1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <stddef.h>
6
7 #include <algorithm>
8 #include <vector>
9
10 #include "base/logging.h"
11 #include "base/synchronization/condition_variable.h"
12 #include "base/synchronization/lock.h"
13 #include "base/synchronization/waitable_event.h"
14 #include "base/threading/thread_restrictions.h"
15
16 // -----------------------------------------------------------------------------
17 // A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
18 // support cross-process events (where one process can signal an event which
19 // others are waiting on). Because of this, we can avoid having one thread per
20 // listener in several cases.
21 //
22 // The WaitableEvent maintains a list of waiters, protected by a lock. Each
23 // waiter is either an async wait, in which case we have a Task and the
24 // MessageLoop to run it on, or a blocking wait, in which case we have the
25 // condition variable to signal.
26 //
27 // Waiting involves grabbing the lock and adding oneself to the wait list. Async
28 // waits can be canceled, which means grabbing the lock and removing oneself
29 // from the list.
30 //
31 // Waiting on multiple events is handled by adding a single, synchronous wait to
32 // the wait-list of many events. An event passes a pointer to itself when
33 // firing a waiter and so we can store that pointer to find out which event
34 // triggered.
35 // -----------------------------------------------------------------------------
36
37 namespace base {
38
39 // -----------------------------------------------------------------------------
40 // This is just an abstract base class for waking the two types of waiters
41 // -----------------------------------------------------------------------------
WaitableEvent(bool manual_reset,bool initially_signaled)42 WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
43 : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
44 }
45
~WaitableEvent()46 WaitableEvent::~WaitableEvent() {
47 }
48
Reset()49 void WaitableEvent::Reset() {
50 base::AutoLock locked(kernel_->lock_);
51 kernel_->signaled_ = false;
52 }
53
Signal()54 void WaitableEvent::Signal() {
55 base::AutoLock locked(kernel_->lock_);
56
57 if (kernel_->signaled_)
58 return;
59
60 if (kernel_->manual_reset_) {
61 SignalAll();
62 kernel_->signaled_ = true;
63 } else {
64 // In the case of auto reset, if no waiters were woken, we remain
65 // signaled.
66 if (!SignalOne())
67 kernel_->signaled_ = true;
68 }
69 }
70
IsSignaled()71 bool WaitableEvent::IsSignaled() {
72 base::AutoLock locked(kernel_->lock_);
73
74 const bool result = kernel_->signaled_;
75 if (result && !kernel_->manual_reset_)
76 kernel_->signaled_ = false;
77 return result;
78 }
79
80 // -----------------------------------------------------------------------------
81 // Synchronous waits
82
83 // -----------------------------------------------------------------------------
84 // This is a synchronous waiter. The thread is waiting on the given condition
85 // variable and the fired flag in this object.
86 // -----------------------------------------------------------------------------
87 class SyncWaiter : public WaitableEvent::Waiter {
88 public:
SyncWaiter()89 SyncWaiter()
90 : fired_(false),
91 signaling_event_(NULL),
92 lock_(),
93 cv_(&lock_) {
94 }
95
Fire(WaitableEvent * signaling_event)96 bool Fire(WaitableEvent* signaling_event) override {
97 base::AutoLock locked(lock_);
98
99 if (fired_)
100 return false;
101
102 fired_ = true;
103 signaling_event_ = signaling_event;
104
105 cv_.Broadcast();
106
107 // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
108 // the blocking thread's stack. There is no |delete this;| in Fire. The
109 // SyncWaiter object is destroyed when it goes out of scope.
110
111 return true;
112 }
113
signaling_event() const114 WaitableEvent* signaling_event() const {
115 return signaling_event_;
116 }
117
118 // ---------------------------------------------------------------------------
119 // These waiters are always stack allocated and don't delete themselves. Thus
120 // there's no problem and the ABA tag is the same as the object pointer.
121 // ---------------------------------------------------------------------------
Compare(void * tag)122 bool Compare(void* tag) override { return this == tag; }
123
124 // ---------------------------------------------------------------------------
125 // Called with lock held.
126 // ---------------------------------------------------------------------------
fired() const127 bool fired() const {
128 return fired_;
129 }
130
131 // ---------------------------------------------------------------------------
132 // During a TimedWait, we need a way to make sure that an auto-reset
133 // WaitableEvent doesn't think that this event has been signaled between
134 // unlocking it and removing it from the wait-list. Called with lock held.
135 // ---------------------------------------------------------------------------
Disable()136 void Disable() {
137 fired_ = true;
138 }
139
lock()140 base::Lock* lock() {
141 return &lock_;
142 }
143
cv()144 base::ConditionVariable* cv() {
145 return &cv_;
146 }
147
148 private:
149 bool fired_;
150 WaitableEvent* signaling_event_; // The WaitableEvent which woke us
151 base::Lock lock_;
152 base::ConditionVariable cv_;
153 };
154
Wait()155 void WaitableEvent::Wait() {
156 bool result = TimedWait(TimeDelta::FromSeconds(-1));
157 DCHECK(result) << "TimedWait() should never fail with infinite timeout";
158 }
159
TimedWait(const TimeDelta & max_time)160 bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
161 base::ThreadRestrictions::AssertWaitAllowed();
162 const TimeTicks end_time(TimeTicks::Now() + max_time);
163 const bool finite_time = max_time.ToInternalValue() >= 0;
164
165 kernel_->lock_.Acquire();
166 if (kernel_->signaled_) {
167 if (!kernel_->manual_reset_) {
168 // In this case we were signaled when we had no waiters. Now that
169 // someone has waited upon us, we can automatically reset.
170 kernel_->signaled_ = false;
171 }
172
173 kernel_->lock_.Release();
174 return true;
175 }
176
177 SyncWaiter sw;
178 sw.lock()->Acquire();
179
180 Enqueue(&sw);
181 kernel_->lock_.Release();
182 // We are violating locking order here by holding the SyncWaiter lock but not
183 // the WaitableEvent lock. However, this is safe because we don't lock @lock_
184 // again before unlocking it.
185
186 for (;;) {
187 const TimeTicks current_time(TimeTicks::Now());
188
189 if (sw.fired() || (finite_time && current_time >= end_time)) {
190 const bool return_value = sw.fired();
191
192 // We can't acquire @lock_ before releasing the SyncWaiter lock (because
193 // of locking order), however, in between the two a signal could be fired
194 // and @sw would accept it, however we will still return false, so the
195 // signal would be lost on an auto-reset WaitableEvent. Thus we call
196 // Disable which makes sw::Fire return false.
197 sw.Disable();
198 sw.lock()->Release();
199
200 // This is a bug that has been enshrined in the interface of
201 // WaitableEvent now: |Dequeue| is called even when |sw.fired()| is true,
202 // even though it'll always return false in that case. However, taking
203 // the lock ensures that |Signal| has completed before we return and
204 // means that a WaitableEvent can synchronise its own destruction.
205 kernel_->lock_.Acquire();
206 kernel_->Dequeue(&sw, &sw);
207 kernel_->lock_.Release();
208
209 return return_value;
210 }
211
212 if (finite_time) {
213 const TimeDelta max_wait(end_time - current_time);
214 sw.cv()->TimedWait(max_wait);
215 } else {
216 sw.cv()->Wait();
217 }
218 }
219 }
220
221 // -----------------------------------------------------------------------------
222 // Synchronous waiting on multiple objects.
223
224 static bool // StrictWeakOrdering
cmp_fst_addr(const std::pair<WaitableEvent *,unsigned> & a,const std::pair<WaitableEvent *,unsigned> & b)225 cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
226 const std::pair<WaitableEvent*, unsigned> &b) {
227 return a.first < b.first;
228 }
229
230 // static
WaitMany(WaitableEvent ** raw_waitables,size_t count)231 size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
232 size_t count) {
233 base::ThreadRestrictions::AssertWaitAllowed();
234 DCHECK(count) << "Cannot wait on no events";
235
236 // We need to acquire the locks in a globally consistent order. Thus we sort
237 // the array of waitables by address. We actually sort a pairs so that we can
238 // map back to the original index values later.
239 std::vector<std::pair<WaitableEvent*, size_t> > waitables;
240 waitables.reserve(count);
241 for (size_t i = 0; i < count; ++i)
242 waitables.push_back(std::make_pair(raw_waitables[i], i));
243
244 DCHECK_EQ(count, waitables.size());
245
246 sort(waitables.begin(), waitables.end(), cmp_fst_addr);
247
248 // The set of waitables must be distinct. Since we have just sorted by
249 // address, we can check this cheaply by comparing pairs of consecutive
250 // elements.
251 for (size_t i = 0; i < waitables.size() - 1; ++i) {
252 DCHECK(waitables[i].first != waitables[i+1].first);
253 }
254
255 SyncWaiter sw;
256
257 const size_t r = EnqueueMany(&waitables[0], count, &sw);
258 if (r) {
259 // One of the events is already signaled. The SyncWaiter has not been
260 // enqueued anywhere. EnqueueMany returns the count of remaining waitables
261 // when the signaled one was seen, so the index of the signaled event is
262 // @count - @r.
263 return waitables[count - r].second;
264 }
265
266 // At this point, we hold the locks on all the WaitableEvents and we have
267 // enqueued our waiter in them all.
268 sw.lock()->Acquire();
269 // Release the WaitableEvent locks in the reverse order
270 for (size_t i = 0; i < count; ++i) {
271 waitables[count - (1 + i)].first->kernel_->lock_.Release();
272 }
273
274 for (;;) {
275 if (sw.fired())
276 break;
277
278 sw.cv()->Wait();
279 }
280 sw.lock()->Release();
281
282 // The address of the WaitableEvent which fired is stored in the SyncWaiter.
283 WaitableEvent *const signaled_event = sw.signaling_event();
284 // This will store the index of the raw_waitables which fired.
285 size_t signaled_index = 0;
286
287 // Take the locks of each WaitableEvent in turn (except the signaled one) and
288 // remove our SyncWaiter from the wait-list
289 for (size_t i = 0; i < count; ++i) {
290 if (raw_waitables[i] != signaled_event) {
291 raw_waitables[i]->kernel_->lock_.Acquire();
292 // There's no possible ABA issue with the address of the SyncWaiter here
293 // because it lives on the stack. Thus the tag value is just the pointer
294 // value again.
295 raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
296 raw_waitables[i]->kernel_->lock_.Release();
297 } else {
298 // By taking this lock here we ensure that |Signal| has completed by the
299 // time we return, because |Signal| holds this lock. This matches the
300 // behaviour of |Wait| and |TimedWait|.
301 raw_waitables[i]->kernel_->lock_.Acquire();
302 raw_waitables[i]->kernel_->lock_.Release();
303 signaled_index = i;
304 }
305 }
306
307 return signaled_index;
308 }
309
310 // -----------------------------------------------------------------------------
311 // If return value == 0:
312 // The locks of the WaitableEvents have been taken in order and the Waiter has
313 // been enqueued in the wait-list of each. None of the WaitableEvents are
314 // currently signaled
315 // else:
316 // None of the WaitableEvent locks are held. The Waiter has not been enqueued
317 // in any of them and the return value is the index of the first WaitableEvent
318 // which was signaled, from the end of the array.
319 // -----------------------------------------------------------------------------
320 // static
EnqueueMany(std::pair<WaitableEvent *,size_t> * waitables,size_t count,Waiter * waiter)321 size_t WaitableEvent::EnqueueMany
322 (std::pair<WaitableEvent*, size_t>* waitables,
323 size_t count, Waiter* waiter) {
324 if (!count)
325 return 0;
326
327 waitables[0].first->kernel_->lock_.Acquire();
328 if (waitables[0].first->kernel_->signaled_) {
329 if (!waitables[0].first->kernel_->manual_reset_)
330 waitables[0].first->kernel_->signaled_ = false;
331 waitables[0].first->kernel_->lock_.Release();
332 return count;
333 }
334
335 const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
336 if (r) {
337 waitables[0].first->kernel_->lock_.Release();
338 } else {
339 waitables[0].first->Enqueue(waiter);
340 }
341
342 return r;
343 }
344
345 // -----------------------------------------------------------------------------
346
347
348 // -----------------------------------------------------------------------------
349 // Private functions...
350
WaitableEventKernel(bool manual_reset,bool initially_signaled)351 WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
352 bool initially_signaled)
353 : manual_reset_(manual_reset),
354 signaled_(initially_signaled) {
355 }
356
~WaitableEventKernel()357 WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
358 }
359
360 // -----------------------------------------------------------------------------
361 // Wake all waiting waiters. Called with lock held.
362 // -----------------------------------------------------------------------------
SignalAll()363 bool WaitableEvent::SignalAll() {
364 bool signaled_at_least_one = false;
365
366 for (std::list<Waiter*>::iterator
367 i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
368 if ((*i)->Fire(this))
369 signaled_at_least_one = true;
370 }
371
372 kernel_->waiters_.clear();
373 return signaled_at_least_one;
374 }
375
376 // ---------------------------------------------------------------------------
377 // Try to wake a single waiter. Return true if one was woken. Called with lock
378 // held.
379 // ---------------------------------------------------------------------------
SignalOne()380 bool WaitableEvent::SignalOne() {
381 for (;;) {
382 if (kernel_->waiters_.empty())
383 return false;
384
385 const bool r = (*kernel_->waiters_.begin())->Fire(this);
386 kernel_->waiters_.pop_front();
387 if (r)
388 return true;
389 }
390 }
391
392 // -----------------------------------------------------------------------------
393 // Add a waiter to the list of those waiting. Called with lock held.
394 // -----------------------------------------------------------------------------
Enqueue(Waiter * waiter)395 void WaitableEvent::Enqueue(Waiter* waiter) {
396 kernel_->waiters_.push_back(waiter);
397 }
398
399 // -----------------------------------------------------------------------------
400 // Remove a waiter from the list of those waiting. Return true if the waiter was
401 // actually removed. Called with lock held.
402 // -----------------------------------------------------------------------------
Dequeue(Waiter * waiter,void * tag)403 bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
404 for (std::list<Waiter*>::iterator
405 i = waiters_.begin(); i != waiters_.end(); ++i) {
406 if (*i == waiter && (*i)->Compare(tag)) {
407 waiters_.erase(i);
408 return true;
409 }
410 }
411
412 return false;
413 }
414
415 // -----------------------------------------------------------------------------
416
417 } // namespace base
418