1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the Emit routines for the SelectionDAG class, which creates
11 // MachineInstrs based on the decisions of the SelectionDAG instruction
12 // selection.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "InstrEmitter.h"
17 #include "SDNodeDbgValue.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetLowering.h"
30 #include "llvm/Target/TargetSubtargetInfo.h"
31 using namespace llvm;
32
33 #define DEBUG_TYPE "instr-emitter"
34
35 /// MinRCSize - Smallest register class we allow when constraining virtual
36 /// registers. If satisfying all register class constraints would require
37 /// using a smaller register class, emit a COPY to a new virtual register
38 /// instead.
39 const unsigned MinRCSize = 4;
40
41 /// CountResults - The results of target nodes have register or immediate
42 /// operands first, then an optional chain, and optional glue operands (which do
43 /// not go into the resulting MachineInstr).
CountResults(SDNode * Node)44 unsigned InstrEmitter::CountResults(SDNode *Node) {
45 unsigned N = Node->getNumValues();
46 while (N && Node->getValueType(N - 1) == MVT::Glue)
47 --N;
48 if (N && Node->getValueType(N - 1) == MVT::Other)
49 --N; // Skip over chain result.
50 return N;
51 }
52
53 /// countOperands - The inputs to target nodes have any actual inputs first,
54 /// followed by an optional chain operand, then an optional glue operand.
55 /// Compute the number of actual operands that will go into the resulting
56 /// MachineInstr.
57 ///
58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
59 /// the chain and glue. These operands may be implicit on the machine instr.
countOperands(SDNode * Node,unsigned NumExpUses,unsigned & NumImpUses)60 static unsigned countOperands(SDNode *Node, unsigned NumExpUses,
61 unsigned &NumImpUses) {
62 unsigned N = Node->getNumOperands();
63 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
64 --N;
65 if (N && Node->getOperand(N - 1).getValueType() == MVT::Other)
66 --N; // Ignore chain if it exists.
67
68 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
69 NumImpUses = N - NumExpUses;
70 for (unsigned I = N; I > NumExpUses; --I) {
71 if (isa<RegisterMaskSDNode>(Node->getOperand(I - 1)))
72 continue;
73 if (RegisterSDNode *RN = dyn_cast<RegisterSDNode>(Node->getOperand(I - 1)))
74 if (TargetRegisterInfo::isPhysicalRegister(RN->getReg()))
75 continue;
76 NumImpUses = N - I;
77 break;
78 }
79
80 return N;
81 }
82
83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
84 /// implicit physical register output.
85 void InstrEmitter::
EmitCopyFromReg(SDNode * Node,unsigned ResNo,bool IsClone,bool IsCloned,unsigned SrcReg,DenseMap<SDValue,unsigned> & VRBaseMap)86 EmitCopyFromReg(SDNode *Node, unsigned ResNo, bool IsClone, bool IsCloned,
87 unsigned SrcReg, DenseMap<SDValue, unsigned> &VRBaseMap) {
88 unsigned VRBase = 0;
89 if (TargetRegisterInfo::isVirtualRegister(SrcReg)) {
90 // Just use the input register directly!
91 SDValue Op(Node, ResNo);
92 if (IsClone)
93 VRBaseMap.erase(Op);
94 bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
95 (void)isNew; // Silence compiler warning.
96 assert(isNew && "Node emitted out of order - early");
97 return;
98 }
99
100 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
101 // the CopyToReg'd destination register instead of creating a new vreg.
102 bool MatchReg = true;
103 const TargetRegisterClass *UseRC = nullptr;
104 MVT VT = Node->getSimpleValueType(ResNo);
105
106 // Stick to the preferred register classes for legal types.
107 if (TLI->isTypeLegal(VT))
108 UseRC = TLI->getRegClassFor(VT);
109
110 if (!IsClone && !IsCloned)
111 for (SDNode *User : Node->uses()) {
112 bool Match = true;
113 if (User->getOpcode() == ISD::CopyToReg &&
114 User->getOperand(2).getNode() == Node &&
115 User->getOperand(2).getResNo() == ResNo) {
116 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
117 if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
118 VRBase = DestReg;
119 Match = false;
120 } else if (DestReg != SrcReg)
121 Match = false;
122 } else {
123 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
124 SDValue Op = User->getOperand(i);
125 if (Op.getNode() != Node || Op.getResNo() != ResNo)
126 continue;
127 MVT VT = Node->getSimpleValueType(Op.getResNo());
128 if (VT == MVT::Other || VT == MVT::Glue)
129 continue;
130 Match = false;
131 if (User->isMachineOpcode()) {
132 const MCInstrDesc &II = TII->get(User->getMachineOpcode());
133 const TargetRegisterClass *RC = nullptr;
134 if (i+II.getNumDefs() < II.getNumOperands()) {
135 RC = TRI->getAllocatableClass(
136 TII->getRegClass(II, i+II.getNumDefs(), TRI, *MF));
137 }
138 if (!UseRC)
139 UseRC = RC;
140 else if (RC) {
141 const TargetRegisterClass *ComRC =
142 TRI->getCommonSubClass(UseRC, RC, VT.SimpleTy);
143 // If multiple uses expect disjoint register classes, we emit
144 // copies in AddRegisterOperand.
145 if (ComRC)
146 UseRC = ComRC;
147 }
148 }
149 }
150 }
151 MatchReg &= Match;
152 if (VRBase)
153 break;
154 }
155
156 const TargetRegisterClass *SrcRC = nullptr, *DstRC = nullptr;
157 SrcRC = TRI->getMinimalPhysRegClass(SrcReg, VT);
158
159 // Figure out the register class to create for the destreg.
160 if (VRBase) {
161 DstRC = MRI->getRegClass(VRBase);
162 } else if (UseRC) {
163 assert(UseRC->hasType(VT) && "Incompatible phys register def and uses!");
164 DstRC = UseRC;
165 } else {
166 DstRC = TLI->getRegClassFor(VT);
167 }
168
169 // If all uses are reading from the src physical register and copying the
170 // register is either impossible or very expensive, then don't create a copy.
171 if (MatchReg && SrcRC->getCopyCost() < 0) {
172 VRBase = SrcReg;
173 } else {
174 // Create the reg, emit the copy.
175 VRBase = MRI->createVirtualRegister(DstRC);
176 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
177 VRBase).addReg(SrcReg);
178 }
179
180 SDValue Op(Node, ResNo);
181 if (IsClone)
182 VRBaseMap.erase(Op);
183 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
184 (void)isNew; // Silence compiler warning.
185 assert(isNew && "Node emitted out of order - early");
186 }
187
188 /// getDstOfCopyToRegUse - If the only use of the specified result number of
189 /// node is a CopyToReg, return its destination register. Return 0 otherwise.
getDstOfOnlyCopyToRegUse(SDNode * Node,unsigned ResNo) const190 unsigned InstrEmitter::getDstOfOnlyCopyToRegUse(SDNode *Node,
191 unsigned ResNo) const {
192 if (!Node->hasOneUse())
193 return 0;
194
195 SDNode *User = *Node->use_begin();
196 if (User->getOpcode() == ISD::CopyToReg &&
197 User->getOperand(2).getNode() == Node &&
198 User->getOperand(2).getResNo() == ResNo) {
199 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
200 if (TargetRegisterInfo::isVirtualRegister(Reg))
201 return Reg;
202 }
203 return 0;
204 }
205
CreateVirtualRegisters(SDNode * Node,MachineInstrBuilder & MIB,const MCInstrDesc & II,bool IsClone,bool IsCloned,DenseMap<SDValue,unsigned> & VRBaseMap)206 void InstrEmitter::CreateVirtualRegisters(SDNode *Node,
207 MachineInstrBuilder &MIB,
208 const MCInstrDesc &II,
209 bool IsClone, bool IsCloned,
210 DenseMap<SDValue, unsigned> &VRBaseMap) {
211 assert(Node->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF &&
212 "IMPLICIT_DEF should have been handled as a special case elsewhere!");
213
214 unsigned NumResults = CountResults(Node);
215 for (unsigned i = 0; i < II.getNumDefs(); ++i) {
216 // If the specific node value is only used by a CopyToReg and the dest reg
217 // is a vreg in the same register class, use the CopyToReg'd destination
218 // register instead of creating a new vreg.
219 unsigned VRBase = 0;
220 const TargetRegisterClass *RC =
221 TRI->getAllocatableClass(TII->getRegClass(II, i, TRI, *MF));
222 // Always let the value type influence the used register class. The
223 // constraints on the instruction may be too lax to represent the value
224 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
225 // the 32-bit float super-class (X86::FR32).
226 if (i < NumResults && TLI->isTypeLegal(Node->getSimpleValueType(i))) {
227 const TargetRegisterClass *VTRC =
228 TLI->getRegClassFor(Node->getSimpleValueType(i));
229 if (RC)
230 VTRC = TRI->getCommonSubClass(RC, VTRC);
231 if (VTRC)
232 RC = VTRC;
233 }
234
235 if (II.OpInfo[i].isOptionalDef()) {
236 // Optional def must be a physical register.
237 unsigned NumResults = CountResults(Node);
238 VRBase = cast<RegisterSDNode>(Node->getOperand(i-NumResults))->getReg();
239 assert(TargetRegisterInfo::isPhysicalRegister(VRBase));
240 MIB.addReg(VRBase, RegState::Define);
241 }
242
243 if (!VRBase && !IsClone && !IsCloned)
244 for (SDNode *User : Node->uses()) {
245 if (User->getOpcode() == ISD::CopyToReg &&
246 User->getOperand(2).getNode() == Node &&
247 User->getOperand(2).getResNo() == i) {
248 unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
249 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
250 const TargetRegisterClass *RegRC = MRI->getRegClass(Reg);
251 if (RegRC == RC) {
252 VRBase = Reg;
253 MIB.addReg(VRBase, RegState::Define);
254 break;
255 }
256 }
257 }
258 }
259
260 // Create the result registers for this node and add the result regs to
261 // the machine instruction.
262 if (VRBase == 0) {
263 assert(RC && "Isn't a register operand!");
264 VRBase = MRI->createVirtualRegister(RC);
265 MIB.addReg(VRBase, RegState::Define);
266 }
267
268 // If this def corresponds to a result of the SDNode insert the VRBase into
269 // the lookup map.
270 if (i < NumResults) {
271 SDValue Op(Node, i);
272 if (IsClone)
273 VRBaseMap.erase(Op);
274 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
275 (void)isNew; // Silence compiler warning.
276 assert(isNew && "Node emitted out of order - early");
277 }
278 }
279 }
280
281 /// getVR - Return the virtual register corresponding to the specified result
282 /// of the specified node.
getVR(SDValue Op,DenseMap<SDValue,unsigned> & VRBaseMap)283 unsigned InstrEmitter::getVR(SDValue Op,
284 DenseMap<SDValue, unsigned> &VRBaseMap) {
285 if (Op.isMachineOpcode() &&
286 Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
287 // Add an IMPLICIT_DEF instruction before every use.
288 unsigned VReg = getDstOfOnlyCopyToRegUse(Op.getNode(), Op.getResNo());
289 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
290 // does not include operand register class info.
291 if (!VReg) {
292 const TargetRegisterClass *RC =
293 TLI->getRegClassFor(Op.getSimpleValueType());
294 VReg = MRI->createVirtualRegister(RC);
295 }
296 BuildMI(*MBB, InsertPos, Op.getDebugLoc(),
297 TII->get(TargetOpcode::IMPLICIT_DEF), VReg);
298 return VReg;
299 }
300
301 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
302 assert(I != VRBaseMap.end() && "Node emitted out of order - late");
303 return I->second;
304 }
305
306
307 /// AddRegisterOperand - Add the specified register as an operand to the
308 /// specified machine instr. Insert register copies if the register is
309 /// not in the required register class.
310 void
AddRegisterOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)311 InstrEmitter::AddRegisterOperand(MachineInstrBuilder &MIB,
312 SDValue Op,
313 unsigned IIOpNum,
314 const MCInstrDesc *II,
315 DenseMap<SDValue, unsigned> &VRBaseMap,
316 bool IsDebug, bool IsClone, bool IsCloned) {
317 assert(Op.getValueType() != MVT::Other &&
318 Op.getValueType() != MVT::Glue &&
319 "Chain and glue operands should occur at end of operand list!");
320 // Get/emit the operand.
321 unsigned VReg = getVR(Op, VRBaseMap);
322 assert(TargetRegisterInfo::isVirtualRegister(VReg) && "Not a vreg?");
323
324 const MCInstrDesc &MCID = MIB->getDesc();
325 bool isOptDef = IIOpNum < MCID.getNumOperands() &&
326 MCID.OpInfo[IIOpNum].isOptionalDef();
327
328 // If the instruction requires a register in a different class, create
329 // a new virtual register and copy the value into it, but first attempt to
330 // shrink VReg's register class within reason. For example, if VReg == GR32
331 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
332 if (II) {
333 const TargetRegisterClass *DstRC = nullptr;
334 if (IIOpNum < II->getNumOperands())
335 DstRC = TRI->getAllocatableClass(TII->getRegClass(*II,IIOpNum,TRI,*MF));
336 if (DstRC && !MRI->constrainRegClass(VReg, DstRC, MinRCSize)) {
337 unsigned NewVReg = MRI->createVirtualRegister(DstRC);
338 BuildMI(*MBB, InsertPos, Op.getNode()->getDebugLoc(),
339 TII->get(TargetOpcode::COPY), NewVReg).addReg(VReg);
340 VReg = NewVReg;
341 }
342 }
343
344 // If this value has only one use, that use is a kill. This is a
345 // conservative approximation. InstrEmitter does trivial coalescing
346 // with CopyFromReg nodes, so don't emit kill flags for them.
347 // Avoid kill flags on Schedule cloned nodes, since there will be
348 // multiple uses.
349 // Tied operands are never killed, so we need to check that. And that
350 // means we need to determine the index of the operand.
351 bool isKill = Op.hasOneUse() &&
352 Op.getNode()->getOpcode() != ISD::CopyFromReg &&
353 !IsDebug &&
354 !(IsClone || IsCloned);
355 if (isKill) {
356 unsigned Idx = MIB->getNumOperands();
357 while (Idx > 0 &&
358 MIB->getOperand(Idx-1).isReg() &&
359 MIB->getOperand(Idx-1).isImplicit())
360 --Idx;
361 bool isTied = MCID.getOperandConstraint(Idx, MCOI::TIED_TO) != -1;
362 if (isTied)
363 isKill = false;
364 }
365
366 MIB.addReg(VReg, getDefRegState(isOptDef) | getKillRegState(isKill) |
367 getDebugRegState(IsDebug));
368 }
369
370 /// AddOperand - Add the specified operand to the specified machine instr. II
371 /// specifies the instruction information for the node, and IIOpNum is the
372 /// operand number (in the II) that we are adding.
AddOperand(MachineInstrBuilder & MIB,SDValue Op,unsigned IIOpNum,const MCInstrDesc * II,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsDebug,bool IsClone,bool IsCloned)373 void InstrEmitter::AddOperand(MachineInstrBuilder &MIB,
374 SDValue Op,
375 unsigned IIOpNum,
376 const MCInstrDesc *II,
377 DenseMap<SDValue, unsigned> &VRBaseMap,
378 bool IsDebug, bool IsClone, bool IsCloned) {
379 if (Op.isMachineOpcode()) {
380 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
381 IsDebug, IsClone, IsCloned);
382 } else if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
383 MIB.addImm(C->getSExtValue());
384 } else if (ConstantFPSDNode *F = dyn_cast<ConstantFPSDNode>(Op)) {
385 MIB.addFPImm(F->getConstantFPValue());
386 } else if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(Op)) {
387 // Turn additional physreg operands into implicit uses on non-variadic
388 // instructions. This is used by call and return instructions passing
389 // arguments in registers.
390 bool Imp = II && (IIOpNum >= II->getNumOperands() && !II->isVariadic());
391 MIB.addReg(R->getReg(), getImplRegState(Imp));
392 } else if (RegisterMaskSDNode *RM = dyn_cast<RegisterMaskSDNode>(Op)) {
393 MIB.addRegMask(RM->getRegMask());
394 } else if (GlobalAddressSDNode *TGA = dyn_cast<GlobalAddressSDNode>(Op)) {
395 MIB.addGlobalAddress(TGA->getGlobal(), TGA->getOffset(),
396 TGA->getTargetFlags());
397 } else if (BasicBlockSDNode *BBNode = dyn_cast<BasicBlockSDNode>(Op)) {
398 MIB.addMBB(BBNode->getBasicBlock());
399 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
400 MIB.addFrameIndex(FI->getIndex());
401 } else if (JumpTableSDNode *JT = dyn_cast<JumpTableSDNode>(Op)) {
402 MIB.addJumpTableIndex(JT->getIndex(), JT->getTargetFlags());
403 } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op)) {
404 int Offset = CP->getOffset();
405 unsigned Align = CP->getAlignment();
406 Type *Type = CP->getType();
407 // MachineConstantPool wants an explicit alignment.
408 if (Align == 0) {
409 Align = MF->getDataLayout().getPrefTypeAlignment(Type);
410 if (Align == 0) {
411 // Alignment of vector types. FIXME!
412 Align = MF->getDataLayout().getTypeAllocSize(Type);
413 }
414 }
415
416 unsigned Idx;
417 MachineConstantPool *MCP = MF->getConstantPool();
418 if (CP->isMachineConstantPoolEntry())
419 Idx = MCP->getConstantPoolIndex(CP->getMachineCPVal(), Align);
420 else
421 Idx = MCP->getConstantPoolIndex(CP->getConstVal(), Align);
422 MIB.addConstantPoolIndex(Idx, Offset, CP->getTargetFlags());
423 } else if (ExternalSymbolSDNode *ES = dyn_cast<ExternalSymbolSDNode>(Op)) {
424 MIB.addExternalSymbol(ES->getSymbol(), ES->getTargetFlags());
425 } else if (auto *SymNode = dyn_cast<MCSymbolSDNode>(Op)) {
426 MIB.addSym(SymNode->getMCSymbol());
427 } else if (BlockAddressSDNode *BA = dyn_cast<BlockAddressSDNode>(Op)) {
428 MIB.addBlockAddress(BA->getBlockAddress(),
429 BA->getOffset(),
430 BA->getTargetFlags());
431 } else if (TargetIndexSDNode *TI = dyn_cast<TargetIndexSDNode>(Op)) {
432 MIB.addTargetIndex(TI->getIndex(), TI->getOffset(), TI->getTargetFlags());
433 } else {
434 assert(Op.getValueType() != MVT::Other &&
435 Op.getValueType() != MVT::Glue &&
436 "Chain and glue operands should occur at end of operand list!");
437 AddRegisterOperand(MIB, Op, IIOpNum, II, VRBaseMap,
438 IsDebug, IsClone, IsCloned);
439 }
440 }
441
ConstrainForSubReg(unsigned VReg,unsigned SubIdx,MVT VT,DebugLoc DL)442 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg, unsigned SubIdx,
443 MVT VT, DebugLoc DL) {
444 const TargetRegisterClass *VRC = MRI->getRegClass(VReg);
445 const TargetRegisterClass *RC = TRI->getSubClassWithSubReg(VRC, SubIdx);
446
447 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
448 // within reason.
449 if (RC && RC != VRC)
450 RC = MRI->constrainRegClass(VReg, RC, MinRCSize);
451
452 // VReg has been adjusted. It can be used with SubIdx operands now.
453 if (RC)
454 return VReg;
455
456 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
457 // register instead.
458 RC = TRI->getSubClassWithSubReg(TLI->getRegClassFor(VT), SubIdx);
459 assert(RC && "No legal register class for VT supports that SubIdx");
460 unsigned NewReg = MRI->createVirtualRegister(RC);
461 BuildMI(*MBB, InsertPos, DL, TII->get(TargetOpcode::COPY), NewReg)
462 .addReg(VReg);
463 return NewReg;
464 }
465
466 /// EmitSubregNode - Generate machine code for subreg nodes.
467 ///
EmitSubregNode(SDNode * Node,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsClone,bool IsCloned)468 void InstrEmitter::EmitSubregNode(SDNode *Node,
469 DenseMap<SDValue, unsigned> &VRBaseMap,
470 bool IsClone, bool IsCloned) {
471 unsigned VRBase = 0;
472 unsigned Opc = Node->getMachineOpcode();
473
474 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
475 // the CopyToReg'd destination register instead of creating a new vreg.
476 for (SDNode *User : Node->uses()) {
477 if (User->getOpcode() == ISD::CopyToReg &&
478 User->getOperand(2).getNode() == Node) {
479 unsigned DestReg = cast<RegisterSDNode>(User->getOperand(1))->getReg();
480 if (TargetRegisterInfo::isVirtualRegister(DestReg)) {
481 VRBase = DestReg;
482 break;
483 }
484 }
485 }
486
487 if (Opc == TargetOpcode::EXTRACT_SUBREG) {
488 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
489 // constraints on the %dst register, COPY can target all legal register
490 // classes.
491 unsigned SubIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
492 const TargetRegisterClass *TRC =
493 TLI->getRegClassFor(Node->getSimpleValueType(0));
494
495 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
496 MachineInstr *DefMI = MRI->getVRegDef(VReg);
497 unsigned SrcReg, DstReg, DefSubIdx;
498 if (DefMI &&
499 TII->isCoalescableExtInstr(*DefMI, SrcReg, DstReg, DefSubIdx) &&
500 SubIdx == DefSubIdx &&
501 TRC == MRI->getRegClass(SrcReg)) {
502 // Optimize these:
503 // r1025 = s/zext r1024, 4
504 // r1026 = extract_subreg r1025, 4
505 // to a copy
506 // r1026 = copy r1024
507 VRBase = MRI->createVirtualRegister(TRC);
508 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
509 TII->get(TargetOpcode::COPY), VRBase).addReg(SrcReg);
510 MRI->clearKillFlags(SrcReg);
511 } else {
512 // VReg may not support a SubIdx sub-register, and we may need to
513 // constrain its register class or issue a COPY to a compatible register
514 // class.
515 VReg = ConstrainForSubReg(VReg, SubIdx,
516 Node->getOperand(0).getSimpleValueType(),
517 Node->getDebugLoc());
518
519 // Create the destreg if it is missing.
520 if (VRBase == 0)
521 VRBase = MRI->createVirtualRegister(TRC);
522
523 // Create the extract_subreg machine instruction.
524 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
525 TII->get(TargetOpcode::COPY), VRBase).addReg(VReg, 0, SubIdx);
526 }
527 } else if (Opc == TargetOpcode::INSERT_SUBREG ||
528 Opc == TargetOpcode::SUBREG_TO_REG) {
529 SDValue N0 = Node->getOperand(0);
530 SDValue N1 = Node->getOperand(1);
531 SDValue N2 = Node->getOperand(2);
532 unsigned SubIdx = cast<ConstantSDNode>(N2)->getZExtValue();
533
534 // Figure out the register class to create for the destreg. It should be
535 // the largest legal register class supporting SubIdx sub-registers.
536 // RegisterCoalescer will constrain it further if it decides to eliminate
537 // the INSERT_SUBREG instruction.
538 //
539 // %dst = INSERT_SUBREG %src, %sub, SubIdx
540 //
541 // is lowered by TwoAddressInstructionPass to:
542 //
543 // %dst = COPY %src
544 // %dst:SubIdx = COPY %sub
545 //
546 // There is no constraint on the %src register class.
547 //
548 const TargetRegisterClass *SRC = TLI->getRegClassFor(Node->getSimpleValueType(0));
549 SRC = TRI->getSubClassWithSubReg(SRC, SubIdx);
550 assert(SRC && "No register class supports VT and SubIdx for INSERT_SUBREG");
551
552 if (VRBase == 0 || !SRC->hasSubClassEq(MRI->getRegClass(VRBase)))
553 VRBase = MRI->createVirtualRegister(SRC);
554
555 // Create the insert_subreg or subreg_to_reg machine instruction.
556 MachineInstrBuilder MIB =
557 BuildMI(*MF, Node->getDebugLoc(), TII->get(Opc), VRBase);
558
559 // If creating a subreg_to_reg, then the first input operand
560 // is an implicit value immediate, otherwise it's a register
561 if (Opc == TargetOpcode::SUBREG_TO_REG) {
562 const ConstantSDNode *SD = cast<ConstantSDNode>(N0);
563 MIB.addImm(SD->getZExtValue());
564 } else
565 AddOperand(MIB, N0, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
566 IsClone, IsCloned);
567 // Add the subregster being inserted
568 AddOperand(MIB, N1, 0, nullptr, VRBaseMap, /*IsDebug=*/false,
569 IsClone, IsCloned);
570 MIB.addImm(SubIdx);
571 MBB->insert(InsertPos, MIB);
572 } else
573 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
574
575 SDValue Op(Node, 0);
576 bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
577 (void)isNew; // Silence compiler warning.
578 assert(isNew && "Node emitted out of order - early");
579 }
580
581 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
582 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
583 /// register is constrained to be in a particular register class.
584 ///
585 void
EmitCopyToRegClassNode(SDNode * Node,DenseMap<SDValue,unsigned> & VRBaseMap)586 InstrEmitter::EmitCopyToRegClassNode(SDNode *Node,
587 DenseMap<SDValue, unsigned> &VRBaseMap) {
588 unsigned VReg = getVR(Node->getOperand(0), VRBaseMap);
589
590 // Create the new VReg in the destination class and emit a copy.
591 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
592 const TargetRegisterClass *DstRC =
593 TRI->getAllocatableClass(TRI->getRegClass(DstRCIdx));
594 unsigned NewVReg = MRI->createVirtualRegister(DstRC);
595 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
596 NewVReg).addReg(VReg);
597
598 SDValue Op(Node, 0);
599 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
600 (void)isNew; // Silence compiler warning.
601 assert(isNew && "Node emitted out of order - early");
602 }
603
604 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
605 ///
EmitRegSequence(SDNode * Node,DenseMap<SDValue,unsigned> & VRBaseMap,bool IsClone,bool IsCloned)606 void InstrEmitter::EmitRegSequence(SDNode *Node,
607 DenseMap<SDValue, unsigned> &VRBaseMap,
608 bool IsClone, bool IsCloned) {
609 unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
610 const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
611 unsigned NewVReg = MRI->createVirtualRegister(TRI->getAllocatableClass(RC));
612 const MCInstrDesc &II = TII->get(TargetOpcode::REG_SEQUENCE);
613 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II, NewVReg);
614 unsigned NumOps = Node->getNumOperands();
615 assert((NumOps & 1) == 1 &&
616 "REG_SEQUENCE must have an odd number of operands!");
617 for (unsigned i = 1; i != NumOps; ++i) {
618 SDValue Op = Node->getOperand(i);
619 if ((i & 1) == 0) {
620 RegisterSDNode *R = dyn_cast<RegisterSDNode>(Node->getOperand(i-1));
621 // Skip physical registers as they don't have a vreg to get and we'll
622 // insert copies for them in TwoAddressInstructionPass anyway.
623 if (!R || !TargetRegisterInfo::isPhysicalRegister(R->getReg())) {
624 unsigned SubIdx = cast<ConstantSDNode>(Op)->getZExtValue();
625 unsigned SubReg = getVR(Node->getOperand(i-1), VRBaseMap);
626 const TargetRegisterClass *TRC = MRI->getRegClass(SubReg);
627 const TargetRegisterClass *SRC =
628 TRI->getMatchingSuperRegClass(RC, TRC, SubIdx);
629 if (SRC && SRC != RC) {
630 MRI->setRegClass(NewVReg, SRC);
631 RC = SRC;
632 }
633 }
634 }
635 AddOperand(MIB, Op, i+1, &II, VRBaseMap, /*IsDebug=*/false,
636 IsClone, IsCloned);
637 }
638
639 MBB->insert(InsertPos, MIB);
640 SDValue Op(Node, 0);
641 bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
642 (void)isNew; // Silence compiler warning.
643 assert(isNew && "Node emitted out of order - early");
644 }
645
646 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
647 ///
648 MachineInstr *
EmitDbgValue(SDDbgValue * SD,DenseMap<SDValue,unsigned> & VRBaseMap)649 InstrEmitter::EmitDbgValue(SDDbgValue *SD,
650 DenseMap<SDValue, unsigned> &VRBaseMap) {
651 uint64_t Offset = SD->getOffset();
652 MDNode *Var = SD->getVariable();
653 MDNode *Expr = SD->getExpression();
654 DebugLoc DL = SD->getDebugLoc();
655 assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
656 "Expected inlined-at fields to agree");
657
658 if (SD->getKind() == SDDbgValue::FRAMEIX) {
659 // Stack address; this needs to be lowered in target-dependent fashion.
660 // EmitTargetCodeForFrameDebugValue is responsible for allocation.
661 return BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE))
662 .addFrameIndex(SD->getFrameIx())
663 .addImm(Offset)
664 .addMetadata(Var)
665 .addMetadata(Expr);
666 }
667 // Otherwise, we're going to create an instruction here.
668 const MCInstrDesc &II = TII->get(TargetOpcode::DBG_VALUE);
669 MachineInstrBuilder MIB = BuildMI(*MF, DL, II);
670 if (SD->getKind() == SDDbgValue::SDNODE) {
671 SDNode *Node = SD->getSDNode();
672 SDValue Op = SDValue(Node, SD->getResNo());
673 // It's possible we replaced this SDNode with other(s) and therefore
674 // didn't generate code for it. It's better to catch these cases where
675 // they happen and transfer the debug info, but trying to guarantee that
676 // in all cases would be very fragile; this is a safeguard for any
677 // that were missed.
678 DenseMap<SDValue, unsigned>::iterator I = VRBaseMap.find(Op);
679 if (I==VRBaseMap.end())
680 MIB.addReg(0U); // undef
681 else
682 AddOperand(MIB, Op, (*MIB).getNumOperands(), &II, VRBaseMap,
683 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
684 } else if (SD->getKind() == SDDbgValue::CONST) {
685 const Value *V = SD->getConst();
686 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
687 if (CI->getBitWidth() > 64)
688 MIB.addCImm(CI);
689 else
690 MIB.addImm(CI->getSExtValue());
691 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
692 MIB.addFPImm(CF);
693 } else {
694 // Could be an Undef. In any case insert an Undef so we can see what we
695 // dropped.
696 MIB.addReg(0U);
697 }
698 } else {
699 // Insert an Undef so we can see what we dropped.
700 MIB.addReg(0U);
701 }
702
703 // Indirect addressing is indicated by an Imm as the second parameter.
704 if (SD->isIndirect())
705 MIB.addImm(Offset);
706 else {
707 assert(Offset == 0 && "direct value cannot have an offset");
708 MIB.addReg(0U, RegState::Debug);
709 }
710
711 MIB.addMetadata(Var);
712 MIB.addMetadata(Expr);
713
714 return &*MIB;
715 }
716
717 /// EmitMachineNode - Generate machine code for a target-specific node and
718 /// needed dependencies.
719 ///
720 void InstrEmitter::
EmitMachineNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,unsigned> & VRBaseMap)721 EmitMachineNode(SDNode *Node, bool IsClone, bool IsCloned,
722 DenseMap<SDValue, unsigned> &VRBaseMap) {
723 unsigned Opc = Node->getMachineOpcode();
724
725 // Handle subreg insert/extract specially
726 if (Opc == TargetOpcode::EXTRACT_SUBREG ||
727 Opc == TargetOpcode::INSERT_SUBREG ||
728 Opc == TargetOpcode::SUBREG_TO_REG) {
729 EmitSubregNode(Node, VRBaseMap, IsClone, IsCloned);
730 return;
731 }
732
733 // Handle COPY_TO_REGCLASS specially.
734 if (Opc == TargetOpcode::COPY_TO_REGCLASS) {
735 EmitCopyToRegClassNode(Node, VRBaseMap);
736 return;
737 }
738
739 // Handle REG_SEQUENCE specially.
740 if (Opc == TargetOpcode::REG_SEQUENCE) {
741 EmitRegSequence(Node, VRBaseMap, IsClone, IsCloned);
742 return;
743 }
744
745 if (Opc == TargetOpcode::IMPLICIT_DEF)
746 // We want a unique VR for each IMPLICIT_DEF use.
747 return;
748
749 const MCInstrDesc &II = TII->get(Opc);
750 unsigned NumResults = CountResults(Node);
751 unsigned NumDefs = II.getNumDefs();
752 const MCPhysReg *ScratchRegs = nullptr;
753
754 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
755 if (Opc == TargetOpcode::STACKMAP || Opc == TargetOpcode::PATCHPOINT) {
756 // Stackmaps do not have arguments and do not preserve their calling
757 // convention. However, to simplify runtime support, they clobber the same
758 // scratch registers as AnyRegCC.
759 unsigned CC = CallingConv::AnyReg;
760 if (Opc == TargetOpcode::PATCHPOINT) {
761 CC = Node->getConstantOperandVal(PatchPointOpers::CCPos);
762 NumDefs = NumResults;
763 }
764 ScratchRegs = TLI->getScratchRegisters((CallingConv::ID) CC);
765 }
766
767 unsigned NumImpUses = 0;
768 unsigned NodeOperands =
769 countOperands(Node, II.getNumOperands() - NumDefs, NumImpUses);
770 bool HasPhysRegOuts = NumResults > NumDefs && II.getImplicitDefs()!=nullptr;
771 #ifndef NDEBUG
772 unsigned NumMIOperands = NodeOperands + NumResults;
773 if (II.isVariadic())
774 assert(NumMIOperands >= II.getNumOperands() &&
775 "Too few operands for a variadic node!");
776 else
777 assert(NumMIOperands >= II.getNumOperands() &&
778 NumMIOperands <= II.getNumOperands() + II.getNumImplicitDefs() +
779 NumImpUses &&
780 "#operands for dag node doesn't match .td file!");
781 #endif
782
783 // Create the new machine instruction.
784 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(), II);
785
786 // Add result register values for things that are defined by this
787 // instruction.
788 if (NumResults)
789 CreateVirtualRegisters(Node, MIB, II, IsClone, IsCloned, VRBaseMap);
790
791 // Emit all of the actual operands of this instruction, adding them to the
792 // instruction as appropriate.
793 bool HasOptPRefs = NumDefs > NumResults;
794 assert((!HasOptPRefs || !HasPhysRegOuts) &&
795 "Unable to cope with optional defs and phys regs defs!");
796 unsigned NumSkip = HasOptPRefs ? NumDefs - NumResults : 0;
797 for (unsigned i = NumSkip; i != NodeOperands; ++i)
798 AddOperand(MIB, Node->getOperand(i), i-NumSkip+NumDefs, &II,
799 VRBaseMap, /*IsDebug=*/false, IsClone, IsCloned);
800
801 // Add scratch registers as implicit def and early clobber
802 if (ScratchRegs)
803 for (unsigned i = 0; ScratchRegs[i]; ++i)
804 MIB.addReg(ScratchRegs[i], RegState::ImplicitDefine |
805 RegState::EarlyClobber);
806
807 // Transfer all of the memory reference descriptions of this instruction.
808 MIB.setMemRefs(cast<MachineSDNode>(Node)->memoperands_begin(),
809 cast<MachineSDNode>(Node)->memoperands_end());
810
811 // Insert the instruction into position in the block. This needs to
812 // happen before any custom inserter hook is called so that the
813 // hook knows where in the block to insert the replacement code.
814 MBB->insert(InsertPos, MIB);
815
816 // The MachineInstr may also define physregs instead of virtregs. These
817 // physreg values can reach other instructions in different ways:
818 //
819 // 1. When there is a use of a Node value beyond the explicitly defined
820 // virtual registers, we emit a CopyFromReg for one of the implicitly
821 // defined physregs. This only happens when HasPhysRegOuts is true.
822 //
823 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
824 //
825 // 3. A glued instruction may implicitly use a physreg.
826 //
827 // 4. A glued instruction may use a RegisterSDNode operand.
828 //
829 // Collect all the used physreg defs, and make sure that any unused physreg
830 // defs are marked as dead.
831 SmallVector<unsigned, 8> UsedRegs;
832
833 // Additional results must be physical register defs.
834 if (HasPhysRegOuts) {
835 for (unsigned i = NumDefs; i < NumResults; ++i) {
836 unsigned Reg = II.getImplicitDefs()[i - NumDefs];
837 if (!Node->hasAnyUseOfValue(i))
838 continue;
839 // This implicitly defined physreg has a use.
840 UsedRegs.push_back(Reg);
841 EmitCopyFromReg(Node, i, IsClone, IsCloned, Reg, VRBaseMap);
842 }
843 }
844
845 // Scan the glue chain for any used physregs.
846 if (Node->getValueType(Node->getNumValues()-1) == MVT::Glue) {
847 for (SDNode *F = Node->getGluedUser(); F; F = F->getGluedUser()) {
848 if (F->getOpcode() == ISD::CopyFromReg) {
849 UsedRegs.push_back(cast<RegisterSDNode>(F->getOperand(1))->getReg());
850 continue;
851 } else if (F->getOpcode() == ISD::CopyToReg) {
852 // Skip CopyToReg nodes that are internal to the glue chain.
853 continue;
854 }
855 // Collect declared implicit uses.
856 const MCInstrDesc &MCID = TII->get(F->getMachineOpcode());
857 UsedRegs.append(MCID.getImplicitUses(),
858 MCID.getImplicitUses() + MCID.getNumImplicitUses());
859 // In addition to declared implicit uses, we must also check for
860 // direct RegisterSDNode operands.
861 for (unsigned i = 0, e = F->getNumOperands(); i != e; ++i)
862 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(F->getOperand(i))) {
863 unsigned Reg = R->getReg();
864 if (TargetRegisterInfo::isPhysicalRegister(Reg))
865 UsedRegs.push_back(Reg);
866 }
867 }
868 }
869
870 // Finally mark unused registers as dead.
871 if (!UsedRegs.empty() || II.getImplicitDefs())
872 MIB->setPhysRegsDeadExcept(UsedRegs, *TRI);
873
874 // Run post-isel target hook to adjust this instruction if needed.
875 if (II.hasPostISelHook())
876 TLI->AdjustInstrPostInstrSelection(MIB, Node);
877 }
878
879 /// EmitSpecialNode - Generate machine code for a target-independent node and
880 /// needed dependencies.
881 void InstrEmitter::
EmitSpecialNode(SDNode * Node,bool IsClone,bool IsCloned,DenseMap<SDValue,unsigned> & VRBaseMap)882 EmitSpecialNode(SDNode *Node, bool IsClone, bool IsCloned,
883 DenseMap<SDValue, unsigned> &VRBaseMap) {
884 switch (Node->getOpcode()) {
885 default:
886 #ifndef NDEBUG
887 Node->dump();
888 #endif
889 llvm_unreachable("This target-independent node should have been selected!");
890 case ISD::EntryToken:
891 llvm_unreachable("EntryToken should have been excluded from the schedule!");
892 case ISD::MERGE_VALUES:
893 case ISD::TokenFactor: // fall thru
894 break;
895 case ISD::CopyToReg: {
896 unsigned SrcReg;
897 SDValue SrcVal = Node->getOperand(2);
898 if (RegisterSDNode *R = dyn_cast<RegisterSDNode>(SrcVal))
899 SrcReg = R->getReg();
900 else
901 SrcReg = getVR(SrcVal, VRBaseMap);
902
903 unsigned DestReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
904 if (SrcReg == DestReg) // Coalesced away the copy? Ignore.
905 break;
906
907 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TargetOpcode::COPY),
908 DestReg).addReg(SrcReg);
909 break;
910 }
911 case ISD::CopyFromReg: {
912 unsigned SrcReg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
913 EmitCopyFromReg(Node, 0, IsClone, IsCloned, SrcReg, VRBaseMap);
914 break;
915 }
916 case ISD::EH_LABEL: {
917 MCSymbol *S = cast<EHLabelSDNode>(Node)->getLabel();
918 BuildMI(*MBB, InsertPos, Node->getDebugLoc(),
919 TII->get(TargetOpcode::EH_LABEL)).addSym(S);
920 break;
921 }
922
923 case ISD::LIFETIME_START:
924 case ISD::LIFETIME_END: {
925 unsigned TarOp = (Node->getOpcode() == ISD::LIFETIME_START) ?
926 TargetOpcode::LIFETIME_START : TargetOpcode::LIFETIME_END;
927
928 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Node->getOperand(1));
929 BuildMI(*MBB, InsertPos, Node->getDebugLoc(), TII->get(TarOp))
930 .addFrameIndex(FI->getIndex());
931 break;
932 }
933
934 case ISD::INLINEASM: {
935 unsigned NumOps = Node->getNumOperands();
936 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
937 --NumOps; // Ignore the glue operand.
938
939 // Create the inline asm machine instruction.
940 MachineInstrBuilder MIB = BuildMI(*MF, Node->getDebugLoc(),
941 TII->get(TargetOpcode::INLINEASM));
942
943 // Add the asm string as an external symbol operand.
944 SDValue AsmStrV = Node->getOperand(InlineAsm::Op_AsmString);
945 const char *AsmStr = cast<ExternalSymbolSDNode>(AsmStrV)->getSymbol();
946 MIB.addExternalSymbol(AsmStr);
947
948 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
949 // bits.
950 int64_t ExtraInfo =
951 cast<ConstantSDNode>(Node->getOperand(InlineAsm::Op_ExtraInfo))->
952 getZExtValue();
953 MIB.addImm(ExtraInfo);
954
955 // Remember to operand index of the group flags.
956 SmallVector<unsigned, 8> GroupIdx;
957
958 // Remember registers that are part of early-clobber defs.
959 SmallVector<unsigned, 8> ECRegs;
960
961 // Add all of the operand registers to the instruction.
962 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
963 unsigned Flags =
964 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
965 const unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
966
967 GroupIdx.push_back(MIB->getNumOperands());
968 MIB.addImm(Flags);
969 ++i; // Skip the ID value.
970
971 switch (InlineAsm::getKind(Flags)) {
972 default: llvm_unreachable("Bad flags!");
973 case InlineAsm::Kind_RegDef:
974 for (unsigned j = 0; j != NumVals; ++j, ++i) {
975 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
976 // FIXME: Add dead flags for physical and virtual registers defined.
977 // For now, mark physical register defs as implicit to help fast
978 // regalloc. This makes inline asm look a lot like calls.
979 MIB.addReg(Reg, RegState::Define |
980 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
981 }
982 break;
983 case InlineAsm::Kind_RegDefEarlyClobber:
984 case InlineAsm::Kind_Clobber:
985 for (unsigned j = 0; j != NumVals; ++j, ++i) {
986 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
987 MIB.addReg(Reg, RegState::Define | RegState::EarlyClobber |
988 getImplRegState(TargetRegisterInfo::isPhysicalRegister(Reg)));
989 ECRegs.push_back(Reg);
990 }
991 break;
992 case InlineAsm::Kind_RegUse: // Use of register.
993 case InlineAsm::Kind_Imm: // Immediate.
994 case InlineAsm::Kind_Mem: // Addressing mode.
995 // The addressing mode has been selected, just add all of the
996 // operands to the machine instruction.
997 for (unsigned j = 0; j != NumVals; ++j, ++i)
998 AddOperand(MIB, Node->getOperand(i), 0, nullptr, VRBaseMap,
999 /*IsDebug=*/false, IsClone, IsCloned);
1000
1001 // Manually set isTied bits.
1002 if (InlineAsm::getKind(Flags) == InlineAsm::Kind_RegUse) {
1003 unsigned DefGroup = 0;
1004 if (InlineAsm::isUseOperandTiedToDef(Flags, DefGroup)) {
1005 unsigned DefIdx = GroupIdx[DefGroup] + 1;
1006 unsigned UseIdx = GroupIdx.back() + 1;
1007 for (unsigned j = 0; j != NumVals; ++j)
1008 MIB->tieOperands(DefIdx + j, UseIdx + j);
1009 }
1010 }
1011 break;
1012 }
1013 }
1014
1015 // GCC inline assembly allows input operands to also be early-clobber
1016 // output operands (so long as the operand is written only after it's
1017 // used), but this does not match the semantics of our early-clobber flag.
1018 // If an early-clobber operand register is also an input operand register,
1019 // then remove the early-clobber flag.
1020 for (unsigned Reg : ECRegs) {
1021 if (MIB->readsRegister(Reg, TRI)) {
1022 MachineOperand *MO = MIB->findRegisterDefOperand(Reg, false, TRI);
1023 assert(MO && "No def operand for clobbered register?");
1024 MO->setIsEarlyClobber(false);
1025 }
1026 }
1027
1028 // Get the mdnode from the asm if it exists and add it to the instruction.
1029 SDValue MDV = Node->getOperand(InlineAsm::Op_MDNode);
1030 const MDNode *MD = cast<MDNodeSDNode>(MDV)->getMD();
1031 if (MD)
1032 MIB.addMetadata(MD);
1033
1034 MBB->insert(InsertPos, MIB);
1035 break;
1036 }
1037 }
1038 }
1039
1040 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1041 /// at the given position in the given block.
InstrEmitter(MachineBasicBlock * mbb,MachineBasicBlock::iterator insertpos)1042 InstrEmitter::InstrEmitter(MachineBasicBlock *mbb,
1043 MachineBasicBlock::iterator insertpos)
1044 : MF(mbb->getParent()), MRI(&MF->getRegInfo()),
1045 TII(MF->getSubtarget().getInstrInfo()),
1046 TRI(MF->getSubtarget().getRegisterInfo()),
1047 TLI(MF->getSubtarget().getTargetLowering()), MBB(mbb),
1048 InsertPos(insertpos) {}
1049