1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 #include "llvm/Support/MathExtras.h"
35
36 using namespace clang;
37 using namespace CodeGen;
38
39 //===--------------------------------------------------------------------===//
40 // Miscellaneous Helper Methods
41 //===--------------------------------------------------------------------===//
42
EmitCastToVoidPtr(llvm::Value * value)43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
44 unsigned addressSpace =
45 cast<llvm::PointerType>(value->getType())->getAddressSpace();
46
47 llvm::PointerType *destType = Int8PtrTy;
48 if (addressSpace)
49 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
50
51 if (value->getType() == destType) return value;
52 return Builder.CreateBitCast(value, destType);
53 }
54
55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
56 /// block.
CreateTempAlloca(llvm::Type * Ty,CharUnits Align,const Twine & Name)57 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
58 const Twine &Name) {
59 auto Alloca = CreateTempAlloca(Ty, Name);
60 Alloca->setAlignment(Align.getQuantity());
61 return Address(Alloca, Align);
62 }
63
64 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
65 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)66 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
67 const Twine &Name) {
68 if (!Builder.isNamePreserving())
69 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
70 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
71 }
72
73 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
74 /// default alignment of the corresponding LLVM type, which is *not*
75 /// guaranteed to be related in any way to the expected alignment of
76 /// an AST type that might have been lowered to Ty.
CreateDefaultAlignTempAlloca(llvm::Type * Ty,const Twine & Name)77 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
78 const Twine &Name) {
79 CharUnits Align =
80 CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
81 return CreateTempAlloca(Ty, Align, Name);
82 }
83
InitTempAlloca(Address Var,llvm::Value * Init)84 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
85 assert(isa<llvm::AllocaInst>(Var.getPointer()));
86 auto *Store = new llvm::StoreInst(Init, Var.getPointer());
87 Store->setAlignment(Var.getAlignment().getQuantity());
88 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
89 Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
90 }
91
CreateIRTemp(QualType Ty,const Twine & Name)92 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
93 CharUnits Align = getContext().getTypeAlignInChars(Ty);
94 return CreateTempAlloca(ConvertType(Ty), Align, Name);
95 }
96
CreateMemTemp(QualType Ty,const Twine & Name)97 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
98 // FIXME: Should we prefer the preferred type alignment here?
99 return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
100 }
101
CreateMemTemp(QualType Ty,CharUnits Align,const Twine & Name)102 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
103 const Twine &Name) {
104 return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
105 }
106
107 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
108 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)109 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
110 PGO.setCurrentStmt(E);
111 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
112 llvm::Value *MemPtr = EmitScalarExpr(E);
113 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
114 }
115
116 QualType BoolTy = getContext().BoolTy;
117 SourceLocation Loc = E->getExprLoc();
118 if (!E->getType()->isAnyComplexType())
119 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
120
121 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
122 Loc);
123 }
124
125 /// EmitIgnoredExpr - Emit code to compute the specified expression,
126 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)127 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
128 if (E->isRValue())
129 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
130
131 // Just emit it as an l-value and drop the result.
132 EmitLValue(E);
133 }
134
135 /// EmitAnyExpr - Emit code to compute the specified expression which
136 /// can have any type. The result is returned as an RValue struct.
137 /// If this is an aggregate expression, AggSlot indicates where the
138 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)139 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
140 AggValueSlot aggSlot,
141 bool ignoreResult) {
142 switch (getEvaluationKind(E->getType())) {
143 case TEK_Scalar:
144 return RValue::get(EmitScalarExpr(E, ignoreResult));
145 case TEK_Complex:
146 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
147 case TEK_Aggregate:
148 if (!ignoreResult && aggSlot.isIgnored())
149 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
150 EmitAggExpr(E, aggSlot);
151 return aggSlot.asRValue();
152 }
153 llvm_unreachable("bad evaluation kind");
154 }
155
156 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
157 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)158 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
159 AggValueSlot AggSlot = AggValueSlot::ignored();
160
161 if (hasAggregateEvaluationKind(E->getType()))
162 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
163 return EmitAnyExpr(E, AggSlot);
164 }
165
166 /// EmitAnyExprToMem - Evaluate an expression into a given memory
167 /// location.
EmitAnyExprToMem(const Expr * E,Address Location,Qualifiers Quals,bool IsInit)168 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
169 Address Location,
170 Qualifiers Quals,
171 bool IsInit) {
172 // FIXME: This function should take an LValue as an argument.
173 switch (getEvaluationKind(E->getType())) {
174 case TEK_Complex:
175 EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
176 /*isInit*/ false);
177 return;
178
179 case TEK_Aggregate: {
180 EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
181 AggValueSlot::IsDestructed_t(IsInit),
182 AggValueSlot::DoesNotNeedGCBarriers,
183 AggValueSlot::IsAliased_t(!IsInit)));
184 return;
185 }
186
187 case TEK_Scalar: {
188 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
189 LValue LV = MakeAddrLValue(Location, E->getType());
190 EmitStoreThroughLValue(RV, LV);
191 return;
192 }
193 }
194 llvm_unreachable("bad evaluation kind");
195 }
196
197 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,Address ReferenceTemporary)198 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
199 const Expr *E, Address ReferenceTemporary) {
200 // Objective-C++ ARC:
201 // If we are binding a reference to a temporary that has ownership, we
202 // need to perform retain/release operations on the temporary.
203 //
204 // FIXME: This should be looking at E, not M.
205 if (auto Lifetime = M->getType().getObjCLifetime()) {
206 switch (Lifetime) {
207 case Qualifiers::OCL_None:
208 case Qualifiers::OCL_ExplicitNone:
209 // Carry on to normal cleanup handling.
210 break;
211
212 case Qualifiers::OCL_Autoreleasing:
213 // Nothing to do; cleaned up by an autorelease pool.
214 return;
215
216 case Qualifiers::OCL_Strong:
217 case Qualifiers::OCL_Weak:
218 switch (StorageDuration Duration = M->getStorageDuration()) {
219 case SD_Static:
220 // Note: we intentionally do not register a cleanup to release
221 // the object on program termination.
222 return;
223
224 case SD_Thread:
225 // FIXME: We should probably register a cleanup in this case.
226 return;
227
228 case SD_Automatic:
229 case SD_FullExpression:
230 CodeGenFunction::Destroyer *Destroy;
231 CleanupKind CleanupKind;
232 if (Lifetime == Qualifiers::OCL_Strong) {
233 const ValueDecl *VD = M->getExtendingDecl();
234 bool Precise =
235 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
236 CleanupKind = CGF.getARCCleanupKind();
237 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
238 : &CodeGenFunction::destroyARCStrongImprecise;
239 } else {
240 // __weak objects always get EH cleanups; otherwise, exceptions
241 // could cause really nasty crashes instead of mere leaks.
242 CleanupKind = NormalAndEHCleanup;
243 Destroy = &CodeGenFunction::destroyARCWeak;
244 }
245 if (Duration == SD_FullExpression)
246 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
247 M->getType(), *Destroy,
248 CleanupKind & EHCleanup);
249 else
250 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
251 M->getType(),
252 *Destroy, CleanupKind & EHCleanup);
253 return;
254
255 case SD_Dynamic:
256 llvm_unreachable("temporary cannot have dynamic storage duration");
257 }
258 llvm_unreachable("unknown storage duration");
259 }
260 }
261
262 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
263 if (const RecordType *RT =
264 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
265 // Get the destructor for the reference temporary.
266 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
267 if (!ClassDecl->hasTrivialDestructor())
268 ReferenceTemporaryDtor = ClassDecl->getDestructor();
269 }
270
271 if (!ReferenceTemporaryDtor)
272 return;
273
274 // Call the destructor for the temporary.
275 switch (M->getStorageDuration()) {
276 case SD_Static:
277 case SD_Thread: {
278 llvm::Constant *CleanupFn;
279 llvm::Constant *CleanupArg;
280 if (E->getType()->isArrayType()) {
281 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
282 ReferenceTemporary, E->getType(),
283 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
284 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
285 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
286 } else {
287 CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
288 StructorType::Complete);
289 CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
290 }
291 CGF.CGM.getCXXABI().registerGlobalDtor(
292 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
293 break;
294 }
295
296 case SD_FullExpression:
297 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
298 CodeGenFunction::destroyCXXObject,
299 CGF.getLangOpts().Exceptions);
300 break;
301
302 case SD_Automatic:
303 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
304 ReferenceTemporary, E->getType(),
305 CodeGenFunction::destroyCXXObject,
306 CGF.getLangOpts().Exceptions);
307 break;
308
309 case SD_Dynamic:
310 llvm_unreachable("temporary cannot have dynamic storage duration");
311 }
312 }
313
314 static Address
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner)315 createReferenceTemporary(CodeGenFunction &CGF,
316 const MaterializeTemporaryExpr *M, const Expr *Inner) {
317 switch (M->getStorageDuration()) {
318 case SD_FullExpression:
319 case SD_Automatic: {
320 // If we have a constant temporary array or record try to promote it into a
321 // constant global under the same rules a normal constant would've been
322 // promoted. This is easier on the optimizer and generally emits fewer
323 // instructions.
324 QualType Ty = Inner->getType();
325 if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
326 (Ty->isArrayType() || Ty->isRecordType()) &&
327 CGF.CGM.isTypeConstant(Ty, true))
328 if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
329 auto *GV = new llvm::GlobalVariable(
330 CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
331 llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
332 CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
333 GV->setAlignment(alignment.getQuantity());
334 // FIXME: Should we put the new global into a COMDAT?
335 return Address(GV, alignment);
336 }
337 return CGF.CreateMemTemp(Ty, "ref.tmp");
338 }
339 case SD_Thread:
340 case SD_Static:
341 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
342
343 case SD_Dynamic:
344 llvm_unreachable("temporary can't have dynamic storage duration");
345 }
346 llvm_unreachable("unknown storage duration");
347 }
348
349 LValue CodeGenFunction::
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)350 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
351 const Expr *E = M->GetTemporaryExpr();
352
353 // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
354 // as that will cause the lifetime adjustment to be lost for ARC
355 auto ownership = M->getType().getObjCLifetime();
356 if (ownership != Qualifiers::OCL_None &&
357 ownership != Qualifiers::OCL_ExplicitNone) {
358 Address Object = createReferenceTemporary(*this, M, E);
359 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
360 Object = Address(llvm::ConstantExpr::getBitCast(Var,
361 ConvertTypeForMem(E->getType())
362 ->getPointerTo(Object.getAddressSpace())),
363 Object.getAlignment());
364 // We should not have emitted the initializer for this temporary as a
365 // constant.
366 assert(!Var->hasInitializer());
367 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
368 }
369 LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
370 AlignmentSource::Decl);
371
372 switch (getEvaluationKind(E->getType())) {
373 default: llvm_unreachable("expected scalar or aggregate expression");
374 case TEK_Scalar:
375 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
376 break;
377 case TEK_Aggregate: {
378 EmitAggExpr(E, AggValueSlot::forAddr(Object,
379 E->getType().getQualifiers(),
380 AggValueSlot::IsDestructed,
381 AggValueSlot::DoesNotNeedGCBarriers,
382 AggValueSlot::IsNotAliased));
383 break;
384 }
385 }
386
387 pushTemporaryCleanup(*this, M, E, Object);
388 return RefTempDst;
389 }
390
391 SmallVector<const Expr *, 2> CommaLHSs;
392 SmallVector<SubobjectAdjustment, 2> Adjustments;
393 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
394
395 for (const auto &Ignored : CommaLHSs)
396 EmitIgnoredExpr(Ignored);
397
398 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
399 if (opaque->getType()->isRecordType()) {
400 assert(Adjustments.empty());
401 return EmitOpaqueValueLValue(opaque);
402 }
403 }
404
405 // Create and initialize the reference temporary.
406 Address Object = createReferenceTemporary(*this, M, E);
407 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
408 Object = Address(llvm::ConstantExpr::getBitCast(
409 Var, ConvertTypeForMem(E->getType())->getPointerTo()),
410 Object.getAlignment());
411 // If the temporary is a global and has a constant initializer or is a
412 // constant temporary that we promoted to a global, we may have already
413 // initialized it.
414 if (!Var->hasInitializer()) {
415 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
416 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
417 }
418 } else {
419 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
420 }
421 pushTemporaryCleanup(*this, M, E, Object);
422
423 // Perform derived-to-base casts and/or field accesses, to get from the
424 // temporary object we created (and, potentially, for which we extended
425 // the lifetime) to the subobject we're binding the reference to.
426 for (unsigned I = Adjustments.size(); I != 0; --I) {
427 SubobjectAdjustment &Adjustment = Adjustments[I-1];
428 switch (Adjustment.Kind) {
429 case SubobjectAdjustment::DerivedToBaseAdjustment:
430 Object =
431 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
432 Adjustment.DerivedToBase.BasePath->path_begin(),
433 Adjustment.DerivedToBase.BasePath->path_end(),
434 /*NullCheckValue=*/ false, E->getExprLoc());
435 break;
436
437 case SubobjectAdjustment::FieldAdjustment: {
438 LValue LV = MakeAddrLValue(Object, E->getType(),
439 AlignmentSource::Decl);
440 LV = EmitLValueForField(LV, Adjustment.Field);
441 assert(LV.isSimple() &&
442 "materialized temporary field is not a simple lvalue");
443 Object = LV.getAddress();
444 break;
445 }
446
447 case SubobjectAdjustment::MemberPointerAdjustment: {
448 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
449 Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
450 Adjustment.Ptr.MPT);
451 break;
452 }
453 }
454 }
455
456 return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 }
458
459 RValue
EmitReferenceBindingToExpr(const Expr * E)460 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
461 // Emit the expression as an lvalue.
462 LValue LV = EmitLValue(E);
463 assert(LV.isSimple());
464 llvm::Value *Value = LV.getPointer();
465
466 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
467 // C++11 [dcl.ref]p5 (as amended by core issue 453):
468 // If a glvalue to which a reference is directly bound designates neither
469 // an existing object or function of an appropriate type nor a region of
470 // storage of suitable size and alignment to contain an object of the
471 // reference's type, the behavior is undefined.
472 QualType Ty = E->getType();
473 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
474 }
475
476 return RValue::get(Value);
477 }
478
479
480 /// getAccessedFieldNo - Given an encoded value and a result number, return the
481 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)482 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
483 const llvm::Constant *Elts) {
484 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
485 ->getZExtValue();
486 }
487
488 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)489 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
490 llvm::Value *High) {
491 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
492 llvm::Value *K47 = Builder.getInt64(47);
493 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
494 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
495 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
496 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
497 return Builder.CreateMul(B1, KMul);
498 }
499
sanitizePerformTypeCheck() const500 bool CodeGenFunction::sanitizePerformTypeCheck() const {
501 return SanOpts.has(SanitizerKind::Null) |
502 SanOpts.has(SanitizerKind::Alignment) |
503 SanOpts.has(SanitizerKind::ObjectSize) |
504 SanOpts.has(SanitizerKind::Vptr);
505 }
506
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Ptr,QualType Ty,CharUnits Alignment,bool SkipNullCheck)507 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
508 llvm::Value *Ptr, QualType Ty,
509 CharUnits Alignment, bool SkipNullCheck) {
510 if (!sanitizePerformTypeCheck())
511 return;
512
513 // Don't check pointers outside the default address space. The null check
514 // isn't correct, the object-size check isn't supported by LLVM, and we can't
515 // communicate the addresses to the runtime handler for the vptr check.
516 if (Ptr->getType()->getPointerAddressSpace())
517 return;
518
519 SanitizerScope SanScope(this);
520
521 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
522 llvm::BasicBlock *Done = nullptr;
523
524 bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
525 TCK == TCK_UpcastToVirtualBase;
526 if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
527 !SkipNullCheck) {
528 // The glvalue must not be an empty glvalue.
529 llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
530
531 if (AllowNullPointers) {
532 // When performing pointer casts, it's OK if the value is null.
533 // Skip the remaining checks in that case.
534 Done = createBasicBlock("null");
535 llvm::BasicBlock *Rest = createBasicBlock("not.null");
536 Builder.CreateCondBr(IsNonNull, Rest, Done);
537 EmitBlock(Rest);
538 } else {
539 Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
540 }
541 }
542
543 if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
544 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
545
546 // The glvalue must refer to a large enough storage region.
547 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
548 // to check this.
549 // FIXME: Get object address space
550 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
551 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
552 llvm::Value *Min = Builder.getFalse();
553 llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
554 llvm::Value *LargeEnough =
555 Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
556 llvm::ConstantInt::get(IntPtrTy, Size));
557 Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
558 }
559
560 uint64_t AlignVal = 0;
561
562 if (SanOpts.has(SanitizerKind::Alignment)) {
563 AlignVal = Alignment.getQuantity();
564 if (!Ty->isIncompleteType() && !AlignVal)
565 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
566
567 // The glvalue must be suitably aligned.
568 if (AlignVal) {
569 llvm::Value *Align =
570 Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
571 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
572 llvm::Value *Aligned =
573 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
574 Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
575 }
576 }
577
578 if (Checks.size() > 0) {
579 llvm::Constant *StaticData[] = {
580 EmitCheckSourceLocation(Loc),
581 EmitCheckTypeDescriptor(Ty),
582 llvm::ConstantInt::get(SizeTy, AlignVal),
583 llvm::ConstantInt::get(Int8Ty, TCK)
584 };
585 EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
586 }
587
588 // If possible, check that the vptr indicates that there is a subobject of
589 // type Ty at offset zero within this object.
590 //
591 // C++11 [basic.life]p5,6:
592 // [For storage which does not refer to an object within its lifetime]
593 // The program has undefined behavior if:
594 // -- the [pointer or glvalue] is used to access a non-static data member
595 // or call a non-static member function
596 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
597 if (SanOpts.has(SanitizerKind::Vptr) &&
598 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
599 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
600 TCK == TCK_UpcastToVirtualBase) &&
601 RD && RD->hasDefinition() && RD->isDynamicClass()) {
602 // Compute a hash of the mangled name of the type.
603 //
604 // FIXME: This is not guaranteed to be deterministic! Move to a
605 // fingerprinting mechanism once LLVM provides one. For the time
606 // being the implementation happens to be deterministic.
607 SmallString<64> MangledName;
608 llvm::raw_svector_ostream Out(MangledName);
609 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
610 Out);
611
612 // Blacklist based on the mangled type.
613 if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
614 Out.str())) {
615 llvm::hash_code TypeHash = hash_value(Out.str());
616
617 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
618 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
619 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
620 Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
621 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
622 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
623
624 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
625 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
626
627 // Look the hash up in our cache.
628 const int CacheSize = 128;
629 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
630 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
631 "__ubsan_vptr_type_cache");
632 llvm::Value *Slot = Builder.CreateAnd(Hash,
633 llvm::ConstantInt::get(IntPtrTy,
634 CacheSize-1));
635 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
636 llvm::Value *CacheVal =
637 Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
638 getPointerAlign());
639
640 // If the hash isn't in the cache, call a runtime handler to perform the
641 // hard work of checking whether the vptr is for an object of the right
642 // type. This will either fill in the cache and return, or produce a
643 // diagnostic.
644 llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
645 llvm::Constant *StaticData[] = {
646 EmitCheckSourceLocation(Loc),
647 EmitCheckTypeDescriptor(Ty),
648 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
649 llvm::ConstantInt::get(Int8Ty, TCK)
650 };
651 llvm::Value *DynamicData[] = { Ptr, Hash };
652 EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
653 "dynamic_type_cache_miss", StaticData, DynamicData);
654 }
655 }
656
657 if (Done) {
658 Builder.CreateBr(Done);
659 EmitBlock(Done);
660 }
661 }
662
663 /// Determine whether this expression refers to a flexible array member in a
664 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)665 static bool isFlexibleArrayMemberExpr(const Expr *E) {
666 // For compatibility with existing code, we treat arrays of length 0 or
667 // 1 as flexible array members.
668 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
669 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
670 if (CAT->getSize().ugt(1))
671 return false;
672 } else if (!isa<IncompleteArrayType>(AT))
673 return false;
674
675 E = E->IgnoreParens();
676
677 // A flexible array member must be the last member in the class.
678 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
679 // FIXME: If the base type of the member expr is not FD->getParent(),
680 // this should not be treated as a flexible array member access.
681 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
682 RecordDecl::field_iterator FI(
683 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
684 return ++FI == FD->getParent()->field_end();
685 }
686 }
687
688 return false;
689 }
690
691 /// If Base is known to point to the start of an array, return the length of
692 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)693 static llvm::Value *getArrayIndexingBound(
694 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
695 // For the vector indexing extension, the bound is the number of elements.
696 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
697 IndexedType = Base->getType();
698 return CGF.Builder.getInt32(VT->getNumElements());
699 }
700
701 Base = Base->IgnoreParens();
702
703 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
704 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
705 !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
706 IndexedType = CE->getSubExpr()->getType();
707 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
708 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
709 return CGF.Builder.getInt(CAT->getSize());
710 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
711 return CGF.getVLASize(VAT).first;
712 }
713 }
714
715 return nullptr;
716 }
717
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)718 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
719 llvm::Value *Index, QualType IndexType,
720 bool Accessed) {
721 assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
722 "should not be called unless adding bounds checks");
723 SanitizerScope SanScope(this);
724
725 QualType IndexedType;
726 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
727 if (!Bound)
728 return;
729
730 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
731 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
732 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
733
734 llvm::Constant *StaticData[] = {
735 EmitCheckSourceLocation(E->getExprLoc()),
736 EmitCheckTypeDescriptor(IndexedType),
737 EmitCheckTypeDescriptor(IndexType)
738 };
739 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
740 : Builder.CreateICmpULE(IndexVal, BoundVal);
741 EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
742 StaticData, Index);
743 }
744
745
746 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)747 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
748 bool isInc, bool isPre) {
749 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
750
751 llvm::Value *NextVal;
752 if (isa<llvm::IntegerType>(InVal.first->getType())) {
753 uint64_t AmountVal = isInc ? 1 : -1;
754 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
755
756 // Add the inc/dec to the real part.
757 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
758 } else {
759 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
760 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
761 if (!isInc)
762 FVal.changeSign();
763 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
764
765 // Add the inc/dec to the real part.
766 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
767 }
768
769 ComplexPairTy IncVal(NextVal, InVal.second);
770
771 // Store the updated result through the lvalue.
772 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
773
774 // If this is a postinc, return the value read from memory, otherwise use the
775 // updated value.
776 return isPre ? IncVal : InVal;
777 }
778
EmitExplicitCastExprType(const ExplicitCastExpr * E,CodeGenFunction * CGF)779 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
780 CodeGenFunction *CGF) {
781 // Bind VLAs in the cast type.
782 if (CGF && E->getType()->isVariablyModifiedType())
783 CGF->EmitVariablyModifiedType(E->getType());
784
785 if (CGDebugInfo *DI = getModuleDebugInfo())
786 DI->EmitExplicitCastType(E->getType());
787 }
788
789 //===----------------------------------------------------------------------===//
790 // LValue Expression Emission
791 //===----------------------------------------------------------------------===//
792
793 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
794 /// derive a more accurate bound on the alignment of the pointer.
EmitPointerWithAlignment(const Expr * E,AlignmentSource * Source)795 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
796 AlignmentSource *Source) {
797 // We allow this with ObjC object pointers because of fragile ABIs.
798 assert(E->getType()->isPointerType() ||
799 E->getType()->isObjCObjectPointerType());
800 E = E->IgnoreParens();
801
802 // Casts:
803 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
804 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
805 CGM.EmitExplicitCastExprType(ECE, this);
806
807 switch (CE->getCastKind()) {
808 // Non-converting casts (but not C's implicit conversion from void*).
809 case CK_BitCast:
810 case CK_NoOp:
811 if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
812 if (PtrTy->getPointeeType()->isVoidType())
813 break;
814
815 AlignmentSource InnerSource;
816 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
817 if (Source) *Source = InnerSource;
818
819 // If this is an explicit bitcast, and the source l-value is
820 // opaque, honor the alignment of the casted-to type.
821 if (isa<ExplicitCastExpr>(CE) &&
822 InnerSource != AlignmentSource::Decl) {
823 Addr = Address(Addr.getPointer(),
824 getNaturalPointeeTypeAlignment(E->getType(), Source));
825 }
826
827 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
828 if (auto PT = E->getType()->getAs<PointerType>())
829 EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
830 /*MayBeNull=*/true,
831 CodeGenFunction::CFITCK_UnrelatedCast,
832 CE->getLocStart());
833 }
834
835 return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
836 }
837 break;
838
839 // Array-to-pointer decay.
840 case CK_ArrayToPointerDecay:
841 return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
842
843 // Derived-to-base conversions.
844 case CK_UncheckedDerivedToBase:
845 case CK_DerivedToBase: {
846 Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
847 auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
848 return GetAddressOfBaseClass(Addr, Derived,
849 CE->path_begin(), CE->path_end(),
850 ShouldNullCheckClassCastValue(CE),
851 CE->getExprLoc());
852 }
853
854 // TODO: Is there any reason to treat base-to-derived conversions
855 // specially?
856 default:
857 break;
858 }
859 }
860
861 // Unary &.
862 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
863 if (UO->getOpcode() == UO_AddrOf) {
864 LValue LV = EmitLValue(UO->getSubExpr());
865 if (Source) *Source = LV.getAlignmentSource();
866 return LV.getAddress();
867 }
868 }
869
870 // TODO: conditional operators, comma.
871
872 // Otherwise, use the alignment of the type.
873 CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
874 return Address(EmitScalarExpr(E), Align);
875 }
876
GetUndefRValue(QualType Ty)877 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
878 if (Ty->isVoidType())
879 return RValue::get(nullptr);
880
881 switch (getEvaluationKind(Ty)) {
882 case TEK_Complex: {
883 llvm::Type *EltTy =
884 ConvertType(Ty->castAs<ComplexType>()->getElementType());
885 llvm::Value *U = llvm::UndefValue::get(EltTy);
886 return RValue::getComplex(std::make_pair(U, U));
887 }
888
889 // If this is a use of an undefined aggregate type, the aggregate must have an
890 // identifiable address. Just because the contents of the value are undefined
891 // doesn't mean that the address can't be taken and compared.
892 case TEK_Aggregate: {
893 Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
894 return RValue::getAggregate(DestPtr);
895 }
896
897 case TEK_Scalar:
898 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
899 }
900 llvm_unreachable("bad evaluation kind");
901 }
902
EmitUnsupportedRValue(const Expr * E,const char * Name)903 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
904 const char *Name) {
905 ErrorUnsupported(E, Name);
906 return GetUndefRValue(E->getType());
907 }
908
EmitUnsupportedLValue(const Expr * E,const char * Name)909 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
910 const char *Name) {
911 ErrorUnsupported(E, Name);
912 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
913 return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
914 E->getType());
915 }
916
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)917 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
918 LValue LV;
919 if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
920 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
921 else
922 LV = EmitLValue(E);
923 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
924 EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
925 E->getType(), LV.getAlignment());
926 return LV;
927 }
928
929 /// EmitLValue - Emit code to compute a designator that specifies the location
930 /// of the expression.
931 ///
932 /// This can return one of two things: a simple address or a bitfield reference.
933 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
934 /// an LLVM pointer type.
935 ///
936 /// If this returns a bitfield reference, nothing about the pointee type of the
937 /// LLVM value is known: For example, it may not be a pointer to an integer.
938 ///
939 /// If this returns a normal address, and if the lvalue's C type is fixed size,
940 /// this method guarantees that the returned pointer type will point to an LLVM
941 /// type of the same size of the lvalue's type. If the lvalue has a variable
942 /// length type, this is not possible.
943 ///
EmitLValue(const Expr * E)944 LValue CodeGenFunction::EmitLValue(const Expr *E) {
945 ApplyDebugLocation DL(*this, E);
946 switch (E->getStmtClass()) {
947 default: return EmitUnsupportedLValue(E, "l-value expression");
948
949 case Expr::ObjCPropertyRefExprClass:
950 llvm_unreachable("cannot emit a property reference directly");
951
952 case Expr::ObjCSelectorExprClass:
953 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
954 case Expr::ObjCIsaExprClass:
955 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
956 case Expr::BinaryOperatorClass:
957 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
958 case Expr::CompoundAssignOperatorClass: {
959 QualType Ty = E->getType();
960 if (const AtomicType *AT = Ty->getAs<AtomicType>())
961 Ty = AT->getValueType();
962 if (!Ty->isAnyComplexType())
963 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
964 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
965 }
966 case Expr::CallExprClass:
967 case Expr::CXXMemberCallExprClass:
968 case Expr::CXXOperatorCallExprClass:
969 case Expr::UserDefinedLiteralClass:
970 return EmitCallExprLValue(cast<CallExpr>(E));
971 case Expr::VAArgExprClass:
972 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
973 case Expr::DeclRefExprClass:
974 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
975 case Expr::ParenExprClass:
976 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
977 case Expr::GenericSelectionExprClass:
978 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
979 case Expr::PredefinedExprClass:
980 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
981 case Expr::StringLiteralClass:
982 return EmitStringLiteralLValue(cast<StringLiteral>(E));
983 case Expr::ObjCEncodeExprClass:
984 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
985 case Expr::PseudoObjectExprClass:
986 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
987 case Expr::InitListExprClass:
988 return EmitInitListLValue(cast<InitListExpr>(E));
989 case Expr::CXXTemporaryObjectExprClass:
990 case Expr::CXXConstructExprClass:
991 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
992 case Expr::CXXBindTemporaryExprClass:
993 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
994 case Expr::CXXUuidofExprClass:
995 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
996 case Expr::LambdaExprClass:
997 return EmitLambdaLValue(cast<LambdaExpr>(E));
998
999 case Expr::ExprWithCleanupsClass: {
1000 const auto *cleanups = cast<ExprWithCleanups>(E);
1001 enterFullExpression(cleanups);
1002 RunCleanupsScope Scope(*this);
1003 return EmitLValue(cleanups->getSubExpr());
1004 }
1005
1006 case Expr::CXXDefaultArgExprClass:
1007 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1008 case Expr::CXXDefaultInitExprClass: {
1009 CXXDefaultInitExprScope Scope(*this);
1010 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1011 }
1012 case Expr::CXXTypeidExprClass:
1013 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1014
1015 case Expr::ObjCMessageExprClass:
1016 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1017 case Expr::ObjCIvarRefExprClass:
1018 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1019 case Expr::StmtExprClass:
1020 return EmitStmtExprLValue(cast<StmtExpr>(E));
1021 case Expr::UnaryOperatorClass:
1022 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1023 case Expr::ArraySubscriptExprClass:
1024 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1025 case Expr::OMPArraySectionExprClass:
1026 return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1027 case Expr::ExtVectorElementExprClass:
1028 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1029 case Expr::MemberExprClass:
1030 return EmitMemberExpr(cast<MemberExpr>(E));
1031 case Expr::CompoundLiteralExprClass:
1032 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1033 case Expr::ConditionalOperatorClass:
1034 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1035 case Expr::BinaryConditionalOperatorClass:
1036 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1037 case Expr::ChooseExprClass:
1038 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1039 case Expr::OpaqueValueExprClass:
1040 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1041 case Expr::SubstNonTypeTemplateParmExprClass:
1042 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1043 case Expr::ImplicitCastExprClass:
1044 case Expr::CStyleCastExprClass:
1045 case Expr::CXXFunctionalCastExprClass:
1046 case Expr::CXXStaticCastExprClass:
1047 case Expr::CXXDynamicCastExprClass:
1048 case Expr::CXXReinterpretCastExprClass:
1049 case Expr::CXXConstCastExprClass:
1050 case Expr::ObjCBridgedCastExprClass:
1051 return EmitCastLValue(cast<CastExpr>(E));
1052
1053 case Expr::MaterializeTemporaryExprClass:
1054 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1055 }
1056 }
1057
1058 /// Given an object of the given canonical type, can we safely copy a
1059 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)1060 static bool isConstantEmittableObjectType(QualType type) {
1061 assert(type.isCanonical());
1062 assert(!type->isReferenceType());
1063
1064 // Must be const-qualified but non-volatile.
1065 Qualifiers qs = type.getLocalQualifiers();
1066 if (!qs.hasConst() || qs.hasVolatile()) return false;
1067
1068 // Otherwise, all object types satisfy this except C++ classes with
1069 // mutable subobjects or non-trivial copy/destroy behavior.
1070 if (const auto *RT = dyn_cast<RecordType>(type))
1071 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1072 if (RD->hasMutableFields() || !RD->isTrivial())
1073 return false;
1074
1075 return true;
1076 }
1077
1078 /// Can we constant-emit a load of a reference to a variable of the
1079 /// given type? This is different from predicates like
1080 /// Decl::isUsableInConstantExpressions because we do want it to apply
1081 /// in situations that don't necessarily satisfy the language's rules
1082 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
1083 /// to do this with const float variables even if those variables
1084 /// aren't marked 'constexpr'.
1085 enum ConstantEmissionKind {
1086 CEK_None,
1087 CEK_AsReferenceOnly,
1088 CEK_AsValueOrReference,
1089 CEK_AsValueOnly
1090 };
checkVarTypeForConstantEmission(QualType type)1091 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1092 type = type.getCanonicalType();
1093 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1094 if (isConstantEmittableObjectType(ref->getPointeeType()))
1095 return CEK_AsValueOrReference;
1096 return CEK_AsReferenceOnly;
1097 }
1098 if (isConstantEmittableObjectType(type))
1099 return CEK_AsValueOnly;
1100 return CEK_None;
1101 }
1102
1103 /// Try to emit a reference to the given value without producing it as
1104 /// an l-value. This is actually more than an optimization: we can't
1105 /// produce an l-value for variables that we never actually captured
1106 /// in a block or lambda, which means const int variables or constexpr
1107 /// literals or similar.
1108 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)1109 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1110 ValueDecl *value = refExpr->getDecl();
1111
1112 // The value needs to be an enum constant or a constant variable.
1113 ConstantEmissionKind CEK;
1114 if (isa<ParmVarDecl>(value)) {
1115 CEK = CEK_None;
1116 } else if (auto *var = dyn_cast<VarDecl>(value)) {
1117 CEK = checkVarTypeForConstantEmission(var->getType());
1118 } else if (isa<EnumConstantDecl>(value)) {
1119 CEK = CEK_AsValueOnly;
1120 } else {
1121 CEK = CEK_None;
1122 }
1123 if (CEK == CEK_None) return ConstantEmission();
1124
1125 Expr::EvalResult result;
1126 bool resultIsReference;
1127 QualType resultType;
1128
1129 // It's best to evaluate all the way as an r-value if that's permitted.
1130 if (CEK != CEK_AsReferenceOnly &&
1131 refExpr->EvaluateAsRValue(result, getContext())) {
1132 resultIsReference = false;
1133 resultType = refExpr->getType();
1134
1135 // Otherwise, try to evaluate as an l-value.
1136 } else if (CEK != CEK_AsValueOnly &&
1137 refExpr->EvaluateAsLValue(result, getContext())) {
1138 resultIsReference = true;
1139 resultType = value->getType();
1140
1141 // Failure.
1142 } else {
1143 return ConstantEmission();
1144 }
1145
1146 // In any case, if the initializer has side-effects, abandon ship.
1147 if (result.HasSideEffects)
1148 return ConstantEmission();
1149
1150 // Emit as a constant.
1151 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1152
1153 // Make sure we emit a debug reference to the global variable.
1154 // This should probably fire even for
1155 if (isa<VarDecl>(value)) {
1156 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1157 EmitDeclRefExprDbgValue(refExpr, C);
1158 } else {
1159 assert(isa<EnumConstantDecl>(value));
1160 EmitDeclRefExprDbgValue(refExpr, C);
1161 }
1162
1163 // If we emitted a reference constant, we need to dereference that.
1164 if (resultIsReference)
1165 return ConstantEmission::forReference(C);
1166
1167 return ConstantEmission::forValue(C);
1168 }
1169
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)1170 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1171 SourceLocation Loc) {
1172 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1173 lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1174 lvalue.getTBAAInfo(),
1175 lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1176 lvalue.isNontemporal());
1177 }
1178
hasBooleanRepresentation(QualType Ty)1179 static bool hasBooleanRepresentation(QualType Ty) {
1180 if (Ty->isBooleanType())
1181 return true;
1182
1183 if (const EnumType *ET = Ty->getAs<EnumType>())
1184 return ET->getDecl()->getIntegerType()->isBooleanType();
1185
1186 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1187 return hasBooleanRepresentation(AT->getValueType());
1188
1189 return false;
1190 }
1191
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums)1192 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1193 llvm::APInt &Min, llvm::APInt &End,
1194 bool StrictEnums) {
1195 const EnumType *ET = Ty->getAs<EnumType>();
1196 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1197 ET && !ET->getDecl()->isFixed();
1198 bool IsBool = hasBooleanRepresentation(Ty);
1199 if (!IsBool && !IsRegularCPlusPlusEnum)
1200 return false;
1201
1202 if (IsBool) {
1203 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1204 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1205 } else {
1206 const EnumDecl *ED = ET->getDecl();
1207 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1208 unsigned Bitwidth = LTy->getScalarSizeInBits();
1209 unsigned NumNegativeBits = ED->getNumNegativeBits();
1210 unsigned NumPositiveBits = ED->getNumPositiveBits();
1211
1212 if (NumNegativeBits) {
1213 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1214 assert(NumBits <= Bitwidth);
1215 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1216 Min = -End;
1217 } else {
1218 assert(NumPositiveBits <= Bitwidth);
1219 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1220 Min = llvm::APInt(Bitwidth, 0);
1221 }
1222 }
1223 return true;
1224 }
1225
getRangeForLoadFromType(QualType Ty)1226 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1227 llvm::APInt Min, End;
1228 if (!getRangeForType(*this, Ty, Min, End,
1229 CGM.getCodeGenOpts().StrictEnums))
1230 return nullptr;
1231
1232 llvm::MDBuilder MDHelper(getLLVMContext());
1233 return MDHelper.createRange(Min, End);
1234 }
1235
EmitLoadOfScalar(Address Addr,bool Volatile,QualType Ty,SourceLocation Loc,AlignmentSource AlignSource,llvm::MDNode * TBAAInfo,QualType TBAABaseType,uint64_t TBAAOffset,bool isNontemporal)1236 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1237 QualType Ty,
1238 SourceLocation Loc,
1239 AlignmentSource AlignSource,
1240 llvm::MDNode *TBAAInfo,
1241 QualType TBAABaseType,
1242 uint64_t TBAAOffset,
1243 bool isNontemporal) {
1244 // For better performance, handle vector loads differently.
1245 if (Ty->isVectorType()) {
1246 const llvm::Type *EltTy = Addr.getElementType();
1247
1248 const auto *VTy = cast<llvm::VectorType>(EltTy);
1249
1250 // Handle vectors of size 3 like size 4 for better performance.
1251 if (VTy->getNumElements() == 3) {
1252
1253 // Bitcast to vec4 type.
1254 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1255 4);
1256 Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1257 // Now load value.
1258 llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1259
1260 // Shuffle vector to get vec3.
1261 V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1262 {0, 1, 2}, "extractVec");
1263 return EmitFromMemory(V, Ty);
1264 }
1265 }
1266
1267 // Atomic operations have to be done on integral types.
1268 if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1269 LValue lvalue =
1270 LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1271 return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1272 }
1273
1274 llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1275 if (isNontemporal) {
1276 llvm::MDNode *Node = llvm::MDNode::get(
1277 Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1278 Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1279 }
1280 if (TBAAInfo) {
1281 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1282 TBAAOffset);
1283 if (TBAAPath)
1284 CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1285 false /*ConvertTypeToTag*/);
1286 }
1287
1288 bool NeedsBoolCheck =
1289 SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1290 bool NeedsEnumCheck =
1291 SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1292 if (NeedsBoolCheck || NeedsEnumCheck) {
1293 SanitizerScope SanScope(this);
1294 llvm::APInt Min, End;
1295 if (getRangeForType(*this, Ty, Min, End, true)) {
1296 --End;
1297 llvm::Value *Check;
1298 if (!Min)
1299 Check = Builder.CreateICmpULE(
1300 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1301 else {
1302 llvm::Value *Upper = Builder.CreateICmpSLE(
1303 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1304 llvm::Value *Lower = Builder.CreateICmpSGE(
1305 Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1306 Check = Builder.CreateAnd(Upper, Lower);
1307 }
1308 llvm::Constant *StaticArgs[] = {
1309 EmitCheckSourceLocation(Loc),
1310 EmitCheckTypeDescriptor(Ty)
1311 };
1312 SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1313 EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1314 EmitCheckValue(Load));
1315 }
1316 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1317 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1318 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1319
1320 return EmitFromMemory(Load, Ty);
1321 }
1322
EmitToMemory(llvm::Value * Value,QualType Ty)1323 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1324 // Bool has a different representation in memory than in registers.
1325 if (hasBooleanRepresentation(Ty)) {
1326 // This should really always be an i1, but sometimes it's already
1327 // an i8, and it's awkward to track those cases down.
1328 if (Value->getType()->isIntegerTy(1))
1329 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1330 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1331 "wrong value rep of bool");
1332 }
1333
1334 return Value;
1335 }
1336
EmitFromMemory(llvm::Value * Value,QualType Ty)1337 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1338 // Bool has a different representation in memory than in registers.
1339 if (hasBooleanRepresentation(Ty)) {
1340 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1341 "wrong value rep of bool");
1342 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1343 }
1344
1345 return Value;
1346 }
1347
EmitStoreOfScalar(llvm::Value * Value,Address Addr,bool Volatile,QualType Ty,AlignmentSource AlignSource,llvm::MDNode * TBAAInfo,bool isInit,QualType TBAABaseType,uint64_t TBAAOffset,bool isNontemporal)1348 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1349 bool Volatile, QualType Ty,
1350 AlignmentSource AlignSource,
1351 llvm::MDNode *TBAAInfo,
1352 bool isInit, QualType TBAABaseType,
1353 uint64_t TBAAOffset,
1354 bool isNontemporal) {
1355
1356 // Handle vectors differently to get better performance.
1357 if (Ty->isVectorType()) {
1358 llvm::Type *SrcTy = Value->getType();
1359 auto *VecTy = cast<llvm::VectorType>(SrcTy);
1360 // Handle vec3 special.
1361 if (VecTy->getNumElements() == 3) {
1362 // Our source is a vec3, do a shuffle vector to make it a vec4.
1363 llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1364 Builder.getInt32(2),
1365 llvm::UndefValue::get(Builder.getInt32Ty())};
1366 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1367 Value = Builder.CreateShuffleVector(Value,
1368 llvm::UndefValue::get(VecTy),
1369 MaskV, "extractVec");
1370 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1371 }
1372 if (Addr.getElementType() != SrcTy) {
1373 Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1374 }
1375 }
1376
1377 Value = EmitToMemory(Value, Ty);
1378
1379 if (Ty->isAtomicType() ||
1380 (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1381 EmitAtomicStore(RValue::get(Value),
1382 LValue::MakeAddr(Addr, Ty, getContext(),
1383 AlignSource, TBAAInfo),
1384 isInit);
1385 return;
1386 }
1387
1388 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1389 if (isNontemporal) {
1390 llvm::MDNode *Node =
1391 llvm::MDNode::get(Store->getContext(),
1392 llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1393 Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1394 }
1395 if (TBAAInfo) {
1396 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1397 TBAAOffset);
1398 if (TBAAPath)
1399 CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1400 false /*ConvertTypeToTag*/);
1401 }
1402 }
1403
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1404 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1405 bool isInit) {
1406 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1407 lvalue.getType(), lvalue.getAlignmentSource(),
1408 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1409 lvalue.getTBAAOffset(), lvalue.isNontemporal());
1410 }
1411
1412 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1413 /// method emits the address of the lvalue, then loads the result as an rvalue,
1414 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1415 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1416 if (LV.isObjCWeak()) {
1417 // load of a __weak object.
1418 Address AddrWeakObj = LV.getAddress();
1419 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1420 AddrWeakObj));
1421 }
1422 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1423 // In MRC mode, we do a load+autorelease.
1424 if (!getLangOpts().ObjCAutoRefCount) {
1425 return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1426 }
1427
1428 // In ARC mode, we load retained and then consume the value.
1429 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1430 Object = EmitObjCConsumeObject(LV.getType(), Object);
1431 return RValue::get(Object);
1432 }
1433
1434 if (LV.isSimple()) {
1435 assert(!LV.getType()->isFunctionType());
1436
1437 // Everything needs a load.
1438 return RValue::get(EmitLoadOfScalar(LV, Loc));
1439 }
1440
1441 if (LV.isVectorElt()) {
1442 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1443 LV.isVolatileQualified());
1444 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1445 "vecext"));
1446 }
1447
1448 // If this is a reference to a subset of the elements of a vector, either
1449 // shuffle the input or extract/insert them as appropriate.
1450 if (LV.isExtVectorElt())
1451 return EmitLoadOfExtVectorElementLValue(LV);
1452
1453 // Global Register variables always invoke intrinsics
1454 if (LV.isGlobalReg())
1455 return EmitLoadOfGlobalRegLValue(LV);
1456
1457 assert(LV.isBitField() && "Unknown LValue type!");
1458 return EmitLoadOfBitfieldLValue(LV);
1459 }
1460
EmitLoadOfBitfieldLValue(LValue LV)1461 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1462 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1463
1464 // Get the output type.
1465 llvm::Type *ResLTy = ConvertType(LV.getType());
1466
1467 Address Ptr = LV.getBitFieldAddress();
1468 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1469
1470 if (Info.IsSigned) {
1471 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1472 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1473 if (HighBits)
1474 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1475 if (Info.Offset + HighBits)
1476 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1477 } else {
1478 if (Info.Offset)
1479 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1480 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1481 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1482 Info.Size),
1483 "bf.clear");
1484 }
1485 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1486
1487 return RValue::get(Val);
1488 }
1489
1490 // If this is a reference to a subset of the elements of a vector, create an
1491 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1492 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1493 llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1494 LV.isVolatileQualified());
1495
1496 const llvm::Constant *Elts = LV.getExtVectorElts();
1497
1498 // If the result of the expression is a non-vector type, we must be extracting
1499 // a single element. Just codegen as an extractelement.
1500 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1501 if (!ExprVT) {
1502 unsigned InIdx = getAccessedFieldNo(0, Elts);
1503 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1504 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1505 }
1506
1507 // Always use shuffle vector to try to retain the original program structure
1508 unsigned NumResultElts = ExprVT->getNumElements();
1509
1510 SmallVector<llvm::Constant*, 4> Mask;
1511 for (unsigned i = 0; i != NumResultElts; ++i)
1512 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1513
1514 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1515 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1516 MaskV);
1517 return RValue::get(Vec);
1518 }
1519
1520 /// @brief Generates lvalue for partial ext_vector access.
EmitExtVectorElementLValue(LValue LV)1521 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1522 Address VectorAddress = LV.getExtVectorAddress();
1523 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1524 QualType EQT = ExprVT->getElementType();
1525 llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1526
1527 Address CastToPointerElement =
1528 Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1529 "conv.ptr.element");
1530
1531 const llvm::Constant *Elts = LV.getExtVectorElts();
1532 unsigned ix = getAccessedFieldNo(0, Elts);
1533
1534 Address VectorBasePtrPlusIx =
1535 Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1536 getContext().getTypeSizeInChars(EQT),
1537 "vector.elt");
1538
1539 return VectorBasePtrPlusIx;
1540 }
1541
1542 /// @brief Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)1543 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1544 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1545 "Bad type for register variable");
1546 llvm::MDNode *RegName = cast<llvm::MDNode>(
1547 cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1548
1549 // We accept integer and pointer types only
1550 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1551 llvm::Type *Ty = OrigTy;
1552 if (OrigTy->isPointerTy())
1553 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1554 llvm::Type *Types[] = { Ty };
1555
1556 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1557 llvm::Value *Call = Builder.CreateCall(
1558 F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1559 if (OrigTy->isPointerTy())
1560 Call = Builder.CreateIntToPtr(Call, OrigTy);
1561 return RValue::get(Call);
1562 }
1563
1564
1565 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1566 /// lvalue, where both are guaranteed to the have the same type, and that type
1567 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1568 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1569 bool isInit) {
1570 if (!Dst.isSimple()) {
1571 if (Dst.isVectorElt()) {
1572 // Read/modify/write the vector, inserting the new element.
1573 llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1574 Dst.isVolatileQualified());
1575 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1576 Dst.getVectorIdx(), "vecins");
1577 Builder.CreateStore(Vec, Dst.getVectorAddress(),
1578 Dst.isVolatileQualified());
1579 return;
1580 }
1581
1582 // If this is an update of extended vector elements, insert them as
1583 // appropriate.
1584 if (Dst.isExtVectorElt())
1585 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1586
1587 if (Dst.isGlobalReg())
1588 return EmitStoreThroughGlobalRegLValue(Src, Dst);
1589
1590 assert(Dst.isBitField() && "Unknown LValue type");
1591 return EmitStoreThroughBitfieldLValue(Src, Dst);
1592 }
1593
1594 // There's special magic for assigning into an ARC-qualified l-value.
1595 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1596 switch (Lifetime) {
1597 case Qualifiers::OCL_None:
1598 llvm_unreachable("present but none");
1599
1600 case Qualifiers::OCL_ExplicitNone:
1601 // nothing special
1602 break;
1603
1604 case Qualifiers::OCL_Strong:
1605 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1606 return;
1607
1608 case Qualifiers::OCL_Weak:
1609 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1610 return;
1611
1612 case Qualifiers::OCL_Autoreleasing:
1613 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1614 Src.getScalarVal()));
1615 // fall into the normal path
1616 break;
1617 }
1618 }
1619
1620 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1621 // load of a __weak object.
1622 Address LvalueDst = Dst.getAddress();
1623 llvm::Value *src = Src.getScalarVal();
1624 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1625 return;
1626 }
1627
1628 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1629 // load of a __strong object.
1630 Address LvalueDst = Dst.getAddress();
1631 llvm::Value *src = Src.getScalarVal();
1632 if (Dst.isObjCIvar()) {
1633 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1634 llvm::Type *ResultType = IntPtrTy;
1635 Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1636 llvm::Value *RHS = dst.getPointer();
1637 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1638 llvm::Value *LHS =
1639 Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1640 "sub.ptr.lhs.cast");
1641 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1642 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1643 BytesBetween);
1644 } else if (Dst.isGlobalObjCRef()) {
1645 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1646 Dst.isThreadLocalRef());
1647 }
1648 else
1649 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1650 return;
1651 }
1652
1653 assert(Src.isScalar() && "Can't emit an agg store with this method");
1654 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1655 }
1656
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1657 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1658 llvm::Value **Result) {
1659 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1660 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1661 Address Ptr = Dst.getBitFieldAddress();
1662
1663 // Get the source value, truncated to the width of the bit-field.
1664 llvm::Value *SrcVal = Src.getScalarVal();
1665
1666 // Cast the source to the storage type and shift it into place.
1667 SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1668 /*IsSigned=*/false);
1669 llvm::Value *MaskedVal = SrcVal;
1670
1671 // See if there are other bits in the bitfield's storage we'll need to load
1672 // and mask together with source before storing.
1673 if (Info.StorageSize != Info.Size) {
1674 assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1675 llvm::Value *Val =
1676 Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1677
1678 // Mask the source value as needed.
1679 if (!hasBooleanRepresentation(Dst.getType()))
1680 SrcVal = Builder.CreateAnd(SrcVal,
1681 llvm::APInt::getLowBitsSet(Info.StorageSize,
1682 Info.Size),
1683 "bf.value");
1684 MaskedVal = SrcVal;
1685 if (Info.Offset)
1686 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1687
1688 // Mask out the original value.
1689 Val = Builder.CreateAnd(Val,
1690 ~llvm::APInt::getBitsSet(Info.StorageSize,
1691 Info.Offset,
1692 Info.Offset + Info.Size),
1693 "bf.clear");
1694
1695 // Or together the unchanged values and the source value.
1696 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1697 } else {
1698 assert(Info.Offset == 0);
1699 }
1700
1701 // Write the new value back out.
1702 Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1703
1704 // Return the new value of the bit-field, if requested.
1705 if (Result) {
1706 llvm::Value *ResultVal = MaskedVal;
1707
1708 // Sign extend the value if needed.
1709 if (Info.IsSigned) {
1710 assert(Info.Size <= Info.StorageSize);
1711 unsigned HighBits = Info.StorageSize - Info.Size;
1712 if (HighBits) {
1713 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1714 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1715 }
1716 }
1717
1718 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1719 "bf.result.cast");
1720 *Result = EmitFromMemory(ResultVal, Dst.getType());
1721 }
1722 }
1723
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1724 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1725 LValue Dst) {
1726 // This access turns into a read/modify/write of the vector. Load the input
1727 // value now.
1728 llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1729 Dst.isVolatileQualified());
1730 const llvm::Constant *Elts = Dst.getExtVectorElts();
1731
1732 llvm::Value *SrcVal = Src.getScalarVal();
1733
1734 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1735 unsigned NumSrcElts = VTy->getNumElements();
1736 unsigned NumDstElts =
1737 cast<llvm::VectorType>(Vec->getType())->getNumElements();
1738 if (NumDstElts == NumSrcElts) {
1739 // Use shuffle vector is the src and destination are the same number of
1740 // elements and restore the vector mask since it is on the side it will be
1741 // stored.
1742 SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1743 for (unsigned i = 0; i != NumSrcElts; ++i)
1744 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1745
1746 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1747 Vec = Builder.CreateShuffleVector(SrcVal,
1748 llvm::UndefValue::get(Vec->getType()),
1749 MaskV);
1750 } else if (NumDstElts > NumSrcElts) {
1751 // Extended the source vector to the same length and then shuffle it
1752 // into the destination.
1753 // FIXME: since we're shuffling with undef, can we just use the indices
1754 // into that? This could be simpler.
1755 SmallVector<llvm::Constant*, 4> ExtMask;
1756 for (unsigned i = 0; i != NumSrcElts; ++i)
1757 ExtMask.push_back(Builder.getInt32(i));
1758 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1759 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1760 llvm::Value *ExtSrcVal =
1761 Builder.CreateShuffleVector(SrcVal,
1762 llvm::UndefValue::get(SrcVal->getType()),
1763 ExtMaskV);
1764 // build identity
1765 SmallVector<llvm::Constant*, 4> Mask;
1766 for (unsigned i = 0; i != NumDstElts; ++i)
1767 Mask.push_back(Builder.getInt32(i));
1768
1769 // When the vector size is odd and .odd or .hi is used, the last element
1770 // of the Elts constant array will be one past the size of the vector.
1771 // Ignore the last element here, if it is greater than the mask size.
1772 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1773 NumSrcElts--;
1774
1775 // modify when what gets shuffled in
1776 for (unsigned i = 0; i != NumSrcElts; ++i)
1777 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1778 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1779 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1780 } else {
1781 // We should never shorten the vector
1782 llvm_unreachable("unexpected shorten vector length");
1783 }
1784 } else {
1785 // If the Src is a scalar (not a vector) it must be updating one element.
1786 unsigned InIdx = getAccessedFieldNo(0, Elts);
1787 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1788 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1789 }
1790
1791 Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1792 Dst.isVolatileQualified());
1793 }
1794
1795 /// @brief Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)1796 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1797 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1798 "Bad type for register variable");
1799 llvm::MDNode *RegName = cast<llvm::MDNode>(
1800 cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1801 assert(RegName && "Register LValue is not metadata");
1802
1803 // We accept integer and pointer types only
1804 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1805 llvm::Type *Ty = OrigTy;
1806 if (OrigTy->isPointerTy())
1807 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1808 llvm::Type *Types[] = { Ty };
1809
1810 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1811 llvm::Value *Value = Src.getScalarVal();
1812 if (OrigTy->isPointerTy())
1813 Value = Builder.CreatePtrToInt(Value, Ty);
1814 Builder.CreateCall(
1815 F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1816 }
1817
1818 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1819 // generating write-barries API. It is currently a global, ivar,
1820 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1821 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1822 LValue &LV,
1823 bool IsMemberAccess=false) {
1824 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1825 return;
1826
1827 if (isa<ObjCIvarRefExpr>(E)) {
1828 QualType ExpTy = E->getType();
1829 if (IsMemberAccess && ExpTy->isPointerType()) {
1830 // If ivar is a structure pointer, assigning to field of
1831 // this struct follows gcc's behavior and makes it a non-ivar
1832 // writer-barrier conservatively.
1833 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1834 if (ExpTy->isRecordType()) {
1835 LV.setObjCIvar(false);
1836 return;
1837 }
1838 }
1839 LV.setObjCIvar(true);
1840 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1841 LV.setBaseIvarExp(Exp->getBase());
1842 LV.setObjCArray(E->getType()->isArrayType());
1843 return;
1844 }
1845
1846 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1847 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1848 if (VD->hasGlobalStorage()) {
1849 LV.setGlobalObjCRef(true);
1850 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1851 }
1852 }
1853 LV.setObjCArray(E->getType()->isArrayType());
1854 return;
1855 }
1856
1857 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1858 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1859 return;
1860 }
1861
1862 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1863 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1864 if (LV.isObjCIvar()) {
1865 // If cast is to a structure pointer, follow gcc's behavior and make it
1866 // a non-ivar write-barrier.
1867 QualType ExpTy = E->getType();
1868 if (ExpTy->isPointerType())
1869 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1870 if (ExpTy->isRecordType())
1871 LV.setObjCIvar(false);
1872 }
1873 return;
1874 }
1875
1876 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1877 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1878 return;
1879 }
1880
1881 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1882 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1883 return;
1884 }
1885
1886 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1887 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1888 return;
1889 }
1890
1891 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1892 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1893 return;
1894 }
1895
1896 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1897 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1898 if (LV.isObjCIvar() && !LV.isObjCArray())
1899 // Using array syntax to assigning to what an ivar points to is not
1900 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1901 LV.setObjCIvar(false);
1902 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1903 // Using array syntax to assigning to what global points to is not
1904 // same as assigning to the global itself. {id *G;} G[i] = 0;
1905 LV.setGlobalObjCRef(false);
1906 return;
1907 }
1908
1909 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1910 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1911 // We don't know if member is an 'ivar', but this flag is looked at
1912 // only in the context of LV.isObjCIvar().
1913 LV.setObjCArray(E->getType()->isArrayType());
1914 return;
1915 }
1916 }
1917
1918 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1919 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1920 llvm::Value *V, llvm::Type *IRType,
1921 StringRef Name = StringRef()) {
1922 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1923 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1924 }
1925
EmitThreadPrivateVarDeclLValue(CodeGenFunction & CGF,const VarDecl * VD,QualType T,Address Addr,llvm::Type * RealVarTy,SourceLocation Loc)1926 static LValue EmitThreadPrivateVarDeclLValue(
1927 CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1928 llvm::Type *RealVarTy, SourceLocation Loc) {
1929 Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1930 Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1931 return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1932 }
1933
EmitLoadOfReference(Address Addr,const ReferenceType * RefTy,AlignmentSource * Source)1934 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1935 const ReferenceType *RefTy,
1936 AlignmentSource *Source) {
1937 llvm::Value *Ptr = Builder.CreateLoad(Addr);
1938 return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1939 Source, /*forPointee*/ true));
1940
1941 }
1942
EmitLoadOfReferenceLValue(Address RefAddr,const ReferenceType * RefTy)1943 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1944 const ReferenceType *RefTy) {
1945 AlignmentSource Source;
1946 Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1947 return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1948 }
1949
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1950 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1951 const Expr *E, const VarDecl *VD) {
1952 QualType T = E->getType();
1953
1954 // If it's thread_local, emit a call to its wrapper function instead.
1955 if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1956 CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1957 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1958
1959 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1960 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1961 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1962 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1963 Address Addr(V, Alignment);
1964 LValue LV;
1965 // Emit reference to the private copy of the variable if it is an OpenMP
1966 // threadprivate variable.
1967 if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1968 return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
1969 E->getExprLoc());
1970 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
1971 LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
1972 } else {
1973 LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1974 }
1975 setObjCGCLValueClass(CGF.getContext(), E, LV);
1976 return LV;
1977 }
1978
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1979 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1980 const Expr *E, const FunctionDecl *FD) {
1981 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1982 if (!FD->hasPrototype()) {
1983 if (const FunctionProtoType *Proto =
1984 FD->getType()->getAs<FunctionProtoType>()) {
1985 // Ugly case: for a K&R-style definition, the type of the definition
1986 // isn't the same as the type of a use. Correct for this with a
1987 // bitcast.
1988 QualType NoProtoType =
1989 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1990 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1991 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1992 }
1993 }
1994 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1995 return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
1996 }
1997
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)1998 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1999 llvm::Value *ThisValue) {
2000 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2001 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2002 return CGF.EmitLValueForField(LV, FD);
2003 }
2004
2005 /// Named Registers are named metadata pointing to the register name
2006 /// which will be read from/written to as an argument to the intrinsic
2007 /// @llvm.read/write_register.
2008 /// So far, only the name is being passed down, but other options such as
2009 /// register type, allocation type or even optimization options could be
2010 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM)2011 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2012 SmallString<64> Name("llvm.named.register.");
2013 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2014 assert(Asm->getLabel().size() < 64-Name.size() &&
2015 "Register name too big");
2016 Name.append(Asm->getLabel());
2017 llvm::NamedMDNode *M =
2018 CGM.getModule().getOrInsertNamedMetadata(Name);
2019 if (M->getNumOperands() == 0) {
2020 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2021 Asm->getLabel());
2022 llvm::Metadata *Ops[] = {Str};
2023 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2024 }
2025
2026 CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2027
2028 llvm::Value *Ptr =
2029 llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2030 return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2031 }
2032
EmitDeclRefLValue(const DeclRefExpr * E)2033 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2034 const NamedDecl *ND = E->getDecl();
2035 QualType T = E->getType();
2036
2037 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2038 // Global Named registers access via intrinsics only
2039 if (VD->getStorageClass() == SC_Register &&
2040 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2041 return EmitGlobalNamedRegister(VD, CGM);
2042
2043 // A DeclRefExpr for a reference initialized by a constant expression can
2044 // appear without being odr-used. Directly emit the constant initializer.
2045 const Expr *Init = VD->getAnyInitializer(VD);
2046 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2047 VD->isUsableInConstantExpressions(getContext()) &&
2048 VD->checkInitIsICE() &&
2049 // Do not emit if it is private OpenMP variable.
2050 !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2051 LocalDeclMap.count(VD))) {
2052 llvm::Constant *Val =
2053 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2054 assert(Val && "failed to emit reference constant expression");
2055 // FIXME: Eventually we will want to emit vector element references.
2056
2057 // Should we be using the alignment of the constant pointer we emitted?
2058 CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2059 /*pointee*/ true);
2060
2061 return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2062 }
2063
2064 // Check for captured variables.
2065 if (E->refersToEnclosingVariableOrCapture()) {
2066 if (auto *FD = LambdaCaptureFields.lookup(VD))
2067 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2068 else if (CapturedStmtInfo) {
2069 auto it = LocalDeclMap.find(VD);
2070 if (it != LocalDeclMap.end()) {
2071 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2072 return EmitLoadOfReferenceLValue(it->second, RefTy);
2073 }
2074 return MakeAddrLValue(it->second, T);
2075 }
2076 LValue CapLVal =
2077 EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2078 CapturedStmtInfo->getContextValue());
2079 return MakeAddrLValue(
2080 Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2081 CapLVal.getType(), AlignmentSource::Decl);
2082 }
2083
2084 assert(isa<BlockDecl>(CurCodeDecl));
2085 Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2086 return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2087 }
2088 }
2089
2090 // FIXME: We should be able to assert this for FunctionDecls as well!
2091 // FIXME: We should be able to assert this for all DeclRefExprs, not just
2092 // those with a valid source location.
2093 assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2094 !E->getLocation().isValid()) &&
2095 "Should not use decl without marking it used!");
2096
2097 if (ND->hasAttr<WeakRefAttr>()) {
2098 const auto *VD = cast<ValueDecl>(ND);
2099 ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2100 return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2101 }
2102
2103 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2104 // Check if this is a global variable.
2105 if (VD->hasLinkage() || VD->isStaticDataMember())
2106 return EmitGlobalVarDeclLValue(*this, E, VD);
2107
2108 Address addr = Address::invalid();
2109
2110 // The variable should generally be present in the local decl map.
2111 auto iter = LocalDeclMap.find(VD);
2112 if (iter != LocalDeclMap.end()) {
2113 addr = iter->second;
2114
2115 // Otherwise, it might be static local we haven't emitted yet for
2116 // some reason; most likely, because it's in an outer function.
2117 } else if (VD->isStaticLocal()) {
2118 addr = Address(CGM.getOrCreateStaticVarDecl(
2119 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2120 getContext().getDeclAlign(VD));
2121
2122 // No other cases for now.
2123 } else {
2124 llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2125 }
2126
2127
2128 // Check for OpenMP threadprivate variables.
2129 if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2130 return EmitThreadPrivateVarDeclLValue(
2131 *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2132 E->getExprLoc());
2133 }
2134
2135 // Drill into block byref variables.
2136 bool isBlockByref = VD->hasAttr<BlocksAttr>();
2137 if (isBlockByref) {
2138 addr = emitBlockByrefAddress(addr, VD);
2139 }
2140
2141 // Drill into reference types.
2142 LValue LV;
2143 if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2144 LV = EmitLoadOfReferenceLValue(addr, RefTy);
2145 } else {
2146 LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2147 }
2148
2149 bool isLocalStorage = VD->hasLocalStorage();
2150
2151 bool NonGCable = isLocalStorage &&
2152 !VD->getType()->isReferenceType() &&
2153 !isBlockByref;
2154 if (NonGCable) {
2155 LV.getQuals().removeObjCGCAttr();
2156 LV.setNonGC(true);
2157 }
2158
2159 bool isImpreciseLifetime =
2160 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2161 if (isImpreciseLifetime)
2162 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2163 setObjCGCLValueClass(getContext(), E, LV);
2164 return LV;
2165 }
2166
2167 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2168 return EmitFunctionDeclLValue(*this, E, FD);
2169
2170 llvm_unreachable("Unhandled DeclRefExpr");
2171 }
2172
EmitUnaryOpLValue(const UnaryOperator * E)2173 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2174 // __extension__ doesn't affect lvalue-ness.
2175 if (E->getOpcode() == UO_Extension)
2176 return EmitLValue(E->getSubExpr());
2177
2178 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2179 switch (E->getOpcode()) {
2180 default: llvm_unreachable("Unknown unary operator lvalue!");
2181 case UO_Deref: {
2182 QualType T = E->getSubExpr()->getType()->getPointeeType();
2183 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2184
2185 AlignmentSource AlignSource;
2186 Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2187 LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2188 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2189
2190 // We should not generate __weak write barrier on indirect reference
2191 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2192 // But, we continue to generate __strong write barrier on indirect write
2193 // into a pointer to object.
2194 if (getLangOpts().ObjC1 &&
2195 getLangOpts().getGC() != LangOptions::NonGC &&
2196 LV.isObjCWeak())
2197 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2198 return LV;
2199 }
2200 case UO_Real:
2201 case UO_Imag: {
2202 LValue LV = EmitLValue(E->getSubExpr());
2203 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2204
2205 // __real is valid on scalars. This is a faster way of testing that.
2206 // __imag can only produce an rvalue on scalars.
2207 if (E->getOpcode() == UO_Real &&
2208 !LV.getAddress().getElementType()->isStructTy()) {
2209 assert(E->getSubExpr()->getType()->isArithmeticType());
2210 return LV;
2211 }
2212
2213 assert(E->getSubExpr()->getType()->isAnyComplexType());
2214
2215 Address Component =
2216 (E->getOpcode() == UO_Real
2217 ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2218 : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2219 return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
2220 }
2221 case UO_PreInc:
2222 case UO_PreDec: {
2223 LValue LV = EmitLValue(E->getSubExpr());
2224 bool isInc = E->getOpcode() == UO_PreInc;
2225
2226 if (E->getType()->isAnyComplexType())
2227 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2228 else
2229 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2230 return LV;
2231 }
2232 }
2233 }
2234
EmitStringLiteralLValue(const StringLiteral * E)2235 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2236 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2237 E->getType(), AlignmentSource::Decl);
2238 }
2239
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)2240 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2241 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2242 E->getType(), AlignmentSource::Decl);
2243 }
2244
EmitPredefinedLValue(const PredefinedExpr * E)2245 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2246 auto SL = E->getFunctionName();
2247 assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2248 StringRef FnName = CurFn->getName();
2249 if (FnName.startswith("\01"))
2250 FnName = FnName.substr(1);
2251 StringRef NameItems[] = {
2252 PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2253 std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2254 if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2255 auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2256 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2257 }
2258 auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2259 return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2260 }
2261
2262 /// Emit a type description suitable for use by a runtime sanitizer library. The
2263 /// format of a type descriptor is
2264 ///
2265 /// \code
2266 /// { i16 TypeKind, i16 TypeInfo }
2267 /// \endcode
2268 ///
2269 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2270 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2271 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2272 // Only emit each type's descriptor once.
2273 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2274 return C;
2275
2276 uint16_t TypeKind = -1;
2277 uint16_t TypeInfo = 0;
2278
2279 if (T->isIntegerType()) {
2280 TypeKind = 0;
2281 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2282 (T->isSignedIntegerType() ? 1 : 0);
2283 } else if (T->isFloatingType()) {
2284 TypeKind = 1;
2285 TypeInfo = getContext().getTypeSize(T);
2286 }
2287
2288 // Format the type name as if for a diagnostic, including quotes and
2289 // optionally an 'aka'.
2290 SmallString<32> Buffer;
2291 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2292 (intptr_t)T.getAsOpaquePtr(),
2293 StringRef(), StringRef(), None, Buffer,
2294 None);
2295
2296 llvm::Constant *Components[] = {
2297 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2298 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2299 };
2300 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2301
2302 auto *GV = new llvm::GlobalVariable(
2303 CGM.getModule(), Descriptor->getType(),
2304 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2305 GV->setUnnamedAddr(true);
2306 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2307
2308 // Remember the descriptor for this type.
2309 CGM.setTypeDescriptorInMap(T, GV);
2310
2311 return GV;
2312 }
2313
EmitCheckValue(llvm::Value * V)2314 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2315 llvm::Type *TargetTy = IntPtrTy;
2316
2317 // Floating-point types which fit into intptr_t are bitcast to integers
2318 // and then passed directly (after zero-extension, if necessary).
2319 if (V->getType()->isFloatingPointTy()) {
2320 unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2321 if (Bits <= TargetTy->getIntegerBitWidth())
2322 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2323 Bits));
2324 }
2325
2326 // Integers which fit in intptr_t are zero-extended and passed directly.
2327 if (V->getType()->isIntegerTy() &&
2328 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2329 return Builder.CreateZExt(V, TargetTy);
2330
2331 // Pointers are passed directly, everything else is passed by address.
2332 if (!V->getType()->isPointerTy()) {
2333 Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2334 Builder.CreateStore(V, Ptr);
2335 V = Ptr.getPointer();
2336 }
2337 return Builder.CreatePtrToInt(V, TargetTy);
2338 }
2339
2340 /// \brief Emit a representation of a SourceLocation for passing to a handler
2341 /// in a sanitizer runtime library. The format for this data is:
2342 /// \code
2343 /// struct SourceLocation {
2344 /// const char *Filename;
2345 /// int32_t Line, Column;
2346 /// };
2347 /// \endcode
2348 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)2349 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2350 llvm::Constant *Filename;
2351 int Line, Column;
2352
2353 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2354 if (PLoc.isValid()) {
2355 auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2356 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2357 cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2358 Filename = FilenameGV.getPointer();
2359 Line = PLoc.getLine();
2360 Column = PLoc.getColumn();
2361 } else {
2362 Filename = llvm::Constant::getNullValue(Int8PtrTy);
2363 Line = Column = 0;
2364 }
2365
2366 llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2367 Builder.getInt32(Column)};
2368
2369 return llvm::ConstantStruct::getAnon(Data);
2370 }
2371
2372 namespace {
2373 /// \brief Specify under what conditions this check can be recovered
2374 enum class CheckRecoverableKind {
2375 /// Always terminate program execution if this check fails.
2376 Unrecoverable,
2377 /// Check supports recovering, runtime has both fatal (noreturn) and
2378 /// non-fatal handlers for this check.
2379 Recoverable,
2380 /// Runtime conditionally aborts, always need to support recovery.
2381 AlwaysRecoverable
2382 };
2383 }
2384
getRecoverableKind(SanitizerMask Kind)2385 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2386 assert(llvm::countPopulation(Kind) == 1);
2387 switch (Kind) {
2388 case SanitizerKind::Vptr:
2389 return CheckRecoverableKind::AlwaysRecoverable;
2390 case SanitizerKind::Return:
2391 case SanitizerKind::Unreachable:
2392 return CheckRecoverableKind::Unrecoverable;
2393 default:
2394 return CheckRecoverableKind::Recoverable;
2395 }
2396 }
2397
emitCheckHandlerCall(CodeGenFunction & CGF,llvm::FunctionType * FnType,ArrayRef<llvm::Value * > FnArgs,StringRef CheckName,CheckRecoverableKind RecoverKind,bool IsFatal,llvm::BasicBlock * ContBB)2398 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2399 llvm::FunctionType *FnType,
2400 ArrayRef<llvm::Value *> FnArgs,
2401 StringRef CheckName,
2402 CheckRecoverableKind RecoverKind, bool IsFatal,
2403 llvm::BasicBlock *ContBB) {
2404 assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2405 bool NeedsAbortSuffix =
2406 IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2407 std::string FnName = ("__ubsan_handle_" + CheckName +
2408 (NeedsAbortSuffix ? "_abort" : "")).str();
2409 bool MayReturn =
2410 !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2411
2412 llvm::AttrBuilder B;
2413 if (!MayReturn) {
2414 B.addAttribute(llvm::Attribute::NoReturn)
2415 .addAttribute(llvm::Attribute::NoUnwind);
2416 }
2417 B.addAttribute(llvm::Attribute::UWTable);
2418
2419 llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2420 FnType, FnName,
2421 llvm::AttributeSet::get(CGF.getLLVMContext(),
2422 llvm::AttributeSet::FunctionIndex, B));
2423 llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2424 if (!MayReturn) {
2425 HandlerCall->setDoesNotReturn();
2426 CGF.Builder.CreateUnreachable();
2427 } else {
2428 CGF.Builder.CreateBr(ContBB);
2429 }
2430 }
2431
EmitCheck(ArrayRef<std::pair<llvm::Value *,SanitizerMask>> Checked,StringRef CheckName,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs)2432 void CodeGenFunction::EmitCheck(
2433 ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2434 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2435 ArrayRef<llvm::Value *> DynamicArgs) {
2436 assert(IsSanitizerScope);
2437 assert(Checked.size() > 0);
2438
2439 llvm::Value *FatalCond = nullptr;
2440 llvm::Value *RecoverableCond = nullptr;
2441 llvm::Value *TrapCond = nullptr;
2442 for (int i = 0, n = Checked.size(); i < n; ++i) {
2443 llvm::Value *Check = Checked[i].first;
2444 // -fsanitize-trap= overrides -fsanitize-recover=.
2445 llvm::Value *&Cond =
2446 CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2447 ? TrapCond
2448 : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2449 ? RecoverableCond
2450 : FatalCond;
2451 Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2452 }
2453
2454 if (TrapCond)
2455 EmitTrapCheck(TrapCond);
2456 if (!FatalCond && !RecoverableCond)
2457 return;
2458
2459 llvm::Value *JointCond;
2460 if (FatalCond && RecoverableCond)
2461 JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2462 else
2463 JointCond = FatalCond ? FatalCond : RecoverableCond;
2464 assert(JointCond);
2465
2466 CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2467 assert(SanOpts.has(Checked[0].second));
2468 #ifndef NDEBUG
2469 for (int i = 1, n = Checked.size(); i < n; ++i) {
2470 assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2471 "All recoverable kinds in a single check must be same!");
2472 assert(SanOpts.has(Checked[i].second));
2473 }
2474 #endif
2475
2476 llvm::BasicBlock *Cont = createBasicBlock("cont");
2477 llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2478 llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2479 // Give hint that we very much don't expect to execute the handler
2480 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2481 llvm::MDBuilder MDHelper(getLLVMContext());
2482 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2483 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2484 EmitBlock(Handlers);
2485
2486 // Emit handler arguments and create handler function type.
2487 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2488 auto *InfoPtr =
2489 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2490 llvm::GlobalVariable::PrivateLinkage, Info);
2491 InfoPtr->setUnnamedAddr(true);
2492 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2493
2494 SmallVector<llvm::Value *, 4> Args;
2495 SmallVector<llvm::Type *, 4> ArgTypes;
2496 Args.reserve(DynamicArgs.size() + 1);
2497 ArgTypes.reserve(DynamicArgs.size() + 1);
2498
2499 // Handler functions take an i8* pointing to the (handler-specific) static
2500 // information block, followed by a sequence of intptr_t arguments
2501 // representing operand values.
2502 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2503 ArgTypes.push_back(Int8PtrTy);
2504 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2505 Args.push_back(EmitCheckValue(DynamicArgs[i]));
2506 ArgTypes.push_back(IntPtrTy);
2507 }
2508
2509 llvm::FunctionType *FnType =
2510 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2511
2512 if (!FatalCond || !RecoverableCond) {
2513 // Simple case: we need to generate a single handler call, either
2514 // fatal, or non-fatal.
2515 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2516 (FatalCond != nullptr), Cont);
2517 } else {
2518 // Emit two handler calls: first one for set of unrecoverable checks,
2519 // another one for recoverable.
2520 llvm::BasicBlock *NonFatalHandlerBB =
2521 createBasicBlock("non_fatal." + CheckName);
2522 llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2523 Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2524 EmitBlock(FatalHandlerBB);
2525 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2526 NonFatalHandlerBB);
2527 EmitBlock(NonFatalHandlerBB);
2528 emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2529 Cont);
2530 }
2531
2532 EmitBlock(Cont);
2533 }
2534
EmitCfiSlowPathCheck(llvm::Value * Cond,llvm::ConstantInt * TypeId,llvm::Value * Ptr)2535 void CodeGenFunction::EmitCfiSlowPathCheck(llvm::Value *Cond,
2536 llvm::ConstantInt *TypeId,
2537 llvm::Value *Ptr) {
2538 auto &Ctx = getLLVMContext();
2539 llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2540
2541 llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2542 llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2543
2544 llvm::MDBuilder MDHelper(getLLVMContext());
2545 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2546 BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2547
2548 EmitBlock(CheckBB);
2549
2550 llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2551 "__cfi_slowpath",
2552 llvm::FunctionType::get(
2553 llvm::Type::getVoidTy(Ctx),
2554 {llvm::Type::getInt64Ty(Ctx),
2555 llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(Ctx))},
2556 false));
2557 llvm::CallInst *CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2558 CheckCall->setDoesNotThrow();
2559
2560 EmitBlock(Cont);
2561 }
2562
EmitTrapCheck(llvm::Value * Checked)2563 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2564 llvm::BasicBlock *Cont = createBasicBlock("cont");
2565
2566 // If we're optimizing, collapse all calls to trap down to just one per
2567 // function to save on code size.
2568 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2569 TrapBB = createBasicBlock("trap");
2570 Builder.CreateCondBr(Checked, Cont, TrapBB);
2571 EmitBlock(TrapBB);
2572 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2573 TrapCall->setDoesNotReturn();
2574 TrapCall->setDoesNotThrow();
2575 Builder.CreateUnreachable();
2576 } else {
2577 Builder.CreateCondBr(Checked, Cont, TrapBB);
2578 }
2579
2580 EmitBlock(Cont);
2581 }
2582
EmitTrapCall(llvm::Intrinsic::ID IntrID)2583 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2584 llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2585
2586 if (!CGM.getCodeGenOpts().TrapFuncName.empty())
2587 TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
2588 "trap-func-name",
2589 CGM.getCodeGenOpts().TrapFuncName);
2590
2591 return TrapCall;
2592 }
2593
EmitArrayToPointerDecay(const Expr * E,AlignmentSource * AlignSource)2594 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2595 AlignmentSource *AlignSource) {
2596 assert(E->getType()->isArrayType() &&
2597 "Array to pointer decay must have array source type!");
2598
2599 // Expressions of array type can't be bitfields or vector elements.
2600 LValue LV = EmitLValue(E);
2601 Address Addr = LV.getAddress();
2602 if (AlignSource) *AlignSource = LV.getAlignmentSource();
2603
2604 // If the array type was an incomplete type, we need to make sure
2605 // the decay ends up being the right type.
2606 llvm::Type *NewTy = ConvertType(E->getType());
2607 Addr = Builder.CreateElementBitCast(Addr, NewTy);
2608
2609 // Note that VLA pointers are always decayed, so we don't need to do
2610 // anything here.
2611 if (!E->getType()->isVariableArrayType()) {
2612 assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2613 "Expected pointer to array");
2614 Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2615 }
2616
2617 QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2618 return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2619 }
2620
2621 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2622 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)2623 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2624 // If this isn't just an array->pointer decay, bail out.
2625 const auto *CE = dyn_cast<CastExpr>(E);
2626 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2627 return nullptr;
2628
2629 // If this is a decay from variable width array, bail out.
2630 const Expr *SubExpr = CE->getSubExpr();
2631 if (SubExpr->getType()->isVariableArrayType())
2632 return nullptr;
2633
2634 return SubExpr;
2635 }
2636
emitArraySubscriptGEP(CodeGenFunction & CGF,llvm::Value * ptr,ArrayRef<llvm::Value * > indices,bool inbounds,const llvm::Twine & name="arrayidx")2637 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2638 llvm::Value *ptr,
2639 ArrayRef<llvm::Value*> indices,
2640 bool inbounds,
2641 const llvm::Twine &name = "arrayidx") {
2642 if (inbounds) {
2643 return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2644 } else {
2645 return CGF.Builder.CreateGEP(ptr, indices, name);
2646 }
2647 }
2648
getArrayElementAlign(CharUnits arrayAlign,llvm::Value * idx,CharUnits eltSize)2649 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2650 llvm::Value *idx,
2651 CharUnits eltSize) {
2652 // If we have a constant index, we can use the exact offset of the
2653 // element we're accessing.
2654 if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2655 CharUnits offset = constantIdx->getZExtValue() * eltSize;
2656 return arrayAlign.alignmentAtOffset(offset);
2657
2658 // Otherwise, use the worst-case alignment for any element.
2659 } else {
2660 return arrayAlign.alignmentOfArrayElement(eltSize);
2661 }
2662 }
2663
getFixedSizeElementType(const ASTContext & ctx,const VariableArrayType * vla)2664 static QualType getFixedSizeElementType(const ASTContext &ctx,
2665 const VariableArrayType *vla) {
2666 QualType eltType;
2667 do {
2668 eltType = vla->getElementType();
2669 } while ((vla = ctx.getAsVariableArrayType(eltType)));
2670 return eltType;
2671 }
2672
emitArraySubscriptGEP(CodeGenFunction & CGF,Address addr,ArrayRef<llvm::Value * > indices,QualType eltType,bool inbounds,const llvm::Twine & name="arrayidx")2673 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2674 ArrayRef<llvm::Value*> indices,
2675 QualType eltType, bool inbounds,
2676 const llvm::Twine &name = "arrayidx") {
2677 // All the indices except that last must be zero.
2678 #ifndef NDEBUG
2679 for (auto idx : indices.drop_back())
2680 assert(isa<llvm::ConstantInt>(idx) &&
2681 cast<llvm::ConstantInt>(idx)->isZero());
2682 #endif
2683
2684 // Determine the element size of the statically-sized base. This is
2685 // the thing that the indices are expressed in terms of.
2686 if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2687 eltType = getFixedSizeElementType(CGF.getContext(), vla);
2688 }
2689
2690 // We can use that to compute the best alignment of the element.
2691 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2692 CharUnits eltAlign =
2693 getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2694
2695 llvm::Value *eltPtr =
2696 emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2697 return Address(eltPtr, eltAlign);
2698 }
2699
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)2700 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2701 bool Accessed) {
2702 // The index must always be an integer, which is not an aggregate. Emit it.
2703 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2704 QualType IdxTy = E->getIdx()->getType();
2705 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2706
2707 if (SanOpts.has(SanitizerKind::ArrayBounds))
2708 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2709
2710 // If the base is a vector type, then we are forming a vector element lvalue
2711 // with this subscript.
2712 if (E->getBase()->getType()->isVectorType() &&
2713 !isa<ExtVectorElementExpr>(E->getBase())) {
2714 // Emit the vector as an lvalue to get its address.
2715 LValue LHS = EmitLValue(E->getBase());
2716 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2717 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2718 E->getBase()->getType(),
2719 LHS.getAlignmentSource());
2720 }
2721
2722 // All the other cases basically behave like simple offsetting.
2723
2724 // Extend or truncate the index type to 32 or 64-bits.
2725 if (Idx->getType() != IntPtrTy)
2726 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2727
2728 // Handle the extvector case we ignored above.
2729 if (isa<ExtVectorElementExpr>(E->getBase())) {
2730 LValue LV = EmitLValue(E->getBase());
2731 Address Addr = EmitExtVectorElementLValue(LV);
2732
2733 QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2734 Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2735 return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2736 }
2737
2738 AlignmentSource AlignSource;
2739 Address Addr = Address::invalid();
2740 if (const VariableArrayType *vla =
2741 getContext().getAsVariableArrayType(E->getType())) {
2742 // The base must be a pointer, which is not an aggregate. Emit
2743 // it. It needs to be emitted first in case it's what captures
2744 // the VLA bounds.
2745 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2746
2747 // The element count here is the total number of non-VLA elements.
2748 llvm::Value *numElements = getVLASize(vla).first;
2749
2750 // Effectively, the multiply by the VLA size is part of the GEP.
2751 // GEP indexes are signed, and scaling an index isn't permitted to
2752 // signed-overflow, so we use the same semantics for our explicit
2753 // multiply. We suppress this if overflow is not undefined behavior.
2754 if (getLangOpts().isSignedOverflowDefined()) {
2755 Idx = Builder.CreateMul(Idx, numElements);
2756 } else {
2757 Idx = Builder.CreateNSWMul(Idx, numElements);
2758 }
2759
2760 Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2761 !getLangOpts().isSignedOverflowDefined());
2762
2763 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2764 // Indexing over an interface, as in "NSString *P; P[4];"
2765 CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2766 llvm::Value *InterfaceSizeVal =
2767 llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
2768
2769 llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
2770
2771 // Emit the base pointer.
2772 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2773
2774 // We don't necessarily build correct LLVM struct types for ObjC
2775 // interfaces, so we can't rely on GEP to do this scaling
2776 // correctly, so we need to cast to i8*. FIXME: is this actually
2777 // true? A lot of other things in the fragile ABI would break...
2778 llvm::Type *OrigBaseTy = Addr.getType();
2779 Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
2780
2781 // Do the GEP.
2782 CharUnits EltAlign =
2783 getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
2784 llvm::Value *EltPtr =
2785 emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
2786 Addr = Address(EltPtr, EltAlign);
2787
2788 // Cast back.
2789 Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
2790 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2791 // If this is A[i] where A is an array, the frontend will have decayed the
2792 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
2793 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2794 // "gep x, i" here. Emit one "gep A, 0, i".
2795 assert(Array->getType()->isArrayType() &&
2796 "Array to pointer decay must have array source type!");
2797 LValue ArrayLV;
2798 // For simple multidimensional array indexing, set the 'accessed' flag for
2799 // better bounds-checking of the base expression.
2800 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2801 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2802 else
2803 ArrayLV = EmitLValue(Array);
2804
2805 // Propagate the alignment from the array itself to the result.
2806 Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
2807 {CGM.getSize(CharUnits::Zero()), Idx},
2808 E->getType(),
2809 !getLangOpts().isSignedOverflowDefined());
2810 AlignSource = ArrayLV.getAlignmentSource();
2811 } else {
2812 // The base must be a pointer; emit it with an estimate of its alignment.
2813 Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2814 Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
2815 !getLangOpts().isSignedOverflowDefined());
2816 }
2817
2818 LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
2819
2820 // TODO: Preserve/extend path TBAA metadata?
2821
2822 if (getLangOpts().ObjC1 &&
2823 getLangOpts().getGC() != LangOptions::NonGC) {
2824 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2825 setObjCGCLValueClass(getContext(), E, LV);
2826 }
2827 return LV;
2828 }
2829
EmitOMPArraySectionExpr(const OMPArraySectionExpr * E,bool IsLowerBound)2830 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2831 bool IsLowerBound) {
2832 LValue Base;
2833 if (auto *ASE =
2834 dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
2835 Base = EmitOMPArraySectionExpr(ASE, IsLowerBound);
2836 else
2837 Base = EmitLValue(E->getBase());
2838 QualType BaseTy = Base.getType();
2839 llvm::Value *Idx = nullptr;
2840 QualType ResultExprTy;
2841 if (auto *AT = getContext().getAsArrayType(BaseTy))
2842 ResultExprTy = AT->getElementType();
2843 else
2844 ResultExprTy = BaseTy->getPointeeType();
2845 if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) {
2846 // Requesting lower bound or upper bound, but without provided length and
2847 // without ':' symbol for the default length -> length = 1.
2848 // Idx = LowerBound ?: 0;
2849 if (auto *LowerBound = E->getLowerBound()) {
2850 Idx = Builder.CreateIntCast(
2851 EmitScalarExpr(LowerBound), IntPtrTy,
2852 LowerBound->getType()->hasSignedIntegerRepresentation());
2853 } else
2854 Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
2855 } else {
2856 // Try to emit length or lower bound as constant. If this is possible, 1 is
2857 // subtracted from constant length or lower bound. Otherwise, emit LLVM IR
2858 // (LB + Len) - 1.
2859 auto &C = CGM.getContext();
2860 auto *Length = E->getLength();
2861 llvm::APSInt ConstLength;
2862 if (Length) {
2863 // Idx = LowerBound + Length - 1;
2864 if (Length->isIntegerConstantExpr(ConstLength, C)) {
2865 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2866 Length = nullptr;
2867 }
2868 auto *LowerBound = E->getLowerBound();
2869 llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
2870 if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
2871 ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
2872 LowerBound = nullptr;
2873 }
2874 if (!Length)
2875 --ConstLength;
2876 else if (!LowerBound)
2877 --ConstLowerBound;
2878
2879 if (Length || LowerBound) {
2880 auto *LowerBoundVal =
2881 LowerBound
2882 ? Builder.CreateIntCast(
2883 EmitScalarExpr(LowerBound), IntPtrTy,
2884 LowerBound->getType()->hasSignedIntegerRepresentation())
2885 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
2886 auto *LengthVal =
2887 Length
2888 ? Builder.CreateIntCast(
2889 EmitScalarExpr(Length), IntPtrTy,
2890 Length->getType()->hasSignedIntegerRepresentation())
2891 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
2892 Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
2893 /*HasNUW=*/false,
2894 !getLangOpts().isSignedOverflowDefined());
2895 if (Length && LowerBound) {
2896 Idx = Builder.CreateSub(
2897 Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
2898 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2899 }
2900 } else
2901 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
2902 } else {
2903 // Idx = ArraySize - 1;
2904 if (auto *VAT = C.getAsVariableArrayType(BaseTy)) {
2905 Length = VAT->getSizeExpr();
2906 if (Length->isIntegerConstantExpr(ConstLength, C))
2907 Length = nullptr;
2908 } else {
2909 auto *CAT = C.getAsConstantArrayType(BaseTy);
2910 ConstLength = CAT->getSize();
2911 }
2912 if (Length) {
2913 auto *LengthVal = Builder.CreateIntCast(
2914 EmitScalarExpr(Length), IntPtrTy,
2915 Length->getType()->hasSignedIntegerRepresentation());
2916 Idx = Builder.CreateSub(
2917 LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
2918 /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2919 } else {
2920 ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2921 --ConstLength;
2922 Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
2923 }
2924 }
2925 }
2926 assert(Idx);
2927
2928 llvm::Value *EltPtr;
2929 QualType FixedSizeEltType = ResultExprTy;
2930 if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
2931 // The element count here is the total number of non-VLA elements.
2932 llvm::Value *numElements = getVLASize(VLA).first;
2933 FixedSizeEltType = getFixedSizeElementType(getContext(), VLA);
2934
2935 // Effectively, the multiply by the VLA size is part of the GEP.
2936 // GEP indexes are signed, and scaling an index isn't permitted to
2937 // signed-overflow, so we use the same semantics for our explicit
2938 // multiply. We suppress this if overflow is not undefined behavior.
2939 if (getLangOpts().isSignedOverflowDefined()) {
2940 Idx = Builder.CreateMul(Idx, numElements);
2941 EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2942 } else {
2943 Idx = Builder.CreateNSWMul(Idx, numElements);
2944 EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2945 }
2946 } else if (BaseTy->isConstantArrayType()) {
2947 llvm::Value *ArrayPtr = Base.getPointer();
2948 llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
2949 llvm::Value *Args[] = {Zero, Idx};
2950
2951 if (getLangOpts().isSignedOverflowDefined())
2952 EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2953 else
2954 EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2955 } else {
2956 // The base must be a pointer, which is not an aggregate. Emit it.
2957 if (getLangOpts().isSignedOverflowDefined())
2958 EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2959 else
2960 EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2961 }
2962
2963 CharUnits EltAlign =
2964 Base.getAlignment().alignmentOfArrayElement(
2965 getContext().getTypeSizeInChars(FixedSizeEltType));
2966
2967 // Limit the alignment to that of the result type.
2968 LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy,
2969 Base.getAlignmentSource());
2970
2971 LV.getQuals().setAddressSpace(BaseTy.getAddressSpace());
2972
2973 return LV;
2974 }
2975
2976 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2977 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2978 // Emit the base vector as an l-value.
2979 LValue Base;
2980
2981 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2982 if (E->isArrow()) {
2983 // If it is a pointer to a vector, emit the address and form an lvalue with
2984 // it.
2985 AlignmentSource AlignSource;
2986 Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2987 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2988 Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
2989 Base.getQuals().removeObjCGCAttr();
2990 } else if (E->getBase()->isGLValue()) {
2991 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2992 // emit the base as an lvalue.
2993 assert(E->getBase()->getType()->isVectorType());
2994 Base = EmitLValue(E->getBase());
2995 } else {
2996 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2997 assert(E->getBase()->getType()->isVectorType() &&
2998 "Result must be a vector");
2999 llvm::Value *Vec = EmitScalarExpr(E->getBase());
3000
3001 // Store the vector to memory (because LValue wants an address).
3002 Address VecMem = CreateMemTemp(E->getBase()->getType());
3003 Builder.CreateStore(Vec, VecMem);
3004 Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3005 AlignmentSource::Decl);
3006 }
3007
3008 QualType type =
3009 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3010
3011 // Encode the element access list into a vector of unsigned indices.
3012 SmallVector<uint32_t, 4> Indices;
3013 E->getEncodedElementAccess(Indices);
3014
3015 if (Base.isSimple()) {
3016 llvm::Constant *CV =
3017 llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3018 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3019 Base.getAlignmentSource());
3020 }
3021 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3022
3023 llvm::Constant *BaseElts = Base.getExtVectorElts();
3024 SmallVector<llvm::Constant *, 4> CElts;
3025
3026 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3027 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3028 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3029 return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3030 Base.getAlignmentSource());
3031 }
3032
EmitMemberExpr(const MemberExpr * E)3033 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3034 Expr *BaseExpr = E->getBase();
3035
3036 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3037 LValue BaseLV;
3038 if (E->isArrow()) {
3039 AlignmentSource AlignSource;
3040 Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3041 QualType PtrTy = BaseExpr->getType()->getPointeeType();
3042 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3043 BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3044 } else
3045 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3046
3047 NamedDecl *ND = E->getMemberDecl();
3048 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3049 LValue LV = EmitLValueForField(BaseLV, Field);
3050 setObjCGCLValueClass(getContext(), E, LV);
3051 return LV;
3052 }
3053
3054 if (auto *VD = dyn_cast<VarDecl>(ND))
3055 return EmitGlobalVarDeclLValue(*this, E, VD);
3056
3057 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3058 return EmitFunctionDeclLValue(*this, E, FD);
3059
3060 llvm_unreachable("Unhandled member declaration!");
3061 }
3062
3063 /// Given that we are currently emitting a lambda, emit an l-value for
3064 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)3065 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3066 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3067 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3068 QualType LambdaTagType =
3069 getContext().getTagDeclType(Field->getParent());
3070 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3071 return EmitLValueForField(LambdaLV, Field);
3072 }
3073
3074 /// Drill down to the storage of a field without walking into
3075 /// reference types.
3076 ///
3077 /// The resulting address doesn't necessarily have the right type.
emitAddrOfFieldStorage(CodeGenFunction & CGF,Address base,const FieldDecl * field)3078 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3079 const FieldDecl *field) {
3080 const RecordDecl *rec = field->getParent();
3081
3082 unsigned idx =
3083 CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3084
3085 CharUnits offset;
3086 // Adjust the alignment down to the given offset.
3087 // As a special case, if the LLVM field index is 0, we know that this
3088 // is zero.
3089 assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3090 .getFieldOffset(field->getFieldIndex()) == 0) &&
3091 "LLVM field at index zero had non-zero offset?");
3092 if (idx != 0) {
3093 auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3094 auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3095 offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3096 }
3097
3098 return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3099 }
3100
EmitLValueForField(LValue base,const FieldDecl * field)3101 LValue CodeGenFunction::EmitLValueForField(LValue base,
3102 const FieldDecl *field) {
3103 AlignmentSource fieldAlignSource =
3104 getFieldAlignmentSource(base.getAlignmentSource());
3105
3106 if (field->isBitField()) {
3107 const CGRecordLayout &RL =
3108 CGM.getTypes().getCGRecordLayout(field->getParent());
3109 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3110 Address Addr = base.getAddress();
3111 unsigned Idx = RL.getLLVMFieldNo(field);
3112 if (Idx != 0)
3113 // For structs, we GEP to the field that the record layout suggests.
3114 Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3115 field->getName());
3116 // Get the access type.
3117 llvm::Type *FieldIntTy =
3118 llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3119 if (Addr.getElementType() != FieldIntTy)
3120 Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3121
3122 QualType fieldType =
3123 field->getType().withCVRQualifiers(base.getVRQualifiers());
3124 return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3125 }
3126
3127 const RecordDecl *rec = field->getParent();
3128 QualType type = field->getType();
3129
3130 bool mayAlias = rec->hasAttr<MayAliasAttr>();
3131
3132 Address addr = base.getAddress();
3133 unsigned cvr = base.getVRQualifiers();
3134 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3135 if (rec->isUnion()) {
3136 // For unions, there is no pointer adjustment.
3137 assert(!type->isReferenceType() && "union has reference member");
3138 // TODO: handle path-aware TBAA for union.
3139 TBAAPath = false;
3140 } else {
3141 // For structs, we GEP to the field that the record layout suggests.
3142 addr = emitAddrOfFieldStorage(*this, addr, field);
3143
3144 // If this is a reference field, load the reference right now.
3145 if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3146 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3147 if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3148
3149 // Loading the reference will disable path-aware TBAA.
3150 TBAAPath = false;
3151 if (CGM.shouldUseTBAA()) {
3152 llvm::MDNode *tbaa;
3153 if (mayAlias)
3154 tbaa = CGM.getTBAAInfo(getContext().CharTy);
3155 else
3156 tbaa = CGM.getTBAAInfo(type);
3157 if (tbaa)
3158 CGM.DecorateInstructionWithTBAA(load, tbaa);
3159 }
3160
3161 mayAlias = false;
3162 type = refType->getPointeeType();
3163
3164 CharUnits alignment =
3165 getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3166 addr = Address(load, alignment);
3167
3168 // Qualifiers on the struct don't apply to the referencee, and
3169 // we'll pick up CVR from the actual type later, so reset these
3170 // additional qualifiers now.
3171 cvr = 0;
3172 }
3173 }
3174
3175 // Make sure that the address is pointing to the right type. This is critical
3176 // for both unions and structs. A union needs a bitcast, a struct element
3177 // will need a bitcast if the LLVM type laid out doesn't match the desired
3178 // type.
3179 addr = Builder.CreateElementBitCast(addr,
3180 CGM.getTypes().ConvertTypeForMem(type),
3181 field->getName());
3182
3183 if (field->hasAttr<AnnotateAttr>())
3184 addr = EmitFieldAnnotations(field, addr);
3185
3186 LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3187 LV.getQuals().addCVRQualifiers(cvr);
3188 if (TBAAPath) {
3189 const ASTRecordLayout &Layout =
3190 getContext().getASTRecordLayout(field->getParent());
3191 // Set the base type to be the base type of the base LValue and
3192 // update offset to be relative to the base type.
3193 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3194 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3195 Layout.getFieldOffset(field->getFieldIndex()) /
3196 getContext().getCharWidth());
3197 }
3198
3199 // __weak attribute on a field is ignored.
3200 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3201 LV.getQuals().removeObjCGCAttr();
3202
3203 // Fields of may_alias structs act like 'char' for TBAA purposes.
3204 // FIXME: this should get propagated down through anonymous structs
3205 // and unions.
3206 if (mayAlias && LV.getTBAAInfo())
3207 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3208
3209 return LV;
3210 }
3211
3212 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)3213 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3214 const FieldDecl *Field) {
3215 QualType FieldType = Field->getType();
3216
3217 if (!FieldType->isReferenceType())
3218 return EmitLValueForField(Base, Field);
3219
3220 Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3221
3222 // Make sure that the address is pointing to the right type.
3223 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3224 V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3225
3226 // TODO: access-path TBAA?
3227 auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3228 return MakeAddrLValue(V, FieldType, FieldAlignSource);
3229 }
3230
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)3231 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3232 if (E->isFileScope()) {
3233 ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3234 return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3235 }
3236 if (E->getType()->isVariablyModifiedType())
3237 // make sure to emit the VLA size.
3238 EmitVariablyModifiedType(E->getType());
3239
3240 Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3241 const Expr *InitExpr = E->getInitializer();
3242 LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3243
3244 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3245 /*Init*/ true);
3246
3247 return Result;
3248 }
3249
EmitInitListLValue(const InitListExpr * E)3250 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3251 if (!E->isGLValue())
3252 // Initializing an aggregate temporary in C++11: T{...}.
3253 return EmitAggExprToLValue(E);
3254
3255 // An lvalue initializer list must be initializing a reference.
3256 assert(E->getNumInits() == 1 && "reference init with multiple values");
3257 return EmitLValue(E->getInit(0));
3258 }
3259
3260 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3261 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3262 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)3263 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3264 const Expr *Operand) {
3265 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3266 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3267 return None;
3268 }
3269
3270 return CGF.EmitLValue(Operand);
3271 }
3272
3273 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)3274 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3275 if (!expr->isGLValue()) {
3276 // ?: here should be an aggregate.
3277 assert(hasAggregateEvaluationKind(expr->getType()) &&
3278 "Unexpected conditional operator!");
3279 return EmitAggExprToLValue(expr);
3280 }
3281
3282 OpaqueValueMapping binding(*this, expr);
3283
3284 const Expr *condExpr = expr->getCond();
3285 bool CondExprBool;
3286 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3287 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3288 if (!CondExprBool) std::swap(live, dead);
3289
3290 if (!ContainsLabel(dead)) {
3291 // If the true case is live, we need to track its region.
3292 if (CondExprBool)
3293 incrementProfileCounter(expr);
3294 return EmitLValue(live);
3295 }
3296 }
3297
3298 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3299 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3300 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3301
3302 ConditionalEvaluation eval(*this);
3303 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3304
3305 // Any temporaries created here are conditional.
3306 EmitBlock(lhsBlock);
3307 incrementProfileCounter(expr);
3308 eval.begin(*this);
3309 Optional<LValue> lhs =
3310 EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3311 eval.end(*this);
3312
3313 if (lhs && !lhs->isSimple())
3314 return EmitUnsupportedLValue(expr, "conditional operator");
3315
3316 lhsBlock = Builder.GetInsertBlock();
3317 if (lhs)
3318 Builder.CreateBr(contBlock);
3319
3320 // Any temporaries created here are conditional.
3321 EmitBlock(rhsBlock);
3322 eval.begin(*this);
3323 Optional<LValue> rhs =
3324 EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3325 eval.end(*this);
3326 if (rhs && !rhs->isSimple())
3327 return EmitUnsupportedLValue(expr, "conditional operator");
3328 rhsBlock = Builder.GetInsertBlock();
3329
3330 EmitBlock(contBlock);
3331
3332 if (lhs && rhs) {
3333 llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3334 2, "cond-lvalue");
3335 phi->addIncoming(lhs->getPointer(), lhsBlock);
3336 phi->addIncoming(rhs->getPointer(), rhsBlock);
3337 Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3338 AlignmentSource alignSource =
3339 std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3340 return MakeAddrLValue(result, expr->getType(), alignSource);
3341 } else {
3342 assert((lhs || rhs) &&
3343 "both operands of glvalue conditional are throw-expressions?");
3344 return lhs ? *lhs : *rhs;
3345 }
3346 }
3347
3348 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3349 /// type. If the cast is to a reference, we can have the usual lvalue result,
3350 /// otherwise if a cast is needed by the code generator in an lvalue context,
3351 /// then it must mean that we need the address of an aggregate in order to
3352 /// access one of its members. This can happen for all the reasons that casts
3353 /// are permitted with aggregate result, including noop aggregate casts, and
3354 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)3355 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3356 switch (E->getCastKind()) {
3357 case CK_ToVoid:
3358 case CK_BitCast:
3359 case CK_ArrayToPointerDecay:
3360 case CK_FunctionToPointerDecay:
3361 case CK_NullToMemberPointer:
3362 case CK_NullToPointer:
3363 case CK_IntegralToPointer:
3364 case CK_PointerToIntegral:
3365 case CK_PointerToBoolean:
3366 case CK_VectorSplat:
3367 case CK_IntegralCast:
3368 case CK_IntegralToBoolean:
3369 case CK_IntegralToFloating:
3370 case CK_FloatingToIntegral:
3371 case CK_FloatingToBoolean:
3372 case CK_FloatingCast:
3373 case CK_FloatingRealToComplex:
3374 case CK_FloatingComplexToReal:
3375 case CK_FloatingComplexToBoolean:
3376 case CK_FloatingComplexCast:
3377 case CK_FloatingComplexToIntegralComplex:
3378 case CK_IntegralRealToComplex:
3379 case CK_IntegralComplexToReal:
3380 case CK_IntegralComplexToBoolean:
3381 case CK_IntegralComplexCast:
3382 case CK_IntegralComplexToFloatingComplex:
3383 case CK_DerivedToBaseMemberPointer:
3384 case CK_BaseToDerivedMemberPointer:
3385 case CK_MemberPointerToBoolean:
3386 case CK_ReinterpretMemberPointer:
3387 case CK_AnyPointerToBlockPointerCast:
3388 case CK_ARCProduceObject:
3389 case CK_ARCConsumeObject:
3390 case CK_ARCReclaimReturnedObject:
3391 case CK_ARCExtendBlockObject:
3392 case CK_CopyAndAutoreleaseBlockObject:
3393 case CK_AddressSpaceConversion:
3394 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3395
3396 case CK_Dependent:
3397 llvm_unreachable("dependent cast kind in IR gen!");
3398
3399 case CK_BuiltinFnToFnPtr:
3400 llvm_unreachable("builtin functions are handled elsewhere");
3401
3402 // These are never l-values; just use the aggregate emission code.
3403 case CK_NonAtomicToAtomic:
3404 case CK_AtomicToNonAtomic:
3405 return EmitAggExprToLValue(E);
3406
3407 case CK_Dynamic: {
3408 LValue LV = EmitLValue(E->getSubExpr());
3409 Address V = LV.getAddress();
3410 const auto *DCE = cast<CXXDynamicCastExpr>(E);
3411 return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3412 }
3413
3414 case CK_ConstructorConversion:
3415 case CK_UserDefinedConversion:
3416 case CK_CPointerToObjCPointerCast:
3417 case CK_BlockPointerToObjCPointerCast:
3418 case CK_NoOp:
3419 case CK_LValueToRValue:
3420 return EmitLValue(E->getSubExpr());
3421
3422 case CK_UncheckedDerivedToBase:
3423 case CK_DerivedToBase: {
3424 const RecordType *DerivedClassTy =
3425 E->getSubExpr()->getType()->getAs<RecordType>();
3426 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3427
3428 LValue LV = EmitLValue(E->getSubExpr());
3429 Address This = LV.getAddress();
3430
3431 // Perform the derived-to-base conversion
3432 Address Base = GetAddressOfBaseClass(
3433 This, DerivedClassDecl, E->path_begin(), E->path_end(),
3434 /*NullCheckValue=*/false, E->getExprLoc());
3435
3436 return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3437 }
3438 case CK_ToUnion:
3439 return EmitAggExprToLValue(E);
3440 case CK_BaseToDerived: {
3441 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3442 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3443
3444 LValue LV = EmitLValue(E->getSubExpr());
3445
3446 // Perform the base-to-derived conversion
3447 Address Derived =
3448 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3449 E->path_begin(), E->path_end(),
3450 /*NullCheckValue=*/false);
3451
3452 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3453 // performed and the object is not of the derived type.
3454 if (sanitizePerformTypeCheck())
3455 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3456 Derived.getPointer(), E->getType());
3457
3458 if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3459 EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3460 /*MayBeNull=*/false,
3461 CFITCK_DerivedCast, E->getLocStart());
3462
3463 return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3464 }
3465 case CK_LValueBitCast: {
3466 // This must be a reinterpret_cast (or c-style equivalent).
3467 const auto *CE = cast<ExplicitCastExpr>(E);
3468
3469 CGM.EmitExplicitCastExprType(CE, this);
3470 LValue LV = EmitLValue(E->getSubExpr());
3471 Address V = Builder.CreateBitCast(LV.getAddress(),
3472 ConvertType(CE->getTypeAsWritten()));
3473
3474 if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3475 EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3476 /*MayBeNull=*/false,
3477 CFITCK_UnrelatedCast, E->getLocStart());
3478
3479 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3480 }
3481 case CK_ObjCObjectLValueCast: {
3482 LValue LV = EmitLValue(E->getSubExpr());
3483 Address V = Builder.CreateElementBitCast(LV.getAddress(),
3484 ConvertType(E->getType()));
3485 return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3486 }
3487 case CK_ZeroToOCLEvent:
3488 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3489 }
3490
3491 llvm_unreachable("Unhandled lvalue cast kind?");
3492 }
3493
EmitOpaqueValueLValue(const OpaqueValueExpr * e)3494 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3495 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3496 return getOpaqueLValueMapping(e);
3497 }
3498
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)3499 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3500 const FieldDecl *FD,
3501 SourceLocation Loc) {
3502 QualType FT = FD->getType();
3503 LValue FieldLV = EmitLValueForField(LV, FD);
3504 switch (getEvaluationKind(FT)) {
3505 case TEK_Complex:
3506 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3507 case TEK_Aggregate:
3508 return FieldLV.asAggregateRValue();
3509 case TEK_Scalar:
3510 return EmitLoadOfLValue(FieldLV, Loc);
3511 }
3512 llvm_unreachable("bad evaluation kind");
3513 }
3514
3515 //===--------------------------------------------------------------------===//
3516 // Expression Emission
3517 //===--------------------------------------------------------------------===//
3518
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)3519 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3520 ReturnValueSlot ReturnValue) {
3521 // Builtins never have block type.
3522 if (E->getCallee()->getType()->isBlockPointerType())
3523 return EmitBlockCallExpr(E, ReturnValue);
3524
3525 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3526 return EmitCXXMemberCallExpr(CE, ReturnValue);
3527
3528 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3529 return EmitCUDAKernelCallExpr(CE, ReturnValue);
3530
3531 const Decl *TargetDecl = E->getCalleeDecl();
3532 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3533 if (unsigned builtinID = FD->getBuiltinID())
3534 return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3535 }
3536
3537 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3538 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3539 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3540
3541 if (const auto *PseudoDtor =
3542 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3543 QualType DestroyedType = PseudoDtor->getDestroyedType();
3544 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
3545 // Automatic Reference Counting:
3546 // If the pseudo-expression names a retainable object with weak or
3547 // strong lifetime, the object shall be released.
3548 Expr *BaseExpr = PseudoDtor->getBase();
3549 Address BaseValue = Address::invalid();
3550 Qualifiers BaseQuals;
3551
3552 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3553 if (PseudoDtor->isArrow()) {
3554 BaseValue = EmitPointerWithAlignment(BaseExpr);
3555 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3556 BaseQuals = PTy->getPointeeType().getQualifiers();
3557 } else {
3558 LValue BaseLV = EmitLValue(BaseExpr);
3559 BaseValue = BaseLV.getAddress();
3560 QualType BaseTy = BaseExpr->getType();
3561 BaseQuals = BaseTy.getQualifiers();
3562 }
3563
3564 switch (DestroyedType.getObjCLifetime()) {
3565 case Qualifiers::OCL_None:
3566 case Qualifiers::OCL_ExplicitNone:
3567 case Qualifiers::OCL_Autoreleasing:
3568 break;
3569
3570 case Qualifiers::OCL_Strong:
3571 EmitARCRelease(Builder.CreateLoad(BaseValue,
3572 PseudoDtor->getDestroyedType().isVolatileQualified()),
3573 ARCPreciseLifetime);
3574 break;
3575
3576 case Qualifiers::OCL_Weak:
3577 EmitARCDestroyWeak(BaseValue);
3578 break;
3579 }
3580 } else {
3581 // C++ [expr.pseudo]p1:
3582 // The result shall only be used as the operand for the function call
3583 // operator (), and the result of such a call has type void. The only
3584 // effect is the evaluation of the postfix-expression before the dot or
3585 // arrow.
3586 EmitScalarExpr(E->getCallee());
3587 }
3588
3589 return RValue::get(nullptr);
3590 }
3591
3592 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3593 return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3594 TargetDecl);
3595 }
3596
EmitBinaryOperatorLValue(const BinaryOperator * E)3597 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3598 // Comma expressions just emit their LHS then their RHS as an l-value.
3599 if (E->getOpcode() == BO_Comma) {
3600 EmitIgnoredExpr(E->getLHS());
3601 EnsureInsertPoint();
3602 return EmitLValue(E->getRHS());
3603 }
3604
3605 if (E->getOpcode() == BO_PtrMemD ||
3606 E->getOpcode() == BO_PtrMemI)
3607 return EmitPointerToDataMemberBinaryExpr(E);
3608
3609 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3610
3611 // Note that in all of these cases, __block variables need the RHS
3612 // evaluated first just in case the variable gets moved by the RHS.
3613
3614 switch (getEvaluationKind(E->getType())) {
3615 case TEK_Scalar: {
3616 switch (E->getLHS()->getType().getObjCLifetime()) {
3617 case Qualifiers::OCL_Strong:
3618 return EmitARCStoreStrong(E, /*ignored*/ false).first;
3619
3620 case Qualifiers::OCL_Autoreleasing:
3621 return EmitARCStoreAutoreleasing(E).first;
3622
3623 // No reason to do any of these differently.
3624 case Qualifiers::OCL_None:
3625 case Qualifiers::OCL_ExplicitNone:
3626 case Qualifiers::OCL_Weak:
3627 break;
3628 }
3629
3630 RValue RV = EmitAnyExpr(E->getRHS());
3631 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3632 EmitStoreThroughLValue(RV, LV);
3633 return LV;
3634 }
3635
3636 case TEK_Complex:
3637 return EmitComplexAssignmentLValue(E);
3638
3639 case TEK_Aggregate:
3640 return EmitAggExprToLValue(E);
3641 }
3642 llvm_unreachable("bad evaluation kind");
3643 }
3644
EmitCallExprLValue(const CallExpr * E)3645 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3646 RValue RV = EmitCallExpr(E);
3647
3648 if (!RV.isScalar())
3649 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3650 AlignmentSource::Decl);
3651
3652 assert(E->getCallReturnType(getContext())->isReferenceType() &&
3653 "Can't have a scalar return unless the return type is a "
3654 "reference type!");
3655
3656 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3657 }
3658
EmitVAArgExprLValue(const VAArgExpr * E)3659 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3660 // FIXME: This shouldn't require another copy.
3661 return EmitAggExprToLValue(E);
3662 }
3663
EmitCXXConstructLValue(const CXXConstructExpr * E)3664 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3665 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3666 && "binding l-value to type which needs a temporary");
3667 AggValueSlot Slot = CreateAggTemp(E->getType());
3668 EmitCXXConstructExpr(E, Slot);
3669 return MakeAddrLValue(Slot.getAddress(), E->getType(),
3670 AlignmentSource::Decl);
3671 }
3672
3673 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)3674 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3675 return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3676 }
3677
EmitCXXUuidofExpr(const CXXUuidofExpr * E)3678 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3679 return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3680 ConvertType(E->getType()));
3681 }
3682
EmitCXXUuidofLValue(const CXXUuidofExpr * E)3683 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3684 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3685 AlignmentSource::Decl);
3686 }
3687
3688 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)3689 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3690 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3691 Slot.setExternallyDestructed();
3692 EmitAggExpr(E->getSubExpr(), Slot);
3693 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3694 return MakeAddrLValue(Slot.getAddress(), E->getType(),
3695 AlignmentSource::Decl);
3696 }
3697
3698 LValue
EmitLambdaLValue(const LambdaExpr * E)3699 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3700 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3701 EmitLambdaExpr(E, Slot);
3702 return MakeAddrLValue(Slot.getAddress(), E->getType(),
3703 AlignmentSource::Decl);
3704 }
3705
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)3706 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3707 RValue RV = EmitObjCMessageExpr(E);
3708
3709 if (!RV.isScalar())
3710 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3711 AlignmentSource::Decl);
3712
3713 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3714 "Can't have a scalar return unless the return type is a "
3715 "reference type!");
3716
3717 return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3718 }
3719
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)3720 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3721 Address V =
3722 CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
3723 return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
3724 }
3725
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3726 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3727 const ObjCIvarDecl *Ivar) {
3728 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3729 }
3730
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3731 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3732 llvm::Value *BaseValue,
3733 const ObjCIvarDecl *Ivar,
3734 unsigned CVRQualifiers) {
3735 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3736 Ivar, CVRQualifiers);
3737 }
3738
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)3739 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3740 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3741 llvm::Value *BaseValue = nullptr;
3742 const Expr *BaseExpr = E->getBase();
3743 Qualifiers BaseQuals;
3744 QualType ObjectTy;
3745 if (E->isArrow()) {
3746 BaseValue = EmitScalarExpr(BaseExpr);
3747 ObjectTy = BaseExpr->getType()->getPointeeType();
3748 BaseQuals = ObjectTy.getQualifiers();
3749 } else {
3750 LValue BaseLV = EmitLValue(BaseExpr);
3751 BaseValue = BaseLV.getPointer();
3752 ObjectTy = BaseExpr->getType();
3753 BaseQuals = ObjectTy.getQualifiers();
3754 }
3755
3756 LValue LV =
3757 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3758 BaseQuals.getCVRQualifiers());
3759 setObjCGCLValueClass(getContext(), E, LV);
3760 return LV;
3761 }
3762
EmitStmtExprLValue(const StmtExpr * E)3763 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3764 // Can only get l-value for message expression returning aggregate type
3765 RValue RV = EmitAnyExprToTemp(E);
3766 return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3767 AlignmentSource::Decl);
3768 }
3769
EmitCall(QualType CalleeType,llvm::Value * Callee,const CallExpr * E,ReturnValueSlot ReturnValue,CGCalleeInfo CalleeInfo,llvm::Value * Chain)3770 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3771 const CallExpr *E, ReturnValueSlot ReturnValue,
3772 CGCalleeInfo CalleeInfo, llvm::Value *Chain) {
3773 // Get the actual function type. The callee type will always be a pointer to
3774 // function type or a block pointer type.
3775 assert(CalleeType->isFunctionPointerType() &&
3776 "Call must have function pointer type!");
3777
3778 // Preserve the non-canonical function type because things like exception
3779 // specifications disappear in the canonical type. That information is useful
3780 // to drive the generation of more accurate code for this call later on.
3781 const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>()
3782 ->getPointeeType()
3783 ->getAs<FunctionProtoType>();
3784
3785 const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3786
3787 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3788 // We can only guarantee that a function is called from the correct
3789 // context/function based on the appropriate target attributes,
3790 // so only check in the case where we have both always_inline and target
3791 // since otherwise we could be making a conditional call after a check for
3792 // the proper cpu features (and it won't cause code generation issues due to
3793 // function based code generation).
3794 if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3795 TargetDecl->hasAttr<TargetAttr>())
3796 checkTargetFeatures(E, FD);
3797
3798 CalleeType = getContext().getCanonicalType(CalleeType);
3799
3800 const auto *FnType =
3801 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3802
3803 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3804 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3805 if (llvm::Constant *PrefixSig =
3806 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3807 SanitizerScope SanScope(this);
3808 llvm::Constant *FTRTTIConst =
3809 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3810 llvm::Type *PrefixStructTyElems[] = {
3811 PrefixSig->getType(),
3812 FTRTTIConst->getType()
3813 };
3814 llvm::StructType *PrefixStructTy = llvm::StructType::get(
3815 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3816
3817 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3818 Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3819 llvm::Value *CalleeSigPtr =
3820 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
3821 llvm::Value *CalleeSig =
3822 Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
3823 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3824
3825 llvm::BasicBlock *Cont = createBasicBlock("cont");
3826 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3827 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3828
3829 EmitBlock(TypeCheck);
3830 llvm::Value *CalleeRTTIPtr =
3831 Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
3832 llvm::Value *CalleeRTTI =
3833 Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
3834 llvm::Value *CalleeRTTIMatch =
3835 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3836 llvm::Constant *StaticData[] = {
3837 EmitCheckSourceLocation(E->getLocStart()),
3838 EmitCheckTypeDescriptor(CalleeType)
3839 };
3840 EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3841 "function_type_mismatch", StaticData, Callee);
3842
3843 Builder.CreateBr(Cont);
3844 EmitBlock(Cont);
3845 }
3846 }
3847
3848 // If we are checking indirect calls and this call is indirect, check that the
3849 // function pointer is a member of the bit set for the function type.
3850 if (SanOpts.has(SanitizerKind::CFIICall) &&
3851 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3852 SanitizerScope SanScope(this);
3853
3854 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
3855 llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
3856
3857 llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
3858 llvm::Value *BitSetTest =
3859 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
3860 {CastedCallee, BitSetName});
3861
3862 auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD);
3863 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && TypeId) {
3864 EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedCallee);
3865 } else {
3866 llvm::Constant *StaticData[] = {
3867 EmitCheckSourceLocation(E->getLocStart()),
3868 EmitCheckTypeDescriptor(QualType(FnType, 0)),
3869 };
3870 EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall),
3871 "cfi_bad_icall", StaticData, CastedCallee);
3872 }
3873 }
3874
3875 CallArgList Args;
3876 if (Chain)
3877 Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3878 CGM.getContext().VoidPtrTy);
3879 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
3880 E->getDirectCallee(), /*ParamsToSkip*/ 0);
3881
3882 const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3883 Args, FnType, /*isChainCall=*/Chain);
3884
3885 // C99 6.5.2.2p6:
3886 // If the expression that denotes the called function has a type
3887 // that does not include a prototype, [the default argument
3888 // promotions are performed]. If the number of arguments does not
3889 // equal the number of parameters, the behavior is undefined. If
3890 // the function is defined with a type that includes a prototype,
3891 // and either the prototype ends with an ellipsis (, ...) or the
3892 // types of the arguments after promotion are not compatible with
3893 // the types of the parameters, the behavior is undefined. If the
3894 // function is defined with a type that does not include a
3895 // prototype, and the types of the arguments after promotion are
3896 // not compatible with those of the parameters after promotion,
3897 // the behavior is undefined [except in some trivial cases].
3898 // That is, in the general case, we should assume that a call
3899 // through an unprototyped function type works like a *non-variadic*
3900 // call. The way we make this work is to cast to the exact type
3901 // of the promoted arguments.
3902 //
3903 // Chain calls use this same code path to add the invisible chain parameter
3904 // to the function type.
3905 if (isa<FunctionNoProtoType>(FnType) || Chain) {
3906 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3907 CalleeTy = CalleeTy->getPointerTo();
3908 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3909 }
3910
3911 return EmitCall(FnInfo, Callee, ReturnValue, Args,
3912 CGCalleeInfo(NonCanonicalFTP, TargetDecl));
3913 }
3914
3915 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)3916 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3917 Address BaseAddr = Address::invalid();
3918 if (E->getOpcode() == BO_PtrMemI) {
3919 BaseAddr = EmitPointerWithAlignment(E->getLHS());
3920 } else {
3921 BaseAddr = EmitLValue(E->getLHS()).getAddress();
3922 }
3923
3924 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3925
3926 const MemberPointerType *MPT
3927 = E->getRHS()->getType()->getAs<MemberPointerType>();
3928
3929 AlignmentSource AlignSource;
3930 Address MemberAddr =
3931 EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
3932 &AlignSource);
3933
3934 return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
3935 }
3936
3937 /// Given the address of a temporary variable, produce an r-value of
3938 /// its type.
convertTempToRValue(Address addr,QualType type,SourceLocation loc)3939 RValue CodeGenFunction::convertTempToRValue(Address addr,
3940 QualType type,
3941 SourceLocation loc) {
3942 LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
3943 switch (getEvaluationKind(type)) {
3944 case TEK_Complex:
3945 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3946 case TEK_Aggregate:
3947 return lvalue.asAggregateRValue();
3948 case TEK_Scalar:
3949 return RValue::get(EmitLoadOfScalar(lvalue, loc));
3950 }
3951 llvm_unreachable("bad evaluation kind");
3952 }
3953
SetFPAccuracy(llvm::Value * Val,float Accuracy)3954 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3955 assert(Val->getType()->isFPOrFPVectorTy());
3956 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3957 return;
3958
3959 llvm::MDBuilder MDHelper(getLLVMContext());
3960 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3961
3962 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3963 }
3964
3965 namespace {
3966 struct LValueOrRValue {
3967 LValue LV;
3968 RValue RV;
3969 };
3970 }
3971
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3972 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3973 const PseudoObjectExpr *E,
3974 bool forLValue,
3975 AggValueSlot slot) {
3976 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3977
3978 // Find the result expression, if any.
3979 const Expr *resultExpr = E->getResultExpr();
3980 LValueOrRValue result;
3981
3982 for (PseudoObjectExpr::const_semantics_iterator
3983 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3984 const Expr *semantic = *i;
3985
3986 // If this semantic expression is an opaque value, bind it
3987 // to the result of its source expression.
3988 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3989
3990 // If this is the result expression, we may need to evaluate
3991 // directly into the slot.
3992 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3993 OVMA opaqueData;
3994 if (ov == resultExpr && ov->isRValue() && !forLValue &&
3995 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3996 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3997
3998 LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
3999 AlignmentSource::Decl);
4000 opaqueData = OVMA::bind(CGF, ov, LV);
4001 result.RV = slot.asRValue();
4002
4003 // Otherwise, emit as normal.
4004 } else {
4005 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4006
4007 // If this is the result, also evaluate the result now.
4008 if (ov == resultExpr) {
4009 if (forLValue)
4010 result.LV = CGF.EmitLValue(ov);
4011 else
4012 result.RV = CGF.EmitAnyExpr(ov, slot);
4013 }
4014 }
4015
4016 opaques.push_back(opaqueData);
4017
4018 // Otherwise, if the expression is the result, evaluate it
4019 // and remember the result.
4020 } else if (semantic == resultExpr) {
4021 if (forLValue)
4022 result.LV = CGF.EmitLValue(semantic);
4023 else
4024 result.RV = CGF.EmitAnyExpr(semantic, slot);
4025
4026 // Otherwise, evaluate the expression in an ignored context.
4027 } else {
4028 CGF.EmitIgnoredExpr(semantic);
4029 }
4030 }
4031
4032 // Unbind all the opaques now.
4033 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4034 opaques[i].unbind(CGF);
4035
4036 return result;
4037 }
4038
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)4039 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4040 AggValueSlot slot) {
4041 return emitPseudoObjectExpr(*this, E, false, slot).RV;
4042 }
4043
EmitPseudoObjectLValue(const PseudoObjectExpr * E)4044 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4045 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4046 }
4047