1 /*
2  * Copyright (C) 2016 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19 
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23 
24 #include "debug/dwarf/debug_abbrev_writer.h"
25 #include "debug/dwarf/debug_info_entry_writer.h"
26 #include "debug/elf_compilation_unit.h"
27 #include "debug/elf_debug_loc_writer.h"
28 #include "debug/method_debug_info.h"
29 #include "dex_file-inl.h"
30 #include "dex_file.h"
31 #include "elf_builder.h"
32 #include "linear_alloc.h"
33 #include "mirror/array.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/class.h"
36 
37 namespace art {
38 namespace debug {
39 
40 typedef std::vector<DexFile::LocalInfo> LocalInfos;
41 
LocalInfoCallback(void * ctx,const DexFile::LocalInfo & entry)42 static void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) {
43   static_cast<LocalInfos*>(ctx)->push_back(entry);
44 }
45 
GetParamNames(const MethodDebugInfo * mi)46 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
47   std::vector<const char*> names;
48   if (mi->code_item != nullptr) {
49     DCHECK(mi->dex_file != nullptr);
50     const uint8_t* stream = mi->dex_file->GetDebugInfoStream(mi->code_item);
51     if (stream != nullptr) {
52       DecodeUnsignedLeb128(&stream);  // line.
53       uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
54       for (uint32_t i = 0; i < parameters_size; ++i) {
55         uint32_t id = DecodeUnsignedLeb128P1(&stream);
56         names.push_back(mi->dex_file->StringDataByIdx(id));
57       }
58     }
59   }
60   return names;
61 }
62 
63 // Helper class to write .debug_info and its supporting sections.
64 template<typename ElfTypes>
65 class ElfDebugInfoWriter {
66   using Elf_Addr = typename ElfTypes::Addr;
67 
68  public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)69   explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
70       : builder_(builder),
71         debug_abbrev_(&debug_abbrev_buffer_) {
72   }
73 
Start()74   void Start() {
75     builder_->GetDebugInfo()->Start();
76   }
77 
End(bool write_oat_patches)78   void End(bool write_oat_patches) {
79     builder_->GetDebugInfo()->End();
80     if (write_oat_patches) {
81       builder_->WritePatches(".debug_info.oat_patches",
82                              ArrayRef<const uintptr_t>(debug_info_patches_));
83     }
84     builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
85     if (!debug_loc_.empty()) {
86       builder_->WriteSection(".debug_loc", &debug_loc_);
87     }
88     if (!debug_ranges_.empty()) {
89       builder_->WriteSection(".debug_ranges", &debug_ranges_);
90     }
91   }
92 
93  private:
94   ElfBuilder<ElfTypes>* builder_;
95   std::vector<uintptr_t> debug_info_patches_;
96   std::vector<uint8_t> debug_abbrev_buffer_;
97   dwarf::DebugAbbrevWriter<> debug_abbrev_;
98   std::vector<uint8_t> debug_loc_;
99   std::vector<uint8_t> debug_ranges_;
100 
101   std::unordered_set<const char*> defined_dex_classes_;  // For CHECKs only.
102 
103   template<typename ElfTypes2>
104   friend class ElfCompilationUnitWriter;
105 };
106 
107 // Helper class to write one compilation unit.
108 // It holds helper methods and temporary state.
109 template<typename ElfTypes>
110 class ElfCompilationUnitWriter {
111   using Elf_Addr = typename ElfTypes::Addr;
112 
113  public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)114   explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
115     : owner_(owner),
116       info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
117   }
118 
Write(const ElfCompilationUnit & compilation_unit)119   void Write(const ElfCompilationUnit& compilation_unit) {
120     CHECK(!compilation_unit.methods.empty());
121     const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
122         ? owner_->builder_->GetText()->GetAddress()
123         : 0;
124     const uint64_t cu_size = compilation_unit.code_end - compilation_unit.code_address;
125     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
126 
127     info_.StartTag(DW_TAG_compile_unit);
128     info_.WriteString(DW_AT_producer, "Android dex2oat");
129     info_.WriteData1(DW_AT_language, DW_LANG_Java);
130     info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
131     info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
132     info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(cu_size));
133     info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
134 
135     const char* last_dex_class_desc = nullptr;
136     for (auto mi : compilation_unit.methods) {
137       DCHECK(mi->dex_file != nullptr);
138       const DexFile* dex = mi->dex_file;
139       const DexFile::CodeItem* dex_code = mi->code_item;
140       const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
141       const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
142       const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
143       const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
144       const bool is_static = (mi->access_flags & kAccStatic) != 0;
145 
146       // Enclose the method in correct class definition.
147       if (last_dex_class_desc != dex_class_desc) {
148         if (last_dex_class_desc != nullptr) {
149           EndClassTag();
150         }
151         // Write reference tag for the class we are about to declare.
152         size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
153         type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
154         size_t type_attrib_offset = info_.size();
155         info_.WriteRef4(DW_AT_type, 0);
156         info_.EndTag();
157         // Declare the class that owns this method.
158         size_t class_offset = StartClassTag(dex_class_desc);
159         info_.UpdateUint32(type_attrib_offset, class_offset);
160         info_.WriteFlagPresent(DW_AT_declaration);
161         // Check that each class is defined only once.
162         bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
163         CHECK(unique) << "Redefinition of " << dex_class_desc;
164         last_dex_class_desc = dex_class_desc;
165       }
166 
167       int start_depth = info_.Depth();
168       info_.StartTag(DW_TAG_subprogram);
169       WriteName(dex->GetMethodName(dex_method));
170       info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
171       info_.WriteUdata(DW_AT_high_pc, mi->code_size);
172       std::vector<uint8_t> expr_buffer;
173       Expression expr(&expr_buffer);
174       expr.WriteOpCallFrameCfa();
175       info_.WriteExprLoc(DW_AT_frame_base, expr);
176       WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
177 
178       // Decode dex register locations for all stack maps.
179       // It might be expensive, so do it just once and reuse the result.
180       std::vector<DexRegisterMap> dex_reg_maps;
181       if (mi->code_info != nullptr) {
182         const CodeInfo code_info(mi->code_info);
183         CodeInfoEncoding encoding = code_info.ExtractEncoding();
184         for (size_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); ++s) {
185           const StackMap& stack_map = code_info.GetStackMapAt(s, encoding);
186           dex_reg_maps.push_back(code_info.GetDexRegisterMapOf(
187               stack_map, encoding, dex_code->registers_size_));
188         }
189       }
190 
191       // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
192       // guarantee order or uniqueness so it is safer to iterate over them manually.
193       // DecodeDebugLocalInfo might not also be available if there is no debug info.
194       std::vector<const char*> param_names = GetParamNames(mi);
195       uint32_t arg_reg = 0;
196       if (!is_static) {
197         info_.StartTag(DW_TAG_formal_parameter);
198         WriteName("this");
199         info_.WriteFlagPresent(DW_AT_artificial);
200         WriteLazyType(dex_class_desc);
201         if (dex_code != nullptr) {
202           // Write the stack location of the parameter.
203           const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
204           const bool is64bitValue = false;
205           WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
206         }
207         arg_reg++;
208         info_.EndTag();
209       }
210       if (dex_params != nullptr) {
211         for (uint32_t i = 0; i < dex_params->Size(); ++i) {
212           info_.StartTag(DW_TAG_formal_parameter);
213           // Parameter names may not be always available.
214           if (i < param_names.size()) {
215             WriteName(param_names[i]);
216           }
217           // Write the type.
218           const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
219           WriteLazyType(type_desc);
220           const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
221           if (dex_code != nullptr) {
222             // Write the stack location of the parameter.
223             const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
224             WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
225           }
226           arg_reg += is64bitValue ? 2 : 1;
227           info_.EndTag();
228         }
229         if (dex_code != nullptr) {
230           DCHECK_EQ(arg_reg, dex_code->ins_size_);
231         }
232       }
233 
234       // Write local variables.
235       LocalInfos local_infos;
236       if (dex->DecodeDebugLocalInfo(dex_code,
237                                     is_static,
238                                     mi->dex_method_index,
239                                     LocalInfoCallback,
240                                     &local_infos)) {
241         for (const DexFile::LocalInfo& var : local_infos) {
242           if (var.reg_ < dex_code->registers_size_ - dex_code->ins_size_) {
243             info_.StartTag(DW_TAG_variable);
244             WriteName(var.name_);
245             WriteLazyType(var.descriptor_);
246             bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
247             WriteRegLocation(mi,
248                              dex_reg_maps,
249                              var.reg_,
250                              is64bitValue,
251                              compilation_unit.code_address,
252                              var.start_address_,
253                              var.end_address_);
254             info_.EndTag();
255           }
256         }
257       }
258 
259       info_.EndTag();
260       CHECK_EQ(info_.Depth(), start_depth);  // Balanced start/end.
261     }
262     if (last_dex_class_desc != nullptr) {
263       EndClassTag();
264     }
265     FinishLazyTypes();
266     CloseNamespacesAboveDepth(0);
267     info_.EndTag();  // DW_TAG_compile_unit
268     CHECK_EQ(info_.Depth(), 0);
269     std::vector<uint8_t> buffer;
270     buffer.reserve(info_.data()->size() + KB);
271     const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
272     // All compilation units share single table which is at the start of .debug_abbrev.
273     const size_t debug_abbrev_offset = 0;
274     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
275     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
276   }
277 
Write(const ArrayRef<mirror::Class * > & types)278   void Write(const ArrayRef<mirror::Class*>& types) SHARED_REQUIRES(Locks::mutator_lock_) {
279     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
280 
281     info_.StartTag(DW_TAG_compile_unit);
282     info_.WriteString(DW_AT_producer, "Android dex2oat");
283     info_.WriteData1(DW_AT_language, DW_LANG_Java);
284 
285     // Base class references to be patched at the end.
286     std::map<size_t, mirror::Class*> base_class_references;
287 
288     // Already written declarations or definitions.
289     std::map<mirror::Class*, size_t> class_declarations;
290 
291     std::vector<uint8_t> expr_buffer;
292     for (mirror::Class* type : types) {
293       if (type->IsPrimitive()) {
294         // For primitive types the definition and the declaration is the same.
295         if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
296           WriteTypeDeclaration(type->GetDescriptor(nullptr));
297         }
298       } else if (type->IsArrayClass()) {
299         mirror::Class* element_type = type->GetComponentType();
300         uint32_t component_size = type->GetComponentSize();
301         uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
302         uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
303 
304         CloseNamespacesAboveDepth(0);  // Declare in root namespace.
305         info_.StartTag(DW_TAG_array_type);
306         std::string descriptor_string;
307         WriteLazyType(element_type->GetDescriptor(&descriptor_string));
308         WriteLinkageName(type);
309         info_.WriteUdata(DW_AT_data_member_location, data_offset);
310         info_.StartTag(DW_TAG_subrange_type);
311         Expression count_expr(&expr_buffer);
312         count_expr.WriteOpPushObjectAddress();
313         count_expr.WriteOpPlusUconst(length_offset);
314         count_expr.WriteOpDerefSize(4);  // Array length is always 32-bit wide.
315         info_.WriteExprLoc(DW_AT_count, count_expr);
316         info_.EndTag();  // DW_TAG_subrange_type.
317         info_.EndTag();  // DW_TAG_array_type.
318       } else if (type->IsInterface()) {
319         // Skip.  Variables cannot have an interface as a dynamic type.
320         // We do not expose the interface information to the debugger in any way.
321       } else {
322         std::string descriptor_string;
323         const char* desc = type->GetDescriptor(&descriptor_string);
324         size_t class_offset = StartClassTag(desc);
325         class_declarations.emplace(type, class_offset);
326 
327         if (!type->IsVariableSize()) {
328           info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
329         }
330 
331         WriteLinkageName(type);
332 
333         if (type->IsObjectClass()) {
334           // Generate artificial member which is used to get the dynamic type of variable.
335           // The run-time value of this field will correspond to linkage name of some type.
336           // We need to do it only once in j.l.Object since all other types inherit it.
337           info_.StartTag(DW_TAG_member);
338           WriteName(".dynamic_type");
339           WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
340           info_.WriteFlagPresent(DW_AT_artificial);
341           // Create DWARF expression to get the value of the methods_ field.
342           Expression expr(&expr_buffer);
343           // The address of the object has been implicitly pushed on the stack.
344           // Dereference the klass_ field of Object (32-bit; possibly poisoned).
345           DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
346           DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
347           expr.WriteOpDerefSize(4);
348           if (kPoisonHeapReferences) {
349             expr.WriteOpNeg();
350             // DWARF stack is pointer sized. Ensure that the high bits are clear.
351             expr.WriteOpConstu(0xFFFFFFFF);
352             expr.WriteOpAnd();
353           }
354           // Add offset to the methods_ field.
355           expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
356           // Top of stack holds the location of the field now.
357           info_.WriteExprLoc(DW_AT_data_member_location, expr);
358           info_.EndTag();  // DW_TAG_member.
359         }
360 
361         // Base class.
362         mirror::Class* base_class = type->GetSuperClass();
363         if (base_class != nullptr) {
364           info_.StartTag(DW_TAG_inheritance);
365           base_class_references.emplace(info_.size(), base_class);
366           info_.WriteRef4(DW_AT_type, 0);
367           info_.WriteUdata(DW_AT_data_member_location, 0);
368           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
369           info_.EndTag();  // DW_TAG_inheritance.
370         }
371 
372         // Member variables.
373         for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
374           ArtField* field = type->GetInstanceField(i);
375           info_.StartTag(DW_TAG_member);
376           WriteName(field->GetName());
377           WriteLazyType(field->GetTypeDescriptor());
378           info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
379           uint32_t access_flags = field->GetAccessFlags();
380           if (access_flags & kAccPublic) {
381             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
382           } else if (access_flags & kAccProtected) {
383             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
384           } else if (access_flags & kAccPrivate) {
385             info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
386           }
387           info_.EndTag();  // DW_TAG_member.
388         }
389 
390         if (type->IsStringClass()) {
391           // Emit debug info about an artifical class member for java.lang.String which represents
392           // the first element of the data stored in a string instance. Consumers of the debug
393           // info will be able to read the content of java.lang.String based on the count (real
394           // field) and based on the location of this data member.
395           info_.StartTag(DW_TAG_member);
396           WriteName("value");
397           // We don't support fields with C like array types so we just say its type is java char.
398           WriteLazyType("C");  // char.
399           info_.WriteUdata(DW_AT_data_member_location,
400                            mirror::String::ValueOffset().Uint32Value());
401           info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
402           info_.EndTag();  // DW_TAG_member.
403         }
404 
405         EndClassTag();
406       }
407     }
408 
409     // Write base class declarations.
410     for (const auto& base_class_reference : base_class_references) {
411       size_t reference_offset = base_class_reference.first;
412       mirror::Class* base_class = base_class_reference.second;
413       const auto& it = class_declarations.find(base_class);
414       if (it != class_declarations.end()) {
415         info_.UpdateUint32(reference_offset, it->second);
416       } else {
417         // Declare base class.  We can not use the standard WriteLazyType
418         // since we want to avoid the DW_TAG_reference_tag wrapping.
419         std::string tmp_storage;
420         const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
421         size_t base_class_declaration_offset = StartClassTag(base_class_desc);
422         info_.WriteFlagPresent(DW_AT_declaration);
423         WriteLinkageName(base_class);
424         EndClassTag();
425         class_declarations.emplace(base_class, base_class_declaration_offset);
426         info_.UpdateUint32(reference_offset, base_class_declaration_offset);
427       }
428     }
429 
430     FinishLazyTypes();
431     CloseNamespacesAboveDepth(0);
432     info_.EndTag();  // DW_TAG_compile_unit.
433     CHECK_EQ(info_.Depth(), 0);
434     std::vector<uint8_t> buffer;
435     buffer.reserve(info_.data()->size() + KB);
436     const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
437     // All compilation units share single table which is at the start of .debug_abbrev.
438     const size_t debug_abbrev_offset = 0;
439     WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
440     owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
441   }
442 
443   // Write table into .debug_loc which describes location of dex register.
444   // The dex register might be valid only at some points and it might
445   // move between machine registers and stack.
446   void WriteRegLocation(const MethodDebugInfo* method_info,
447                         const std::vector<DexRegisterMap>& dex_register_maps,
448                         uint16_t vreg,
449                         bool is64bitValue,
450                         uint64_t compilation_unit_code_address,
451                         uint32_t dex_pc_low = 0,
452                         uint32_t dex_pc_high = 0xFFFFFFFF) {
453     WriteDebugLocEntry(method_info,
454                        dex_register_maps,
455                        vreg,
456                        is64bitValue,
457                        compilation_unit_code_address,
458                        dex_pc_low,
459                        dex_pc_high,
460                        owner_->builder_->GetIsa(),
461                        &info_,
462                        &owner_->debug_loc_,
463                        &owner_->debug_ranges_);
464   }
465 
466   // Linkage name uniquely identifies type.
467   // It is used to determine the dynamic type of objects.
468   // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)469   void WriteLinkageName(mirror::Class* type) SHARED_REQUIRES(Locks::mutator_lock_) {
470     auto* methods_ptr = type->GetMethodsPtr();
471     if (methods_ptr == nullptr) {
472       // Some types might have no methods.  Allocate empty array instead.
473       LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
474       void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
475       methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
476       type->SetMethodsPtr(methods_ptr, 0, 0);
477       DCHECK(type->GetMethodsPtr() != nullptr);
478     }
479     char name[32];
480     snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
481     info_.WriteString(dwarf::DW_AT_linkage_name, name);
482   }
483 
484   // Some types are difficult to define as we go since they need
485   // to be enclosed in the right set of namespaces. Therefore we
486   // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)487   void WriteLazyType(const char* type_descriptor) {
488     if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
489       lazy_types_.emplace(std::string(type_descriptor), info_.size());
490       info_.WriteRef4(dwarf::DW_AT_type, 0);
491     }
492   }
493 
FinishLazyTypes()494   void FinishLazyTypes() {
495     for (const auto& lazy_type : lazy_types_) {
496       info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
497     }
498     lazy_types_.clear();
499   }
500 
501  private:
WriteName(const char * name)502   void WriteName(const char* name) {
503     if (name != nullptr) {
504       info_.WriteString(dwarf::DW_AT_name, name);
505     }
506   }
507 
508   // Convert dex type descriptor to DWARF.
509   // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)510   size_t WriteTypeDeclaration(const std::string& desc) {
511     using namespace dwarf;  // NOLINT. For easy access to DWARF constants.
512 
513     DCHECK(!desc.empty());
514     const auto& it = type_cache_.find(desc);
515     if (it != type_cache_.end()) {
516       return it->second;
517     }
518 
519     size_t offset;
520     if (desc[0] == 'L') {
521       // Class type. For example: Lpackage/name;
522       size_t class_offset = StartClassTag(desc.c_str());
523       info_.WriteFlagPresent(DW_AT_declaration);
524       EndClassTag();
525       // Reference to the class type.
526       offset = info_.StartTag(DW_TAG_reference_type);
527       info_.WriteRef(DW_AT_type, class_offset);
528       info_.EndTag();
529     } else if (desc[0] == '[') {
530       // Array type.
531       size_t element_type = WriteTypeDeclaration(desc.substr(1));
532       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
533       size_t array_type = info_.StartTag(DW_TAG_array_type);
534       info_.WriteFlagPresent(DW_AT_declaration);
535       info_.WriteRef(DW_AT_type, element_type);
536       info_.EndTag();
537       offset = info_.StartTag(DW_TAG_reference_type);
538       info_.WriteRef4(DW_AT_type, array_type);
539       info_.EndTag();
540     } else {
541       // Primitive types.
542       DCHECK_EQ(desc.size(), 1u);
543 
544       const char* name;
545       uint32_t encoding;
546       uint32_t byte_size;
547       switch (desc[0]) {
548       case 'B':
549         name = "byte";
550         encoding = DW_ATE_signed;
551         byte_size = 1;
552         break;
553       case 'C':
554         name = "char";
555         encoding = DW_ATE_UTF;
556         byte_size = 2;
557         break;
558       case 'D':
559         name = "double";
560         encoding = DW_ATE_float;
561         byte_size = 8;
562         break;
563       case 'F':
564         name = "float";
565         encoding = DW_ATE_float;
566         byte_size = 4;
567         break;
568       case 'I':
569         name = "int";
570         encoding = DW_ATE_signed;
571         byte_size = 4;
572         break;
573       case 'J':
574         name = "long";
575         encoding = DW_ATE_signed;
576         byte_size = 8;
577         break;
578       case 'S':
579         name = "short";
580         encoding = DW_ATE_signed;
581         byte_size = 2;
582         break;
583       case 'Z':
584         name = "boolean";
585         encoding = DW_ATE_boolean;
586         byte_size = 1;
587         break;
588       case 'V':
589         LOG(FATAL) << "Void type should not be encoded";
590         UNREACHABLE();
591       default:
592         LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
593         UNREACHABLE();
594       }
595       CloseNamespacesAboveDepth(0);  // Declare in root namespace.
596       offset = info_.StartTag(DW_TAG_base_type);
597       WriteName(name);
598       info_.WriteData1(DW_AT_encoding, encoding);
599       info_.WriteData1(DW_AT_byte_size, byte_size);
600       info_.EndTag();
601     }
602 
603     type_cache_.emplace(desc, offset);
604     return offset;
605   }
606 
607   // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
608   // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)609   size_t StartClassTag(const char* desc) {
610     std::string name = SetNamespaceForClass(desc);
611     size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
612     WriteName(name.c_str());
613     return offset;
614   }
615 
EndClassTag()616   void EndClassTag() {
617     info_.EndTag();
618   }
619 
620   // Set the current namespace nesting to one required by the given class.
621   // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)622   std::string SetNamespaceForClass(const char* desc) {
623     DCHECK(desc != nullptr && desc[0] == 'L');
624     desc++;  // Skip the initial 'L'.
625     size_t depth = 0;
626     for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
627       // Check whether the name at this depth is already what we need.
628       if (depth < current_namespace_.size()) {
629         const std::string& name = current_namespace_[depth];
630         if (name.compare(0, name.size(), desc, end - desc) == 0) {
631           continue;
632         }
633       }
634       // Otherwise we need to open a new namespace tag at this depth.
635       CloseNamespacesAboveDepth(depth);
636       info_.StartTag(dwarf::DW_TAG_namespace);
637       std::string name(desc, end - desc);
638       WriteName(name.c_str());
639       current_namespace_.push_back(std::move(name));
640     }
641     CloseNamespacesAboveDepth(depth);
642     return std::string(desc, strchr(desc, ';') - desc);
643   }
644 
645   // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)646   void CloseNamespacesAboveDepth(size_t depth) {
647     DCHECK_LE(depth, current_namespace_.size());
648     while (current_namespace_.size() > depth) {
649       info_.EndTag();
650       current_namespace_.pop_back();
651     }
652   }
653 
654   // For access to the ELF sections.
655   ElfDebugInfoWriter<ElfTypes>* owner_;
656   // Temporary buffer to create and store the entries.
657   dwarf::DebugInfoEntryWriter<> info_;
658   // Cache of already translated type descriptors.
659   std::map<std::string, size_t> type_cache_;  // type_desc -> definition_offset.
660   // 32-bit references which need to be resolved to a type later.
661   // Given type may be used multiple times.  Therefore we need a multimap.
662   std::multimap<std::string, size_t> lazy_types_;  // type_desc -> patch_offset.
663   // The current set of open namespace tags which are active and not closed yet.
664   std::vector<std::string> current_namespace_;
665 };
666 
667 }  // namespace debug
668 }  // namespace art
669 
670 #endif  // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
671 
672