1 //===-- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a printer that converts from our internal representation
11 // of machine-dependent LLVM code to GAS-format MIPS assembly language.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "InstPrinter/MipsInstPrinter.h"
16 #include "MCTargetDesc/MipsBaseInfo.h"
17 #include "MCTargetDesc/MipsMCNaCl.h"
18 #include "Mips.h"
19 #include "MipsAsmPrinter.h"
20 #include "MipsInstrInfo.h"
21 #include "MipsMCInstLower.h"
22 #include "MipsTargetMachine.h"
23 #include "MipsTargetStreamer.h"
24 #include "llvm/ADT/SmallString.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineFunctionPass.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Mangler.h"
37 #include "llvm/MC/MCAsmInfo.h"
38 #include "llvm/MC/MCContext.h"
39 #include "llvm/MC/MCELFStreamer.h"
40 #include "llvm/MC/MCExpr.h"
41 #include "llvm/MC/MCInst.h"
42 #include "llvm/MC/MCSection.h"
43 #include "llvm/MC/MCSectionELF.h"
44 #include "llvm/MC/MCSymbolELF.h"
45 #include "llvm/Support/ELF.h"
46 #include "llvm/Support/TargetRegistry.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Target/TargetLoweringObjectFile.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include <string>
51
52 using namespace llvm;
53
54 #define DEBUG_TYPE "mips-asm-printer"
55
getTargetStreamer() const56 MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
57 return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
58 }
59
runOnMachineFunction(MachineFunction & MF)60 bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
61 Subtarget = &MF.getSubtarget<MipsSubtarget>();
62
63 // Initialize TargetLoweringObjectFile.
64 const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
65 .Initialize(OutContext, TM);
66
67 MipsFI = MF.getInfo<MipsFunctionInfo>();
68 if (Subtarget->inMips16Mode())
69 for (std::map<
70 const char *,
71 const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
72 it = MipsFI->StubsNeeded.begin();
73 it != MipsFI->StubsNeeded.end(); ++it) {
74 const char *Symbol = it->first;
75 const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
76 if (StubsNeeded.find(Symbol) == StubsNeeded.end())
77 StubsNeeded[Symbol] = Signature;
78 }
79 MCP = MF.getConstantPool();
80
81 // In NaCl, all indirect jump targets must be aligned to bundle size.
82 if (Subtarget->isTargetNaCl())
83 NaClAlignIndirectJumpTargets(MF);
84
85 AsmPrinter::runOnMachineFunction(MF);
86 return true;
87 }
88
lowerOperand(const MachineOperand & MO,MCOperand & MCOp)89 bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
90 MCOp = MCInstLowering.LowerOperand(MO);
91 return MCOp.isValid();
92 }
93
94 #include "MipsGenMCPseudoLowering.inc"
95
96 // Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
97 // JALR, or JALR64 as appropriate for the target
emitPseudoIndirectBranch(MCStreamer & OutStreamer,const MachineInstr * MI)98 void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
99 const MachineInstr *MI) {
100 bool HasLinkReg = false;
101 MCInst TmpInst0;
102
103 if (Subtarget->hasMips64r6()) {
104 // MIPS64r6 should use (JALR64 ZERO_64, $rs)
105 TmpInst0.setOpcode(Mips::JALR64);
106 HasLinkReg = true;
107 } else if (Subtarget->hasMips32r6()) {
108 // MIPS32r6 should use (JALR ZERO, $rs)
109 TmpInst0.setOpcode(Mips::JALR);
110 HasLinkReg = true;
111 } else if (Subtarget->inMicroMipsMode())
112 // microMIPS should use (JR_MM $rs)
113 TmpInst0.setOpcode(Mips::JR_MM);
114 else {
115 // Everything else should use (JR $rs)
116 TmpInst0.setOpcode(Mips::JR);
117 }
118
119 MCOperand MCOp;
120
121 if (HasLinkReg) {
122 unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
123 TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
124 }
125
126 lowerOperand(MI->getOperand(0), MCOp);
127 TmpInst0.addOperand(MCOp);
128
129 EmitToStreamer(OutStreamer, TmpInst0);
130 }
131
EmitInstruction(const MachineInstr * MI)132 void MipsAsmPrinter::EmitInstruction(const MachineInstr *MI) {
133 MipsTargetStreamer &TS = getTargetStreamer();
134 TS.forbidModuleDirective();
135
136 if (MI->isDebugValue()) {
137 SmallString<128> Str;
138 raw_svector_ostream OS(Str);
139
140 PrintDebugValueComment(MI, OS);
141 return;
142 }
143
144 // If we just ended a constant pool, mark it as such.
145 if (InConstantPool && MI->getOpcode() != Mips::CONSTPOOL_ENTRY) {
146 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
147 InConstantPool = false;
148 }
149 if (MI->getOpcode() == Mips::CONSTPOOL_ENTRY) {
150 // CONSTPOOL_ENTRY - This instruction represents a floating
151 //constant pool in the function. The first operand is the ID#
152 // for this instruction, the second is the index into the
153 // MachineConstantPool that this is, the third is the size in
154 // bytes of this constant pool entry.
155 // The required alignment is specified on the basic block holding this MI.
156 //
157 unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
158 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
159
160 // If this is the first entry of the pool, mark it.
161 if (!InConstantPool) {
162 OutStreamer->EmitDataRegion(MCDR_DataRegion);
163 InConstantPool = true;
164 }
165
166 OutStreamer->EmitLabel(GetCPISymbol(LabelId));
167
168 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
169 if (MCPE.isMachineConstantPoolEntry())
170 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
171 else
172 EmitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
173 return;
174 }
175
176
177 MachineBasicBlock::const_instr_iterator I = MI->getIterator();
178 MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();
179
180 do {
181 // Do any auto-generated pseudo lowerings.
182 if (emitPseudoExpansionLowering(*OutStreamer, &*I))
183 continue;
184
185 if (I->getOpcode() == Mips::PseudoReturn ||
186 I->getOpcode() == Mips::PseudoReturn64 ||
187 I->getOpcode() == Mips::PseudoIndirectBranch ||
188 I->getOpcode() == Mips::PseudoIndirectBranch64) {
189 emitPseudoIndirectBranch(*OutStreamer, &*I);
190 continue;
191 }
192
193 // The inMips16Mode() test is not permanent.
194 // Some instructions are marked as pseudo right now which
195 // would make the test fail for the wrong reason but
196 // that will be fixed soon. We need this here because we are
197 // removing another test for this situation downstream in the
198 // callchain.
199 //
200 if (I->isPseudo() && !Subtarget->inMips16Mode()
201 && !isLongBranchPseudo(I->getOpcode()))
202 llvm_unreachable("Pseudo opcode found in EmitInstruction()");
203
204 MCInst TmpInst0;
205 MCInstLowering.Lower(&*I, TmpInst0);
206 EmitToStreamer(*OutStreamer, TmpInst0);
207 } while ((++I != E) && I->isInsideBundle()); // Delay slot check
208 }
209
210 //===----------------------------------------------------------------------===//
211 //
212 // Mips Asm Directives
213 //
214 // -- Frame directive "frame Stackpointer, Stacksize, RARegister"
215 // Describe the stack frame.
216 //
217 // -- Mask directives "(f)mask bitmask, offset"
218 // Tells the assembler which registers are saved and where.
219 // bitmask - contain a little endian bitset indicating which registers are
220 // saved on function prologue (e.g. with a 0x80000000 mask, the
221 // assembler knows the register 31 (RA) is saved at prologue.
222 // offset - the position before stack pointer subtraction indicating where
223 // the first saved register on prologue is located. (e.g. with a
224 //
225 // Consider the following function prologue:
226 //
227 // .frame $fp,48,$ra
228 // .mask 0xc0000000,-8
229 // addiu $sp, $sp, -48
230 // sw $ra, 40($sp)
231 // sw $fp, 36($sp)
232 //
233 // With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
234 // 30 (FP) are saved at prologue. As the save order on prologue is from
235 // left to right, RA is saved first. A -8 offset means that after the
236 // stack pointer subtration, the first register in the mask (RA) will be
237 // saved at address 48-8=40.
238 //
239 //===----------------------------------------------------------------------===//
240
241 //===----------------------------------------------------------------------===//
242 // Mask directives
243 //===----------------------------------------------------------------------===//
244
245 // Create a bitmask with all callee saved registers for CPU or Floating Point
246 // registers. For CPU registers consider RA, GP and FP for saving if necessary.
printSavedRegsBitmask()247 void MipsAsmPrinter::printSavedRegsBitmask() {
248 // CPU and FPU Saved Registers Bitmasks
249 unsigned CPUBitmask = 0, FPUBitmask = 0;
250 int CPUTopSavedRegOff, FPUTopSavedRegOff;
251
252 // Set the CPU and FPU Bitmasks
253 const MachineFrameInfo *MFI = MF->getFrameInfo();
254 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
255 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
256 // size of stack area to which FP callee-saved regs are saved.
257 unsigned CPURegSize = Mips::GPR32RegClass.getSize();
258 unsigned FGR32RegSize = Mips::FGR32RegClass.getSize();
259 unsigned AFGR64RegSize = Mips::AFGR64RegClass.getSize();
260 bool HasAFGR64Reg = false;
261 unsigned CSFPRegsSize = 0;
262
263 for (const auto &I : CSI) {
264 unsigned Reg = I.getReg();
265 unsigned RegNum = TRI->getEncodingValue(Reg);
266
267 // If it's a floating point register, set the FPU Bitmask.
268 // If it's a general purpose register, set the CPU Bitmask.
269 if (Mips::FGR32RegClass.contains(Reg)) {
270 FPUBitmask |= (1 << RegNum);
271 CSFPRegsSize += FGR32RegSize;
272 } else if (Mips::AFGR64RegClass.contains(Reg)) {
273 FPUBitmask |= (3 << RegNum);
274 CSFPRegsSize += AFGR64RegSize;
275 HasAFGR64Reg = true;
276 } else if (Mips::GPR32RegClass.contains(Reg))
277 CPUBitmask |= (1 << RegNum);
278 }
279
280 // FP Regs are saved right below where the virtual frame pointer points to.
281 FPUTopSavedRegOff = FPUBitmask ?
282 (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;
283
284 // CPU Regs are saved below FP Regs.
285 CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;
286
287 MipsTargetStreamer &TS = getTargetStreamer();
288 // Print CPUBitmask
289 TS.emitMask(CPUBitmask, CPUTopSavedRegOff);
290
291 // Print FPUBitmask
292 TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
293 }
294
295 //===----------------------------------------------------------------------===//
296 // Frame and Set directives
297 //===----------------------------------------------------------------------===//
298
299 /// Frame Directive
emitFrameDirective()300 void MipsAsmPrinter::emitFrameDirective() {
301 const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();
302
303 unsigned stackReg = RI.getFrameRegister(*MF);
304 unsigned returnReg = RI.getRARegister();
305 unsigned stackSize = MF->getFrameInfo()->getStackSize();
306
307 getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
308 }
309
310 /// Emit Set directives.
getCurrentABIString() const311 const char *MipsAsmPrinter::getCurrentABIString() const {
312 switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
313 case MipsABIInfo::ABI::O32: return "abi32";
314 case MipsABIInfo::ABI::N32: return "abiN32";
315 case MipsABIInfo::ABI::N64: return "abi64";
316 case MipsABIInfo::ABI::EABI: return "eabi32"; // TODO: handle eabi64
317 default: llvm_unreachable("Unknown Mips ABI");
318 }
319 }
320
EmitFunctionEntryLabel()321 void MipsAsmPrinter::EmitFunctionEntryLabel() {
322 MipsTargetStreamer &TS = getTargetStreamer();
323
324 // NaCl sandboxing requires that indirect call instructions are masked.
325 // This means that function entry points should be bundle-aligned.
326 if (Subtarget->isTargetNaCl())
327 EmitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));
328
329 if (Subtarget->inMicroMipsMode())
330 TS.emitDirectiveSetMicroMips();
331 else
332 TS.emitDirectiveSetNoMicroMips();
333
334 if (Subtarget->inMips16Mode())
335 TS.emitDirectiveSetMips16();
336 else
337 TS.emitDirectiveSetNoMips16();
338
339 TS.emitDirectiveEnt(*CurrentFnSym);
340 OutStreamer->EmitLabel(CurrentFnSym);
341 }
342
343 /// EmitFunctionBodyStart - Targets can override this to emit stuff before
344 /// the first basic block in the function.
EmitFunctionBodyStart()345 void MipsAsmPrinter::EmitFunctionBodyStart() {
346 MipsTargetStreamer &TS = getTargetStreamer();
347
348 MCInstLowering.Initialize(&MF->getContext());
349
350 bool IsNakedFunction = MF->getFunction()->hasFnAttribute(Attribute::Naked);
351 if (!IsNakedFunction)
352 emitFrameDirective();
353
354 if (!IsNakedFunction)
355 printSavedRegsBitmask();
356
357 if (!Subtarget->inMips16Mode()) {
358 TS.emitDirectiveSetNoReorder();
359 TS.emitDirectiveSetNoMacro();
360 TS.emitDirectiveSetNoAt();
361 }
362 }
363
364 /// EmitFunctionBodyEnd - Targets can override this to emit stuff after
365 /// the last basic block in the function.
EmitFunctionBodyEnd()366 void MipsAsmPrinter::EmitFunctionBodyEnd() {
367 MipsTargetStreamer &TS = getTargetStreamer();
368
369 // There are instruction for this macros, but they must
370 // always be at the function end, and we can't emit and
371 // break with BB logic.
372 if (!Subtarget->inMips16Mode()) {
373 TS.emitDirectiveSetAt();
374 TS.emitDirectiveSetMacro();
375 TS.emitDirectiveSetReorder();
376 }
377 TS.emitDirectiveEnd(CurrentFnSym->getName());
378 // Make sure to terminate any constant pools that were at the end
379 // of the function.
380 if (!InConstantPool)
381 return;
382 InConstantPool = false;
383 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
384 }
385
EmitBasicBlockEnd(const MachineBasicBlock & MBB)386 void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
387 MipsTargetStreamer &TS = getTargetStreamer();
388 if (MBB.size() == 0)
389 TS.emitDirectiveInsn();
390 }
391
392 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
393 /// exactly one predecessor and the control transfer mechanism between
394 /// the predecessor and this block is a fall-through.
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const395 bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
396 MBB) const {
397 // The predecessor has to be immediately before this block.
398 const MachineBasicBlock *Pred = *MBB->pred_begin();
399
400 // If the predecessor is a switch statement, assume a jump table
401 // implementation, so it is not a fall through.
402 if (const BasicBlock *bb = Pred->getBasicBlock())
403 if (isa<SwitchInst>(bb->getTerminator()))
404 return false;
405
406 // If this is a landing pad, it isn't a fall through. If it has no preds,
407 // then nothing falls through to it.
408 if (MBB->isEHPad() || MBB->pred_empty())
409 return false;
410
411 // If there isn't exactly one predecessor, it can't be a fall through.
412 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
413 ++PI2;
414
415 if (PI2 != MBB->pred_end())
416 return false;
417
418 // The predecessor has to be immediately before this block.
419 if (!Pred->isLayoutSuccessor(MBB))
420 return false;
421
422 // If the block is completely empty, then it definitely does fall through.
423 if (Pred->empty())
424 return true;
425
426 // Otherwise, check the last instruction.
427 // Check if the last terminator is an unconditional branch.
428 MachineBasicBlock::const_iterator I = Pred->end();
429 while (I != Pred->begin() && !(--I)->isTerminator()) ;
430
431 return !I->isBarrier();
432 }
433
434 // Print out an operand for an inline asm expression.
PrintAsmOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)435 bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
436 unsigned AsmVariant, const char *ExtraCode,
437 raw_ostream &O) {
438 // Does this asm operand have a single letter operand modifier?
439 if (ExtraCode && ExtraCode[0]) {
440 if (ExtraCode[1] != 0) return true; // Unknown modifier.
441
442 const MachineOperand &MO = MI->getOperand(OpNum);
443 switch (ExtraCode[0]) {
444 default:
445 // See if this is a generic print operand
446 return AsmPrinter::PrintAsmOperand(MI,OpNum,AsmVariant,ExtraCode,O);
447 case 'X': // hex const int
448 if ((MO.getType()) != MachineOperand::MO_Immediate)
449 return true;
450 O << "0x" << Twine::utohexstr(MO.getImm());
451 return false;
452 case 'x': // hex const int (low 16 bits)
453 if ((MO.getType()) != MachineOperand::MO_Immediate)
454 return true;
455 O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
456 return false;
457 case 'd': // decimal const int
458 if ((MO.getType()) != MachineOperand::MO_Immediate)
459 return true;
460 O << MO.getImm();
461 return false;
462 case 'm': // decimal const int minus 1
463 if ((MO.getType()) != MachineOperand::MO_Immediate)
464 return true;
465 O << MO.getImm() - 1;
466 return false;
467 case 'z': {
468 // $0 if zero, regular printing otherwise
469 if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
470 O << "$0";
471 return false;
472 }
473 // If not, call printOperand as normal.
474 break;
475 }
476 case 'D': // Second part of a double word register operand
477 case 'L': // Low order register of a double word register operand
478 case 'M': // High order register of a double word register operand
479 {
480 if (OpNum == 0)
481 return true;
482 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
483 if (!FlagsOP.isImm())
484 return true;
485 unsigned Flags = FlagsOP.getImm();
486 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
487 // Number of registers represented by this operand. We are looking
488 // for 2 for 32 bit mode and 1 for 64 bit mode.
489 if (NumVals != 2) {
490 if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
491 unsigned Reg = MO.getReg();
492 O << '$' << MipsInstPrinter::getRegisterName(Reg);
493 return false;
494 }
495 return true;
496 }
497
498 unsigned RegOp = OpNum;
499 if (!Subtarget->isGP64bit()){
500 // Endianess reverses which register holds the high or low value
501 // between M and L.
502 switch(ExtraCode[0]) {
503 case 'M':
504 RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
505 break;
506 case 'L':
507 RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
508 break;
509 case 'D': // Always the second part
510 RegOp = OpNum + 1;
511 }
512 if (RegOp >= MI->getNumOperands())
513 return true;
514 const MachineOperand &MO = MI->getOperand(RegOp);
515 if (!MO.isReg())
516 return true;
517 unsigned Reg = MO.getReg();
518 O << '$' << MipsInstPrinter::getRegisterName(Reg);
519 return false;
520 }
521 }
522 case 'w':
523 // Print MSA registers for the 'f' constraint
524 // In LLVM, the 'w' modifier doesn't need to do anything.
525 // We can just call printOperand as normal.
526 break;
527 }
528 }
529
530 printOperand(MI, OpNum, O);
531 return false;
532 }
533
PrintAsmMemoryOperand(const MachineInstr * MI,unsigned OpNum,unsigned AsmVariant,const char * ExtraCode,raw_ostream & O)534 bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
535 unsigned OpNum, unsigned AsmVariant,
536 const char *ExtraCode,
537 raw_ostream &O) {
538 assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
539 const MachineOperand &BaseMO = MI->getOperand(OpNum);
540 const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
541 assert(BaseMO.isReg() && "Unexpected base pointer for inline asm memory operand.");
542 assert(OffsetMO.isImm() && "Unexpected offset for inline asm memory operand.");
543 int Offset = OffsetMO.getImm();
544
545 // Currently we are expecting either no ExtraCode or 'D'
546 if (ExtraCode) {
547 if (ExtraCode[0] == 'D')
548 Offset += 4;
549 else
550 return true; // Unknown modifier.
551 // FIXME: M = high order bits
552 // FIXME: L = low order bits
553 }
554
555 O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg()) << ")";
556
557 return false;
558 }
559
printOperand(const MachineInstr * MI,int opNum,raw_ostream & O)560 void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
561 raw_ostream &O) {
562 const MachineOperand &MO = MI->getOperand(opNum);
563 bool closeP = false;
564
565 if (MO.getTargetFlags())
566 closeP = true;
567
568 switch(MO.getTargetFlags()) {
569 case MipsII::MO_GPREL: O << "%gp_rel("; break;
570 case MipsII::MO_GOT_CALL: O << "%call16("; break;
571 case MipsII::MO_GOT: O << "%got("; break;
572 case MipsII::MO_ABS_HI: O << "%hi("; break;
573 case MipsII::MO_ABS_LO: O << "%lo("; break;
574 case MipsII::MO_TLSGD: O << "%tlsgd("; break;
575 case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
576 case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
577 case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
578 case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
579 case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
580 case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
581 case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
582 case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
583 }
584
585 switch (MO.getType()) {
586 case MachineOperand::MO_Register:
587 O << '$'
588 << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
589 break;
590
591 case MachineOperand::MO_Immediate:
592 O << MO.getImm();
593 break;
594
595 case MachineOperand::MO_MachineBasicBlock:
596 MO.getMBB()->getSymbol()->print(O, MAI);
597 return;
598
599 case MachineOperand::MO_GlobalAddress:
600 getSymbol(MO.getGlobal())->print(O, MAI);
601 break;
602
603 case MachineOperand::MO_BlockAddress: {
604 MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
605 O << BA->getName();
606 break;
607 }
608
609 case MachineOperand::MO_ConstantPoolIndex:
610 O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
611 << getFunctionNumber() << "_" << MO.getIndex();
612 if (MO.getOffset())
613 O << "+" << MO.getOffset();
614 break;
615
616 default:
617 llvm_unreachable("<unknown operand type>");
618 }
619
620 if (closeP) O << ")";
621 }
622
printUnsignedImm(const MachineInstr * MI,int opNum,raw_ostream & O)623 void MipsAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum,
624 raw_ostream &O) {
625 const MachineOperand &MO = MI->getOperand(opNum);
626 if (MO.isImm())
627 O << (unsigned short int)MO.getImm();
628 else
629 printOperand(MI, opNum, O);
630 }
631
printUnsignedImm8(const MachineInstr * MI,int opNum,raw_ostream & O)632 void MipsAsmPrinter::printUnsignedImm8(const MachineInstr *MI, int opNum,
633 raw_ostream &O) {
634 const MachineOperand &MO = MI->getOperand(opNum);
635 if (MO.isImm())
636 O << (unsigned short int)(unsigned char)MO.getImm();
637 else
638 printOperand(MI, opNum, O);
639 }
640
641 void MipsAsmPrinter::
printMemOperand(const MachineInstr * MI,int opNum,raw_ostream & O)642 printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
643 // Load/Store memory operands -- imm($reg)
644 // If PIC target the target is loaded as the
645 // pattern lw $25,%call16($28)
646
647 // opNum can be invalid if instruction has reglist as operand.
648 // MemOperand is always last operand of instruction (base + offset).
649 switch (MI->getOpcode()) {
650 default:
651 break;
652 case Mips::SWM32_MM:
653 case Mips::LWM32_MM:
654 opNum = MI->getNumOperands() - 2;
655 break;
656 }
657
658 printOperand(MI, opNum+1, O);
659 O << "(";
660 printOperand(MI, opNum, O);
661 O << ")";
662 }
663
664 void MipsAsmPrinter::
printMemOperandEA(const MachineInstr * MI,int opNum,raw_ostream & O)665 printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
666 // when using stack locations for not load/store instructions
667 // print the same way as all normal 3 operand instructions.
668 printOperand(MI, opNum, O);
669 O << ", ";
670 printOperand(MI, opNum+1, O);
671 return;
672 }
673
674 void MipsAsmPrinter::
printFCCOperand(const MachineInstr * MI,int opNum,raw_ostream & O,const char * Modifier)675 printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
676 const char *Modifier) {
677 const MachineOperand &MO = MI->getOperand(opNum);
678 O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
679 }
680
681 void MipsAsmPrinter::
printRegisterList(const MachineInstr * MI,int opNum,raw_ostream & O)682 printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
683 for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
684 if (i != opNum) O << ", ";
685 printOperand(MI, i, O);
686 }
687 }
688
EmitStartOfAsmFile(Module & M)689 void MipsAsmPrinter::EmitStartOfAsmFile(Module &M) {
690
691 // Compute MIPS architecture attributes based on the default subtarget
692 // that we'd have constructed. Module level directives aren't LTO
693 // clean anyhow.
694 // FIXME: For ifunc related functions we could iterate over and look
695 // for a feature string that doesn't match the default one.
696 const Triple &TT = TM.getTargetTriple();
697 StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
698 StringRef FS = TM.getTargetFeatureString();
699 const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
700 const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM);
701
702 bool IsABICalls = STI.isABICalls();
703 const MipsABIInfo &ABI = MTM.getABI();
704 if (IsABICalls) {
705 getTargetStreamer().emitDirectiveAbiCalls();
706 Reloc::Model RM = TM.getRelocationModel();
707 // FIXME: This condition should be a lot more complicated that it is here.
708 // Ideally it should test for properties of the ABI and not the ABI
709 // itself.
710 // For the moment, I'm only correcting enough to make MIPS-IV work.
711 if (RM == Reloc::Static && !ABI.IsN64())
712 getTargetStreamer().emitDirectiveOptionPic0();
713 }
714
715 // Tell the assembler which ABI we are using
716 std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
717 OutStreamer->SwitchSection(
718 OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));
719
720 // NaN: At the moment we only support:
721 // 1. .nan legacy (default)
722 // 2. .nan 2008
723 STI.isNaN2008() ? getTargetStreamer().emitDirectiveNaN2008()
724 : getTargetStreamer().emitDirectiveNaNLegacy();
725
726 // TODO: handle O64 ABI
727
728 if (ABI.IsEABI()) {
729 if (STI.isGP32bit())
730 OutStreamer->SwitchSection(OutContext.getELFSection(".gcc_compiled_long32",
731 ELF::SHT_PROGBITS, 0));
732 else
733 OutStreamer->SwitchSection(OutContext.getELFSection(".gcc_compiled_long64",
734 ELF::SHT_PROGBITS, 0));
735 }
736
737 getTargetStreamer().updateABIInfo(STI);
738
739 // We should always emit a '.module fp=...' but binutils 2.24 does not accept
740 // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
741 // -mfp64) and omit it otherwise.
742 if (ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit()))
743 getTargetStreamer().emitDirectiveModuleFP();
744
745 // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
746 // accept it. We therefore emit it when it contradicts the default or an
747 // option has changed the default (i.e. FPXX) and omit it otherwise.
748 if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
749 getTargetStreamer().emitDirectiveModuleOddSPReg();
750 }
751
emitInlineAsmStart() const752 void MipsAsmPrinter::emitInlineAsmStart() const {
753 MipsTargetStreamer &TS = getTargetStreamer();
754
755 // GCC's choice of assembler options for inline assembly code ('at', 'macro'
756 // and 'reorder') is different from LLVM's choice for generated code ('noat',
757 // 'nomacro' and 'noreorder').
758 // In order to maintain compatibility with inline assembly code which depends
759 // on GCC's assembler options being used, we have to switch to those options
760 // for the duration of the inline assembly block and then switch back.
761 TS.emitDirectiveSetPush();
762 TS.emitDirectiveSetAt();
763 TS.emitDirectiveSetMacro();
764 TS.emitDirectiveSetReorder();
765 OutStreamer->AddBlankLine();
766 }
767
emitInlineAsmEnd(const MCSubtargetInfo & StartInfo,const MCSubtargetInfo * EndInfo) const768 void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
769 const MCSubtargetInfo *EndInfo) const {
770 OutStreamer->AddBlankLine();
771 getTargetStreamer().emitDirectiveSetPop();
772 }
773
EmitJal(const MCSubtargetInfo & STI,MCSymbol * Symbol)774 void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
775 MCInst I;
776 I.setOpcode(Mips::JAL);
777 I.addOperand(
778 MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
779 OutStreamer->EmitInstruction(I, STI);
780 }
781
EmitInstrReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg)782 void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
783 unsigned Reg) {
784 MCInst I;
785 I.setOpcode(Opcode);
786 I.addOperand(MCOperand::createReg(Reg));
787 OutStreamer->EmitInstruction(I, STI);
788 }
789
EmitInstrRegReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg1,unsigned Reg2)790 void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
791 unsigned Opcode, unsigned Reg1,
792 unsigned Reg2) {
793 MCInst I;
794 //
795 // Because of the current td files for Mips32, the operands for MTC1
796 // appear backwards from their normal assembly order. It's not a trivial
797 // change to fix this in the td file so we adjust for it here.
798 //
799 if (Opcode == Mips::MTC1) {
800 unsigned Temp = Reg1;
801 Reg1 = Reg2;
802 Reg2 = Temp;
803 }
804 I.setOpcode(Opcode);
805 I.addOperand(MCOperand::createReg(Reg1));
806 I.addOperand(MCOperand::createReg(Reg2));
807 OutStreamer->EmitInstruction(I, STI);
808 }
809
EmitInstrRegRegReg(const MCSubtargetInfo & STI,unsigned Opcode,unsigned Reg1,unsigned Reg2,unsigned Reg3)810 void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
811 unsigned Opcode, unsigned Reg1,
812 unsigned Reg2, unsigned Reg3) {
813 MCInst I;
814 I.setOpcode(Opcode);
815 I.addOperand(MCOperand::createReg(Reg1));
816 I.addOperand(MCOperand::createReg(Reg2));
817 I.addOperand(MCOperand::createReg(Reg3));
818 OutStreamer->EmitInstruction(I, STI);
819 }
820
EmitMovFPIntPair(const MCSubtargetInfo & STI,unsigned MovOpc,unsigned Reg1,unsigned Reg2,unsigned FPReg1,unsigned FPReg2,bool LE)821 void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
822 unsigned MovOpc, unsigned Reg1,
823 unsigned Reg2, unsigned FPReg1,
824 unsigned FPReg2, bool LE) {
825 if (!LE) {
826 unsigned temp = Reg1;
827 Reg1 = Reg2;
828 Reg2 = temp;
829 }
830 EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
831 EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
832 }
833
EmitSwapFPIntParams(const MCSubtargetInfo & STI,Mips16HardFloatInfo::FPParamVariant PV,bool LE,bool ToFP)834 void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
835 Mips16HardFloatInfo::FPParamVariant PV,
836 bool LE, bool ToFP) {
837 using namespace Mips16HardFloatInfo;
838 unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
839 switch (PV) {
840 case FSig:
841 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
842 break;
843 case FFSig:
844 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
845 break;
846 case FDSig:
847 EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
848 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
849 break;
850 case DSig:
851 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
852 break;
853 case DDSig:
854 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
855 EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
856 break;
857 case DFSig:
858 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
859 EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
860 break;
861 case NoSig:
862 return;
863 }
864 }
865
EmitSwapFPIntRetval(const MCSubtargetInfo & STI,Mips16HardFloatInfo::FPReturnVariant RV,bool LE)866 void MipsAsmPrinter::EmitSwapFPIntRetval(
867 const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
868 bool LE) {
869 using namespace Mips16HardFloatInfo;
870 unsigned MovOpc = Mips::MFC1;
871 switch (RV) {
872 case FRet:
873 EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
874 break;
875 case DRet:
876 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
877 break;
878 case CFRet:
879 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
880 break;
881 case CDRet:
882 EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
883 EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
884 break;
885 case NoFPRet:
886 break;
887 }
888 }
889
EmitFPCallStub(const char * Symbol,const Mips16HardFloatInfo::FuncSignature * Signature)890 void MipsAsmPrinter::EmitFPCallStub(
891 const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
892 MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
893 using namespace Mips16HardFloatInfo;
894 bool LE = getDataLayout().isLittleEndian();
895 // Construct a local MCSubtargetInfo here.
896 // This is because the MachineFunction won't exist (but have not yet been
897 // freed) and since we're at the global level we can use the default
898 // constructed subtarget.
899 std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
900 TM.getTargetTriple().str(), TM.getTargetCPU(),
901 TM.getTargetFeatureString()));
902
903 //
904 // .global xxxx
905 //
906 OutStreamer->EmitSymbolAttribute(MSymbol, MCSA_Global);
907 const char *RetType;
908 //
909 // make the comment field identifying the return and parameter
910 // types of the floating point stub
911 // # Stub function to call rettype xxxx (params)
912 //
913 switch (Signature->RetSig) {
914 case FRet:
915 RetType = "float";
916 break;
917 case DRet:
918 RetType = "double";
919 break;
920 case CFRet:
921 RetType = "complex";
922 break;
923 case CDRet:
924 RetType = "double complex";
925 break;
926 case NoFPRet:
927 RetType = "";
928 break;
929 }
930 const char *Parms;
931 switch (Signature->ParamSig) {
932 case FSig:
933 Parms = "float";
934 break;
935 case FFSig:
936 Parms = "float, float";
937 break;
938 case FDSig:
939 Parms = "float, double";
940 break;
941 case DSig:
942 Parms = "double";
943 break;
944 case DDSig:
945 Parms = "double, double";
946 break;
947 case DFSig:
948 Parms = "double, float";
949 break;
950 case NoSig:
951 Parms = "";
952 break;
953 }
954 OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
955 Twine(Symbol) + " (" + Twine(Parms) + ")");
956 //
957 // probably not necessary but we save and restore the current section state
958 //
959 OutStreamer->PushSection();
960 //
961 // .section mips16.call.fpxxxx,"ax",@progbits
962 //
963 MCSectionELF *M = OutContext.getELFSection(
964 ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
965 ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
966 OutStreamer->SwitchSection(M, nullptr);
967 //
968 // .align 2
969 //
970 OutStreamer->EmitValueToAlignment(4);
971 MipsTargetStreamer &TS = getTargetStreamer();
972 //
973 // .set nomips16
974 // .set nomicromips
975 //
976 TS.emitDirectiveSetNoMips16();
977 TS.emitDirectiveSetNoMicroMips();
978 //
979 // .ent __call_stub_fp_xxxx
980 // .type __call_stub_fp_xxxx,@function
981 // __call_stub_fp_xxxx:
982 //
983 std::string x = "__call_stub_fp_" + std::string(Symbol);
984 MCSymbolELF *Stub =
985 cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
986 TS.emitDirectiveEnt(*Stub);
987 MCSymbol *MType =
988 OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
989 OutStreamer->EmitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
990 OutStreamer->EmitLabel(Stub);
991
992 // Only handle non-pic for now.
993 assert(TM.getRelocationModel() != Reloc::PIC_ &&
994 "should not be here if we are compiling pic");
995 TS.emitDirectiveSetReorder();
996 //
997 // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
998 // stubs without raw text but this current patch is for compiler generated
999 // functions and they all return some value.
1000 // The calling sequence for non pic is different in that case and we need
1001 // to implement %lo and %hi in order to handle the case of no return value
1002 // See the corresponding method in Mips16HardFloat for details.
1003 //
1004 // mov the return address to S2.
1005 // we have no stack space to store it and we are about to make another call.
1006 // We need to make sure that the enclosing function knows to save S2
1007 // This should have already been handled.
1008 //
1009 // Mov $18, $31
1010
1011 EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);
1012
1013 EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);
1014
1015 // Jal xxxx
1016 //
1017 EmitJal(*STI, MSymbol);
1018
1019 // fix return values
1020 EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
1021 //
1022 // do the return
1023 // if (Signature->RetSig == NoFPRet)
1024 // llvm_unreachable("should not be any stubs here with no return value");
1025 // else
1026 EmitInstrReg(*STI, Mips::JR, Mips::S2);
1027
1028 MCSymbol *Tmp = OutContext.createTempSymbol();
1029 OutStreamer->EmitLabel(Tmp);
1030 const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
1031 const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
1032 const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
1033 OutStreamer->emitELFSize(Stub, T_min_E);
1034 TS.emitDirectiveEnd(x);
1035 OutStreamer->PopSection();
1036 }
1037
EmitEndOfAsmFile(Module & M)1038 void MipsAsmPrinter::EmitEndOfAsmFile(Module &M) {
1039 // Emit needed stubs
1040 //
1041 for (std::map<
1042 const char *,
1043 const llvm::Mips16HardFloatInfo::FuncSignature *>::const_iterator
1044 it = StubsNeeded.begin();
1045 it != StubsNeeded.end(); ++it) {
1046 const char *Symbol = it->first;
1047 const llvm::Mips16HardFloatInfo::FuncSignature *Signature = it->second;
1048 EmitFPCallStub(Symbol, Signature);
1049 }
1050 // return to the text section
1051 OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
1052 }
1053
PrintDebugValueComment(const MachineInstr * MI,raw_ostream & OS)1054 void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
1055 raw_ostream &OS) {
1056 // TODO: implement
1057 }
1058
1059 // Align all targets of indirect branches on bundle size. Used only if target
1060 // is NaCl.
NaClAlignIndirectJumpTargets(MachineFunction & MF)1061 void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
1062 // Align all blocks that are jumped to through jump table.
1063 if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
1064 const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
1065 for (unsigned I = 0; I < JT.size(); ++I) {
1066 const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;
1067
1068 for (unsigned J = 0; J < MBBs.size(); ++J)
1069 MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1070 }
1071 }
1072
1073 // If basic block address is taken, block can be target of indirect branch.
1074 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
1075 MBB != E; ++MBB) {
1076 if (MBB->hasAddressTaken())
1077 MBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
1078 }
1079 }
1080
isLongBranchPseudo(int Opcode) const1081 bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
1082 return (Opcode == Mips::LONG_BRANCH_LUi
1083 || Opcode == Mips::LONG_BRANCH_ADDiu
1084 || Opcode == Mips::LONG_BRANCH_DADDiu);
1085 }
1086
1087 // Force static initialization.
LLVMInitializeMipsAsmPrinter()1088 extern "C" void LLVMInitializeMipsAsmPrinter() {
1089 RegisterAsmPrinter<MipsAsmPrinter> X(TheMipsTarget);
1090 RegisterAsmPrinter<MipsAsmPrinter> Y(TheMipselTarget);
1091 RegisterAsmPrinter<MipsAsmPrinter> A(TheMips64Target);
1092 RegisterAsmPrinter<MipsAsmPrinter> B(TheMips64elTarget);
1093 }
1094