183    TPM_RC                    result;
1184    // Validate parameter assumptions
1185    pAssert((signKey != NULL) && (digestData != NULL) && (sig != NULL));
1186    TEST_HASH(sig->signature.any.hashAlg);
1187    TEST(sig->sigAlg);
1188    // This is a public-key-only operation
1189    BuildRSA(signKey, &key);
1190    // Call crypto engine to verify signature
1191    // _cpri_ValidateSignaturRSA may return CRYPT_FAIL or CRYPT_SCHEME
1192    retVal = _cpri__ValidateSignatureRSA(&key,
1193                                         sig->sigAlg,
1194                                         sig->signature.any.hashAlg,
1195                                         digestData->t.size,
1196                                         digestData->t.buffer,
1197                                         sig->signature.rsassa.sig.t.size,
1198                                         sig->signature.rsassa.sig.t.buffer,
1199                                         0);
1200    // _cpri__ValidateSignatureRSA can return CRYPT_SUCCESS, CRYPT_FAIL, or
1201    // CRYPT_SCHEME. Translate CRYPT_FAIL to TPM_RC_SIGNATURE
1202    if(retVal == CRYPT_FAIL)
1203        result = TPM_RC_SIGNATURE;
1204    else
1205        // CRYPT_SCHEME -> TPM_RC_SCHEME
1206        result = TranslateCryptErrors(retVal);
1207    return result;
1208 }
1209 //
1210 #endif //TPM_ALG_RSA             //% 2
1211 //
1212 //
1213 //      10.2.6     ECC Functions
1214 //
1215 //      10.2.6.1    CryptEccGetCurveDataPointer()
1216 //
1217 //      This function returns a pointer to an ECC_CURVE_VALUES structure that contains the parameters for
1218 //      the key size and schemes for a given curve.
1219 //
1220 #ifdef TPM_ALG_ECC //% 3
1221 static const ECC_CURVE    *
CryptEccGetCurveDataPointer(TPM_ECC_CURVE curveID)1222 CryptEccGetCurveDataPointer(
1223     TPM_ECC_CURVE        curveID             // IN: id of the curve
1224     )
1225 {
1226     return _cpri__EccGetParametersByCurveId(curveID);
1227 }
1228 //
1229 //
1230 //      10.2.6.2    CryptEccGetKeySizeInBits()
1231 //
1232 //      This function returns the size in bits of the key associated with a curve.
1233 //
1234 UINT16
CryptEccGetKeySizeInBits(TPM_ECC_CURVE curveID)1235 CryptEccGetKeySizeInBits(
1236     TPM_ECC_CURVE        curveID             // IN: id of the curve
1237     )
1238 {
1239     const ECC_CURVE               *curve = CryptEccGetCurveDataPointer(curveID);
1240     UINT16                         keySizeInBits = 0;
1241     if(curve != NULL)
1242         keySizeInBits = curve->keySizeBits;
1243     return keySizeInBits;
1244 }
1245 //
1246 //
1247 //      10.2.6.4    CryptEccGetParameter()
1248 //
1249 //      This function returns a pointer to an ECC curve parameter. The parameter is selected by a single
1250 //      character designator from the set of {pnabxyh}.
1251 //
1252 LIB_EXPORT const TPM2B *
CryptEccGetParameter(char p,TPM_ECC_CURVE curveId)1253 CryptEccGetParameter(
1254     char                 p,                  // IN: the parameter selector
1255     TPM_ECC_CURVE        curveId             // IN: the curve id
1256     )
1257 {
1258     const ECC_CURVE          *curve = _cpri__EccGetParametersByCurveId(curveId);
1259     const TPM2B              *parameter = NULL;
1260     if(curve != NULL)
1261     {
1262           switch (p)
1263           {
1264           case 'p':
1265               parameter    = curve->curveData->p;
1266               break;
1267           case 'n':
1268               parameter    =   curve->curveData->n;
1269               break;
1270           case 'a':
1271               parameter    =   curve->curveData->a;
1272               break;
1273           case 'b':
1274               parameter    =   curve->curveData->b;
1275               break;
1276           case 'x':
1277               parameter    =   curve->curveData->x;
1278               break;
1279           case 'y':
1280               parameter    =   curve->curveData->y;
1281               break;
1282           case 'h':
1283               parameter    =   curve->curveData->h;
1284               break;
1285           default:
1286               break;
1287           }
1288     }
1289     return parameter;
1290 }
1291 //
1292 //
1293 //       10.2.6.5    CryptGetCurveSignScheme()
1294 //
1295 //       This function will return a pointer to the scheme of the curve.
1296 //
1297 const TPMT_ECC_SCHEME *
CryptGetCurveSignScheme(TPM_ECC_CURVE curveId)1298 CryptGetCurveSignScheme(
1299     TPM_ECC_CURVE         curveId            // IN: The curve selector
1300     )
1301 {
1302     const ECC_CURVE               *curve = _cpri__EccGetParametersByCurveId(curveId);
1303     const TPMT_ECC_SCHEME         *scheme = NULL;
1304     if(curve != NULL)
1305         scheme = &(curve->sign);
1306     return scheme;
1307 }
1308 //
1309 //
1310 //       10.2.6.6    CryptEccIsPointOnCurve()
1311 //
1312 //       This function will validate that an ECC point is on the curve of given curveID.
1313 //
1314 //       Return Value                     Meaning
1315 //
1316 //       TRUE                             if the point is on curve
1317 //       FALSE                            if the point is not on curve
1318 //
1319 BOOL
CryptEccIsPointOnCurve(TPM_ECC_CURVE curveID,TPMS_ECC_POINT * Q)1320 CryptEccIsPointOnCurve(
1321     TPM_ECC_CURVE        curveID,            // IN: ECC curve ID
1322     TPMS_ECC_POINT      *Q                   // IN: ECC point
1323     )
1324 {
1325    // Make sure that point multiply is working
1326    TEST(TPM_ALG_ECC);
1327    // Check point on curve logic by seeing if the test key is on the curve
1328    // Call crypto engine function to check if a ECC public point is on the
1329    // given curve
1330    if(_cpri__EccIsPointOnCurve(curveID, Q))
1331        return TRUE;
1332    else
1333        return FALSE;
1334 }
1335 //
1336 //
1337 //       10.2.6.7    CryptNewEccKey()
1338 //
1339 //       This function creates a random ECC key that is not derived from other parameters as is a Primary Key.
1340 //
1341 TPM_RC
CryptNewEccKey(TPM_ECC_CURVE curveID,TPMS_ECC_POINT * publicPoint,TPM2B_ECC_PARAMETER * sensitive)1342 CryptNewEccKey(
1343    TPM_ECC_CURVE                    curveID,               // IN: ECC curve
1344    TPMS_ECC_POINT                  *publicPoint,           // OUT: public point
1345    TPM2B_ECC_PARAMETER             *sensitive              // OUT: private area
1346    )
1347 {
1348    TPM_RC               result = TPM_RC_SUCCESS;
1349    // _cpri__GetEphemeralECC may return CRYPT_PARAMETER
1350    if(_cpri__GetEphemeralEcc(publicPoint, sensitive, curveID) != CRYPT_SUCCESS)
1351        // Something is wrong with the key.
1352        result = TPM_RC_KEY;
1353    return result;
1354 }
1355 //
1356 //
1357 //       10.2.6.8    CryptEccPointMultiply()
1358 //
1359 //       This function is used to perform a point multiply R = [d]Q. If Q is not provided, the multiplication is
1360 //       performed using the generator point of the curve.
1361 //
1362 //       Error Returns                     Meaning
1363 //
1364 //       TPM_RC_ECC_POINT                  invalid optional ECC point pIn
1365 //       TPM_RC_NO_RESULT                  multiplication resulted in a point at infinity
1366 //       TPM_RC_CANCELED                   if a self-test was done, it might have been aborted
1367 //
1368 TPM_RC
CryptEccPointMultiply(TPMS_ECC_POINT * pOut,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dIn,TPMS_ECC_POINT * pIn)1369 CryptEccPointMultiply(
1370    TPMS_ECC_POINT                  *pOut,                  //   OUT: output point
1371    TPM_ECC_CURVE                    curveId,               //   IN: curve selector
1372    TPM2B_ECC_PARAMETER             *dIn,                   //   IN: public scalar
1373    TPMS_ECC_POINT                  *pIn                    //   IN: optional point
1374    )
1375 {
1376    TPM2B_ECC_PARAMETER             *n = NULL;
1377    CRYPT_RESULT                    retVal;
1378    pAssert(pOut != NULL && dIn != NULL);
1379    if(pIn != NULL)
1380    {
1381        n = dIn;
1382        dIn = NULL;
1383    }
1384    // Do a test of point multiply
1385    TEST(TPM_ALG_ECC);
1386    // _cpri__EccPointMultiply may return CRYPT_POINT or CRYPT_NO_RESULT
1387    retVal = _cpri__EccPointMultiply(pOut, curveId, dIn, pIn, n);
1388    // CRYPT_POINT->TPM_RC_ECC_POINT and CRYPT_NO_RESULT->TPM_RC_NO_RESULT
1389    return TranslateCryptErrors(retVal);
1390 }
1391 //
1392 //
1393 //       10.2.6.9    CryptGenerateKeyECC()
1394 //
1395 //       This function generates an ECC key from a seed value.
1396 //       The method here may not work for objects that have an order (G) that with a different size than a private
1397 //       key.
1398 //
1399 //       Error Returns                   Meaning
1400 //
1401 //       TPM_RC_VALUE                    hash algorithm is not supported
1402 //
1403 static TPM_RC
CryptGenerateKeyECC(TPMT_PUBLIC * publicArea,TPMT_SENSITIVE * sensitive,TPM_ALG_ID hashAlg,TPM2B_SEED * seed,TPM2B_NAME * name,UINT32 * counter)1404 CryptGenerateKeyECC(
1405    TPMT_PUBLIC         *publicArea,        //   IN/OUT: The public area template for the new
1406                                            //       key.
1407    TPMT_SENSITIVE      *sensitive,         //   IN/OUT: the sensitive area
1408    TPM_ALG_ID           hashAlg,           //   IN: algorithm for the KDF
1409    TPM2B_SEED          *seed,              //   IN: the seed value
1410    TPM2B_NAME          *name,              //   IN: the name of the object
1411    UINT32              *counter            //   OUT: the iteration counter
1412    )
1413 {
1414    CRYPT_RESULT              retVal;
1415    TEST_HASH(hashAlg);
1416    TEST(ALG_ECDSA_VALUE); // ECDSA is used to verify each key
1417    // The iteration counter has no meaning for ECC key generation. The parameter
1418    // will be overloaded for those implementations that have a requirement for
1419    // doing pair-wise consistency checks on signing keys. If the counter parameter
1420    // is 0 or NULL, then no consistency check is done. If it is other than 0, then
1421    // a consistency check is run. This modification allow this code to work with
1422    // the existing versions of the CrytpoEngine and with FIPS-compliant versions
1423    // as well.
1424    *counter = (UINT32)(publicArea->objectAttributes.sign == SET);
1425    // _cpri__GenerateKeyEcc only has one error return (CRYPT_PARAMETER) which means
1426    // that the hash algorithm is not supported. This should not be possible
1427    retVal = _cpri__GenerateKeyEcc(&publicArea->unique.ecc,
1428                                   &sensitive->sensitive.ecc,
1429                                   publicArea->parameters.eccDetail.curveID,
1430                                   hashAlg, &seed->b, "ECC key by vendor",
1431                                   &name->b, counter);
1432    // This will only be useful if _cpri__GenerateKeyEcc return CRYPT_CANCEL
1433    return TranslateCryptErrors(retVal);
1434 }
1435 //
1436 //
1437 //       10.2.6.10 CryptSignECC()
1438 //
1439 //       This function is used for ECC signing operations. If the signing scheme is a split scheme, and the signing
1440 //       operation is successful, the commit value is retired.
1441 //
1442 //
1443 //       Error Returns                     Meaning
1444 //
1445 //       TPM_RC_SCHEME                     unsupported scheme
1446 //       TPM_RC_VALUE                      invalid commit status (in case of a split scheme) or failed to generate
1447 //                                         r value.
1448 //
1449 static TPM_RC
CryptSignECC(OBJECT * signKey,TPMT_SIG_SCHEME * scheme,TPM2B_DIGEST * hashData,TPMT_SIGNATURE * signature)1450 CryptSignECC(
1451    OBJECT                   *signKey,                //   IN: ECC key to sign the hash
1452    TPMT_SIG_SCHEME          *scheme,                 //   IN: sign scheme
1453    TPM2B_DIGEST             *hashData,               //   IN: hash to be signed
1454    TPMT_SIGNATURE           *signature               //   OUT: signature
1455    )
1456 {
1457    TPM2B_ECC_PARAMETER              r;
1458    TPM2B_ECC_PARAMETER             *pr = NULL;
1459    CRYPT_RESULT                     retVal;
1460    // Run a test of the ECC sign and verify if it has not already been run
1461    TEST_HASH(scheme->details.any.hashAlg);
1462    TEST(scheme->scheme);
1463    if(CryptIsSplitSign(scheme->scheme))
1464    {
1465        // When this code was written, the only split scheme was ECDAA
1466        // (which can also be used for U-Prove).
1467        if(!CryptGenerateR(&r,
1468                           &scheme->details.ecdaa.count,
1469                           signKey->publicArea.parameters.eccDetail.curveID,
1470                           &signKey->name))
1471            return TPM_RC_VALUE;
1472        pr = &r;
1473    }
1474    // Call crypto engine function to sign
1475    // _cpri__SignEcc may return CRYPT_SCHEME
1476    retVal = _cpri__SignEcc(&signature->signature.ecdsa.signatureR,
1477                            &signature->signature.ecdsa.signatureS,
1478                            scheme->scheme,
1479                            scheme->details.any.hashAlg,
1480                            signKey->publicArea.parameters.eccDetail.curveID,
1481                            &signKey->sensitive.sensitive.ecc,
1482                            &hashData->b,
1483                            pr
1484                            );
1485    if(CryptIsSplitSign(scheme->scheme) && retVal == CRYPT_SUCCESS)
1486        CryptEndCommit(scheme->details.ecdaa.count);
1487    // CRYPT_SCHEME->TPM_RC_SCHEME
1488    return TranslateCryptErrors(retVal);
1489 }
1490 //
1491 //
1492 //       10.2.6.11 CryptECCVerifySignature()
1493 //
1494 //       This function is used to verify a signature created with an ECC key.
1495 //
1496 //       Error Returns                     Meaning
1497 //
1498 //       TPM_RC_SIGNATURE                  if signature is not valid
1499 //       TPM_RC_SCHEME                     the signing scheme or hashAlg is not supported
1500 //
1501 static TPM_RC
CryptECCVerifySignature(OBJECT * signKey,TPM2B_DIGEST * digestData,TPMT_SIGNATURE * signature)1502 CryptECCVerifySignature(
1503    OBJECT              *signKey,               // IN: ECC key signed the hash
1504    TPM2B_DIGEST        *digestData,       // IN: digest being signed
1505    TPMT_SIGNATURE      *signature         // IN: signature to be verified
1506    )
1507 {
1508    CRYPT_RESULT              retVal;
1509    TEST_HASH(signature->signature.any.hashAlg);
1510    TEST(signature->sigAlg);
1511    // This implementation uses the fact that all the defined ECC signing
1512    // schemes have the hash as the first parameter.
1513    // _cpriValidateSignatureEcc may return CRYPT_FAIL or CRYP_SCHEME
1514    retVal = _cpri__ValidateSignatureEcc(&signature->signature.ecdsa.signatureR,
1515                                   &signature->signature.ecdsa.signatureS,
1516                                   signature->sigAlg,
1517                                   signature->signature.any.hashAlg,
1518                                   signKey->publicArea.parameters.eccDetail.curveID,
1519                                   &signKey->publicArea.unique.ecc,
1520                                   &digestData->b);
1521    if(retVal == CRYPT_FAIL)
1522        return TPM_RC_SIGNATURE;
1523    // CRYPT_SCHEME->TPM_RC_SCHEME
1524    return TranslateCryptErrors(retVal);
1525 }
1526 //
1527 //
1528 //       10.2.6.12 CryptGenerateR()
1529 //
1530 //       This function computes the commit random value for a split signing scheme.
1531 //       If c is NULL, it indicates that r is being generated for TPM2_Commit(). If c is not NULL, the TPM will
1532 //       validate that the gr.commitArray bit associated with the input value of c is SET. If not, the TPM returns
1533 //       FALSE and no r value is generated.
1534 //
1535 //       Return Value                    Meaning
1536 //
1537 //       TRUE                            r value computed
1538 //       FALSE                           no r value computed
1539 //
1540 BOOL
CryptGenerateR(TPM2B_ECC_PARAMETER * r,UINT16 * c,TPMI_ECC_CURVE curveID,TPM2B_NAME * name)1541 CryptGenerateR(
1542    TPM2B_ECC_PARAMETER           *r,                 //   OUT: the generated random value
1543    UINT16                        *c,                 //   IN/OUT: count value.
1544    TPMI_ECC_CURVE                 curveID,           //   IN: the curve for the value
1545    TPM2B_NAME                    *name               //   IN: optional name of a key to
1546                                                      //       associate with 'r'
1547    )
1548 {
1549    // This holds the marshaled g_commitCounter.
1550    TPM2B_TYPE(8B, 8);
1551    TPM2B_8B                cntr = {.b.size = 8};
1552    UINT32                   iterations;
1553    const TPM2B             *n;
1554    UINT64                   currentCount = gr.commitCounter;
1555    // This is just to suppress a compiler warning about a conditional expression
1556    // being a constant. This is because of the macro expansion of ryptKDFa
1557    TPMI_ALG_HASH            hashAlg = CONTEXT_INTEGRITY_HASH_ALG;
1558    n = CryptEccGetParameter('n', curveID);
1559    pAssert(r != NULL && n != NULL);
1560    // If this is the commit phase, use the current value of the commit counter
1561    if(c != NULL)
1562 //
1563    {
1564         UINT16      t1;
1565         // if the array bit is not set, can't use the value.
1566         if(!BitIsSet((*c & COMMIT_INDEX_MASK), gr.commitArray,
1567                      sizeof(gr.commitArray)))
1568             return FALSE;
1569         //   If it is the sign phase, figure out what the counter value was
1570         //   when the commitment was made.
1571         //
1572         //   When gr.commitArray has less than 64K bits, the extra
1573         //   bits of 'c' are used as a check to make sure that the
1574         //   signing operation is not using an out of range count value
1575         t1   = (UINT16)currentCount;
1576         // If the lower bits of c are greater or equal to the lower bits of t1
1577         // then the upper bits of t1 must be one more than the upper bits
1578         // of c
1579         if((*c & COMMIT_INDEX_MASK) >= (t1 & COMMIT_INDEX_MASK))
1580             // Since the counter is behind, reduce the current count
1581             currentCount = currentCount - (COMMIT_INDEX_MASK + 1);
1582         t1 = (UINT16)currentCount;
1583         if((t1 & ~COMMIT_INDEX_MASK) != (*c & ~COMMIT_INDEX_MASK))
1584             return FALSE;
1585         // set the counter to the value that was
1586         // present when the commitment was made
1587         currentCount = (currentCount & 0xffffffffffff0000) | *c;
1588    }
1589    // Marshal the count value to a TPM2B buffer for the KDF
1590    cntr.t.size = sizeof(currentCount);
1591    UINT64_TO_BYTE_ARRAY(currentCount, cntr.t.buffer);
1592    //   Now can do the KDF to create the random value for the signing operation
1593    //   During the creation process, we may generate an r that does not meet the
1594    //   requirements of the random value.
1595    //   want to generate a new r.
1596    r->t.size = n->size;
1597    // Arbitrary upper limit on the number of times that we can look for
1598    // a suitable random value. The normally number of tries will be 1.
1599    for(iterations = 1; iterations < 1000000;)
1600    {
1601        BYTE    *pr = &r->b.buffer[0];
1602        int     i;
1603        CryptKDFa(hashAlg, &gr.commitNonce.b, "ECDAA Commit",
1604                  name, &cntr.b, n->size * 8, r->t.buffer, &iterations);
1605         // random value must be less than the prime
1606         if(CryptCompare(r->b.size, r->b.buffer, n->size, n->buffer) >= 0)
1607             continue;
1608         // in this implementation it is required that at least bit
1609         // in the upper half of the number be set
1610         for(i = n->size/2; i > 0; i--)
1611             if(*pr++ != 0)
1612                 return TRUE;
1613    }
1614    return FALSE;
1615 }
1616 //
1617 //
1618 //
1619 //       10.2.6.13 CryptCommit()
1620 //
1621 //       This function is called when the count value is committed. The gr.commitArray value associated with the
1622 //       current count value is SET and g_commitCounter is incremented. The low-order 16 bits of old value of the
1623 //       counter is returned.
1624 //
1625 UINT16
CryptCommit(void)1626 CryptCommit(
1627    void
1628    )
1629 {
1630    UINT16      oldCount = (UINT16)gr.commitCounter;
1631    gr.commitCounter++;
1632    BitSet(oldCount & COMMIT_INDEX_MASK, gr.commitArray, sizeof(gr.commitArray));
1633    return oldCount;
1634 }
1635 //
1636 //
1637 //       10.2.6.14 CryptEndCommit()
1638 //
1639 //       This function is called when the signing operation using the committed value is completed. It clears the
1640 //       gr.commitArray bit associated with the count value so that it can't be used again.
1641 //
1642 void
CryptEndCommit(UINT16 c)1643 CryptEndCommit(
1644    UINT16               c                    // IN: the counter value of the commitment
1645    )
1646 {
1647    BitClear((c & COMMIT_INDEX_MASK), gr.commitArray, sizeof(gr.commitArray));
1648 }
1649 //
1650 //
1651 //       10.2.6.15 CryptCommitCompute()
1652 //
1653 //       This function performs the computations for the TPM2_Commit() command. This could be a macro.
1654 //
1655 //       Error Returns                   Meaning
1656 //
1657 //       TPM_RC_NO_RESULT                K, L, or E is the point at infinity
1658 //       TPM_RC_CANCELLED                command was canceled
1659 //
1660 TPM_RC
CryptCommitCompute(TPMS_ECC_POINT * K,TPMS_ECC_POINT * L,TPMS_ECC_POINT * E,TPM_ECC_CURVE curveID,TPMS_ECC_POINT * M,TPMS_ECC_POINT * B,TPM2B_ECC_PARAMETER * d,TPM2B_ECC_PARAMETER * r)1661 CryptCommitCompute(
1662    TPMS_ECC_POINT                *K,                     //   OUT: [d]B
1663    TPMS_ECC_POINT                *L,                     //   OUT: [r]B
1664    TPMS_ECC_POINT                *E,                     //   OUT: [r]M
1665    TPM_ECC_CURVE                  curveID,               //   IN: The curve for the computation
1666    TPMS_ECC_POINT                *M,                     //   IN: M (P1)
1667    TPMS_ECC_POINT                *B,                     //   IN: B (x2, y2)
1668    TPM2B_ECC_PARAMETER           *d,                     //   IN: the private scalar
1669    TPM2B_ECC_PARAMETER           *r                      //   IN: the computed r value
1670    )
1671 {
1672    TEST(ALG_ECDH_VALUE);
1673    // CRYPT_NO_RESULT->TPM_RC_NO_RESULT CRYPT_CANCEL->TPM_RC_CANCELLED
1674    return TranslateCryptErrors(
1675               _cpri__EccCommitCompute(K, L , E, curveID, M, B, d, r));
1676 }
1677 //
1678 //
1679 //
1680 //       10.2.6.16 CryptEccGetParameters()
1681 //
1682 //       This function returns the ECC parameter details of the given curve
1683 //
1684 //       Return Value                      Meaning
1685 //
1686 //       TRUE                              Get parameters success
1687 //       FALSE                             Unsupported ECC curve ID
1688 //
1689 BOOL
CryptEccGetParameters(TPM_ECC_CURVE curveId,TPMS_ALGORITHM_DETAIL_ECC * parameters)1690 CryptEccGetParameters(
1691    TPM_ECC_CURVE                        curveId,            // IN: ECC curve ID
1692    TPMS_ALGORITHM_DETAIL_ECC           *parameters          // OUT: ECC parameter
1693    )
1694 {
1695    const ECC_CURVE                     *curve = _cpri__EccGetParametersByCurveId(curveId);
1696    const ECC_CURVE_DATA                *data;
1697    BOOL                                 found = curve != NULL;
1698    if(found)
1699    {
1700         data = curve->curveData;
1701         parameters->curveID = curve->curveId;
1702         // Key size in bit
1703         parameters->keySize = curve->keySizeBits;
1704         // KDF
1705         parameters->kdf = curve->kdf;
1706         // Sign
1707         parameters->sign = curve->sign;
1708         // Copy p value
1709         MemoryCopy2B(&parameters->p.b, data->p, sizeof(parameters->p.t.buffer));
1710         // Copy a value
1711         MemoryCopy2B(&parameters->a.b, data->a, sizeof(parameters->a.t.buffer));
1712         // Copy b value
1713         MemoryCopy2B(&parameters->b.b, data->b, sizeof(parameters->b.t.buffer));
1714         // Copy Gx value
1715         MemoryCopy2B(&parameters->gX.b, data->x, sizeof(parameters->gX.t.buffer));
1716         // Copy Gy value
1717         MemoryCopy2B(&parameters->gY.b, data->y, sizeof(parameters->gY.t.buffer));
1718         // Copy n value
1719         MemoryCopy2B(&parameters->n.b, data->n, sizeof(parameters->n.t.buffer));
1720         // Copy h value
1721         MemoryCopy2B(&parameters->h.b, data->h, sizeof(parameters->h.t.buffer));
1722    }
1723    return found;
1724 }
1725 #if CC_ZGen_2Phase == YES
1726 //
1727 //       CryptEcc2PhaseKeyExchange() This is the interface to the key exchange function.
1728 //
1729 TPM_RC
CryptEcc2PhaseKeyExchange(TPMS_ECC_POINT * outZ1,TPMS_ECC_POINT * outZ2,TPM_ALG_ID scheme,TPM_ECC_CURVE curveId,TPM2B_ECC_PARAMETER * dsA,TPM2B_ECC_PARAMETER * deA,TPMS_ECC_POINT * QsB,TPMS_ECC_POINT * QeB)1730 CryptEcc2PhaseKeyExchange(
1731    TPMS_ECC_POINT                *outZ1,            //   OUT: the computed point
1732    TPMS_ECC_POINT                *outZ2,            //   OUT: optional second point
1733    TPM_ALG_ID                     scheme,           //   IN: the key exchange scheme
1734    TPM_ECC_CURVE                  curveId,          //   IN: the curve for the computation
1735    TPM2B_ECC_PARAMETER           *dsA,              //   IN: static private TPM key
1736    TPM2B_ECC_PARAMETER           *deA,              //   IN: ephemeral private TPM key
1737    TPMS_ECC_POINT                *QsB,              //   IN: static public party B key
1738    TPMS_ECC_POINT                *QeB               //   IN: ephemeral public party B key
1739    )
1740 {
1741    return (TranslateCryptErrors(_cpri__C_2_2_KeyExchange(outZ1,
1742                                                          outZ2,
1743                                                          scheme,
1744                                                          curveId,
1745                                                          dsA,
1746                                                          deA,
1747                                                          QsB,
1748                                                          QeB)));
1749 }
1750 #endif // CC_ZGen_2Phase
1751 #endif //TPM_ALG_ECC //% 3
1752 //
1753 //
1754 //       10.2.6.17 CryptIsSchemeAnonymous()
1755 //
1756 //       This function is used to test a scheme to see if it is an anonymous scheme The only anonymous scheme
1757 //       is ECDAA. ECDAA can be used to do things like U-Prove.
1758 //
1759 BOOL
CryptIsSchemeAnonymous(TPM_ALG_ID scheme)1760 CryptIsSchemeAnonymous(
1761    TPM_ALG_ID           scheme            // IN: the scheme algorithm to test
1762    )
1763 {
1764 #ifdef TPM_ALG_ECDAA
1765    return (scheme == TPM_ALG_ECDAA);
1766 #else
1767    UNREFERENCED(scheme);
1768    return 0;
1769 #endif
1770 }
1771 //
1772 //
1773 //       10.2.7     Symmetric Functions
1774 //
1775 //       10.2.7.1    ParmDecryptSym()
1776 //
1777 //       This function performs parameter decryption using symmetric block cipher.
1778 //
1779 void
ParmDecryptSym(TPM_ALG_ID symAlg,TPM_ALG_ID hash,UINT16 keySizeInBits,TPM2B * key,TPM2B * nonceCaller,TPM2B * nonceTpm,UINT32 dataSize,BYTE * data)1780 ParmDecryptSym(
1781    TPM_ALG_ID          symAlg,            //   IN: the symmetric algorithm
1782    TPM_ALG_ID          hash,              //   IN: hash algorithm for KDFa
1783    UINT16              keySizeInBits,     //   IN: key key size in bit
1784    TPM2B              *key,               //   IN: KDF HMAC key
1785    TPM2B              *nonceCaller,       //   IN: nonce caller
1786    TPM2B              *nonceTpm,          //   IN: nonce TPM
1787    UINT32              dataSize,          //   IN: size of parameter buffer
1788    BYTE               *data               //   OUT: buffer to be decrypted
1789    )
1790 {
1791    // KDF output buffer
1792    // It contains parameters for the CFB encryption
1793    // From MSB to LSB, they are the key and iv
1794    BYTE             symParmString[MAX_SYM_KEY_BYTES + MAX_SYM_BLOCK_SIZE];
1795    // Symmetric key size in byte
1796    UINT16           keySize = (keySizeInBits + 7) / 8;
1797    TPM2B_IV         iv;
1798    iv.t.size = CryptGetSymmetricBlockSize(symAlg, keySizeInBits);
1799    // If there is decryption to do...
1800    if(iv.t.size > 0)
1801    {
1802        // Generate key and iv
1803        CryptKDFa(hash, key, "CFB", nonceCaller, nonceTpm,
1804                  keySizeInBits + (iv.t.size * 8), symParmString, NULL);
1805        MemoryCopy(iv.t.buffer, &symParmString[keySize], iv.t.size,
1806                   sizeof(iv.t.buffer));
1807           CryptSymmetricDecrypt(data, symAlg, keySizeInBits, TPM_ALG_CFB,
1808                                 symParmString, &iv, dataSize, data);
1809    }
1810    return;
1811 }
1812 //
1813 //
1814 //       10.2.7.2     ParmEncryptSym()
1815 //
1816 //       This function performs parameter encryption using symmetric block cipher.
1817 //
1818 void
ParmEncryptSym(TPM_ALG_ID symAlg,TPM_ALG_ID hash,UINT16 keySizeInBits,TPM2B * key,TPM2B * nonceCaller,TPM2B * nonceTpm,UINT32 dataSize,BYTE * data)1819 ParmEncryptSym(
1820    TPM_ALG_ID          symAlg,            //   IN: symmetric algorithm
1821    TPM_ALG_ID          hash,              //   IN: hash algorithm for KDFa
1822    UINT16              keySizeInBits,     //   IN: AES key size in bit
1823    TPM2B              *key,               //   IN: KDF HMAC key
1824    TPM2B              *nonceCaller,       //   IN: nonce caller
1825    TPM2B              *nonceTpm,          //   IN: nonce TPM
1826    UINT32              dataSize,          //   IN: size of parameter buffer
1827    BYTE               *data               //   OUT: buffer to be encrypted
1828    )
1829 {
1830    // KDF output buffer
1831    // It contains parameters for the CFB encryption
1832    BYTE             symParmString[MAX_SYM_KEY_BYTES + MAX_SYM_BLOCK_SIZE];
1833    // Symmetric key size in bytes
1834    UINT16           keySize = (keySizeInBits + 7) / 8;
1835    TPM2B_IV             iv;
1836    iv.t.size = CryptGetSymmetricBlockSize(symAlg, keySizeInBits);
1837    // See if there is any encryption to do
1838    if(iv.t.size > 0)
1839    {
1840        // Generate key and iv
1841        CryptKDFa(hash, key, "CFB", nonceTpm, nonceCaller,
1842                  keySizeInBits + (iv.t.size * 8), symParmString, NULL);
1843           MemoryCopy(iv.t.buffer, &symParmString[keySize], iv.t.size,
1844                      sizeof(iv.t.buffer));
1845           CryptSymmetricEncrypt(data, symAlg, keySizeInBits, TPM_ALG_CFB,
1846                                 symParmString, &iv, dataSize, data);
1847    }
1848    return;
1849 }
1850 //
1851 //
1852 //
1853 //       10.2.7.3     CryptGenerateNewSymmetric()
1854 //
1855 //       This function creates the sensitive symmetric values for an HMAC or symmetric key. If the sensitive area
1856 //       is zero, then the sensitive creation key data is copied. If it is not zero, then the TPM will generate a
1857 //       random value of the selected size.
1858 //
1859 void
CryptGenerateNewSymmetric(TPMS_SENSITIVE_CREATE * sensitiveCreate,TPMT_SENSITIVE * sensitive,TPM_ALG_ID hashAlg,TPM2B_SEED * seed,TPM2B_NAME * name)1860 CryptGenerateNewSymmetric(
1861    TPMS_SENSITIVE_CREATE        *sensitiveCreate,       //   IN: sensitive creation data
1862    TPMT_SENSITIVE               *sensitive,             //   OUT: sensitive area
1863    TPM_ALG_ID                    hashAlg,               //   IN: hash algorithm for the KDF
1864    TPM2B_SEED                   *seed,                  //   IN: seed used in creation
1865    TPM2B_NAME                   *name                   //   IN: name of the object
1866    )
1867 {
1868    // This function is called to create a key and obfuscation value for a
1869    // symmetric key that can either be a block cipher or an XOR key. The buffer
1870    // in sensitive->sensitive will hold either. When we call the function
1871    // to copy the input value or generated value to the sensitive->sensitive
1872    // buffer we will need to have a size for the output buffer. This define
1873    // computes the maximum that it might need to be and uses that. It will always
1874    // be smaller than the largest value that will fit.
1875    #define MAX_SENSITIVE_SIZE                                                   \
1876        (MAX(sizeof(sensitive->sensitive.bits.t.buffer),                         \
1877            sizeof(sensitive->sensitive.sym.t.buffer)))
1878    // set the size of the obfuscation value
1879    sensitive->seedValue.t.size = CryptGetHashDigestSize(hashAlg);
1880    // If the input sensitive size is zero, then create both the sensitive data
1881    // and the obfuscation value
1882    if(sensitiveCreate->data.t.size == 0)
1883    {
1884        BYTE                     symValues[MAX(MAX_DIGEST_SIZE, MAX_SYM_KEY_BYTES)
1885                                           + MAX_DIGEST_SIZE];
1886        UINT16                  requestSize;
1887           // Set the size of the request to be the size of the key and the
1888           // obfuscation value
1889           requestSize =   sensitive->sensitive.sym.t.size
1890                         + sensitive->seedValue.t.size;
1891           pAssert(requestSize <= sizeof(symValues));
1892           requestSize = _cpri__GenerateSeededRandom(requestSize, symValues, hashAlg,
1893                                                     &seed->b,
1894                                                     "symmetric sensitive", &name->b,
1895                                                     NULL);
1896           pAssert(requestSize != 0);
1897           // Copy the new key
1898           MemoryCopy(sensitive->sensitive.sym.t.buffer,
1899                      symValues, sensitive->sensitive.sym.t.size,
1900                      MAX_SENSITIVE_SIZE);
1901           // copy the obfuscation value
1902           MemoryCopy(sensitive->seedValue.t.buffer,
1903                      &symValues[sensitive->sensitive.sym.t.size],
1904                      sensitive->seedValue.t.size,
1905                      sizeof(sensitive->seedValue.t.buffer));
1906    }
1907    else
1908    {
1909        // Copy input symmetric key to sensitive area as long as it will fit
1910        MemoryCopy2B(&sensitive->sensitive.sym.b, &sensitiveCreate->data.b,
1911                     MAX_SENSITIVE_SIZE);
1912           // Create the obfuscation value
1913           _cpri__GenerateSeededRandom(sensitive->seedValue.t.size,
1914                                       sensitive->seedValue.t.buffer,
1915                                       hashAlg, &seed->b,
1916                                       "symmetric obfuscation", &name->b, NULL);
1917    }
1918    return;
1919 }
1920 //
1921 //
1922 //       10.2.7.4    CryptGenerateKeySymmetric()
1923 //
1924 //       This function derives a symmetric cipher key from the provided seed.
1925 //
1926 //       Error Returns                     Meaning
1927 //
1928 //       TPM_RC_KEY_SIZE                   key size in the public area does not match the size in the sensitive
1929 //                                         creation area
1930 //
1931 static TPM_RC
CryptGenerateKeySymmetric(TPMT_PUBLIC * publicArea,TPMS_SENSITIVE_CREATE * sensitiveCreate,TPMT_SENSITIVE * sensitive,TPM_ALG_ID hashAlg,TPM2B_SEED * seed,TPM2B_NAME * name)1932 CryptGenerateKeySymmetric(
1933    TPMT_PUBLIC                    *publicArea,               //   IN/OUT: The public area template
1934                                                              //       for the new key.
1935    TPMS_SENSITIVE_CREATE          *sensitiveCreate,          //   IN: sensitive creation data
1936    TPMT_SENSITIVE                 *sensitive,                //   OUT: sensitive area
1937    TPM_ALG_ID                      hashAlg,                  //   IN: hash algorithm for the KDF
1938    TPM2B_SEED                     *seed,                     //   IN: seed used in creation
1939    TPM2B_NAME                     *name                      //   IN: name of the object
1940    )
1941 {
1942    // If this is not a new key, then the provided key data must be the right size
1943    if(publicArea->objectAttributes.sensitiveDataOrigin == CLEAR)
1944    {
1945        if(     (sensitiveCreate->data.t.size * 8)
1946            != publicArea->parameters.symDetail.sym.keyBits.sym)
1947            return TPM_RC_KEY_SIZE;
1948        // Make sure that the key size is OK.
1949        // This implementation only supports symmetric key sizes that are
1950        // multiples of 8
1951        if(publicArea->parameters.symDetail.sym.keyBits.sym % 8 != 0)
1952            return TPM_RC_KEY_SIZE;
1953    }
1954    else
1955    {
1956        // TPM is going to generate the key so set the size
1957        sensitive->sensitive.sym.t.size
1958            = publicArea->parameters.symDetail.sym.keyBits.sym / 8;
1959        sensitiveCreate->data.t.size = 0;
1960    }
1961    // Fill in the sensitive area
1962    CryptGenerateNewSymmetric(sensitiveCreate, sensitive, hashAlg,
1963                              seed, name);
1964    // Create unique area in public
1965    CryptComputeSymmetricUnique(publicArea->nameAlg,
1966                                sensitive, &publicArea->unique.sym);
1967    return TPM_RC_SUCCESS;
1968 }
1969 //
1970 //
1971 //
1972 //       10.2.7.5     CryptXORObfuscation()
1973 //
1974 //       This function implements XOR obfuscation. It should not be called if the hash algorithm is not
1975 //       implemented. The only return value from this function is TPM_RC_SUCCESS.
1976 //
1977 #ifdef TPM_ALG_KEYEDHASH //% 5
1978 void
CryptXORObfuscation(TPM_ALG_ID hash,TPM2B * key,TPM2B * contextU,TPM2B * contextV,UINT32 dataSize,BYTE * data)1979 CryptXORObfuscation(
1980    TPM_ALG_ID             hash,                  //   IN: hash algorithm for KDF
1981    TPM2B                 *key,                   //   IN: KDF key
1982    TPM2B                 *contextU,              //   IN: contextU
1983    TPM2B                 *contextV,              //   IN: contextV
1984    UINT32                 dataSize,              //   IN: size of data buffer
1985    BYTE                  *data                   //   IN/OUT: data to be XORed in place
1986    )
1987 {
1988    BYTE                   mask[MAX_DIGEST_SIZE]; // Allocate a digest sized buffer
1989    BYTE                  *pm;
1990    UINT32                 i;
1991    UINT32                 counter = 0;
1992    UINT16                 hLen = CryptGetHashDigestSize(hash);
1993    UINT32                 requestSize = dataSize * 8;
1994    INT32                  remainBytes = (INT32) dataSize;
1995    pAssert((key != NULL) && (data != NULL) && (hLen != 0));
1996    // Call KDFa to generate XOR mask
1997    for(; remainBytes > 0; remainBytes -= hLen)
1998    {
1999        // Make a call to KDFa to get next iteration
2000        CryptKDFaOnce(hash, key, "XOR", contextU, contextV,
2001                      requestSize, mask, &counter);
2002           // XOR next piece of the data
2003           pm = mask;
2004           for(i = hLen < remainBytes ? hLen : remainBytes; i > 0; i--)
2005               *data++ ^= *pm++;
2006    }
2007    return;
2008 }
2009 #endif //TPM_ALG_KEYED_HASH //%5
2010 //
2011 //
2012 //       10.2.8     Initialization and shut down
2013 //
2014 //       10.2.8.1     CryptInitUnits()
2015 //
2016 //       This function is called when the TPM receives a _TPM_Init() indication. After function returns, the hash
2017 //       algorithms should be available.
2018 //
2019 //       NOTE:           The hash algorithms do not have to be tested, they just need to be available. They have to be tested before the
2020 //                       TPM can accept HMAC authorization or return any result that relies on a hash algorithm.
2021 //
2022 void
CryptInitUnits(void)2023 CryptInitUnits(
2024    void
2025    )
2026 {
2027    // Initialize the vector of implemented algorithms
2028    AlgorithmGetImplementedVector(&g_implementedAlgorithms);
2029    // Indicate that all test are necessary
2030    CryptInitializeToTest();
2031 //
2032    // Call crypto engine unit initialization
2033    // It is assumed that crypt engine initialization should always succeed.
2034    // Otherwise, TPM should go to failure mode.
2035    if(_cpri__InitCryptoUnits(&TpmFail) != CRYPT_SUCCESS)
2036        FAIL(FATAL_ERROR_INTERNAL);
2037    return;
2038 }
2039 //
2040 //
2041 //       10.2.8.2    CryptStopUnits()
2042 //
2043 //       This function is only used in a simulated environment. There should be no reason to shut down the
2044 //       cryptography on an actual TPM other than loss of power. After receiving TPM2_Startup(), the TPM should
2045 //       be able to accept commands until it loses power and, unless the TPM is in Failure Mode, the
2046 //       cryptographic algorithms should be available.
2047 //
2048 void
CryptStopUnits(void)2049 CryptStopUnits(
2050    void
2051    )
2052 {
2053    // Call crypto engine unit stopping
2054    _cpri__StopCryptoUnits();
2055    return;
2056 }
2057 //
2058 //
2059 //       10.2.8.3    CryptUtilStartup()
2060 //
2061 //       This function is called by TPM2_Startup() to initialize the functions in this crypto library and in the
2062 //       provided CryptoEngine(). In this implementation, the only initialization required in this library is
2063 //       initialization of the Commit nonce on TPM Reset.
2064 //       This function returns false if some problem prevents the functions from starting correctly. The TPM should
2065 //       go into failure mode.
2066 //
2067 BOOL
CryptUtilStartup(STARTUP_TYPE type)2068 CryptUtilStartup(
2069    STARTUP_TYPE         type               // IN: the startup type
2070    )
2071 {
2072    // Make sure that the crypto library functions are ready.
2073    // NOTE: need to initialize the crypto before loading
2074    // the RND state may trigger a self-test which
2075    // uses the
2076    if( !_cpri__Startup())
2077        return FALSE;
2078    // Initialize the state of the RNG.
2079    CryptDrbgGetPutState(PUT_STATE);
2080    if(type == SU_RESET)
2081    {
2082 #ifdef TPM_ALG_ECC
2083        // Get a new random commit nonce
2084        gr.commitNonce.t.size = sizeof(gr.commitNonce.t.buffer);
2085        _cpri__GenerateRandom(gr.commitNonce.t.size, gr.commitNonce.t.buffer);
2086        // Reset the counter and commit array
2087        gr.commitCounter = 0;
2088        MemorySet(gr.commitArray, 0, sizeof(gr.commitArray));
2089 #endif // TPM_ALG_ECC
2090    }
2091     // If the shutdown was orderly, then the values recovered from NV will
2092     // be OK to use. If the shutdown was not orderly, then a TPM Reset was required
2093     // and we would have initialized in the code above.
2094     return TRUE;
2095 }
2096 //
2097 //
2098 //       10.2.9     Algorithm-Independent Functions
2099 //
2100 //       10.2.9.1    Introduction
2101 //
2102 //       These functions are used generically when a function of a general type (e.g., symmetric encryption) is
2103 //       required. The functions will modify the parameters as required to interface to the indicated algorithms.
2104 //
2105 //       10.2.9.2    CryptIsAsymAlgorithm()
2106 //
2107 //       This function indicates if an algorithm is an asymmetric algorithm.
2108 //
2109 //       Return Value                      Meaning
2110 //
2111 //       TRUE                              if it is an asymmetric algorithm
2112 //       FALSE                             if it is not an asymmetric algorithm
2113 //
2114 BOOL
CryptIsAsymAlgorithm(TPM_ALG_ID algID)2115 CryptIsAsymAlgorithm(
2116     TPM_ALG_ID           algID                // IN: algorithm ID
2117     )
2118 {
2119    return (
2120 #ifdef TPM_ALG_RSA
2121             algID == TPM_ALG_RSA
2122 #endif
2123 #if defined TPM_ALG_RSA && defined TPM_ALG_ECC
2124             ||
2125 #endif
2126 #ifdef TPM_ALG_ECC
2127             algID == TPM_ALG_ECC
2128 #endif
2129           );
2130 }
2131 //
2132 //
2133 //       10.2.9.3    CryptGetSymmetricBlockSize()
2134 //
2135 //       This function returns the size in octets of the symmetric encryption block used by an algorithm and key
2136 //       size combination.
2137 //
2138 INT16
CryptGetSymmetricBlockSize(TPMI_ALG_SYM algorithm,UINT16 keySize)2139 CryptGetSymmetricBlockSize(
2140     TPMI_ALG_SYM         algorithm,           // IN: symmetric algorithm
2141     UINT16               keySize              // IN: key size in bit
2142     )
2143 {
2144     return _cpri__GetSymmetricBlockSize(algorithm, keySize);
2145 }
2146 //
2147 //
2148 //
2149 //       10.2.9.4    CryptSymmetricEncrypt()
2150 //
2151 //       This function does in-place encryption of a buffer using the indicated symmetric algorithm, key, IV, and
2152 //       mode. If the symmetric algorithm and mode are not defined, the TPM will fail.
2153 //
2154 void
CryptSymmetricEncrypt(BYTE * encrypted,TPM_ALG_ID algorithm,UINT16 keySizeInBits,TPMI_ALG_SYM_MODE mode,BYTE * key,TPM2B_IV * ivIn,UINT32 dataSize,BYTE * data)2155 CryptSymmetricEncrypt(
2156    BYTE                    *encrypted,         //   OUT: the encrypted data
2157    TPM_ALG_ID               algorithm,         //   IN: algorithm for encryption
2158    UINT16                   keySizeInBits,     //   IN: key size in bit
2159    TPMI_ALG_SYM_MODE        mode,              //   IN: symmetric encryption mode
2160    BYTE                    *key,               //   IN: encryption key
2161    TPM2B_IV                *ivIn,              //   IN/OUT: Input IV and output chaining
2162                                                //       value for the next block
2163    UINT32                   dataSize,          //   IN: data size in byte
2164    BYTE                    *data               //   IN/OUT: data buffer
2165    )
2166 {
2167    TPM2B_IV                 defaultIv = {};
2168    TPM2B_IV                *iv = (ivIn != NULL) ? ivIn : &defaultIv;
2169    TEST(algorithm);
2170    pAssert(encrypted != NULL && key != NULL);
2171    // this check can pass but the case below can fail. ALG_xx_VALUE values are
2172    // defined for all algorithms but the TPM_ALG_xx might not be.
2173    if(algorithm == ALG_AES_VALUE || algorithm == ALG_SM4_VALUE)
2174    {
2175        if(mode != TPM_ALG_ECB)
2176            defaultIv.t.size = 16;
2177        // A provided IV has to be the right size
2178        pAssert(mode == TPM_ALG_ECB || iv->t.size == 16);
2179    }
2180    switch(algorithm)
2181    {
2182 #ifdef TPM_ALG_AES
2183        case TPM_ALG_AES:
2184        {
2185            switch (mode)
2186            {
2187                case TPM_ALG_CTR:
2188                    _cpri__AESEncryptCTR(encrypted, keySizeInBits, key,
2189                                         iv->t.buffer, dataSize, data);
2190                    break;
2191                case TPM_ALG_OFB:
2192                    _cpri__AESEncryptOFB(encrypted, keySizeInBits, key,
2193                                         iv->t.buffer, dataSize, data);
2194                    break;
2195                case TPM_ALG_CBC:
2196                    _cpri__AESEncryptCBC(encrypted, keySizeInBits, key,
2197                                         iv->t.buffer, dataSize, data);
2198                    break;
2199                case TPM_ALG_CFB:
2200                    _cpri__AESEncryptCFB(encrypted, keySizeInBits, key,
2201                                         iv->t.buffer, dataSize, data);
2202                    break;
2203                case TPM_ALG_ECB:
2204                    _cpri__AESEncryptECB(encrypted, keySizeInBits, key,
2205                                         dataSize, data);
2206                    break;
2207                default:
2208                    pAssert(0);
2209            }
2210           }
2211           break;
2212 #endif
2213 #ifdef TPM_ALG_SM4
2214        case TPM_ALG_SM4:
2215        {
2216            switch (mode)
2217            {
2218                case TPM_ALG_CTR:
2219                    _cpri__SM4EncryptCTR(encrypted, keySizeInBits, key,
2220                                         iv->t.buffer, dataSize, data);
2221                    break;
2222                case TPM_ALG_OFB:
2223                    _cpri__SM4EncryptOFB(encrypted, keySizeInBits, key,
2224                                         iv->t.buffer, dataSize, data);
2225                    break;
2226                case TPM_ALG_CBC:
2227                    _cpri__SM4EncryptCBC(encrypted, keySizeInBits, key,
2228                                         iv->t.buffer, dataSize, data);
2229                    break;
2230                    case TPM_ALG_CFB:
2231                        _cpri__SM4EncryptCFB(encrypted, keySizeInBits, key,
2232                                             iv->t.buffer, dataSize, data);
2233                        break;
2234                    case TPM_ALG_ECB:
2235                        _cpri__SM4EncryptECB(encrypted, keySizeInBits, key,
2236                                             dataSize, data);
2237                        break;
2238                    default:
2239                        pAssert(0);
2240               }
2241           }
2242           break;
2243 #endif
2244           default:
2245               pAssert(FALSE);
2246               break;
2247    }
2248    return;
2249 }
2250 //
2251 //
2252 //       10.2.9.5    CryptSymmetricDecrypt()
2253 //
2254 //       This function does in-place decryption of a buffer using the indicated symmetric algorithm, key, IV, and
2255 //       mode. If the symmetric algorithm and mode are not defined, the TPM will fail.
2256 //
2257 void
CryptSymmetricDecrypt(BYTE * decrypted,TPM_ALG_ID algorithm,UINT16 keySizeInBits,TPMI_ALG_SYM_MODE mode,BYTE * key,TPM2B_IV * ivIn,UINT32 dataSize,BYTE * data)2258 CryptSymmetricDecrypt(
2259    BYTE                      *decrypted,
2260    TPM_ALG_ID                 algorithm,       //   IN: algorithm for encryption
2261    UINT16                     keySizeInBits,   //   IN: key size in bit
2262    TPMI_ALG_SYM_MODE          mode,            //   IN: symmetric encryption mode
2263    BYTE                      *key,             //   IN: encryption key
2264    TPM2B_IV                  *ivIn,            //   IN/OUT: IV for next block
2265    UINT32                     dataSize,        //   IN: data size in byte
2266    BYTE                      *data             //   IN/OUT: data buffer
2267    )
2268 {
2269    BYTE                      *iv = NULL;
2270    BYTE                       defaultIV[sizeof(TPMT_HA)];
2271    TEST(algorithm);
2272    if(
2273 #ifdef TPM_ALG_AES
2274          algorithm == TPM_ALG_AES
2275 #endif
2276 #if defined TPM_ALG_AES && defined TPM_ALG_SM4
2277       ||
2278 #endif
2279 #ifdef TPM_ALG_SM4
2280          algorithm == TPM_ALG_SM4
2281 #endif
2282      )
2283    {
2284        // Both SM4 and AES have block size of 128 bits
2285        // If the iv is not provided, create a default of 0
2286        if(ivIn == NULL)
2287        {
2288             // Initialize the default IV
2289             iv = defaultIV;
2290             MemorySet(defaultIV, 0, 16);
2291        }
2292        else
2293        {
2294             // A provided IV has to be the right size
2295             pAssert(mode == TPM_ALG_ECB || ivIn->t.size == 16);
2296             iv = &(ivIn->t.buffer[0]);
2297        }
2298    }
2299    switch(algorithm)
2300    {
2301 #ifdef TPM_ALG_AES
2302    case TPM_ALG_AES:
2303    {
2304         switch (mode)
2305         {
2306             case TPM_ALG_CTR:
2307                 _cpri__AESDecryptCTR(decrypted, keySizeInBits,   key, iv,
2308                                      dataSize, data);
2309                 break;
2310             case TPM_ALG_OFB:
2311                 _cpri__AESDecryptOFB(decrypted, keySizeInBits,   key, iv,
2312                                      dataSize, data);
2313                 break;
2314             case TPM_ALG_CBC:
2315                 _cpri__AESDecryptCBC(decrypted, keySizeInBits,   key, iv,
2316                                      dataSize, data);
2317                 break;
2318             case TPM_ALG_CFB:
2319                 _cpri__AESDecryptCFB(decrypted, keySizeInBits,   key, iv,
2320                                      dataSize, data);
2321                 break;
2322             case TPM_ALG_ECB:
2323                 _cpri__AESDecryptECB(decrypted, keySizeInBits,   key,
2324                                      dataSize, data);
2325                 break;
2326             default:
2327                 pAssert(0);
2328         }
2329         break;
2330    }
2331 #endif //TPM_ALG_AES
2332 #ifdef TPM_ALG_SM4
2333    case TPM_ALG_SM4 :
2334        switch (mode)
2335        {
2336            case TPM_ALG_CTR:
2337                _cpri__SM4DecryptCTR(decrypted, keySizeInBits,                       key, iv,
2338                                     dataSize, data);
2339                break;
2340            case TPM_ALG_OFB:
2341                _cpri__SM4DecryptOFB(decrypted, keySizeInBits,                       key, iv,
2342                                     dataSize, data);
2343                break;
2344            case TPM_ALG_CBC:
2345                _cpri__SM4DecryptCBC(decrypted, keySizeInBits,                       key, iv,
2346                                     dataSize, data);
2347                break;
2348            case TPM_ALG_CFB:
2349                _cpri__SM4DecryptCFB(decrypted, keySizeInBits,                       key, iv,
2350                                     dataSize, data);
2351                break;
2352            case TPM_ALG_ECB:
2353                _cpri__SM4DecryptECB(decrypted, keySizeInBits,                       key,
2354                                     dataSize, data);
2355                break;
2356            default:
2357                pAssert(0);
2358        }
2359        break;
2360 #endif //TPM_ALG_SM4
2361    default:
2362        pAssert(FALSE);
2363        break;
2364    }
2365    return;
2366 }
2367 //
2368 //
2369 //       10.2.9.6    CryptSecretEncrypt()
2370 //
2371 //       This function creates a secret value and its associated secret structure using an asymmetric algorithm.
2372 //       This function is used by TPM2_Rewrap() TPM2_MakeCredential(), and TPM2_Duplicate().
2373 //
2374 //       Error Returns                   Meaning
2375 //
2376 //       TPM_RC_ATTRIBUTES               keyHandle does not reference a valid decryption key
2377 //       TPM_RC_KEY                      invalid ECC key (public point is not on the curve)
2378 //       TPM_RC_SCHEME                   RSA key with an unsupported padding scheme
2379 //       TPM_RC_VALUE                    numeric value of the data to be decrypted is greater than the RSA
2380 //                                       key modulus
2381 //
2382 TPM_RC
CryptSecretEncrypt(TPMI_DH_OBJECT keyHandle,const char * label,TPM2B_DATA * data,TPM2B_ENCRYPTED_SECRET * secret)2383 CryptSecretEncrypt(
2384    TPMI_DH_OBJECT                 keyHandle,           //   IN: encryption key handle
2385    const char                    *label,               //   IN: a null-terminated string as L
2386    TPM2B_DATA                    *data,                //   OUT: secret value
2387    TPM2B_ENCRYPTED_SECRET        *secret               //   OUT: secret structure
2388    )
2389 {
2390    TPM_RC          result = TPM_RC_SUCCESS;
2391    OBJECT         *encryptKey = ObjectGet(keyHandle);              // TPM key used for encrypt
2392    pAssert(data != NULL && secret != NULL);
2393    // The output secret value has the size of the digest produced by the nameAlg.
2394    data->t.size = CryptGetHashDigestSize(encryptKey->publicArea.nameAlg);
2395    pAssert(encryptKey->publicArea.objectAttributes.decrypt == SET);
2396    switch(encryptKey->publicArea.type)
2397    {
2398 #ifdef TPM_ALG_RSA
2399        case TPM_ALG_RSA:
2400        {
2401            TPMT_RSA_DECRYPT            scheme;
2402              // Use OAEP scheme
2403              scheme.scheme = TPM_ALG_OAEP;
2404              scheme.details.oaep.hashAlg = encryptKey->publicArea.nameAlg;
2405              // Create secret data from RNG
2406              CryptGenerateRandom(data->t.size, data->t.buffer);
2407              // Encrypt the data by RSA OAEP into encrypted secret
2408              result = CryptEncryptRSA(&secret->t.size, secret->t.secret,
2409                                       encryptKey, &scheme,
2410                                       data->t.size, data->t.buffer, label);
2411        }
2412        break;
2413 #endif //TPM_ALG_RSA
2414 #ifdef TPM_ALG_ECC
2415        case TPM_ALG_ECC:
2416        {
2417            TPMS_ECC_POINT         eccPublic;
2418            TPM2B_ECC_PARAMETER    eccPrivate;
2419            TPMS_ECC_POINT         eccSecret;
2420            BYTE                   *buffer = secret->t.secret;
2421            INT32                  bufferSize = sizeof(TPMS_ECC_POINT);
2422              // Need to make sure that the public point of the key is on the
2423              // curve defined by the key.
2424              if(!_cpri__EccIsPointOnCurve(
2425                          encryptKey->publicArea.parameters.eccDetail.curveID,
2426                          &encryptKey->publicArea.unique.ecc))
2427                  result = TPM_RC_KEY;
2428              else
2429              {
2430                   // Call crypto engine to create an auxiliary ECC key
2431                   // We assume crypt engine initialization should always success.
2432                   // Otherwise, TPM should go to failure mode.
2433                   CryptNewEccKey(encryptKey->publicArea.parameters.eccDetail.curveID,
2434                                  &eccPublic, &eccPrivate);
2435                   // Marshal ECC public to secret structure. This will be used by the
2436                   // recipient to decrypt the secret with their private key.
2437                   secret->t.size = TPMS_ECC_POINT_Marshal(&eccPublic, &buffer, &bufferSize);
2438                   // Compute ECDH shared secret which is R = [d]Q where d is the
2439                   // private part of the ephemeral key and Q is the public part of a
2440                   // TPM key. TPM_RC_KEY error return from CryptComputeECDHSecret
2441                   // because the auxiliary ECC key is just created according to the
2442                   // parameters of input ECC encrypt key.
2443                   if(     CryptEccPointMultiply(&eccSecret,
2444                                   encryptKey->publicArea.parameters.eccDetail.curveID,
2445                                   &eccPrivate,
2446                                   &encryptKey->publicArea.unique.ecc)
2447                       != CRYPT_SUCCESS)
2448                        result = TPM_RC_KEY;
2449                   else
2450                       //     The secret value is computed from Z using KDFe as:
2451                       //     secret := KDFe(HashID, Z, Use, PartyUInfo, PartyVInfo, bits)
2452                       //     Where:
2453                       //      HashID the nameAlg of the decrypt key
2454                       //      Z    the x coordinate (Px) of the product (P) of the point
2455                       //           (Q) of the secret and the private x coordinate (de,V)
2456                       //           of the decryption key
2457                       //      Use a null-terminated string containing "SECRET"
2458                       //      PartyUInfo the x coordinate of the point in the secret
2459                       //                   (Qe,U )
2460                       //      PartyVInfo the x coordinate of the public key (Qs,V )
2461                       //      bits     the number of bits in the digest of HashID
2462                       //     Retrieve seed from KDFe
2463                       CryptKDFe(encryptKey->publicArea.nameAlg, &eccSecret.x.b,
2464                                 label, &eccPublic.x.b,
2465                                 &encryptKey->publicArea.unique.ecc.x.b,
2466                                 data->t.size * 8, data->t.buffer);
2467            }
2468        }
2469        break;
2470 #endif //TPM_ALG_ECC
2471    default:
2472        FAIL(FATAL_ERROR_INTERNAL);
2473        break;
2474    }
2475    return result;
2476 }
2477 //
2478 //
2479 //       10.2.9.7   CryptSecretDecrypt()
2480 //
2481 //       Decrypt a secret value by asymmetric (or symmetric) algorithm This function is used for
2482 //       ActivateCredential() and Import for asymmetric decryption, and StartAuthSession() for both asymmetric
2483 //       and symmetric decryption process
2484 //
2485 //       Error Returns                    Meaning
2486 //
2487 //       TPM_RC_ATTRIBUTES                RSA key is not a decryption key
2488 //       TPM_RC_BINDING                   Invalid RSA key (public and private parts are not cryptographically
2489 //                                        bound.
2490 //       TPM_RC_ECC_POINT                 ECC point in the secret is not on the curve
2491 //       TPM_RC_INSUFFICIENT              failed to retrieve ECC point from the secret
2492 //       TPM_RC_NO_RESULT                 multiplication resulted in ECC point at infinity
2493 //       TPM_RC_SIZE                      data to decrypt is not of the same size as RSA key
2494 //       TPM_RC_VALUE                     For RSA key, numeric value of the encrypted data is greater than the
2495 //                                        modulus, or the recovered data is larger than the output buffer. For
2496 //                                        keyedHash or symmetric key, the secret is larger than the size of the
2497 //                                        digest produced by the name algorithm.
2498 //       TPM_RC_FAILURE                   internal error
2499 //
2500 TPM_RC
CryptSecretDecrypt(TPM_HANDLE tpmKey,TPM2B_NONCE * nonceCaller,const char * label,TPM2B_ENCRYPTED_SECRET * secret,TPM2B_DATA * data)2501 CryptSecretDecrypt(
2502    TPM_HANDLE                      tpmKey,               // IN: decrypt key
2503    TPM2B_NONCE                    *nonceCaller,          // IN: nonceCaller. It is needed for
2504                                                          //     symmetric decryption. For
2505                                                    //     asymmetric decryption, this
2506                                                    //     parameter is NULL
2507    const char                    *label,           // IN: a null-terminated string as L
2508    TPM2B_ENCRYPTED_SECRET        *secret,          // IN: input secret
2509    TPM2B_DATA                    *data             // OUT: decrypted secret value
2510    )
2511 {
2512    TPM_RC         result = TPM_RC_SUCCESS;
2513    OBJECT         *decryptKey = ObjectGet(tpmKey);          //TPM key used for decrypting
2514    // Decryption for secret
2515    switch(decryptKey->publicArea.type)
2516    {
2517 #ifdef TPM_ALG_RSA
2518        case TPM_ALG_RSA:
2519        {
2520            TPMT_RSA_DECRYPT             scheme;
2521              // Use OAEP scheme
2522              scheme.scheme = TPM_ALG_OAEP;
2523              scheme.details.oaep.hashAlg = decryptKey->publicArea.nameAlg;
2524              // Set the output buffer capacity
2525              data->t.size = sizeof(data->t.buffer);
2526              // Decrypt seed by RSA OAEP
2527              result = CryptDecryptRSA(&data->t.size, data->t.buffer, decryptKey,
2528                                        &scheme,
2529                                        secret->t.size, secret->t.secret,label);
2530              if(    (result == TPM_RC_SUCCESS)
2531                  && (data->t.size
2532                       > CryptGetHashDigestSize(decryptKey->publicArea.nameAlg)))
2533                   result = TPM_RC_VALUE;
2534        }
2535        break;
2536 #endif //TPM_ALG_RSA
2537 #ifdef TPM_ALG_ECC
2538        case TPM_ALG_ECC:
2539        {
2540            TPMS_ECC_POINT            eccPublic;
2541            TPMS_ECC_POINT            eccSecret;
2542            BYTE                     *buffer = secret->t.secret;
2543            INT32                     size = secret->t.size;
2544              // Retrieve ECC point from secret buffer
2545              result = TPMS_ECC_POINT_Unmarshal(&eccPublic, &buffer, &size);
2546              if(result == TPM_RC_SUCCESS)
2547              {
2548                  result = CryptEccPointMultiply(&eccSecret,
2549                                 decryptKey->publicArea.parameters.eccDetail.curveID,
2550                                 &decryptKey->sensitive.sensitive.ecc,
2551                                 &eccPublic);
2552                   if(result == TPM_RC_SUCCESS)
2553                   {
2554                       // Set the size of the "recovered" secret value to be the size
2555                       // of the digest produced by the nameAlg.
2556                       data->t.size =
2557                               CryptGetHashDigestSize(decryptKey->publicArea.nameAlg);
2558                       // The secret value is computed from Z using KDFe as:
2559                       // secret := KDFe(HashID, Z, Use, PartyUInfo, PartyVInfo, bits)
2560                       // Where:
2561                       // HashID -- the nameAlg of the decrypt key
2562                       // Z -- the x coordinate (Px) of the product (P) of the point
2563                       //        (Q) of the secret and the private x coordinate (de,V)
2564                       //        of the decryption key
2565                       // Use -- a null-terminated string containing "SECRET"
2566                       // PartyUInfo -- the x coordinate of the point in the secret
2567                       //              (Qe,U )
2568                       // PartyVInfo -- the x coordinate of the public key (Qs,V )
2569                       // bits -- the number of bits in the digest of HashID
2570                       // Retrieve seed from KDFe
2571                       CryptKDFe(decryptKey->publicArea.nameAlg, &eccSecret.x.b, label,
2572                                 &eccPublic.x.b,
2573                                 &decryptKey->publicArea.unique.ecc.x.b,
2574                                 data->t.size * 8, data->t.buffer);
2575                   }
2576               }
2577        }
2578        break;
2579 #endif //TPM_ALG_ECC
2580         case TPM_ALG_KEYEDHASH:
2581             // The seed size can not be bigger than the digest size of nameAlg
2582             if(secret->t.size >
2583                     CryptGetHashDigestSize(decryptKey->publicArea.nameAlg))
2584                 result = TPM_RC_VALUE;
2585             else
2586             {
2587                 // Retrieve seed by XOR Obfuscation:
2588                 //    seed = XOR(secret, hash, key, nonceCaller, nullNonce)
2589                 //    where:
2590                 //    secret the secret parameter from the TPM2_StartAuthHMAC
2591                 //             command
2592                 //             which contains the seed value
2593                 //    hash     nameAlg of tpmKey
2594                 //    key      the key or data value in the object referenced by
2595                 //             entityHandle in the TPM2_StartAuthHMAC command
2596                 //    nonceCaller the parameter from the TPM2_StartAuthHMAC command
2597                 //    nullNonce    a zero-length nonce
2598                 // XOR Obfuscation in place
2599                 CryptXORObfuscation(decryptKey->publicArea.nameAlg,
2600                                      &decryptKey->sensitive.sensitive.bits.b,
2601                                      &nonceCaller->b, NULL,
2602                                      secret->t.size, secret->t.secret);
2603                 // Copy decrypted seed
2604                 MemoryCopy2B(&data->b, &secret->b, sizeof(data->t.buffer));
2605             }
2606             break;
2607         case TPM_ALG_SYMCIPHER:
2608             {
2609                 TPM2B_IV                 iv = {};
2610                 TPMT_SYM_DEF_OBJECT      *symDef;
2611                 // The seed size can not be bigger than the digest size of nameAlg
2612                 if(secret->t.size >
2613                          CryptGetHashDigestSize(decryptKey->publicArea.nameAlg))
2614                     result = TPM_RC_VALUE;
2615                 else
2616                 {
2617                     symDef = &decryptKey->publicArea.parameters.symDetail.sym;
2618                     iv.t.size = CryptGetSymmetricBlockSize(symDef->algorithm,
2619                                                              symDef->keyBits.sym);
2620                     pAssert(iv.t.size != 0);
2621                     if(nonceCaller->t.size >= iv.t.size)
2622                          MemoryCopy(iv.t.buffer, nonceCaller->t.buffer, iv.t.size,
2623                                      sizeof(iv.t.buffer));
2624                     else
2625                          MemoryCopy(iv.b.buffer, nonceCaller->t.buffer,
2626                                       nonceCaller->t.size, sizeof(iv.t.buffer));
2627                        // CFB decrypt in place, using nonceCaller as iv
2628                        CryptSymmetricDecrypt(secret->t.secret, symDef->algorithm,
2629                                           symDef->keyBits.sym, TPM_ALG_CFB,
2630                                           decryptKey->sensitive.sensitive.sym.t.buffer,
2631                                           &iv, secret->t.size, secret->t.secret);
2632                        // Copy decrypted seed
2633                        MemoryCopy2B(&data->b, &secret->b, sizeof(data->t.buffer));
2634                    }
2635               }
2636               break;
2637           default:
2638               pAssert(0);
2639               break;
2640    }
2641    return result;
2642 }
2643 //
2644 //
2645 //       10.2.9.8    CryptParameterEncryption()
2646 //
2647 //       This function does in-place encryption of a response parameter.
2648 //
2649 void
CryptParameterEncryption(TPM_HANDLE handle,TPM2B * nonceCaller,UINT16 leadingSizeInByte,TPM2B_AUTH * extraKey,BYTE * buffer)2650 CryptParameterEncryption(
2651    TPM_HANDLE           handle,            // IN: encrypt session handle
2652    TPM2B               *nonceCaller,       // IN: nonce caller
2653    UINT16               leadingSizeInByte, // IN: the size of the leading size field in
2654                                            //     byte
2655    TPM2B_AUTH          *extraKey,          // IN: additional key material other than
2656                                            //     session auth
2657    BYTE                *buffer             // IN/OUT: parameter buffer to be encrypted
2658    )
2659 {
2660    SESSION     *session = SessionGet(handle); // encrypt session
2661    TPM2B_TYPE(SYM_KEY, ( sizeof(extraKey->t.buffer)
2662                         + sizeof(session->sessionKey.t.buffer)));
2663    TPM2B_SYM_KEY        key;               // encryption key
2664    UINT32               cipherSize = 0;    // size of cipher text
2665    pAssert(session->sessionKey.t.size + extraKey->t.size <= sizeof(key.t.buffer));
2666    // Retrieve encrypted data size.
2667    if(leadingSizeInByte == 2)
2668    {
2669        // Extract the first two bytes as the size field as the data size
2670        // encrypt
2671        cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer);
2672        // advance the buffer
2673        buffer = &buffer[2];
2674    }
2675 #ifdef      TPM4B
2676    else if(leadingSizeInByte == 4)
2677    {
2678        // use the first four bytes to indicate the number of bytes to encrypt
2679        cipherSize = BYTE_ARRAY_TO_UINT32(buffer);
2680        //advance pointer
2681        buffer = &buffer[4];
2682    }
2683 #endif
2684    else
2685    {
2686        pAssert(FALSE);
2687    }
2688 //
2689    // Compute encryption key by concatenating sessionAuth with extra key
2690    MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));
2691    MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer));
2692    if (session->symmetric.algorithm == TPM_ALG_XOR)
2693        // XOR parameter encryption formulation:
2694        //    XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder)
2695        CryptXORObfuscation(session->authHashAlg, &(key.b),
2696                                   &(session->nonceTPM.b),
2697                                   nonceCaller, cipherSize, buffer);
2698    else
2699        ParmEncryptSym(session->symmetric.algorithm, session->authHashAlg,
2700                              session->symmetric.keyBits.aes, &(key.b),
2701                              nonceCaller, &(session->nonceTPM.b),
2702                              cipherSize, buffer);
2703    return;
2704 }
2705 //
2706 //
2707 //       10.2.9.9   CryptParameterDecryption()
2708 //
2709 //       This function does in-place decryption of a command parameter.
2710 //
2711 //       Error Returns                  Meaning
2712 //
2713 //       TPM_RC_SIZE                    The number of bytes in the input buffer is less than the number of
2714 //                                      bytes to be decrypted.
2715 //
2716 TPM_RC
CryptParameterDecryption(TPM_HANDLE handle,TPM2B * nonceCaller,UINT32 bufferSize,UINT16 leadingSizeInByte,TPM2B_AUTH * extraKey,BYTE * buffer)2717 CryptParameterDecryption(
2718    TPM_HANDLE          handle,                 //   IN: encrypted session handle
2719    TPM2B              *nonceCaller,            //   IN: nonce caller
2720    UINT32              bufferSize,             //   IN: size of parameter buffer
2721    UINT16              leadingSizeInByte,      //   IN: the size of the leading size field in
2722                                                //       byte
2723    TPM2B_AUTH         *extraKey,               //   IN: the authValue
2724    BYTE               *buffer                  //   IN/OUT: parameter buffer to be decrypted
2725    )
2726 {
2727    SESSION         *session = SessionGet(handle); // encrypt session
2728    // The HMAC key is going to be the concatenation of the session key and any
2729    // additional key material (like the authValue). The size of both of these
2730    // is the size of the buffer which can contain a TPMT_HA.
2731    TPM2B_TYPE(HMAC_KEY, ( sizeof(extraKey->t.buffer)
2732                          + sizeof(session->sessionKey.t.buffer)));
2733    TPM2B_HMAC_KEY          key;            // decryption key
2734    UINT32                  cipherSize = 0; // size of cipher text
2735    pAssert(session->sessionKey.t.size + extraKey->t.size <= sizeof(key.t.buffer));
2736    // Retrieve encrypted data size.
2737    if(leadingSizeInByte == 2)
2738    {
2739        // The first two bytes of the buffer are the size of the
2740        // data to be decrypted
2741        cipherSize = (UINT32)BYTE_ARRAY_TO_UINT16(buffer);
2742        buffer = &buffer[2];    // advance the buffer
2743    }
2744 #ifdef TPM4B
2745    else if(leadingSizeInByte == 4)
2746    {
2747        // the leading size is four bytes so get the four byte size field
2748        cipherSize = BYTE_ARRAY_TO_UINT32(buffer);
2749        buffer = &buffer[4];    //advance pointer
2750    }
2751 #endif
2752    else
2753    {
2754        pAssert(FALSE);
2755    }
2756    if(cipherSize > bufferSize)
2757        return TPM_RC_SIZE;
2758    // Compute decryption key by concatenating sessionAuth with extra input key
2759    MemoryCopy2B(&key.b, &session->sessionKey.b, sizeof(key.t.buffer));
2760    MemoryConcat2B(&key.b, &extraKey->b, sizeof(key.t.buffer));
2761    if(session->symmetric.algorithm == TPM_ALG_XOR)
2762        // XOR parameter decryption formulation:
2763        //    XOR(parameter, hash, sessionAuth, nonceNewer, nonceOlder)
2764        // Call XOR obfuscation function
2765        CryptXORObfuscation(session->authHashAlg, &key.b, nonceCaller,
2766                                   &(session->nonceTPM.b), cipherSize, buffer);
2767    else
2768        // Assume that it is one of the symmetric block ciphers.
2769        ParmDecryptSym(session->symmetric.algorithm, session->authHashAlg,
2770                              session->symmetric.keyBits.sym,
2771                              &key.b, nonceCaller, &session->nonceTPM.b,
2772                              cipherSize, buffer);
2773    return TPM_RC_SUCCESS;
2774 }
2775 //
2776 //
2777 //       10.2.9.10 CryptComputeSymmetricUnique()
2778 //
2779 //       This function computes the unique field in public area for symmetric objects.
2780 //
2781 void
CryptComputeSymmetricUnique(TPMI_ALG_HASH nameAlg,TPMT_SENSITIVE * sensitive,TPM2B_DIGEST * unique)2782 CryptComputeSymmetricUnique(
2783    TPMI_ALG_HASH        nameAlg,           // IN: object name algorithm
2784    TPMT_SENSITIVE      *sensitive,         // IN: sensitive area
2785    TPM2B_DIGEST        *unique             // OUT: unique buffer
2786    )
2787 {
2788    HASH_STATE     hashState;
2789    pAssert(sensitive != NULL && unique != NULL);
2790    // Compute the public value as the hash of sensitive.symkey || unique.buffer
2791    unique->t.size = CryptGetHashDigestSize(nameAlg);
2792    CryptStartHash(nameAlg, &hashState);
2793    // Add obfuscation value
2794    CryptUpdateDigest2B(&hashState, &sensitive->seedValue.b);
2795    // Add sensitive value
2796    CryptUpdateDigest2B(&hashState, &sensitive->sensitive.any.b);
2797    CryptCompleteHash2B(&hashState, &unique->b);
2798    return;
2799 }
2800 #if 0 //%
2801 //
2802 //
2803 //
2804 //       10.2.9.11 CryptComputeSymValue()
2805 //
2806 //       This function computes the seedValue field in asymmetric sensitive areas.
2807 //
2808 void
2809 CryptComputeSymValue(
2810     TPM_HANDLE            parentHandle,      //   IN: parent handle of the object to be created
2811     TPMT_PUBLIC          *publicArea,        //   IN/OUT: the public area template
2812     TPMT_SENSITIVE       *sensitive,         //   IN: sensitive area
2813     TPM2B_SEED           *seed,              //   IN: the seed
2814     TPMI_ALG_HASH         hashAlg,           //   IN: hash algorithm for KDFa
2815     TPM2B_NAME           *name               //   IN: object name
2816     )
2817 {
2818     TPM2B_AUTH       *proof = NULL;
2819     if(CryptIsAsymAlgorithm(publicArea->type))
2820     {
2821         // Generate seedValue only when an asymmetric key is a storage key
2822         if(publicArea->objectAttributes.decrypt == SET
2823                   && publicArea->objectAttributes.restricted == SET)
2824         {
2825              // If this is a primary object in the endorsement hierarchy, use
2826              // ehProof in the creation of the symmetric seed so that child
2827              // objects in the endorsement hierarchy are voided on TPM2_Clear()
2828              // or TPM2_ChangeEPS()
2829              if(    parentHandle == TPM_RH_ENDORSEMENT
2830                  && publicArea->objectAttributes.fixedTPM == SET)
2831                   proof = &gp.ehProof;
2832         }
2833         else
2834         {
2835              sensitive->seedValue.t.size = 0;
2836              return;
2837         }
2838     }
2839     // For all object types, the size of seedValue is the digest size of nameAlg
2840     sensitive->seedValue.t.size = CryptGetHashDigestSize(publicArea->nameAlg);
2841     // Compute seedValue using implementation-dependent method
2842     _cpri__GenerateSeededRandom(sensitive->seedValue.t.size,
2843                                 sensitive->seedValue.t.buffer,
2844                                 hashAlg,
2845                                 &seed->b,
2846                                 "seedValue",
2847                                 &name->b,
2848                                 (TPM2B *)proof);
2849     return;
2850 }
2851 #endif //%
2852 //
2853 //
2854 //       10.2.9.12 CryptCreateObject()
2855 //
2856 //       This function creates an object. It:
2857 //       a) fills in the created key in public and sensitive area;
2858 //       b) creates a random number in sensitive area for symmetric keys; and
2859 //       c) compute the unique id in public area for symmetric keys.
2860 //
2861 //
2862 //
2863 //
2864 //       Error Returns                     Meaning
2865 //
2866 //       TPM_RC_KEY_SIZE                   key size in the public area does not match the size in the sensitive
2867 //                                         creation area for a symmetric key
2868 //       TPM_RC_RANGE                      for an RSA key, the exponent is not supported
2869 //       TPM_RC_SIZE                       sensitive data size is larger than allowed for the scheme for a keyed
2870 //                                         hash object
2871 //       TPM_RC_VALUE                      exponent is not prime or could not find a prime using the provided
2872 //                                         parameters for an RSA key; unsupported name algorithm for an ECC
2873 //                                         key
2874 //
2875 TPM_RC
CryptCreateObject(TPM_HANDLE parentHandle,TPMT_PUBLIC * publicArea,TPMS_SENSITIVE_CREATE * sensitiveCreate,TPMT_SENSITIVE * sensitive)2876 CryptCreateObject(
2877    TPM_HANDLE                       parentHandle,            //   IN/OUT: indication of the seed
2878                                                              //       source
2879    TPMT_PUBLIC                    *publicArea,               //   IN/OUT: public area
2880    TPMS_SENSITIVE_CREATE          *sensitiveCreate,          //   IN: sensitive creation
2881    TPMT_SENSITIVE                 *sensitive                 //   OUT: sensitive area
2882    )
2883 {
2884    // Next value is a placeholder for a random seed that is used in
2885    // key creation when the parent is not a primary seed. It has the same
2886    // size as the primary seed.
2887    TPM2B_SEED          localSeed;            // data to seed key creation if this
2888                                              // is not a primary seed
2889    TPM2B_SEED         *seed = NULL;
2890    TPM_RC              result = TPM_RC_SUCCESS;
2891    TPM2B_NAME          name;
2892    TPM_ALG_ID          hashAlg = CONTEXT_INTEGRITY_HASH_ALG;
2893    OBJECT             *parent;
2894    UINT32              counter;
2895    // Set the sensitive type for the object
2896    sensitive->sensitiveType = publicArea->type;
2897    ObjectComputeName(publicArea, &name);
2898    // For all objects, copy the initial auth data
2899    sensitive->authValue = sensitiveCreate->userAuth;
2900    // If this is a permanent handle assume that it is a hierarchy
2901    if(HandleGetType(parentHandle) == TPM_HT_PERMANENT)
2902    {
2903        seed = HierarchyGetPrimarySeed(parentHandle);
2904    }
2905    else
2906    {
2907        // If not hierarchy handle, get parent
2908        parent = ObjectGet(parentHandle);
2909        hashAlg = parent->publicArea.nameAlg;
2910         // Use random value as seed for non-primary objects
2911         localSeed.t.size = PRIMARY_SEED_SIZE;
2912         CryptGenerateRandom(PRIMARY_SEED_SIZE, localSeed.t.buffer);
2913         seed = &localSeed;
2914    }
2915    switch(publicArea->type)
2916    {
2917 #ifdef TPM_ALG_RSA
2918        // Create RSA key
2919    case TPM_ALG_RSA:
2920        result = CryptGenerateKeyRSA(publicArea, sensitive,
2921                                     hashAlg, seed, &name, &counter);
2922        break;
2923 #endif // TPM_ALG_RSA
2924 #ifdef TPM_ALG_ECC
2925        // Create ECC key
2926    case TPM_ALG_ECC:
2927        result = CryptGenerateKeyECC(publicArea, sensitive,
2928                                         hashAlg, seed, &name, &counter);
2929        break;
2930 #endif // TPM_ALG_ECC
2931        // Collect symmetric key information
2932    case TPM_ALG_SYMCIPHER:
2933        return CryptGenerateKeySymmetric(publicArea, sensitiveCreate,
2934                                         sensitive, hashAlg, seed, &name);
2935        break;
2936    case TPM_ALG_KEYEDHASH:
2937        return CryptGenerateKeyedHash(publicArea, sensitiveCreate,
2938                                      sensitive, hashAlg, seed, &name);
2939        break;
2940    default:
2941        pAssert(0);
2942        break;
2943    }
2944    if(result == TPM_RC_SUCCESS)
2945    {
2946        TPM2B_AUTH          *proof = NULL;
2947         if(publicArea->objectAttributes.decrypt == SET
2948                  && publicArea->objectAttributes.restricted == SET)
2949         {
2950             // If this is a primary object in the endorsement hierarchy, use
2951             // ehProof in the creation of the symmetric seed so that child
2952             // objects in the endorsement hierarchy are voided on TPM2_Clear()
2953             // or TPM2_ChangeEPS()
2954             if(    parentHandle == TPM_RH_ENDORSEMENT
2955                 && publicArea->objectAttributes.fixedTPM == SET)
2956                  proof = &gp.ehProof;
2957               // For all object types, the size of seedValue is the digest size
2958               // of its nameAlg
2959               sensitive->seedValue.t.size
2960                   = CryptGetHashDigestSize(publicArea->nameAlg);
2961               // Compute seedValue using implementation-dependent method
2962               _cpri__GenerateSeededRandom(sensitive->seedValue.t.size,
2963                                           sensitive->seedValue.t.buffer,
2964                                           hashAlg,
2965                                           &seed->b,
2966                                           "seedValuea",
2967                                           &name.b,
2968                                           (TPM2B *)proof);
2969         }
2970         else
2971         {
2972               sensitive->seedValue.t.size = 0;
2973         }
2974    }
2975    return result;
2976 }
2977 //
2978 //       10.2.9.13 CryptObjectIsPublicConsistent()
2979 //
2980 //       This function checks that the key sizes in the public area are consistent. For an asymmetric key, the size
2981 //       of the public key must match the size indicated by the public->parameters.
2982 //       Checks for the algorithm types matching the key type are handled by the unmarshaling operation.
2983 //
2984 //       Return Value                      Meaning
2985 //
2986 //       TRUE                              sizes are consistent
2987 //       FALSE                             sizes are not consistent
2988 //
2989 BOOL
CryptObjectIsPublicConsistent(TPMT_PUBLIC * publicArea)2990 CryptObjectIsPublicConsistent(
2991    TPMT_PUBLIC         *publicArea           // IN: public area
2992    )
2993 {
2994    BOOL                  OK = TRUE;
2995    switch (publicArea->type)
2996    {
2997 #ifdef TPM_ALG_RSA
2998        case TPM_ALG_RSA:
2999            OK = CryptAreKeySizesConsistent(publicArea);
3000            break;
3001 #endif //TPM_ALG_RSA
3002 #ifdef TPM_ALG_ECC
3003        case TPM_ALG_ECC:
3004            {
3005                const ECC_CURVE                              *curveValue;
3006                   // Check that the public point is on the indicated curve.
3007                   OK = CryptEccIsPointOnCurve(
3008                                   publicArea->parameters.eccDetail.curveID,
3009                                   &publicArea->unique.ecc);
3010                   if(OK)
3011                   {
3012                       curveValue = CryptEccGetCurveDataPointer(
3013                                            publicArea->parameters.eccDetail.curveID);
3014                       pAssert(curveValue != NULL);
3015                        // The input ECC curve must be a supported curve
3016                        // IF a scheme is defined for the curve, then that scheme must
3017                        // be used.
3018                        OK =    (curveValue->sign.scheme == TPM_ALG_NULL
3019                             || (   publicArea->parameters.eccDetail.scheme.scheme
3020                                 == curveValue->sign.scheme));
3021                        OK = OK && CryptAreKeySizesConsistent(publicArea);
3022                }
3023            }
3024            break;
3025 #endif //TPM_ALG_ECC
3026         default:
3027             // Symmetric object common checks
3028             // There is noting to check with a symmetric key that is public only.
3029             // Also not sure that there is anything useful to be done with it
3030             // either.
3031             break;
3032    }
3033    return OK;
3034 }
3035 //
3036 //
3037 //
3038 //       10.2.9.14 CryptObjectPublicPrivateMatch()
3039 //
3040 //       This function checks the cryptographic binding between the public and sensitive areas.
3041 //
3042 //       Error Returns                   Meaning
3043 //
3044 //       TPM_RC_TYPE                     the type of the public and private areas are not the same
3045 //       TPM_RC_FAILURE                  crypto error
3046 //       TPM_RC_BINDING                  the public and private areas are not cryptographically matched.
3047 //
3048 TPM_RC
CryptObjectPublicPrivateMatch(OBJECT * object)3049 CryptObjectPublicPrivateMatch(
3050    OBJECT              *object                // IN: the object to check
3051    )
3052 {
3053    TPMT_PUBLIC               *publicArea;
3054    TPMT_SENSITIVE            *sensitive;
3055    TPM_RC                     result = TPM_RC_SUCCESS;
3056    BOOL                       isAsymmetric = FALSE;
3057    pAssert(object != NULL);
3058    publicArea = &object->publicArea;
3059    sensitive = &object->sensitive;
3060    if(publicArea->type != sensitive->sensitiveType)
3061        return TPM_RC_TYPE;
3062    switch(publicArea->type)
3063    {
3064 #ifdef TPM_ALG_RSA
3065    case TPM_ALG_RSA:
3066        isAsymmetric = TRUE;
3067        // The public and private key sizes need to be consistent
3068        if(sensitive->sensitive.rsa.t.size != publicArea->unique.rsa.t.size/2)
3069             result = TPM_RC_BINDING;
3070        else
3071        // Load key by computing the private exponent
3072             result = CryptLoadPrivateRSA(object);
3073        break;
3074 #endif
3075 #ifdef TPM_ALG_ECC
3076        // This function is called from ObjectLoad() which has already checked to
3077        // see that the public point is on the curve so no need to repeat that
3078        // check.
3079    case TPM_ALG_ECC:
3080        isAsymmetric = TRUE;
3081        if(    publicArea->unique.ecc.x.t.size
3082                  != sensitive->sensitive.ecc.t.size)
3083             result = TPM_RC_BINDING;
3084        else if(publicArea->nameAlg != TPM_ALG_NULL)
3085        {
3086             TPMS_ECC_POINT           publicToCompare;
3087             // Compute ECC public key
3088             CryptEccPointMultiply(&publicToCompare,
3089                                    publicArea->parameters.eccDetail.curveID,
3090                                    &sensitive->sensitive.ecc, NULL);
3091             // Compare ECC public key
3092             if(    (!Memory2BEqual(&publicArea->unique.ecc.x.b,
3093                                    &publicToCompare.x.b))
3094                 || (!Memory2BEqual(&publicArea->unique.ecc.y.b,
3095                                    &publicToCompare.y.b)))
3096                  result = TPM_RC_BINDING;
3097        }
3098        break;
3099 //
3100 #endif
3101    case TPM_ALG_KEYEDHASH:
3102        break;
3103    case TPM_ALG_SYMCIPHER:
3104        if(    (publicArea->parameters.symDetail.sym.keyBits.sym + 7)/8
3105            != sensitive->sensitive.sym.t.size)
3106             result = TPM_RC_BINDING;
3107        break;
3108    default:
3109        // The choice here is an assert or a return of a bad type for the object
3110        pAssert(0);
3111        break;
3112    }
3113    // For asymmetric keys, the algorithm for validating the linkage between
3114    // the public and private areas is algorithm dependent. For symmetric keys
3115    // the linkage is based on hashing the symKey and obfuscation values.
3116    if(   result == TPM_RC_SUCCESS && !isAsymmetric
3117       && publicArea->nameAlg != TPM_ALG_NULL)
3118    {
3119        TPM2B_DIGEST    uniqueToCompare;
3120         // Compute unique for symmetric key
3121         CryptComputeSymmetricUnique(publicArea->nameAlg, sensitive,
3122                                      &uniqueToCompare);
3123         // Compare unique
3124         if(!Memory2BEqual(&publicArea->unique.sym.b,
3125                           &uniqueToCompare.b))
3126             result = TPM_RC_BINDING;
3127    }
3128    return result;
3129 }
3130 //
3131 //
3132 //       10.2.9.15 CryptGetSignHashAlg()
3133 //
3134 //       Get the hash algorithm of signature from a TPMT_SIGNATURE structure. It assumes the signature is not
3135 //       NULL This is a function for easy access
3136 //
3137 TPMI_ALG_HASH
CryptGetSignHashAlg(TPMT_SIGNATURE * auth)3138 CryptGetSignHashAlg(
3139    TPMT_SIGNATURE     *auth             // IN: signature
3140    )
3141 {
3142    pAssert(auth->sigAlg != TPM_ALG_NULL);
3143    // Get authHash algorithm based on signing scheme
3144    switch(auth->sigAlg)
3145    {
3146 #ifdef   TPM_ALG_RSA
3147         case TPM_ALG_RSASSA:
3148             return auth->signature.rsassa.hash;
3149         case TPM_ALG_RSAPSS:
3150             return auth->signature.rsapss.hash;
3151    #endif //TPM_ALG_RSA
3152    #ifdef TPM_ALG_ECC
3153        case TPM_ALG_ECDSA:
3154            return auth->signature.ecdsa.hash;
3155    #endif //TPM_ALG_ECC
3156             case TPM_ALG_HMAC:
3157                 return auth->signature.hmac.hashAlg;
3158             default:
3159                 return TPM_ALG_NULL;
3160     }
3161 }
3162 //
3163 //
3164 //       10.2.9.16 CryptIsSplitSign()
3165 //
3166 //       This function us used to determine if the signing operation is a split signing operation that required a
3167 //       TPM2_Commit().
3168 //
3169 BOOL
CryptIsSplitSign(TPM_ALG_ID scheme)3170 CryptIsSplitSign(
3171     TPM_ALG_ID           scheme             // IN: the algorithm selector
3172     )
3173 {
3174     if(   scheme != scheme
3175 #    ifdef   TPM_ALG_ECDAA
3176        || scheme == TPM_ALG_ECDAA
3177 #    endif   // TPM_ALG_ECDAA
3178         )
3179         return TRUE;
3180     return FALSE;
3181 }
3182 //
3183 //
3184 //       10.2.9.17 CryptIsSignScheme()
3185 //
3186 //       This function indicates if a scheme algorithm is a sign algorithm.
3187 //
3188 BOOL
CryptIsSignScheme(TPMI_ALG_ASYM_SCHEME scheme)3189 CryptIsSignScheme(
3190     TPMI_ALG_ASYM_SCHEME           scheme
3191     )
3192 {
3193     BOOL                isSignScheme = FALSE;
3194    switch(scheme)
3195    {
3196 #ifdef TPM_ALG_RSA
3197        // If RSA is implemented, then both signing schemes are required
3198    case TPM_ALG_RSASSA:
3199    case TPM_ALG_RSAPSS:
3200        isSignScheme = TRUE;
3201        break;
3202 #endif //TPM_ALG_RSA
3203 #ifdef TPM_ALG_ECC
3204        // If ECC is implemented ECDSA is required
3205    case TPM_ALG_ECDSA:
3206 #ifdef TPM_ALG_ECDAA
3207        // ECDAA is optional
3208    case TPM_ALG_ECDAA:
3209 #endif
3210 #ifdef   TPM_ALG_ECSCHNORR
3211        // Schnorr is also optional
3212    case TPM_ALG_ECSCHNORR:
3213 #endif
3214 #ifdef TPM_ALG_SM2
3215    case TPM_ALG_SM2:
3216 #endif
3217        isSignScheme = TRUE;
3218        break;
3219 #endif //TPM_ALG_ECC
3220    default:
3221        break;
3222    }
3223    return isSignScheme;
3224 }
3225 //
3226 //
3227 //       10.2.9.18 CryptIsDecryptScheme()
3228 //
3229 //       This function indicate if a scheme algorithm is a decrypt algorithm.
3230 //
3231 BOOL
CryptIsDecryptScheme(TPMI_ALG_ASYM_SCHEME scheme)3232 CryptIsDecryptScheme(
3233     TPMI_ALG_ASYM_SCHEME           scheme
3234     )
3235 {
3236     BOOL           isDecryptScheme = FALSE;
3237    switch(scheme)
3238    {
3239 #ifdef TPM_ALG_RSA
3240        // If RSA is implemented, then both decrypt schemes are required
3241    case TPM_ALG_RSAES:
3242    case TPM_ALG_OAEP:
3243         isDecryptScheme = TRUE;
3244        break;
3245 #endif //TPM_ALG_RSA
3246 #ifdef TPM_ALG_ECC
3247        // If ECC is implemented ECDH is required
3248    case TPM_ALG_ECDH:
3249 #ifdef TPM_ALG_SM2
3250    case TPM_ALG_SM2:
3251 #endif
3252 #ifdef TPM_ALG_ECMQV
3253    case TPM_ALG_ECMQV:
3254 #endif
3255        isDecryptScheme = TRUE;
3256        break;
3257 #endif //TPM_ALG_ECC
3258    default:
3259        break;
3260    }
3261    return isDecryptScheme;
3262 }
3263 //
3264 //
3265 //       10.2.9.19 CryptSelectSignScheme()
3266 //
3267 //       This function is used by the attestation and signing commands. It implements the rules for selecting the
3268 //       signature scheme to use in signing. This function requires that the signing key either be TPM_RH_NULL
3269 //       or be loaded.
3270 //       If a default scheme is defined in object, the default scheme should be chosen, otherwise, the input
3271 //       scheme should be chosen. In the case that both object and input scheme has a non-NULL scheme
3272 //       algorithm, if the schemes are compatible, the input scheme will be chosen.
3273 //
3274 //
3275 //
3276 //
3277 //       Error Returns                   Meaning
3278 //
3279 //       TPM_RC_KEY                      key referenced by signHandle is not a signing key
3280 //       TPM_RC_SCHEME                   both scheme and key's default scheme are empty; or scheme is
3281 //                                       empty while key's default scheme requires explicit input scheme (split
3282 //                                       signing); or non-empty default key scheme differs from scheme
3283 //
3284 TPM_RC
CryptSelectSignScheme(TPMI_DH_OBJECT signHandle,TPMT_SIG_SCHEME * scheme)3285 CryptSelectSignScheme(
3286    TPMI_DH_OBJECT             signHandle,        // IN: handle of signing key
3287    TPMT_SIG_SCHEME           *scheme             // IN/OUT: signing scheme
3288    )
3289 {
3290    OBJECT                    *signObject;
3291    TPMT_SIG_SCHEME           *objectScheme;
3292    TPMT_PUBLIC               *publicArea;
3293    TPM_RC                     result = TPM_RC_SUCCESS;
3294    // If the signHandle is TPM_RH_NULL, then the NULL scheme is used, regardless
3295    // of the setting of scheme
3296    if(signHandle == TPM_RH_NULL)
3297    {
3298        scheme->scheme = TPM_ALG_NULL;
3299        scheme->details.any.hashAlg = TPM_ALG_NULL;
3300    }
3301    else
3302    {
3303        // sign handle is not NULL so...
3304        // Get sign object pointer
3305        signObject = ObjectGet(signHandle);
3306        publicArea = &signObject->publicArea;
3307         // is this a signing key?
3308         if(!publicArea->objectAttributes.sign)
3309              result = TPM_RC_KEY;
3310         else
3311         {
3312              // "parms" defined to avoid long code lines.
3313              TPMU_PUBLIC_PARMS    *parms = &publicArea->parameters;
3314              if(CryptIsAsymAlgorithm(publicArea->type))
3315                  objectScheme = (TPMT_SIG_SCHEME *)&parms->asymDetail.scheme;
3316              else
3317                  objectScheme = (TPMT_SIG_SCHEME *)&parms->keyedHashDetail.scheme;
3318                // If the object doesn't have a default scheme, then use the
3319                // input scheme.
3320                if(objectScheme->scheme == TPM_ALG_NULL)
3321                {
3322                    // Input and default can't both be NULL
3323                    if(scheme->scheme == TPM_ALG_NULL)
3324                        result = TPM_RC_SCHEME;
3325                    // Assume that the scheme is compatible with the key. If not,
3326                    // we will generate an error in the signing operation.
3327                }
3328                else if(scheme->scheme == TPM_ALG_NULL)
3329                {
3330                    // input scheme is NULL so use default
3331                    // First, check to see if the default requires that the caller
3332                    // provided scheme data
3333                    if(CryptIsSplitSign(objectScheme->scheme))
3334                        result = TPM_RC_SCHEME;
3335                    else
3336                    {
3337                        scheme->scheme = objectScheme->scheme;
3338                        scheme->details.any.hashAlg
3339                                    = objectScheme->details.any.hashAlg;
3340                    }
3341                }
3342                else
3343                {
3344                    // Both input and object have scheme selectors
3345                    // If the scheme and the hash are not the same then...
3346                    if(    objectScheme->scheme != scheme->scheme
3347                        || (   objectScheme->details.any.hashAlg
3348                            != scheme->details.any.hashAlg))
3349                         result = TPM_RC_SCHEME;
3350                }
3351         }
3352    }
3353    return result;
3354 }
3355 //
3356 //
3357 //       10.2.9.20 CryptSign()
3358 //
3359 //       Sign a digest with asymmetric key or HMAC. This function is called by attestation commands and the
3360 //       generic TPM2_Sign() command. This function checks the key scheme and digest size. It does not check
3361 //       if the sign operation is allowed for restricted key. It should be checked before the function is called. The
3362 //       function will assert if the key is not a signing key.
3363 //
3364 //       Error Returns                     Meaning
3365 //
3366 //       TPM_RC_SCHEME                     signScheme is not compatible with the signing key type
3367 //       TPM_RC_VALUE                      digest value is greater than the modulus of signHandle or size of
3368 //                                         hashData does not match hash algorithm insignScheme (for an RSA
3369 //                                         key); invalid commit status or failed to generate r value (for an ECC
3370 //                                         key)
3371 //
3372 TPM_RC
CryptSign(TPMI_DH_OBJECT signHandle,TPMT_SIG_SCHEME * signScheme,TPM2B_DIGEST * digest,TPMT_SIGNATURE * signature)3373 CryptSign(
3374    TPMI_DH_OBJECT            signHandle,          //   IN: The handle of sign key
3375    TPMT_SIG_SCHEME          *signScheme,          //   IN: sign scheme.
3376    TPM2B_DIGEST             *digest,              //   IN: The digest being signed
3377    TPMT_SIGNATURE           *signature            //   OUT: signature
3378    )
3379 {
3380    OBJECT                   *signKey = ObjectGet(signHandle);
3381    TPM_RC                    result = TPM_RC_SCHEME;
3382    // check if input handle is a sign key
3383    pAssert(signKey->publicArea.objectAttributes.sign == SET);
3384    // Must have the private portion loaded. This check is made during
3385    // authorization.
3386    pAssert(signKey->attributes.publicOnly == CLEAR);
3387    // Initialize signature scheme
3388    signature->sigAlg = signScheme->scheme;
3389    // If the signature algorithm is TPM_ALG_NULL, then we are done
3390    if(signature->sigAlg == TPM_ALG_NULL)
3391        return TPM_RC_SUCCESS;
3392    // All the schemes other than TPM_ALG_NULL have a hash algorithm
3393     TEST_HASH(signScheme->details.any.hashAlg);
3394     // Initialize signature hash
3395     // Note: need to do the check for alg null first because the null scheme
3396     // doesn't have a hashAlg member.
3397     signature->signature.any.hashAlg = signScheme->details.any.hashAlg;
3398     // perform sign operation based on different key type
3399     switch (signKey->publicArea.type)
3400     {
3401 #ifdef TPM_ALG_RSA
3402        case TPM_ALG_RSA:
3403            result = CryptSignRSA(signKey, signScheme, digest, signature);
3404            break;
3405 #endif //TPM_ALG_RSA
3406 #ifdef TPM_ALG_ECC
3407        case TPM_ALG_ECC:
3408            result = CryptSignECC(signKey, signScheme, digest, signature);
3409            break;
3410 #endif //TPM_ALG_ECC
3411        case TPM_ALG_KEYEDHASH:
3412            result = CryptSignHMAC(signKey, signScheme, digest, signature);
3413            break;
3414        default:
3415            break;
3416    }
3417     return result;
3418 }
3419 //
3420 //
3421 //       10.2.9.21 CryptVerifySignature()
3422 //
3423 //       This function is used to verify a signature.               It is called by TPM2_VerifySignature() and
3424 //       TPM2_PolicySigned().
3425 //       Since this operation only requires use of a public key, no consistency checks are necessary for the key to
3426 //       signature type because a caller can load any public key that they like with any scheme that they like. This
3427 //       routine simply makes sure that the signature is correct, whatever the type.
3428 //       This function requires that auth is not a NULL pointer.
3429 //
3430 //       Error Returns                    Meaning
3431 //
3432 //       TPM_RC_SIGNATURE                 the signature is not genuine
3433 //       TPM_RC_SCHEME                    the scheme is not supported
3434 //       TPM_RC_HANDLE                    an HMAC key was selected but the private part of the key is not
3435 //                                        loaded
3436 //
3437 TPM_RC
CryptVerifySignature(TPMI_DH_OBJECT keyHandle,TPM2B_DIGEST * digest,TPMT_SIGNATURE * signature)3438 CryptVerifySignature(
3439     TPMI_DH_OBJECT       keyHandle,         // IN: The handle of sign key
3440     TPM2B_DIGEST        *digest,            // IN: The digest being validated
3441     TPMT_SIGNATURE      *signature          // IN: signature
3442     )
3443 {
3444     // NOTE: ObjectGet will either return a pointer to a loaded object or
3445     // will assert. It will never return a non-valid value. This makes it save
3446     // to initialize 'publicArea' with the return value from ObjectGet() without
3447     // checking it first.
3448     OBJECT              *authObject = ObjectGet(keyHandle);
3449     TPMT_PUBLIC         *publicArea = &authObject->publicArea;
3450     TPM_RC                    result = TPM_RC_SCHEME;
3451     // The input unmarshaling should prevent any input signature from being
3452     // a NULL signature, but just in case
3453     if(signature->sigAlg == TPM_ALG_NULL)
3454         return TPM_RC_SIGNATURE;
3455     switch (publicArea->type)
3456     {
3457 #ifdef TPM_ALG_RSA
3458    case TPM_ALG_RSA:
3459        result = CryptRSAVerifySignature(authObject, digest, signature);
3460        break;
3461 #endif //TPM_ALG_RSA
3462 #ifdef TPM_ALG_ECC
3463    case TPM_ALG_ECC:
3464        result = CryptECCVerifySignature(authObject, digest, signature);
3465        break;
3466 #endif // TPM_ALG_ECC
3467     case TPM_ALG_KEYEDHASH:
3468         if(authObject->attributes.publicOnly)
3469              result = TPM_RC_HANDLE;
3470         else
3471              result = CryptHMACVerifySignature(authObject, digest, signature);
3472         break;
3473     default:
3474         break;
3475     }
3476     return result;
3477 }
3478 //
3479 //
3480 //       10.2.10 Math functions
3481 //
3482 //       10.2.10.1 CryptDivide()
3483 //
3484 //       This function interfaces to the math library for large number divide.
3485 //
3486 //       Error Returns                     Meaning
3487 //
3488 //       TPM_RC_SIZE                       quotient or remainder is too small to receive the result
3489 //
3490 TPM_RC
CryptDivide(TPM2B * numerator,TPM2B * denominator,TPM2B * quotient,TPM2B * remainder)3491 CryptDivide(
3492     TPM2B               *numerator,           //   IN: numerator
3493     TPM2B               *denominator,         //   IN: denominator
3494     TPM2B               *quotient,            //   OUT: quotient = numerator / denominator.
3495     TPM2B               *remainder            //   OUT: numerator mod denominator.
3496     )
3497 {
3498     pAssert(   numerator != NULL         && denominator!= NULL
3499             && (quotient != NULL         || remainder != NULL)
3500            );
3501     // assume denominator is not         0
3502     pAssert(denominator->size !=         0);
3503     return TranslateCryptErrors(_math__Div(numerator,
3504                                            denominator,
3505                                                               quotient,
3506                                                               remainder)
3507                                            );
3508 }
3509 //
3510 //
3511 //       10.2.10.2 CryptCompare()
3512 //
3513 //       This function interfaces to the math library for large number, unsigned compare.
3514 //
3515 //       Return Value                         Meaning
3516 //
3517 //       1                                    if a > b
3518 //       0                                    if a = b
3519 //       -1                                   if a < b
3520 //
3521 LIB_EXPORT int
CryptCompare(const UINT32 aSize,const BYTE * a,const UINT32 bSize,const BYTE * b)3522 CryptCompare(
3523     const   UINT32         aSize,                  //   IN:   size of a
3524     const   BYTE          *a,                      //   IN:   a buffer
3525     const   UINT32         bSize,                  //   IN:   size of b
3526     const   BYTE          *b                       //   IN:   b buffer
3527     )
3528 {
3529     return _math__uComp(aSize, a, bSize, b);
3530 }
3531 //
3532 //
3533 //       10.2.10.3 CryptCompareSigned()
3534 //
3535 //       This function interfaces to the math library for large number, signed compare.
3536 //
3537 //       Return Value                         Meaning
3538 //
3539 //       1                                    if a > b
3540 //       0                                    if a = b
3541 //       -1                                   if a < b
3542 //
3543 int
CryptCompareSigned(UINT32 aSize,BYTE * a,UINT32 bSize,BYTE * b)3544 CryptCompareSigned(
3545     UINT32                 aSize,                  //   IN:   size of a
3546     BYTE                  *a,                      //   IN:   a buffer
3547     UINT32                 bSize,                  //   IN:   size of b
3548     BYTE                  *b                       //   IN:   b buffer
3549     )
3550 {
3551     return _math__Comp(aSize, a, bSize, b);
3552 }
3553 //
3554 //
3555 //       10.2.10.4 CryptGetTestResult
3556 //
3557 //       This function returns the results of a self-test function.
3558 //
3559 //       NOTE:            the behavior in this function is NOT the correct behavior for a real TPM implementation. An artificial behavior is
3560 //                        placed here due to the limitation of a software simulation environment. For the correct behavior, consult the
3561 //                        part 3 specification for TPM2_GetTestResult().
3562 //
3563 TPM_RC
CryptGetTestResult(TPM2B_MAX_BUFFER * outData)3564 CryptGetTestResult(
3565     TPM2B_MAX_BUFFER            *outData                 // OUT: test result data
3566      )
3567 {
3568      outData->t.size = 0;
3569      return TPM_RC_SUCCESS;
3570 }
3571 //
3572 //
3573 //       10.2.11 Capability Support
3574 //
3575 //       10.2.11.1 CryptCapGetECCCurve()
3576 //
3577 //       This function returns the list of implemented ECC curves.
3578 //
3579 //       Return Value                      Meaning
3580 //
3581 //       YES                               if no more ECC curve is available
3582 //       NO                                if there are more ECC curves not reported
3583 //
3584 #ifdef TPM_ALG_ECC //% 5
3585 TPMI_YES_NO
CryptCapGetECCCurve(TPM_ECC_CURVE curveID,UINT32 maxCount,TPML_ECC_CURVE * curveList)3586 CryptCapGetECCCurve(
3587      TPM_ECC_CURVE      curveID,             // IN: the starting ECC curve
3588      UINT32             maxCount,            // IN: count of returned curve
3589      TPML_ECC_CURVE    *curveList            // OUT: ECC curve list
3590      )
3591 {
3592      TPMI_YES_NO         more = NO;
3593      UINT16              i;
3594      UINT32              count = _cpri__EccGetCurveCount();
3595      TPM_ECC_CURVE       curve;
3596      // Initialize output property list
3597      curveList->count = 0;
3598      // The maximum count of curves we may return is MAX_ECC_CURVES
3599      if(maxCount > MAX_ECC_CURVES) maxCount = MAX_ECC_CURVES;
3600      // Scan the eccCurveValues array
3601      for(i = 0; i < count; i++)
3602      {
3603          curve = _cpri__GetCurveIdByIndex(i);
3604          // If curveID is less than the starting curveID, skip it
3605          if(curve < curveID)
3606              continue;
3607          if(curveList->count < maxCount)
3608          {
3609               // If we have not filled up the return list, add more curves to
3610               // it
3611               curveList->eccCurves[curveList->count] = curve;
3612               curveList->count++;
3613          }
3614          else
3615          {
3616               // If the return list is full but we still have curves
3617               // available, report this and stop iterating
3618               more = YES;
3619               break;
3620          }
3621      }
3622      return more;
3623 }
3624 //
3625 //
3626 //       10.2.11.2 CryptCapGetEccCurveNumber()
3627 //
3628 //       This function returns the number of ECC curves supported by the TPM.
3629 //
3630 UINT32
CryptCapGetEccCurveNumber(void)3631 CryptCapGetEccCurveNumber(
3632    void
3633    )
3634 {
3635    // There is an array that holds the curve data. Its size divided by the
3636    // size of an entry is the number of values in the table.
3637    return _cpri__EccGetCurveCount();
3638 }
3639 #endif //TPM_ALG_ECC //% 5
3640 //
3641 //
3642 //       10.2.11.3 CryptAreKeySizesConsistent()
3643 //
3644 //       This function validates that the public key size values are consistent for an asymmetric key.
3645 //
3646 //       NOTE:           This is not a comprehensive test of the public key.
3647 //
3648 //
3649 //       Return Value                        Meaning
3650 //
3651 //       TRUE                                sizes are consistent
3652 //       FALSE                               sizes are not consistent
3653 //
3654 BOOL
CryptAreKeySizesConsistent(TPMT_PUBLIC * publicArea)3655 CryptAreKeySizesConsistent(
3656    TPMT_PUBLIC           *publicArea              // IN: the public area to check
3657    )
3658 {
3659    BOOL                  consistent = FALSE;
3660    switch (publicArea->type)
3661    {
3662 #ifdef TPM_ALG_RSA
3663        case TPM_ALG_RSA:
3664            // The key size in bits is filtered by the unmarshaling
3665            consistent = (     ((publicArea->parameters.rsaDetail.keyBits+7)/8)
3666                            == publicArea->unique.rsa.t.size);
3667            break;
3668 #endif //TPM_ALG_RSA
3669 #ifdef TPM_ALG_ECC
3670        case TPM_ALG_ECC:
3671            {
3672                UINT16                        keySizeInBytes;
3673                TPM_ECC_CURVE                 curveId = publicArea->parameters.eccDetail.curveID;
3674                    keySizeInBytes = CryptEccGetKeySizeInBytes(curveId);
3675                    consistent =         keySizeInBytes > 0
3676                                      && publicArea->unique.ecc.x.t.size <= keySizeInBytes
3677                                      && publicArea->unique.ecc.y.t.size <= keySizeInBytes;
3678            }
3679            break;
3680 #endif //TPM_ALG_ECC
3681        default:
3682            break;
3683       }
3684       return consistent;
3685 }
3686 //
3687 //
3688 //       10.2.11.4 CryptAlgSetImplemented()
3689 //
3690 //       This function initializes the bit vector with one bit for each implemented algorithm. This function is called
3691 //       from _TPM_Init(). The vector of implemented algorithms should be generated by the part 2 parser so that
3692 //       the g_implementedAlgorithms vector can be a const. That's not how it is now
3693 //
3694 void
CryptAlgsSetImplemented(void)3695 CryptAlgsSetImplemented(
3696       void
3697       )
3698 {
3699       AlgorithmGetImplementedVector(&g_implementedAlgorithms);
3700 }
3701