1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
18 #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
19
20 #include <map>
21 #include <unordered_set>
22 #include <vector>
23
24 #include "debug/dwarf/debug_abbrev_writer.h"
25 #include "debug/dwarf/debug_info_entry_writer.h"
26 #include "debug/elf_compilation_unit.h"
27 #include "debug/elf_debug_loc_writer.h"
28 #include "debug/method_debug_info.h"
29 #include "dex_file-inl.h"
30 #include "dex_file.h"
31 #include "elf_builder.h"
32 #include "linear_alloc.h"
33 #include "mirror/array.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/class.h"
36
37 namespace art {
38 namespace debug {
39
40 typedef std::vector<DexFile::LocalInfo> LocalInfos;
41
LocalInfoCallback(void * ctx,const DexFile::LocalInfo & entry)42 static void LocalInfoCallback(void* ctx, const DexFile::LocalInfo& entry) {
43 static_cast<LocalInfos*>(ctx)->push_back(entry);
44 }
45
GetParamNames(const MethodDebugInfo * mi)46 static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) {
47 std::vector<const char*> names;
48 if (mi->code_item != nullptr) {
49 DCHECK(mi->dex_file != nullptr);
50 const uint8_t* stream = mi->dex_file->GetDebugInfoStream(mi->code_item);
51 if (stream != nullptr) {
52 DecodeUnsignedLeb128(&stream); // line.
53 uint32_t parameters_size = DecodeUnsignedLeb128(&stream);
54 for (uint32_t i = 0; i < parameters_size; ++i) {
55 uint32_t id = DecodeUnsignedLeb128P1(&stream);
56 names.push_back(mi->dex_file->StringDataByIdx(id));
57 }
58 }
59 }
60 return names;
61 }
62
63 // Helper class to write .debug_info and its supporting sections.
64 template<typename ElfTypes>
65 class ElfDebugInfoWriter {
66 using Elf_Addr = typename ElfTypes::Addr;
67
68 public:
ElfDebugInfoWriter(ElfBuilder<ElfTypes> * builder)69 explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder)
70 : builder_(builder),
71 debug_abbrev_(&debug_abbrev_buffer_) {
72 }
73
Start()74 void Start() {
75 builder_->GetDebugInfo()->Start();
76 }
77
End(bool write_oat_patches)78 void End(bool write_oat_patches) {
79 builder_->GetDebugInfo()->End();
80 if (write_oat_patches) {
81 builder_->WritePatches(".debug_info.oat_patches",
82 ArrayRef<const uintptr_t>(debug_info_patches_));
83 }
84 builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_);
85 if (!debug_loc_.empty()) {
86 builder_->WriteSection(".debug_loc", &debug_loc_);
87 }
88 if (!debug_ranges_.empty()) {
89 builder_->WriteSection(".debug_ranges", &debug_ranges_);
90 }
91 }
92
93 private:
94 ElfBuilder<ElfTypes>* builder_;
95 std::vector<uintptr_t> debug_info_patches_;
96 std::vector<uint8_t> debug_abbrev_buffer_;
97 dwarf::DebugAbbrevWriter<> debug_abbrev_;
98 std::vector<uint8_t> debug_loc_;
99 std::vector<uint8_t> debug_ranges_;
100
101 std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only.
102
103 template<typename ElfTypes2>
104 friend class ElfCompilationUnitWriter;
105 };
106
107 // Helper class to write one compilation unit.
108 // It holds helper methods and temporary state.
109 template<typename ElfTypes>
110 class ElfCompilationUnitWriter {
111 using Elf_Addr = typename ElfTypes::Addr;
112
113 public:
ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes> * owner)114 explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner)
115 : owner_(owner),
116 info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) {
117 }
118
Write(const ElfCompilationUnit & compilation_unit)119 void Write(const ElfCompilationUnit& compilation_unit) {
120 CHECK(!compilation_unit.methods.empty());
121 const Elf_Addr base_address = compilation_unit.is_code_address_text_relative
122 ? owner_->builder_->GetText()->GetAddress()
123 : 0;
124 const uint64_t cu_size = compilation_unit.code_end - compilation_unit.code_address;
125 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
126
127 info_.StartTag(DW_TAG_compile_unit);
128 info_.WriteString(DW_AT_producer, "Android dex2oat");
129 info_.WriteData1(DW_AT_language, DW_LANG_Java);
130 info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT");
131 info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address);
132 info_.WriteUdata(DW_AT_high_pc, dchecked_integral_cast<uint32_t>(cu_size));
133 info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset);
134
135 const char* last_dex_class_desc = nullptr;
136 for (auto mi : compilation_unit.methods) {
137 DCHECK(mi->dex_file != nullptr);
138 const DexFile* dex = mi->dex_file;
139 const DexFile::CodeItem* dex_code = mi->code_item;
140 const DexFile::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index);
141 const DexFile::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method);
142 const DexFile::TypeList* dex_params = dex->GetProtoParameters(dex_proto);
143 const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method);
144 const bool is_static = (mi->access_flags & kAccStatic) != 0;
145
146 // Enclose the method in correct class definition.
147 if (last_dex_class_desc != dex_class_desc) {
148 if (last_dex_class_desc != nullptr) {
149 EndClassTag();
150 }
151 // Write reference tag for the class we are about to declare.
152 size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type);
153 type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset);
154 size_t type_attrib_offset = info_.size();
155 info_.WriteRef4(DW_AT_type, 0);
156 info_.EndTag();
157 // Declare the class that owns this method.
158 size_t class_offset = StartClassTag(dex_class_desc);
159 info_.UpdateUint32(type_attrib_offset, class_offset);
160 info_.WriteFlagPresent(DW_AT_declaration);
161 // Check that each class is defined only once.
162 bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second;
163 CHECK(unique) << "Redefinition of " << dex_class_desc;
164 last_dex_class_desc = dex_class_desc;
165 }
166
167 int start_depth = info_.Depth();
168 info_.StartTag(DW_TAG_subprogram);
169 WriteName(dex->GetMethodName(dex_method));
170 info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address);
171 info_.WriteUdata(DW_AT_high_pc, mi->code_size);
172 std::vector<uint8_t> expr_buffer;
173 Expression expr(&expr_buffer);
174 expr.WriteOpCallFrameCfa();
175 info_.WriteExprLoc(DW_AT_frame_base, expr);
176 WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto));
177
178 // Decode dex register locations for all stack maps.
179 // It might be expensive, so do it just once and reuse the result.
180 std::vector<DexRegisterMap> dex_reg_maps;
181 if (mi->code_info != nullptr) {
182 const CodeInfo code_info(mi->code_info);
183 CodeInfoEncoding encoding = code_info.ExtractEncoding();
184 for (size_t s = 0; s < code_info.GetNumberOfStackMaps(encoding); ++s) {
185 const StackMap& stack_map = code_info.GetStackMapAt(s, encoding);
186 dex_reg_maps.push_back(code_info.GetDexRegisterMapOf(
187 stack_map, encoding, dex_code->registers_size_));
188 }
189 }
190
191 // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not
192 // guarantee order or uniqueness so it is safer to iterate over them manually.
193 // DecodeDebugLocalInfo might not also be available if there is no debug info.
194 std::vector<const char*> param_names = GetParamNames(mi);
195 uint32_t arg_reg = 0;
196 if (!is_static) {
197 info_.StartTag(DW_TAG_formal_parameter);
198 WriteName("this");
199 info_.WriteFlagPresent(DW_AT_artificial);
200 WriteLazyType(dex_class_desc);
201 if (dex_code != nullptr) {
202 // Write the stack location of the parameter.
203 const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
204 const bool is64bitValue = false;
205 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
206 }
207 arg_reg++;
208 info_.EndTag();
209 }
210 if (dex_params != nullptr) {
211 for (uint32_t i = 0; i < dex_params->Size(); ++i) {
212 info_.StartTag(DW_TAG_formal_parameter);
213 // Parameter names may not be always available.
214 if (i < param_names.size()) {
215 WriteName(param_names[i]);
216 }
217 // Write the type.
218 const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_);
219 WriteLazyType(type_desc);
220 const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J';
221 if (dex_code != nullptr) {
222 // Write the stack location of the parameter.
223 const uint32_t vreg = dex_code->registers_size_ - dex_code->ins_size_ + arg_reg;
224 WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address);
225 }
226 arg_reg += is64bitValue ? 2 : 1;
227 info_.EndTag();
228 }
229 if (dex_code != nullptr) {
230 DCHECK_EQ(arg_reg, dex_code->ins_size_);
231 }
232 }
233
234 // Write local variables.
235 LocalInfos local_infos;
236 if (dex->DecodeDebugLocalInfo(dex_code,
237 is_static,
238 mi->dex_method_index,
239 LocalInfoCallback,
240 &local_infos)) {
241 for (const DexFile::LocalInfo& var : local_infos) {
242 if (var.reg_ < dex_code->registers_size_ - dex_code->ins_size_) {
243 info_.StartTag(DW_TAG_variable);
244 WriteName(var.name_);
245 WriteLazyType(var.descriptor_);
246 bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J';
247 WriteRegLocation(mi,
248 dex_reg_maps,
249 var.reg_,
250 is64bitValue,
251 compilation_unit.code_address,
252 var.start_address_,
253 var.end_address_);
254 info_.EndTag();
255 }
256 }
257 }
258
259 info_.EndTag();
260 CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end.
261 }
262 if (last_dex_class_desc != nullptr) {
263 EndClassTag();
264 }
265 FinishLazyTypes();
266 CloseNamespacesAboveDepth(0);
267 info_.EndTag(); // DW_TAG_compile_unit
268 CHECK_EQ(info_.Depth(), 0);
269 std::vector<uint8_t> buffer;
270 buffer.reserve(info_.data()->size() + KB);
271 const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
272 // All compilation units share single table which is at the start of .debug_abbrev.
273 const size_t debug_abbrev_offset = 0;
274 WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
275 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
276 }
277
Write(const ArrayRef<mirror::Class * > & types)278 void Write(const ArrayRef<mirror::Class*>& types) SHARED_REQUIRES(Locks::mutator_lock_) {
279 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
280
281 info_.StartTag(DW_TAG_compile_unit);
282 info_.WriteString(DW_AT_producer, "Android dex2oat");
283 info_.WriteData1(DW_AT_language, DW_LANG_Java);
284
285 // Base class references to be patched at the end.
286 std::map<size_t, mirror::Class*> base_class_references;
287
288 // Already written declarations or definitions.
289 std::map<mirror::Class*, size_t> class_declarations;
290
291 std::vector<uint8_t> expr_buffer;
292 for (mirror::Class* type : types) {
293 if (type->IsPrimitive()) {
294 // For primitive types the definition and the declaration is the same.
295 if (type->GetPrimitiveType() != Primitive::kPrimVoid) {
296 WriteTypeDeclaration(type->GetDescriptor(nullptr));
297 }
298 } else if (type->IsArrayClass()) {
299 mirror::Class* element_type = type->GetComponentType();
300 uint32_t component_size = type->GetComponentSize();
301 uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value();
302 uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
303
304 CloseNamespacesAboveDepth(0); // Declare in root namespace.
305 info_.StartTag(DW_TAG_array_type);
306 std::string descriptor_string;
307 WriteLazyType(element_type->GetDescriptor(&descriptor_string));
308 WriteLinkageName(type);
309 info_.WriteUdata(DW_AT_data_member_location, data_offset);
310 info_.StartTag(DW_TAG_subrange_type);
311 Expression count_expr(&expr_buffer);
312 count_expr.WriteOpPushObjectAddress();
313 count_expr.WriteOpPlusUconst(length_offset);
314 count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide.
315 info_.WriteExprLoc(DW_AT_count, count_expr);
316 info_.EndTag(); // DW_TAG_subrange_type.
317 info_.EndTag(); // DW_TAG_array_type.
318 } else if (type->IsInterface()) {
319 // Skip. Variables cannot have an interface as a dynamic type.
320 // We do not expose the interface information to the debugger in any way.
321 } else {
322 std::string descriptor_string;
323 const char* desc = type->GetDescriptor(&descriptor_string);
324 size_t class_offset = StartClassTag(desc);
325 class_declarations.emplace(type, class_offset);
326
327 if (!type->IsVariableSize()) {
328 info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize());
329 }
330
331 WriteLinkageName(type);
332
333 if (type->IsObjectClass()) {
334 // Generate artificial member which is used to get the dynamic type of variable.
335 // The run-time value of this field will correspond to linkage name of some type.
336 // We need to do it only once in j.l.Object since all other types inherit it.
337 info_.StartTag(DW_TAG_member);
338 WriteName(".dynamic_type");
339 WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I");
340 info_.WriteFlagPresent(DW_AT_artificial);
341 // Create DWARF expression to get the value of the methods_ field.
342 Expression expr(&expr_buffer);
343 // The address of the object has been implicitly pushed on the stack.
344 // Dereference the klass_ field of Object (32-bit; possibly poisoned).
345 DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u);
346 DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u);
347 expr.WriteOpDerefSize(4);
348 if (kPoisonHeapReferences) {
349 expr.WriteOpNeg();
350 // DWARF stack is pointer sized. Ensure that the high bits are clear.
351 expr.WriteOpConstu(0xFFFFFFFF);
352 expr.WriteOpAnd();
353 }
354 // Add offset to the methods_ field.
355 expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value());
356 // Top of stack holds the location of the field now.
357 info_.WriteExprLoc(DW_AT_data_member_location, expr);
358 info_.EndTag(); // DW_TAG_member.
359 }
360
361 // Base class.
362 mirror::Class* base_class = type->GetSuperClass();
363 if (base_class != nullptr) {
364 info_.StartTag(DW_TAG_inheritance);
365 base_class_references.emplace(info_.size(), base_class);
366 info_.WriteRef4(DW_AT_type, 0);
367 info_.WriteUdata(DW_AT_data_member_location, 0);
368 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
369 info_.EndTag(); // DW_TAG_inheritance.
370 }
371
372 // Member variables.
373 for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) {
374 ArtField* field = type->GetInstanceField(i);
375 info_.StartTag(DW_TAG_member);
376 WriteName(field->GetName());
377 WriteLazyType(field->GetTypeDescriptor());
378 info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value());
379 uint32_t access_flags = field->GetAccessFlags();
380 if (access_flags & kAccPublic) {
381 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public);
382 } else if (access_flags & kAccProtected) {
383 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected);
384 } else if (access_flags & kAccPrivate) {
385 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
386 }
387 info_.EndTag(); // DW_TAG_member.
388 }
389
390 if (type->IsStringClass()) {
391 // Emit debug info about an artifical class member for java.lang.String which represents
392 // the first element of the data stored in a string instance. Consumers of the debug
393 // info will be able to read the content of java.lang.String based on the count (real
394 // field) and based on the location of this data member.
395 info_.StartTag(DW_TAG_member);
396 WriteName("value");
397 // We don't support fields with C like array types so we just say its type is java char.
398 WriteLazyType("C"); // char.
399 info_.WriteUdata(DW_AT_data_member_location,
400 mirror::String::ValueOffset().Uint32Value());
401 info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private);
402 info_.EndTag(); // DW_TAG_member.
403 }
404
405 EndClassTag();
406 }
407 }
408
409 // Write base class declarations.
410 for (const auto& base_class_reference : base_class_references) {
411 size_t reference_offset = base_class_reference.first;
412 mirror::Class* base_class = base_class_reference.second;
413 const auto& it = class_declarations.find(base_class);
414 if (it != class_declarations.end()) {
415 info_.UpdateUint32(reference_offset, it->second);
416 } else {
417 // Declare base class. We can not use the standard WriteLazyType
418 // since we want to avoid the DW_TAG_reference_tag wrapping.
419 std::string tmp_storage;
420 const char* base_class_desc = base_class->GetDescriptor(&tmp_storage);
421 size_t base_class_declaration_offset = StartClassTag(base_class_desc);
422 info_.WriteFlagPresent(DW_AT_declaration);
423 WriteLinkageName(base_class);
424 EndClassTag();
425 class_declarations.emplace(base_class, base_class_declaration_offset);
426 info_.UpdateUint32(reference_offset, base_class_declaration_offset);
427 }
428 }
429
430 FinishLazyTypes();
431 CloseNamespacesAboveDepth(0);
432 info_.EndTag(); // DW_TAG_compile_unit.
433 CHECK_EQ(info_.Depth(), 0);
434 std::vector<uint8_t> buffer;
435 buffer.reserve(info_.data()->size() + KB);
436 const size_t offset = owner_->builder_->GetDebugInfo()->GetSize();
437 // All compilation units share single table which is at the start of .debug_abbrev.
438 const size_t debug_abbrev_offset = 0;
439 WriteDebugInfoCU(debug_abbrev_offset, info_, offset, &buffer, &owner_->debug_info_patches_);
440 owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size());
441 }
442
443 // Write table into .debug_loc which describes location of dex register.
444 // The dex register might be valid only at some points and it might
445 // move between machine registers and stack.
446 void WriteRegLocation(const MethodDebugInfo* method_info,
447 const std::vector<DexRegisterMap>& dex_register_maps,
448 uint16_t vreg,
449 bool is64bitValue,
450 uint64_t compilation_unit_code_address,
451 uint32_t dex_pc_low = 0,
452 uint32_t dex_pc_high = 0xFFFFFFFF) {
453 WriteDebugLocEntry(method_info,
454 dex_register_maps,
455 vreg,
456 is64bitValue,
457 compilation_unit_code_address,
458 dex_pc_low,
459 dex_pc_high,
460 owner_->builder_->GetIsa(),
461 &info_,
462 &owner_->debug_loc_,
463 &owner_->debug_ranges_);
464 }
465
466 // Linkage name uniquely identifies type.
467 // It is used to determine the dynamic type of objects.
468 // We use the methods_ field of class since it is unique and it is not moved by the GC.
WriteLinkageName(mirror::Class * type)469 void WriteLinkageName(mirror::Class* type) SHARED_REQUIRES(Locks::mutator_lock_) {
470 auto* methods_ptr = type->GetMethodsPtr();
471 if (methods_ptr == nullptr) {
472 // Some types might have no methods. Allocate empty array instead.
473 LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc();
474 void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>));
475 methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0);
476 type->SetMethodsPtr(methods_ptr, 0, 0);
477 DCHECK(type->GetMethodsPtr() != nullptr);
478 }
479 char name[32];
480 snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr));
481 info_.WriteString(dwarf::DW_AT_linkage_name, name);
482 }
483
484 // Some types are difficult to define as we go since they need
485 // to be enclosed in the right set of namespaces. Therefore we
486 // just define all types lazily at the end of compilation unit.
WriteLazyType(const char * type_descriptor)487 void WriteLazyType(const char* type_descriptor) {
488 if (type_descriptor != nullptr && type_descriptor[0] != 'V') {
489 lazy_types_.emplace(std::string(type_descriptor), info_.size());
490 info_.WriteRef4(dwarf::DW_AT_type, 0);
491 }
492 }
493
FinishLazyTypes()494 void FinishLazyTypes() {
495 for (const auto& lazy_type : lazy_types_) {
496 info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first));
497 }
498 lazy_types_.clear();
499 }
500
501 private:
WriteName(const char * name)502 void WriteName(const char* name) {
503 if (name != nullptr) {
504 info_.WriteString(dwarf::DW_AT_name, name);
505 }
506 }
507
508 // Convert dex type descriptor to DWARF.
509 // Returns offset in the compilation unit.
WriteTypeDeclaration(const std::string & desc)510 size_t WriteTypeDeclaration(const std::string& desc) {
511 using namespace dwarf; // NOLINT. For easy access to DWARF constants.
512
513 DCHECK(!desc.empty());
514 const auto& it = type_cache_.find(desc);
515 if (it != type_cache_.end()) {
516 return it->second;
517 }
518
519 size_t offset;
520 if (desc[0] == 'L') {
521 // Class type. For example: Lpackage/name;
522 size_t class_offset = StartClassTag(desc.c_str());
523 info_.WriteFlagPresent(DW_AT_declaration);
524 EndClassTag();
525 // Reference to the class type.
526 offset = info_.StartTag(DW_TAG_reference_type);
527 info_.WriteRef(DW_AT_type, class_offset);
528 info_.EndTag();
529 } else if (desc[0] == '[') {
530 // Array type.
531 size_t element_type = WriteTypeDeclaration(desc.substr(1));
532 CloseNamespacesAboveDepth(0); // Declare in root namespace.
533 size_t array_type = info_.StartTag(DW_TAG_array_type);
534 info_.WriteFlagPresent(DW_AT_declaration);
535 info_.WriteRef(DW_AT_type, element_type);
536 info_.EndTag();
537 offset = info_.StartTag(DW_TAG_reference_type);
538 info_.WriteRef4(DW_AT_type, array_type);
539 info_.EndTag();
540 } else {
541 // Primitive types.
542 DCHECK_EQ(desc.size(), 1u);
543
544 const char* name;
545 uint32_t encoding;
546 uint32_t byte_size;
547 switch (desc[0]) {
548 case 'B':
549 name = "byte";
550 encoding = DW_ATE_signed;
551 byte_size = 1;
552 break;
553 case 'C':
554 name = "char";
555 encoding = DW_ATE_UTF;
556 byte_size = 2;
557 break;
558 case 'D':
559 name = "double";
560 encoding = DW_ATE_float;
561 byte_size = 8;
562 break;
563 case 'F':
564 name = "float";
565 encoding = DW_ATE_float;
566 byte_size = 4;
567 break;
568 case 'I':
569 name = "int";
570 encoding = DW_ATE_signed;
571 byte_size = 4;
572 break;
573 case 'J':
574 name = "long";
575 encoding = DW_ATE_signed;
576 byte_size = 8;
577 break;
578 case 'S':
579 name = "short";
580 encoding = DW_ATE_signed;
581 byte_size = 2;
582 break;
583 case 'Z':
584 name = "boolean";
585 encoding = DW_ATE_boolean;
586 byte_size = 1;
587 break;
588 case 'V':
589 LOG(FATAL) << "Void type should not be encoded";
590 UNREACHABLE();
591 default:
592 LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\"";
593 UNREACHABLE();
594 }
595 CloseNamespacesAboveDepth(0); // Declare in root namespace.
596 offset = info_.StartTag(DW_TAG_base_type);
597 WriteName(name);
598 info_.WriteData1(DW_AT_encoding, encoding);
599 info_.WriteData1(DW_AT_byte_size, byte_size);
600 info_.EndTag();
601 }
602
603 type_cache_.emplace(desc, offset);
604 return offset;
605 }
606
607 // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags.
608 // Returns offset of the class tag in the compilation unit.
StartClassTag(const char * desc)609 size_t StartClassTag(const char* desc) {
610 std::string name = SetNamespaceForClass(desc);
611 size_t offset = info_.StartTag(dwarf::DW_TAG_class_type);
612 WriteName(name.c_str());
613 return offset;
614 }
615
EndClassTag()616 void EndClassTag() {
617 info_.EndTag();
618 }
619
620 // Set the current namespace nesting to one required by the given class.
621 // Returns the class name with namespaces, 'L', and ';' stripped.
SetNamespaceForClass(const char * desc)622 std::string SetNamespaceForClass(const char* desc) {
623 DCHECK(desc != nullptr && desc[0] == 'L');
624 desc++; // Skip the initial 'L'.
625 size_t depth = 0;
626 for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) {
627 // Check whether the name at this depth is already what we need.
628 if (depth < current_namespace_.size()) {
629 const std::string& name = current_namespace_[depth];
630 if (name.compare(0, name.size(), desc, end - desc) == 0) {
631 continue;
632 }
633 }
634 // Otherwise we need to open a new namespace tag at this depth.
635 CloseNamespacesAboveDepth(depth);
636 info_.StartTag(dwarf::DW_TAG_namespace);
637 std::string name(desc, end - desc);
638 WriteName(name.c_str());
639 current_namespace_.push_back(std::move(name));
640 }
641 CloseNamespacesAboveDepth(depth);
642 return std::string(desc, strchr(desc, ';') - desc);
643 }
644
645 // Close namespace tags to reach the given nesting depth.
CloseNamespacesAboveDepth(size_t depth)646 void CloseNamespacesAboveDepth(size_t depth) {
647 DCHECK_LE(depth, current_namespace_.size());
648 while (current_namespace_.size() > depth) {
649 info_.EndTag();
650 current_namespace_.pop_back();
651 }
652 }
653
654 // For access to the ELF sections.
655 ElfDebugInfoWriter<ElfTypes>* owner_;
656 // Temporary buffer to create and store the entries.
657 dwarf::DebugInfoEntryWriter<> info_;
658 // Cache of already translated type descriptors.
659 std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset.
660 // 32-bit references which need to be resolved to a type later.
661 // Given type may be used multiple times. Therefore we need a multimap.
662 std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset.
663 // The current set of open namespace tags which are active and not closed yet.
664 std::vector<std::string> current_namespace_;
665 };
666
667 } // namespace debug
668 } // namespace art
669
670 #endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_
671
672