1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_processor.h"
18
19 #include "base/time_utils.h"
20 #include "collector/garbage_collector.h"
21 #include "mirror/class-inl.h"
22 #include "mirror/object-inl.h"
23 #include "mirror/reference-inl.h"
24 #include "reference_processor-inl.h"
25 #include "reflection.h"
26 #include "ScopedLocalRef.h"
27 #include "scoped_thread_state_change.h"
28 #include "task_processor.h"
29 #include "utils.h"
30 #include "well_known_classes.h"
31
32 namespace art {
33 namespace gc {
34
35 static constexpr bool kAsyncReferenceQueueAdd = false;
36
ReferenceProcessor()37 ReferenceProcessor::ReferenceProcessor()
38 : collector_(nullptr),
39 preserving_references_(false),
40 condition_("reference processor condition", *Locks::reference_processor_lock_) ,
41 soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
42 weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
43 finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
44 phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
45 cleared_references_(Locks::reference_queue_cleared_references_lock_) {
46 }
47
EnableSlowPath()48 void ReferenceProcessor::EnableSlowPath() {
49 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(true);
50 }
51
DisableSlowPath(Thread * self)52 void ReferenceProcessor::DisableSlowPath(Thread* self) {
53 mirror::Reference::GetJavaLangRefReference()->SetSlowPath(false);
54 condition_.Broadcast(self);
55 }
56
BroadcastForSlowPath(Thread * self)57 void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
58 CHECK(kUseReadBarrier);
59 MutexLock mu(self, *Locks::reference_processor_lock_);
60 condition_.Broadcast(self);
61 }
62
GetReferent(Thread * self,mirror::Reference * reference)63 mirror::Object* ReferenceProcessor::GetReferent(Thread* self, mirror::Reference* reference) {
64 if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
65 // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
66 // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
67 // mark stack and interfere with termination of marking.
68 mirror::Object* const referent = reference->GetReferent();
69 // If the referent is null then it is already cleared, we can just return null since there is no
70 // scenario where it becomes non-null during the reference processing phase.
71 if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
72 return referent;
73 }
74 }
75 MutexLock mu(self, *Locks::reference_processor_lock_);
76 while ((!kUseReadBarrier && SlowPathEnabled()) ||
77 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
78 mirror::HeapReference<mirror::Object>* const referent_addr =
79 reference->GetReferentReferenceAddr();
80 // If the referent became cleared, return it. Don't need barrier since thread roots can't get
81 // updated until after we leave the function due to holding the mutator lock.
82 if (referent_addr->AsMirrorPtr() == nullptr) {
83 return nullptr;
84 }
85 // Try to see if the referent is already marked by using the is_marked_callback. We can return
86 // it to the mutator as long as the GC is not preserving references.
87 if (LIKELY(collector_ != nullptr)) {
88 // If it's null it means not marked, but it could become marked if the referent is reachable
89 // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
90 // can return it to the mutator as long as the GC is not preserving references, in which
91 // case only black nodes can be safely returned. If the GC is preserving references, the
92 // mutator could take a white field from a grey or white node and move it somewhere else
93 // in the heap causing corruption since this field would get swept.
94 if (collector_->IsMarkedHeapReference(referent_addr)) {
95 if (!preserving_references_ ||
96 (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
97 return referent_addr->AsMirrorPtr();
98 }
99 }
100 }
101 condition_.WaitHoldingLocks(self);
102 }
103 return reference->GetReferent();
104 }
105
StartPreservingReferences(Thread * self)106 void ReferenceProcessor::StartPreservingReferences(Thread* self) {
107 MutexLock mu(self, *Locks::reference_processor_lock_);
108 preserving_references_ = true;
109 }
110
StopPreservingReferences(Thread * self)111 void ReferenceProcessor::StopPreservingReferences(Thread* self) {
112 MutexLock mu(self, *Locks::reference_processor_lock_);
113 preserving_references_ = false;
114 // We are done preserving references, some people who are blocked may see a marked referent.
115 condition_.Broadcast(self);
116 }
117
118 // Process reference class instances and schedule finalizations.
ProcessReferences(bool concurrent,TimingLogger * timings,bool clear_soft_references,collector::GarbageCollector * collector)119 void ReferenceProcessor::ProcessReferences(bool concurrent, TimingLogger* timings,
120 bool clear_soft_references,
121 collector::GarbageCollector* collector) {
122 TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
123 Thread* self = Thread::Current();
124 {
125 MutexLock mu(self, *Locks::reference_processor_lock_);
126 collector_ = collector;
127 if (!kUseReadBarrier) {
128 CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
129 } else {
130 // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
131 CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
132 }
133 }
134 // Unless required to clear soft references with white references, preserve some white referents.
135 if (!clear_soft_references) {
136 TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
137 "(Paused)ForwardSoftReferences", timings);
138 if (concurrent) {
139 StartPreservingReferences(self);
140 }
141 // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
142 // mark if the SoftReference is supposed to be preserved.
143 soft_reference_queue_.ForwardSoftReferences(collector);
144 collector->ProcessMarkStack();
145 if (concurrent) {
146 StopPreservingReferences(self);
147 }
148 }
149 // Clear all remaining soft and weak references with white referents.
150 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
151 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
152 {
153 TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
154 "(Paused)EnqueueFinalizerReferences", timings);
155 if (concurrent) {
156 StartPreservingReferences(self);
157 }
158 // Preserve all white objects with finalize methods and schedule them for finalization.
159 finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
160 collector->ProcessMarkStack();
161 if (concurrent) {
162 StopPreservingReferences(self);
163 }
164 }
165 // Clear all finalizer referent reachable soft and weak references with white referents.
166 soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
167 weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
168 // Clear all phantom references with white referents.
169 phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
170 // At this point all reference queues other than the cleared references should be empty.
171 DCHECK(soft_reference_queue_.IsEmpty());
172 DCHECK(weak_reference_queue_.IsEmpty());
173 DCHECK(finalizer_reference_queue_.IsEmpty());
174 DCHECK(phantom_reference_queue_.IsEmpty());
175 {
176 MutexLock mu(self, *Locks::reference_processor_lock_);
177 // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
178 // could result in a stale is_marked_callback_ being called before the reference processing
179 // starts since there is a small window of time where slow_path_enabled_ is enabled but the
180 // callback isn't yet set.
181 collector_ = nullptr;
182 if (!kUseReadBarrier && concurrent) {
183 // Done processing, disable the slow path and broadcast to the waiters.
184 DisableSlowPath(self);
185 }
186 }
187 }
188
189 // Process the "referent" field in a java.lang.ref.Reference. If the referent has not yet been
190 // marked, put it on the appropriate list in the heap for later processing.
DelayReferenceReferent(mirror::Class * klass,mirror::Reference * ref,collector::GarbageCollector * collector)191 void ReferenceProcessor::DelayReferenceReferent(mirror::Class* klass, mirror::Reference* ref,
192 collector::GarbageCollector* collector) {
193 // klass can be the class of the old object if the visitor already updated the class of ref.
194 DCHECK(klass != nullptr);
195 DCHECK(klass->IsTypeOfReferenceClass());
196 mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
197 if (referent->AsMirrorPtr() != nullptr && !collector->IsMarkedHeapReference(referent)) {
198 Thread* self = Thread::Current();
199 // TODO: Remove these locks, and use atomic stacks for storing references?
200 // We need to check that the references haven't already been enqueued since we can end up
201 // scanning the same reference multiple times due to dirty cards.
202 if (klass->IsSoftReferenceClass()) {
203 soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
204 } else if (klass->IsWeakReferenceClass()) {
205 weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
206 } else if (klass->IsFinalizerReferenceClass()) {
207 finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
208 } else if (klass->IsPhantomReferenceClass()) {
209 phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
210 } else {
211 LOG(FATAL) << "Invalid reference type " << PrettyClass(klass) << " " << std::hex
212 << klass->GetAccessFlags();
213 }
214 }
215 }
216
UpdateRoots(IsMarkedVisitor * visitor)217 void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
218 cleared_references_.UpdateRoots(visitor);
219 }
220
221 class ClearedReferenceTask : public HeapTask {
222 public:
ClearedReferenceTask(jobject cleared_references)223 explicit ClearedReferenceTask(jobject cleared_references)
224 : HeapTask(NanoTime()), cleared_references_(cleared_references) {
225 }
Run(Thread * thread)226 virtual void Run(Thread* thread) {
227 ScopedObjectAccess soa(thread);
228 jvalue args[1];
229 args[0].l = cleared_references_;
230 InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
231 soa.Env()->DeleteGlobalRef(cleared_references_);
232 }
233
234 private:
235 const jobject cleared_references_;
236 };
237
EnqueueClearedReferences(Thread * self)238 void ReferenceProcessor::EnqueueClearedReferences(Thread* self) {
239 Locks::mutator_lock_->AssertNotHeld(self);
240 // When a runtime isn't started there are no reference queues to care about so ignore.
241 if (!cleared_references_.IsEmpty()) {
242 if (LIKELY(Runtime::Current()->IsStarted())) {
243 jobject cleared_references;
244 {
245 ReaderMutexLock mu(self, *Locks::mutator_lock_);
246 cleared_references = self->GetJniEnv()->vm->AddGlobalRef(
247 self, cleared_references_.GetList());
248 }
249 if (kAsyncReferenceQueueAdd) {
250 // TODO: This can cause RunFinalization to terminate before newly freed objects are
251 // finalized since they may not be enqueued by the time RunFinalization starts.
252 Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
253 self, new ClearedReferenceTask(cleared_references));
254 } else {
255 ClearedReferenceTask task(cleared_references);
256 task.Run(self);
257 }
258 }
259 cleared_references_.Clear();
260 }
261 }
262
MakeCircularListIfUnenqueued(mirror::FinalizerReference * reference)263 bool ReferenceProcessor::MakeCircularListIfUnenqueued(mirror::FinalizerReference* reference) {
264 Thread* self = Thread::Current();
265 MutexLock mu(self, *Locks::reference_processor_lock_);
266 // Wait untul we are done processing reference.
267 while ((!kUseReadBarrier && SlowPathEnabled()) ||
268 (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
269 condition_.WaitHoldingLocks(self);
270 }
271 // At this point, since the sentinel of the reference is live, it is guaranteed to not be
272 // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
273 // phase. Since we are holding the reference processor lock, it guarantees that reference
274 // processing can't begin. The GC could have just enqueued the reference one one of the internal
275 // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
276 // race.
277 MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
278 if (reference->IsUnprocessed()) {
279 CHECK(reference->IsFinalizerReferenceInstance());
280 reference->SetPendingNext(reference);
281 return true;
282 }
283 return false;
284 }
285
286 } // namespace gc
287 } // namespace art
288